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Abstract

Background: Perinatal depressive symptoms have been linked to adverse maternal and infant health outcomes.

The etiology associated with perinatal depressive psychopathology is poorly understood, but accumulating

evidence suggests that understanding inter-individual differences in DNA methylation (DNAm) patterning may

provide insight regarding the genomic regions salient to the risk liability of perinatal depressive psychopathology.

Results: Genome-wide DNAm was measured in maternal peripheral blood using the Infinium MethylationEPIC

microarray. Ninety-two participants (46% African-American) had DNAm samples that passed all quality control

metrics, and all participants were within 7 months of delivery. Linear models were constructed to identify

differentially methylated sites and regions, and permutation testing was utilized to assess significance. Differentially

methylated regions (DMRs) were defined as genomic regions of consistent DNAm change with at least two probes

within 1 kb of each other. Maternal age, current smoking status, estimated cell-type proportions, ancestry-relevant

principal components, days since delivery, and chip position served as covariates to adjust for technical and

biological factors. Current postpartum depressive symptoms were measured using the Edinburgh Postnatal

Depression Scale. Ninety-eight DMRs were significant (false discovery rate < 5%) and overlapped 92 genes. Three of

the regions overlap loci from the latest Psychiatric Genomics Consortium meta-analysis of depression.

Conclusions: Many of the genes identified in this analysis corroborate previous allelic, transcriptomic, and DNAm

association results related to depressive phenotypes. Future work should integrate data from multi-omic platforms

to understand the functional relevance of these DMRs and refine DNAm association results by limiting phenotypic

heterogeneity and clarifying if DNAm differences relate to the timing of onset, severity, duration of perinatal mental

health outcomes of the current pregnancy or to previous history of depressive psychopathology.
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Introduction
Perinatal depressive symptoms can occur any time dur-

ing pregnancy or shortly following birth and even sub-

clinical levels of depressive symptoms have been

associated with an increased risk for episodes of major

depression with onset in the peripartum (MDP), preg-

nancy complications, maternal suicide, and adverse in-

fant health outcomes and development [1–7]. The

Diagnostic and Statistical Manual (fifth edition; DSM-5)

classifies MDP as a major depressive episode that occurs

during pregnancy or within 4 weeks of delivery [8]; how-

ever, in practice, researchers and clinicians may extend

this period to up to one year postpartum. Attempts to

understand the impact of depressive psychopathology on

biological mechanisms have primarily centered on eluci-

dating the relationship between maternal mental health

and negative infant outcomes. As a result, relatively little

is known regarding how perinatal depressive symptoms

affect maternal biological processes. Epidemiological

studies suggest that episodes of major depression (MD)

may increase the risk for other adverse health outcomes,

such as cardiovascular disease, and perturb immune sys-

tem activities. The biological pathways associated with

these persistent changes in immune activity and elevated

risk have not yet been identified. More work is needed to

uncover the pathways underlying these comorbidities and

to determine if the biological impact from depressive

symptoms differs by clinical subtype (e.g., perinatal and

early-onset). One potential avenue for understanding bio-

logical changes associated with depressive psychopath-

ology is through DNA methylation (DNAm) studies.

DNAm is a chemical modification typically found on

cytosines bordering guanines (i.e., cytosine-phosphate-

guanine [CpG] sites). DNAm can influence gene expres-

sion, genomic stability, and chromatin conformation [9].

Inter-individual differences in DNAm have been associ-

ated with early mortality [10], cancer [11], imprinting

disorders [12, 13], childhood trauma exposure [14], bio-

logical age [15, 16], and schizophrenia [17, 18]. Associa-

tions between DNAm and clinical MD and/or depressive

symptoms proximal to [19–22] or absent pregnancy

[23–26] have been reported; however, most of the peri-

natal depression studies have focused on identifying

DNAm patterns in fetal tissues associated with maternal

mental health, leaving a significant knowledge gap. Char-

acterizing the relationship between DNAm and perinatal

depressive symptoms may provide insight regarding the

pathoetiology of MDP as well as potentially identify bio-

logical markers [27].

This study sought to identify DNAm patterns associ-

ated with perinatal depressive symptoms during the first

7 months postpartum in maternal blood focusing on re-

gional DNAm changes. Genome-wide DNAm and re-

peated measures of maternal mental health were

collected as part of a longitudinal study of preterm birth

[28]. The rationale for focusing on differentially methyl-

ated regions (DMRs) rather than single CpG site associa-

tions was twofold. One, regional changes are thought to

represent differences more likely to be biologically

meaningful and statistically credible [29]. A single CpG

site associated with a trait could be spurious; however,

multiple CpG sites within one region each associating

with a trait in the same direction is likely to represent a

more robust finding. Two, regional analyses reduce the

burden of multiple tests and allow one to test for smaller

probe effect sizes [30]. The sample size for this study is

acceptable to test regional differences, but it is not well-

powered to identify individual probe associations.

Methods
Study participants

The data for this analysis come from the Pregnancy,

Race, Environment, Genes (PREG) study and its postpar-

tum extension [28]. Both PREG and the extension re-

ceived IRB approval, and all participants provided

written informed consent for both parts. Most partici-

pants had the first postpartum visit within 3 months of

delivery and the second visit within 9 months. The

PREG study recruited an epidemiological sample of

women in early pregnancy primarily from two health

clinics in Richmond, Virginia. The purpose of the PREG

study was to identify factors that influence racial health

disparities in preterm birth. The postpartum study ex-

tension permitted additional perinatal outcomes, like

perinatal depression, to be investigated.

