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DNA methylation atlas of the mouse brain at 
single-cell resolution


Hanqing Liu1,2,16, Jingtian Zhou1,3,16, Wei Tian1, Chongyuan Luo1,4, Anna Bartlett1, 
Andrew Aldridge1, Jacinta Lucero5, Julia K. Osteen5, Joseph R. Nery1, Huaming Chen1, 
Angeline Rivkin1, Rosa G. Castanon1, Ben Clock6, Yang Eric Li7, Xiaomeng Hou8,9,10,11, 
Olivier B. Poirion8,9,10,11, Sebastian Preissl8,9,10,11, Antonio Pinto-Duarte5, Carolyn O’Connor12, 
Lara Boggeman12, Conor Fitzpatrick12, Michael Nunn1, Eran A. Mukamel13, Zhuzhu Zhang1, 
Edward M. Callaway14, Bing Ren7,8,9,10,11, Jesse R. Dixon6, M. Margarita Behrens5 & 
Joseph R. Ecker1,15 ✉

Mammalian brain cells show remarkable diversity in gene expression, anatomy and 
function, yet the regulatory DNA landscape underlying this extensive heterogeneity is 
poorly understood. Here we carry out a comprehensive assessment of the 
epigenomes of mouse brain cell types by applying single-nucleus DNA methylation 
sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 
non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, 
pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial 
locations and projection targets. We constructed taxonomies of these epigenetic 
types, annotated with signature genes, regulatory elements and transcription factors. 
These features indicate the potential regulatory landscape supporting the 
assignment of putative cell types and reveal repetitive usage of regulators in 
excitatory and inhibitory cells for determining subtypes. The DNA methylation 
landscape of excitatory neurons in the cortex and hippocampus varied continuously 
along spatial gradients. Using this deep dataset, we constructed an artificial neural 
network model that precisely predicts single neuron cell-type identity and brain area 
spatial location. Integration of high-resolution DNA methylomes with single-nucleus 
chromatin accessibility data3 enabled prediction of high-confidence enhancer–gene 
interactions for all identified cell types, which were subsequently validated by 
cell-type-specific chromatin conformation capture experiments4. By combining 
multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) 
from single nuclei and annotating the regulatory genome of hundreds of cell types in 
the mouse brain, our DNA methylation atlas establishes the epigenetic basis for 
neuronal diversity and spatial organization throughout the mouse cerebrum.

Epigenomic dynamics are associated with cell differentiation and matu-
ration in the mammalian brain and have an essential role in regulating 
neuronal functions and animal behaviour5,6. Cytosine DNA methylation 
(5mC) is a stable covalent modification that persists in post-mitotic 
cells throughout their lifetime and is critical for proper gene regula-
tion6. In mammalian genomes, 5mC occurs predominantly at CpG sites 
(mCG), showing dynamic patterns at regulatory elements with tissue 
and cell-type specificity1,6–8, modulating binding affinity of transcrip-
tion factors9 and controlling gene transcription5. Non-CpG cytosines 

are also abundantly methylated (mCH, H denotes A, C, or T)—uniquely 
in neurons—in the mouse and human brain6,10, which can directly affect 
DNA binding of methyl CpG binding protein 2 (MeCP2)11–13, causing Rett 
syndrome14. Levels of mCH at gene bodies are anti-correlated with gene 
expression and show high heterogeneity across neuronal cell types1,7.

A deeper understanding of epigenomic diversity in the mouse brain 
provides a complementary approach to transcriptome-based profil-
ing methods for identifying brain cell types and allows genome-wide 
prediction of the regulatory elements and transcriptional networks 
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underlying this diversity. Previous studies have demonstrated the utility 
of studying brain cell types and regulatory diversity using single-nucleus 
methylome sequencing (snmC-seq)1. This study uses snmC-seq22 to 
perform thorough methylome profiling with detailed spatial dissec-
tion in the adult postnatal day 56 (P56) male mouse brain. In Li et al.3, 
the same tissue samples were profiled using single-nucleus assay for 
transposase-accessible chromatin using sequencing (snATAC-seq) to 
identify genome-wide accessible chromatin15, providing complemen-
tary epigenomic information to aid in cell-type-specific regulatory 
genome annotation. Moreover, to further study cis-regulatory ele-
ments and their potential target genes across the genome, we applied 
single-nucleus methylation and chromosome conformation capture 
sequencing (sn-m3C-seq)4 to profile the methylome and chromatin 
conformation in the same cells.

These epigenomic datasets provide a detailed and comprehensive 
census of the diversity of cell types across mouse brain regions, allow-
ing identification of cell-type-specific regulatory elements and their 
candidate target genes and upstream transcription factors. Here we 
construct a single-cell base-resolution DNA methylation dataset con-
taining 103,982 methylomes from 45 dissected brain regions and use 
an iterative analysis framework to identify 161 predicted mouse brain 
subtypes. Comparing subtype-level methylomes enables us to identify 
3.9 million genomic regions showing cell-type-specific mCG variation, 
covering approximately 50% (1,240 Mb) of the mouse genome. We 
show that differentially methylated transcription factor genes and 
binding motifs can be associated with subtype taxonomy branches, 
allowing the prediction of cell-type gene regulatory programs specific 
for each developmental lineage. Integration of these data with cell 
clusters identified on the basis of chromatin accessibility validates most 
methylome-derived subtypes, enabling the prediction of 1.6 million 
enhancer-like genomic regions. We identify cis-regulatory interac-
tions between enhancers and genes using computational prediction 
and single-cell chromatin conformation profiling (in the hippocam-
pus (HIP)). We also identify spatial methylation gradients in cortical 
excitatory neurons and dentate gyrus granule cells and associated 

transcription factors and motifs. We apply an artificial neural network 
(ANN) model to precisely predict single-neuron cell-type identity and 
brain area spatial location using its methylome profile as input and 
develop the brain cell methylation viewer (http://neomorph.salk.edu/
omb) as a portal for querying and visualization of cell- and cluster-level 
methylation data.