Study eligibility criteria

PREG study enrollment criteria required participants to

(1) be < 24 weeks gestation, (2) have a singleton preg-

nancy, (3) have not used artificial reproductive technol-

ogy for the current pregnancy, (4) be between 18 and 40

years old, and (5) be absent of major health conditions

(e.g., diabetes) [28]. Additionally, the participant and the

biological father had to self-identify as either both

African-American or both European-American and

without Middle Eastern or Hispanic ancestry. Birth ex-

clusion criteria included chromosomal or amniotic ab-

normalities (e.g., polyhydramnios/oligohydramnios) and

congenital birth defects.

Psychiatric assessments

Current perinatal depressive symptoms were measured

at both postpartum study visits using the Edinburgh

Postnatal Depression Scale (EPDS) [31]. The EPDS is a

10-item self-report instrument that is used in clinical

practice to screen for probable perinatal depression and

in research to assess for perinatal depressive symptoms;

it differs from other depressive symptom measures
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because the items focus on symptoms specifically related

to depression that would not be part of a typical preg-

nancy [32]. For example, difficulty sleeping is common

in pregnancies regardless of maternal MD status. EPDS

total score was analyzed as a continuous variable. Scores

of 13 or more out of 30 indicate probable perinatal de-

pression [31].

Genome-wide DNAm measurement and processing

Maternal genome-wide DNAm was assayed according to

the manufacturer’s protocol (Illumina, San Diego, CA,

USA) from peripheral blood using the EPIC beadchip,

which includes more than 850,000 probes and interro-

gates regulatory, genic, and intergenic regions [33].

Blood samples were collected in EDTA tubes at each

study visit along with health questionnaires. An aliquot

of 1 μg DNA per participant was sent to HudsonAlpha

Laboratories for DNAm measurement. Samples were

randomized to arrays to minimize potential batch effects

related to processing influencing DNAm patterns. Per-

ipheral blood was selected given its accessibility, the

availability of cell-type deconvolution methods, and the

strong evidence of immune system involvement in MDP

pathophysiology [34–37].

Raw microarray data was processed using Bioconduc-

tor packages in the R environment in line with best

practices [38–40] (version 3.5). Signal intensity and

probe failure rate were evaluated using the minfi [41]

package to identify poor quality samples and probes.

Samples were removed if either the median unmethy-

lated or methylated signal intensities were less than 10.5.

Probes were removed if they failed in > 1% of samples (n

= 12,557), overlapped single-nucleotide polymorphisms

(SNPs; n = 30,435), or had been identified as cross-

hybridizing in the Illumina Infinium HumanMethyla-

tion450 beadchip (predecessor technology) [42]. Probes

on the sex chromosomes were retained given that the

entire sample was female, leaving a total of 782,884

probes. All samples were quantile normalized, and blood

cell type proportions were estimated using the House-

man method [43]. Sample identity was confirmed using

the 59 control probes on the EPIC beadchip. These

probes overlap polymorphic sites and in aggregate can

estimate sample relatedness and detect sample duplica-

tion. All pairwise sample correlations were calculated.

Any sample correlated too poorly with its sister samples

(r < 0.8) or too highly with samples from another person

(r > 0.6) were removed or relabeled if the correct iden-

tity could be ascertained. Only one blood sample per

person was used for this analysis. In general, DNAm

samples from the first postpartum visit were used; how-

ever, if a participant’s first postpartum visit failed quality

control and she had a second postpartum DNAm sam-

ple within 7 months of delivery, then that sample and

the EPDS questionnaire from the same visit was used.

For all participants, the phenotypic and DNAm data

were from the same study visit. The purpose for using

only one sample was to capture the postpartum time

period with the highest estimates of depressive symptom

prevalence while also limiting potential phenotypic het-

erogeneity [44–46].

DNAm analysis
Covariate selection

Maternal age, number of days postpartum at blood and

questionnaire collection, smoking status, and microarray

row were selected as covariates a priori based on known

or putative associations with DNAm. Principal compo-

nent analysis (PCA) was applied to the normalized me-

thyl values [47] of the filtered probe set, and correlations

between the top ten principal components (PC) and

technical and biological variables were plotted to identify

additional potential confounders. Four variables (esti-

mated granulocyte proportion, chip size, self-reported

census-based race category, and slide ID number) corre-

lated greater than the absolute value of 0.5 with at least

one PC. Slide effects were addressed using ComBat [48].

Genetic ancestry relevant PCs were calculated with the

Barfield method [49]. Two PCs strongly independently

correlated with self-identified race were included instead

of self-identified race because the PCs have been shown

to adjust for genomic inflation better than a categorical

variable [49]. These two components also correlated

strongly with estimated blood cell proportions (r > than

the absolute value of 0.5). Estimated granulocyte propor-

tion also was included as a covariate to provide add-

itional adjustment for cell-type heterogeneity.

Identifying single-site and regional DNAm changes

The methyl values for individual probes were regressed

onto postpartum EPDS total score using the limma

package [50]. Covariates controlling for row, granulocyte

proportion, median unmethylated signal intensity mater-

nal age, gestational age at blood collection, smoking sta-

tus, and allelic ancestry were included. The strength of

the association between individual probes and EPDS

total score was evaluated using empirical p values de-

rived from a null distribution derived from the dataset

itself (k = 20,000 permutations). This analysis strategy

provides a more appropriate assessment and adjustment

for test statistic inflation than a metric like lambda [51].

The median effect size for probes used in the DMR ana-

lysis was assessed using the difference in adjusted R2

values between the full model and a reduced model

without EPDS total score.

The probes with the largest observed t statistics (top

and bottom 2.5% of tested probes) were used for re-

gional analysis. Differentially methylated regions (DMRs)
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were defined as contiguous regions of consistent DNAm

change (i.e., all hypermethylated or all hypomethylated)

that contained at least two probes within 1 kb using a

method similar to that described by Ong and Holbrook

[30]. This strategy is similar to the DMRcate algorithm

in that only the subset of the probes with the best evi-

dence for association is used to construct DMRs [52].

DMR significance was assessed using a rank-based

permutation strategy and an empirical null distribution

derived from k = 1000 permutations. DMRs were con-

structed from both the observed data and 1000 of the

20,000 DMP permutation sets. For each DMR, the area

under the curve (AUC) was calculated using the trapez-

oidal rule, where each probe’s t statistic served as height

and the distance between the probes as width. Thus, the

magnitude of the AUC reflects both the strength of each

probe’s association (height) and the size of the region

(width). The significance of analysis microarray (SAM)

method was implemented to assign test statistics to each

observed DMR [53]. This method ranks all DMRs gener-

ated within a permutation by AUC and performs row-

wise comparisons between the ranked observed DMRs

and the ranked permutation DMRs to calculate a false

discovery rate (FDR).

Gene set enrichment and comparison to other genetic

findings related to depression

DMPs and DMRs were annotated using AnnotationHub

[54]. Gene set enrichment testing for functional and

regulatory roles was performed on the combined dataset

of DMPs and DMRs using Entrez IDs and clusterProfiler

[55]. The rationale for combining DMRs and DMPs into

a single group for gene set analysis was to address the

issue that not all probes are capable of forming DMRs.

In order to give those regions of the genome an oppor-

tunity to contribute to gene set enrichment analysis,

DMPs and DMRs were analyzed together (see Additional

file 1 for full enrichment analysis of the combined

DMR-DMP analysis as well as the DMP-only and DMR-

only enrichment analyses performed separately with

clusterProfiler [55] and methylGSA [56]).

The results from this analysis were compared directly

to two studies of depression: the latest Psychiatric Gen-

omics Consortium (PGC) meta-analysis of genome-wide

association studies of depression and an epigenome-

wide association study (EWAS) of early-onset MD. For

the PGC study, the 44 significant loci were obtained to

determine the extent of overlap with significant DNAm

regions [57]. Bootstrap and permutation methods (k =

1000) were used to test if DNAm regions were enriched

for PGC loci. For the early-onset MD EWAS, site, re-

gional, and gene enrichment results from the Adolescent

and Young Adult Twin Study (AYATS) were compared

to findings from this study to determine the extent of

overlap and similarity [26, 85].

Results
Sample characteristics

Sample demographics can be found in Table 1 and are

representative of Richmond, Virginia. Approximately

half of the participants (46%) self-identified as African-

American, and the mean gestational age was 274.5 days

(sd = 13.0 days). Most of the women (65%) were primi-

gravida and had full-term pregnancies (94%). Very few

participants were current smokers (8%), and 18% of the

total sample self-reported a positive lifetime history of

MD. Lifetime MD history did not significantly predict

postpartum EPDS score, and the distribution of EPDS

scores by self-reported MD history are in Additional file 5:

Figure S3. The average EPDS score was 5.4, and 13 partici-

pants (14%) scored 13 or greater on the EPDS. The aver-

age time between delivery and postpartum study visit was

57 days (see Additional file 5).

Differentially methylated probes and regions

After microarray quality control and processing, 782,884

probes remained for analysis. From this filtered probe

set, it was possible to create up to 109,340 background

DMRs. N = 206,804 probes were ineligible to participate

in regional analyses because they did not have a neigh-

boring probe within 1 kb. Individual site analysis of the

entire probe set identified 50 DMPs significantly associ-

ated with EPDS total score (empirical p = 0 after 20,000

Table 1 PREG-PPD sample characteristics

Demographics

Total N 92

African-American (%) 42 (45.7)

Age 29.7 (4.4)

Early gestation BMI 27.4 (7.3)

First pregnancy (%) 59 (64.8)

Gestational length (days) 274.5 (13.0)

Preterm birth (%) 6 (6.5)

Days postpartuma 56.5 (36.7)

Current smoker (%) 7 (7.6)

Depressive phenotypes

Positive lifetime history of MD (%)b 16 (18.0)

Current postpartum depressive symptom loadc 5.4 (5.9)

PREG-PPD Pregnancy, Race, Environment, Genes study Postpartum Extension;

MD major depression

*All values are mean (standard deviation) unless otherwise noted with '(%)' to

indicate N (%) or 'N' to indicate count. Percentages were calculated using

valid responses
aNumber of days postpartum when study visit (i.e., blood draw and

questionnaire collection) occurred
bAssessed using the Composite International Diagnostic Interview-Short Form
cAssessed using the Edinburgh Postnatal Depression Scale
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permutations; see Additional file 5 for DMP quantile-

quantile plot). Approximately 39,150 probes were taken

forward for regional analysis. The median difference in

adjusted R2 values for the full versus reduced models for

these probes was 0.053 (interquartile range = 0.02).

Ninety-eight genomic regions spanning a collective

116.2 kb were significantly differentially methylated by

postpartum depressive symptom load (FDR < 5%). The

significant regions overlapped 92 genes on 20 chromo-

somes (none on chromosomes 7 or 18), and on average

spanned ~ 1.2 kb in length (see Additional file 2 for full

DMR gene list). The number of CpG probes in signifi-

cant DMRs ranged from 2 to 10 (mean = 3.48 probes).

Gene set enrichment and comparison of DNAm patterns

associated with postpartum depressive symptoms and

other genetic findings related to depression

Detailed results for the combined gene set enrichment of

DMPs and DMRs can be found in Table 2. In short, the

combined analysis identified one biological process (BP;

cognition) and four cellular components (CC; DNA repair

complex, neuron to neuron synapse, axon part, and syn-

apse part) significant at an FDR < 5%. The DMP and

DMR only analyses did not identify any categories with an

FDR < 5% and produced dissimilar results (see Additional

file 1). The DMP only analysis identified multiple BP and

CC categories associated with neural processes (e.g., cen-

tral nervous system neuron development, transmission of

nerve impulses, somatodendritic compartment, and neur-

onal cell body), and the significance of these categories

was markedly attenuated using a gene enrichment algo-

rithm that adjusts for number of probes per gene [56].

The DMR only analysis returned Gene Ontology (GO)

categories from a variety of biological systems, including

platelet formation and morphogenesis, cardiac muscle tis-

sue development, chemical synaptic transmission, inflam-

matory cell apoptotic process, and tissue morphogenesis.

Three DMRs overlapped PGC GWAS findings on chro-

mosomes 5, 6, and 16 (p = 0.034; see Additional file 3 for

more detail). The overlapping region on chromosome 6

occurred in the major histocompatibility complex (MHC)

region and neighbored genomic areas previously associ-

ated with early-onset major depression (DNAm) [26] and

depression as defined in the PGC genome-wide allelic

meta-analysis (see Fig. 1) [57]. None of the sites or regions

identified in the AYATS EWAS of early-onset major de-

pression directly overlapped the DMRs associated with

postpartum depressive symptom load in this analysis

[26]. The DMR with the largest AUC was located on

chromosome 15 and spanned five CpG sites (Fig. 2).

Discussion
Evaluating the credibility and replicability of the signifi-

cant findings from this analysis is paramount but

complicated. Few directly comparable studies exist, and

standardized practices for conducting and reporting re-

sults from epigenome-wide association studies (EWAS)

have not been established. That said, domains to assess

the credibility of EWAS results have been proposed, in-

cluding the level of statistical significance, genomic loca-

tion, biological relevance, functional relevance, validation

of significant associations, and the potential for study de-

sign bias or confounding variables to influence the ana-

lysis [29]. An indirect effect of evaluating the results

with these criteria is that it also highlights a study’s

strengths and weaknesses.

This study identified 98 DMRs and 50 DMPs using

DNAm measures from the EPIC beadchip (850 k), one

of the most comprehensive microarray technologies

available to assay DNAm. The combination strategy of

site- and region-based analysis identified significant re-

sults that overlap a gene set enriched for biological path-

ways highly relevant to putative depression etiology (e.g.,

synaptic signaling and dendrite development). Moreover,

the significant genome regions include a number of

genes that have been previously associated with MD

(e.g., RNF145 [59]) or with estrogen and progesterone

signaling (e.g., FOXA1, ARRB2, and ITGB3BP), which

may be particularly relevant for MDP and perinatal de-

pressive symptom risk liability [37]. None of the sites or

regions from this directly overlapped regions significant

in the AYATS EWAS of early-onset MD [26]; however,

both this study and the AYATS EWAS identified signifi-

cant DNAm regions in the major histocompatibility

complex (MHC) region on chromosome 6, which was

also identified in the latest PGC GWAS of depression

[57]. The two DNAm studies also shared a large propor-

tion of Gene Ontology (GO) terms in their respective

gene set enrichment analyses (e.g., synaptic transmission

and central nervous system development), suggesting

that even if the exact sites differed by study, the bio-

logical pathways with associated genes did not.

Comparing these results within the DNAm-MDP lit-

erature is difficult because a majority of the studies used

candidate gene approaches, which perform best as

methods to refine results from genome-wide analyses.

The only other genome-wide DNAm-MDP study that

used maternal tissue measured prenatal DNAm with the

HumanMethylation450 beadchip (450 k). No significant

results were found, possibly due to a modest sample size

(n = 38 antenatal maternal blood samples) [21] and

using only single probe approach. Modest sample sizes

are common in EWAS because of technology costs, but

regional analyses can mitigate power issues from small

sample sizes by reducing the multiple test burden. Ong

and Holbrook estimated that using their regional ap-

proach, a two-group 450 k study with 38 people (n = 19

per group) would have 61% power to identify results
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Table 2 Gene Ontology results for differentially methylated probes and regions

Ontology Description Gene ratio Bg ratio p value q value Gene ID

BP Cognition 11/136 284/17397 0.0000 0.038 TTC8/ADORA1/CNTNAP2/MEF2C/MEIS2/
NTSR1/PAFAH1B1/ADGRB3/RASGRF1/
SLC6A4/SYNGAP1

BP Learning or memory 9/136 246/17397 0.0001 0.114 CNTNAP2/MEF2C/MEIS2/NTSR1/
PAFAH1B1/ADGRB3/RASGRF1/SLC6A4/
SYNGAP1

BP Detection of
temperature stimulus involved in sensory perception

3/136 15/17397 0.0002 0.114 ADORA1/ARRB2/NTSR1

BP Detection of temperature stimulus involved in
sensory perception of pain

3/136 15/17397 0.0002 0.114 ADORA1/ARRB2/NTSR1

BP Dendrite development 8/136 216/17397 0.0003 0.114 CTNND2/COBL/MAP2/MEF2C/PAFAH1B1/
ADGRB3/KLF7/SYNGAP1

BP Detection of temperature stimulus 3/136 19/17397 0.0004 0.114 ADORA1/ARRB2/NTSR1

BP Modulation of chemical synaptic transmission 11/136 417/17397 0.0004 0.114 ADORA1/SYT9/ARRB2/MEF2C/NTSR1/
RASGRF1/SLC6A4/TMEM108/YWHAG/
SYNGAP1/CLSTN3

BP Regulation of trans-synaptic signal 11/136 418/17397 0.0004 0.114 ADORA1/SYT9/ARRB2/MEF2C/NTSR1/
RASGRF1/SLC6A4/TMEM108/YWHAG/
SYNGAP1/CLSTN3

BP Platelet formation 3/136 20/17397 0.0005 0.114 ZFPM1/MEF2C/MYH9

BP Establishment of cell polarity 6/136 128/17397 0.0005 0.114 SDCCAG8/SH3BP1/MAP2/MYH9/
PAFAH1B1/FRMD4A

BP Actin filament-based process 15/136 723/17397 0.0005 0.114 ABI2/ADORA1/DIAPH2/COBL/SH3BP1/
KCNJ5/MEF2C/MYH9/NEB/PAFAH1B1/
PLS3/LURAP1/ACTN4/MYOM2/TBCK

BP Platelet morphogenesis 3/136 21/17397 0.0006 0.114 ZFPM1/MEF2C/MYH9

BP Sensory perception of temperature stimulus 3/136 21/17397 0.0006 0.114 ADORA1/ARRB2/NTSR1

BP Behavior 13/136 579/17397 0.0006 0.116 ADORA1/CNTNAP2/KCND2/ARRB2/MEF2C/
MEIS2/NTSR1/PAFAH1B1/PEX13/ADGRB3/
RASGRF1/SLC6A4/SYNGAP1

BP Response to hypoxia 9/136 308/17397 0.0007 0.125 ADORA1/HILPDA/KCND2/LMNA/MMP2/
HIF3A/SLC6A4/TGFBR2/ACTN4

BP Regulation of postsynaptic membrane 6/136 139/17397 0.0008 0.128 ADORA1/KCND2/ARRB2/MEF2C/NTSR1/
TMEM108

BP Response to decreased oxygen levels 9/136 319/17397 0.0009 0.128 ADORA1/HILPDA/KCND2/LMNA/MMP2/
HIF3A/SLC6A4/TGFBR2/ACTN4

BP Chemical synaptic transmission 14/136 685/17397 0.0010 0.128 ADORA1/SYT9/GAD2/KCND2/ARRB2/
MEF2C/NTSR1/PAFAH1B1/RASGRF1/
SLC6A4/TMEM108/YWHAG/SYNGAP1/
CLSTN3

BP Anterograde trans-synaptic signaling 14/136 685/17397 0.0010 0.128 ADORA1/SYT9/GAD2/KCND2/ARRB2/
MEF2C/NTSR1/PAFAH1B1/RASGRF1/
SLC6A4/TMEM108/YWHAG/SYNGAP1/
CLSTN3

BP Establishment or maintenance of cell polarity 7/136 199/17397 0.0010 0.128 SDCCAG8/SH3BP1/LMNA/MAP2/MYH9/
PAFAH1B1/FRMD4A

BP Trans-synaptic signaling 14/136 693/17397 0.0011 0.134 ADORA1/SYT9/GAD2/KCND2/ARRB2/
MEF2C/NTSR1/PAFAH1B1/RASGRF1/
SLC6A4/TMEM108/YWHAG/SYNGAP1/
CLSTN3

BP Synaptic signaling 14/136 698/17397 0.0011 0.137 ADORA1/SYT9/GAD2/KCND2/ARRB2/
MEF2C/NTSR1/PAFAH1B1/RASGRF1/
SLC6A4/TMEM108/YWHAG/SYNGAP1/
CLSTN3

CC DNA repair complex 4/141 42/18363 0.0003 0.044 CETN3/ERCC1/PAXX/WRN

CC Neuron to neuron synapse 10/141 340/18363 0.0003 0.044 ADORA1/SYT9/CTNND2/KCND2/ARRB2/
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Table 2 Gene Ontology results for differentially methylated probes and regions (Continued)

Ontology Description Gene ratio Bg ratio p value q value Gene ID

MAP2/NTSR1/TMEM108/SYNGAP1/CLSTN3

CC Axon part 10/141 373/18363 0.0006 0.049 ADORA1/COBL/CNTNAP2/MAP2/NTSR1/
PAFAH1B1/TRPV2/RASGRF1/TMEM108/
RNF40

CC Synapse part 17/141 918/18363 0.0007 0.049 ADORA1/SYT9/CTNND2/GAD2/KCND2/
ARRB2/MAP2/MEF2C/NTSR1/COPS4/
ADGRB3/SLC6A4/TMEM108/YWHAG/
SYNGAP1/CLSTN3/RNF40

CC Cytoplasmic region 11/141 473/18363 0.0011 0.059 AKT2/FGF1/COBL/SH3BP1/MAP2/MYH9/
PAFAH1B1/CFAP46/TMEM108/ACTN4/
ARHGEF7

CC Distal axon 8/141 280/18363 0.0015 0.059 ADORA1/COBL/MAP2/NTSR1/PAFAH1B1/
TRPV2/RASGRF1/RNF40

CC Cell cortex 8/141 288/18363 0.0017 0.059 AKT2/FGF1/COBL/SH3BP1/MYH9/
PAFAH1B1/ACTN4/ARHGEF7

CC Actomyosin 4/141 71/18363 0.0022 0.059 MYH9/LURAP1/ACTN4/HDAC4

CC Dendrite 12/141 602/18363 0.0024 0.059 ADORA1/CTNND2/COBL/CNTNAP2/
KCNIP1/KCND2/ARRB2/MAP2/NTSR1/
TMEM108/URI1/SYNGAP1

CC Dendritic shaft 3/141 35/18363 0.0024 0.059 MAP2/NTSR1/SYNGAP1

CC Dendritic tree 12/141 604/18363 0.0024 0.059 ADORA1/CTNND2/COBL/CNTNAP2/
KCNIP1/KCND2/ARRB2/MAP2/NTSR1/
TMEM108/URI1/SYNGAP1

CC Postsynapse 12/141 604/18363 0.0024 0.059 ADORA1/CTNND2/KCND2/ARRB2/MAP2/
MEF2C/NTSR1/ADGRB3/SLC6A4/TMEM108/
SYNGAP1/CLSTN3

CC Postsynaptic density 8/141 315/18363 0.0030 0.059 ADORA1/CTNND2/KCND2/ARRB2/MAP2/
TMEM108/SYNGAP1/CLSTN3

CC Cell leading edge 9/141 389/18363 0.0032 0.059 ABI2/ADORA1/AKT2/COBL/SH3BP1/
CNTNAP2/MYH9/PAFAH1B1/ARHGEF7

CC Cell body 11/141 545/18363 0.0033 0.059 ADORA1/CTNND2/COBL/CNTNAP2/
KCND2/MAP2/NTSR1/PAFAH1B1/TRPV2/
TCP1/ARHGEF7

CC Asymmetric synapse 8/141 319/18363 0.0033 0.059 ADORA1/CTNND2/KCND2/ARRB2/MAP2/
TMEM108/SYNGAP1/CLSTN3

CC Somatodendritic compartment 14/141 818/18363 0.0042 0.069 ADORA1/CTNND2/COBL/CNTNAP2/
KCNIP1/KCND2/ARRB2/MAP2/NTSR1/
PAFAH1B1/TMEM108/URI1/SYNGAP1/
ARHGEF7

CC Dendrite terminus 2/141 13/18363 0.0043 0.069 COBL/MAP2

CC Postsynaptic specialization 8/141 339/18363 0.0047 0.069 ADORA1/CTNND2/KCND2/ARRB2/MAP2/
TMEM108/SYNGAP1/CLSTN3

CC Voltage-gated potassium channel complex 4/141 89/18363 0.0049 0.069 CNTNAP2/KCNIP1/KCND2/KCNJ5

CC Nucleotide-excision repair complex 2/141 14/18363 0.0050 0.069 CETN3/ERCC1

CC Axolemma 2/141 15/18363 0.0058 0.076 ADORA1/CNTNAP2

CC Axon 11/141 592/18363 0.0060 0.076 ADORA1/COBL/GAD2/CNTNAP2/MAP2/
NTSR1/PAFAH1B1/TRPV2/RASGRF1/
TMEM108/RNF40

CC Potassium channel complex 4/141 98/18363 0.0069 0.083 CNTNAP2/KCNIP1/KCND2/KCNJ5

CC Growth cone part 2/141 17/18363 0.0074 0.086 PAFAH1B1/TRPV2

CC Growth cone 5/141 165/18363 0.0090 0.100 COBL/MAP2/PAFAH1B1/TRPV2/RASGRF1

CC Site of polarized growth 5/141 167/18363 0.0094 0.101 COBL/MAP2/PAFAH1B1/TRPV2/RASGRF1

BP biological process, CC cellular component, Bg ratio background ratio
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with an effect size of 2 using a regional approach com-

pared to 39% with a single probe analysis [30]. This

power calculation does not map directly onto the ana-

lysis described here because Ong and Holbrook’s esti-

mate is for a case-control study design. This study used

a continuous measure of depression to avoid losing stat-

istical power from dichotomizing a naturally quantitative

trait. As a result, this study likely had at least 61% power

but may not have had 80%. Another benefit of regional

analyses is that the results are more likely to replicate

[30] in part because significant regional results require

multiple nearby probes each to have test statistics

greater than a chosen threshold and to exhibit the same

direction of effect. Together, the use of genome-wide

DNAm, a permutation rank-based approach for asses-

sing significance, and probes with test statistics either in

the upper or lower 2.5 percentile to test for DMRs each

positively influence the credibility of the results. Further,

the genomic locations of the significant DMRs increase

the credibility of the results as they overlap genes and

genomic regions that either directly corroborate previous

findings in the literature or that participate in biological

pathways hypothesized to be important for depression

risk or onset.

Another strength of this study concerns its design. Sig-

nificant care was taken to minimize potential biases and

confounders from biological, behavioral, and technical

factors. The women in this study completed multiple

comprehensive questionnaires about perinatal health

and behaviors, accessed prenatal care relatively early in

gestation, and were generally healthy (e.g., no diabetes)

[28], had healthy singleton pregnancies, and completed a

postpartum study visit within 7 months of delivery. These

study design aspects allow variation from behavioral, bio-

logical, and technical factors to be measured and

accounted for (e.g., cell type heterogeneity, tobacco use,

slide and positional effects, and signal quality). Addition-

ally, ancestrally-relevant principal components were incor-

porated to reduce the likelihood of detecting artifacts due

to potential population stratification. Visualization of me-

thyl values by self-reported race in significant DMRs sug-

gested that DNAm values did not differ markedly between

groups (see Additional file 4; Fig. 2).

Branching out to other depression phenotypes provides

both more literature for comparison, but also more uncer-

tainty. For example, it is not immediately clear if the DNAm

patterns associated with postpartum depressive symptoms

should resemble those associated with other depression phe-

notypes, including clinical major depression. Though both

are depression phenotypes, depressive symptoms and clin-

ical depression are not equivalent [60–63]. The issue of non-

equivalence emerged when comparing the findings in this

analysis to published results. For example, Numata

et al. reported a significant relationship between the

DNAm at cg14472315 and MD case status [25]. No sig-

nificant relationship existed between that probe and

self-reported postpartum depressive symptoms in this

study; however, a nominally significant relationship be-

tween that probe and lifetime history of MD was

present in this study (tested post hoc), reaffirming the

difficulty of comparing studies with related but non-

identical depressive phenotypes.

Fig. 1 Significant differentially methylated regions on chromosome 6 overlap findings from a Psychiatric Genomics Consortium meta-analysis of

depression. DNA methylation patterns associated with postpartum depressive symptoms (top row) and early-onset major depression (middle

row) colocalize to the major histocompatibility complex (MHC) region on chromosome 6. The overlap of the DNA methylation patterns and the

genomic region tagged in the genome-wide association meta-analysis of depression performed by the Psychiatric Genomics Consortium (PGC) is

shown in the bottom row [58]

Lapato et al. Clinical Epigenetics          (2019) 11:169 Page 8 of 13



For all of its strengths, this study was not without limita-

tions. First, the sample size was modest, which limits the

statistical power to conduct robust single-site analysis.

The sample also included relatively few women with se-

vere levels of postpartum depressive symptoms, which

may have unique DNAm signatures compared to clinical

MDP. Moreover, this study could not determine if the

DNAm patterns identified in this study were a conse-

quence of previous episodes of MD (which is a risk factor

for perinatal depression [46]) or if they are related to other

genetic or environmental factors. Second, detailed infor-

mation about medication history was not available. Third,

the newness of the EPIC microarray means that the probe

set has been less well-vetted for cross-hybridization com-

pared to its predecessor [42, 64]. Four, regional analyses

are inherently limited because not all probes have the po-

tential to form regions [30]. This analysis attempted to ad-

dress that weakness by also performing a single site

analysis. Furthermore, the regional analysis algorithm used

in this study selected an equal number of probes with

positive and negative t values, corresponding to hyperme-

thylation and hypomethylation in cases versus controls.

This strategy assumes that equal representation of positive

and negative t values will yield the most fair results; how-

ever, it is possible that this assumption limited the number

of DMRs identified, especially if cases had much more

hyper- or hypomethylation. Finally, this study was limited

in its assessment of functional relevance. Multiple tech-

niques were used to assess gene set enrichment, but none

were specifically intended to correct for probe count per

region, leading to differences in enrichment results by

method. No gene expression, chromatin conformation, or

transcription factor binding assays were run concurrently

with postpartum DNAm analyses. No algorithms cur-

rently exist that can determine the precise change in

DNAm necessary to translate into biologically meaningful

differences in chromatin shape or gene regulation. As a re-

sult, fully understanding the etiology of MDP and depres-

sive symptoms will likely involve integrating repeated

measures from multiple biological layers (e.g., genetic se-

quence, epigenetic mechanisms, transcription, and pro-

tein) [65, 66], but no single study could measure every

biological layer that might be informative about depres-

sion etiology, especially not longitudinally.

Another important consideration for interpreting

DNAm results is the tissue source [29, 67]. It remains un-

clear how detrimental the use of peripheral blood DNAm

is for identifying genomic regions associated with a psy-

chiatric phenotype like depression. On one hand, specific

brain regions hold intuitive appeal for MD-DNAm stud-

ies, and the cross-tissue similarity between brain and

blood appears to be modest and tied to allelic variation

[68]; however, given the well-established link between MD

pathophysiology and aberrant immune system functioning

[34–36, 69], peripheral blood may be the best and most

feasible option for large or longitudinal studies of stress-

related psychiatric traits. Many of the biomarkers associ-

ated with MD are transported in the blood (e.g., IL-1, IL-

2, IL-6, TNFa, and haptoglobin), and some of these

immune-related differences appear to persist after depres-

sive episode remission. Not only does that observation fit

with epidemiological studies that find individuals with a

Fig. 2 Increases in depressive symptom load negatively correlate with DNA methylation in a significant region identified on chromosome 15. The

significantly differentially methylated region (row 2, “DMR”) was built using 5 of the 21 CpG probes available on the EPIC array (row 1, “EPIC”). The

mean group methyl values are shown for low, mid, and high depressive symptom loads based on Edinburgh Postnatal Depression Scale (EPDS)

total score (low = 0–4; mid = 5–12; high = 13 and greater). The threshold of 13 or greater for the high group was selected based on the

validated cutoff score for English-speaking women in the postpartum time period shortly following birth [31]
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positive lifetime history of MD remain sensitive to stress

and at higher risk for adverse auto-immune and cardiovas-

cular outcomes [34], but also it suggests that DNAm pat-

terns detectable in the blood may retain MD-associated

differences even after depressive episode remission. Last

but not least, peripheral blood may be useful for indexing

changes in the relationship between the CNS and immune

system. As a sentinel tissue, peripheral blood travels

throughout the entire body and can deliver immune cells

through the blood-brain barrier. Key players in the CNS

like the neurotransmitter serotonin also serve roles in

immune-related biological pathways (e.g., leukocyte acti-

vation and proliferation, cytokine secretion, chemotaxis,

and apoptosis) [36, 70]. The ability of the CNS to modu-

late and respond to signals from the immune system un-

derscores the intimate relationship between brain function

and immune system regulation.

The final category Michels et al. (2013) listed as an im-

portant factor in establishing the credibility of DNAm asso-

ciations with phenotypes is validation [29]. Validating

results typically implies either replicating the finding in an

independent study (human or animal) or confirming the

presence of differentially methylated probes and regions

using another technology (e.g., pyrosequencing). While no

pyrosequencing was completed, the literature was searched

extensively for associations between depressive phenotypes

and biological signatures (e.g., allelic, epigenetic, and tran-

scription). As previously mentioned, the genomic regions

implicated in this study overlap results from the 2018 Psy-

chiatric Genomics Consortium (PGC) genome-wide allelic

association study (GWAS) of MD [57] and are proximal to

significant regions and probes from an EWAS of early-

onset MD. Network analysis of the 44 significant loci in the

PGC meta-analysis implicated biological pathways associ-

ated with neural differentiation, synaptic regulation, risk for

schizophrenia, immune response, ion-gated channels, and

retinoid X receptors [57]. Similarly, this analysis identified

significant DMRs overlapping genes coding for or related

to retinoid X receptors (RXRB, ITGB3BP), genes integral to

adult neurogenesis and synaptic development and position-

ing (e.g., AKT2, SYNGAP1, FOXG1, CTNND2, MEF2C,

and AIMP1), risk for schizophrenia (e.g., CLSTN3, FARSB,

MYOM2, SOX2-OT, SLC39A7, SDCCAG8, and LRRC36),

immune response (LRR1, FAM19A2, CMKLR1, and

MMP2), and ion-gated channels and binding (e.g., SLC6A4,

SLC6A12, SLC39A7, KCNJ5, CLSTN3, and PLS3). While

these similarities do not serve as direct replication, they do

increase the credibility of the DNAm findings and under-

score the potential for DNAm studies to complement

GWA studies.

Conclusions
Future work should take note of the apparent differences in

depressive symptoms and clinical MD and seek to refine

association studies by limiting phenotypic heterogeneity.

For MDP, that means not only accounting for whether the

depressive symptoms or episodes onset prenatally versus

postnatally, but also disentangling which DNAm patterns

are associated with perinatal depressive phenotypes and

which reflect pre-pregnancy events of depressive psycho-

pathology. It is possible that women who experience their

first instance of MD in the peripartum have a unique

DNAm profile compared to those who have recurrent MD

and happen to onset during the peripartum. Furthermore,

it is unknown whether an episode of MD relatively early in

life evokes a persistent perturbation in DNAm patterning

that then goes on to affect the risk for additional depressive

symptoms and episodes as well as other adverse health out-

comes frequently comorbid with depression (e.g., cardiovas-

cular disease and diabetes mellitus). Clarifying the

phenotypes associated with DNAm patterns will enable wet

lab researchers to characterize the functional and biological

relevance of implicated genomic sites and regions, which is

an essential step not only for understanding the biological

mechanisms associated with risk and resilience to depres-

sive psychopathology but also for developing screening tests

and identifying novel pharmacotherapeutic targets.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s13148-019-0769-z.

Additional file 1. DMP-only and DMR-only gene enrichment analysis.

This file contains gene ontology enrichment results in tabular format for

the combined set of differentially methylated regions and probes (DMR,

DMP) results, enrichment analysis of DMRs only, and enrichment analysis

of DMPs only. CSV files for these results are on the Open Science Frame-

work (OSF; landing page https://osf.io/qsc6n).

Additional file 2. List of genes overlapping differentially methylated

regions. List of the 92 genes overlapped by significant differentially

methylated regions (DMRs).

Additional file 3. Enrichment testing of Psychiatric Genomic

Consortium (PGC) supplemental methods. This file contains additional

details about how the 95% confidence intervals were calculated for the

PGC enrichment analysis.

Additional file 4: Supplement to Figure 2. This file contains two

additional versions of the differentially methylated region (DMR)

highlighted in Fig. 2. The top figure shows the ComBat-adjusted methyl

values for each participant colored by self-identified Census-based race

category. The points have been jittered left/right to ease visualization by

reducing over-plotting. No vertical adjustment was made. The bottom

figure shows the mean methyl values for each probe contained in the

DMR by self-identified Census-based race category.

Additional file 5. Additional Figures. This file contains four figures:

quantile-quantile plots for the DMP and DMR analyses and histograms of

the distribution of when PREG postpartum study visits occurred (i.e., time

since birth) and the distribution of EPDS total scores by self-reported life-

time history of MD (assessed using an extended self-report version of the

CIDI-SF).
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