Single-cell DNA methylome atlas
We used snmC-seq22 to profile genome-wide 5mC at single-cell 
resolution (Fig. 1a) across the cortex, HIP, striatum and pallidum 
(or cerebral nuclei, CNU), and olfactory areas (OLF) (Fig. 1b–e) 
using adult male C57BL/6 mice16. In total, we analysed 45 dis-
sected regions in two replicates (Extended Data Fig. 1, Supple-
mentary Table 2). Fluorescence-activated nuclei sorting (FANS) of 
antibody-labelled nuclei was applied to capture NeuN-positive neu-
rons (NeuN+, 92% of neurons), while also sampling a smaller number 
of NeuN-negative (NeuN–, 8% of neurons) non-neuronal cells (Fig. 1a). 
In total, we profiled the DNA methylomes of 103,982 single nuclei, 
yielding, on average, 1.5 million stringently filtered reads per cell 
(1.50 × 106 ± 0.58 × 106, mean ± s.d.) covering 6.2 ± 2.6% of the cytosines 
in the mouse genome in each cell. These enabled reliable quantifi-
cation of the DNA methylation fraction for 25,905 ± 1,090 (95 ± 4%) 
100-kb bins and 44,944 ± 4,438 (81 ± 8%) gene bodies (Extended 
Data Fig. 2a). The global methylation levels range from 0.2% to 7.6% 
in non-CpG sites and 61.6% to 88.8% in CpG sites (Extended Data 
Fig. 2b, c).

On the basis of the mCH and mCG profiles in 100-kb bins throughout 
the genome, we performed a three-level iterative clustering analysis 
to categorize the epigenomic cell populations (Fig. 1f, g). After qual-
ity control and preprocessing (Methods), in the first level (cell class), 
we clustered 103,982 cells as 67,472 (65%) excitatory neurons, 28,343 
(27%) inhibitory neurons, and 8,167 (8%) non-neurons (Supplemen-
tary Table 3). The second round of iterative analysis of each cell class 
identified 41 cell major types in total (cluster size range 95–11,919), 
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created based on Wang et al.16 and © 2017 Allen Institute for Brain Science. 
Allen Brain Reference Atlas. Available from: atlas.brain-map.org.
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and the third round separated these major types further into 161 cell 
subtypes (cluster size range 12–6,551). All subtypes are highly con-
served across replicates, and replicates from the same brain region 
are co-clustered compared with samples from other brain regions 
(Extended Data Fig. 2d–g).

The spatial distribution of each cell type is assessed based on where 
the cells were dissected (Supplementary Table 5). Here we used uni-
form manifold approximation and projection (UMAP)17 to visualize 
cell spatial locations (Fig. 1f, Extended Data Fig. 3) and major cell 
types (Extended Data Fig. 2h). Major non-neuronal cell types have 
a similar distribution across brain regions (Extended Data Fig. 1g), 
except adult neuron progenitors (ANPs). We found two subtypes 
of ANPs, presumably corresponding to neuronal precursors in the 
subgranular zone of the dentate gyrus (DG)18 (ANP anp-dg) and the 
rostral migratory stream18 in CNU and OLF (ANP anp-olf-cnu). Excita-
tory neurons from isocortex, OLF and HIP formed different major 
types, with some exceptions, potentially owing to overlaps in dis-
sected regions (Supplementary Table 2). Cells from the isocortex 
were further separated on the basis of their projection types1,19,20. 
The intratelencephalic (IT) neurons from all cortical regions contain 
four major types corresponding to the laminar layers (L2/3, L4, L5 
and L6), each of which includes cells from all cortical regions, except 
L4, which lack cells from the prefrontal cortex (PFC) and anterior 
cingulate area (ACA). Excitatory neurons from the HIP were further 
partitioned into major types corresponding to DG granule cells and 
different subfields of cornus ammonis (CA). We also identified major 
types from cortical subplate structures, including the claustrum 
(CLA) and endopiriform nucleus (EP) from isocortex and OLF dissec-
tions. GABAergic inhibitory neurons from isocortex and HIP cluster 

together into five major types, whereas interneurons from CNU and 
OLF group into nine major types.

In total, we identified 68 excitatory and 77 inhibitory subtypes 
(Fig. 2a, b, Supplementary Table 7). Although there is no one-to-one 
correspondence between subtypes and brain regions, individual sub-
types show differential regional enrichment (Fig. 2a, b, top right) and 
distinct global mCH levels, ranging from 0.98% (DG dg-all) to 4.64% 
(PAL-Inh Chat, an inhibitory subtype in pallidum (PAL)) (Fig. 2a, b, bot-
tom right). Specifically, isocortical excitatory subtypes usually consist 
of cells majorly derived from either the sensorimotor (primary motor 
(MOp), secondary motor (MOs), primary somatosensory (SSp), and 
secondary somatosensory (SSs) cortex), medial (PFC and ACA), or 
frontal areas (orbital (ORB) and agranular insular (AI) area). In the OLF, 
excitatory cells from the anterior olfactory nucleus (AON) and main 
olfactory bulb (MOB) are enriched in the subtype OLF-Exc Bmpr1b, 
whereas cells from the piriform area (PIR) are relatively enriched in 
the other OLF-Exc subtypes. Similarly, some inhibitory subtypes in 
CNU and OLF also correspond to different substructures in these two 
regions (Supplementary Note 1), indicating substantial spatial-related 
methylation diversity among CNU and OLF interneurons. By contrast, 
most caudal (CGE) or medial (MGE) ganglionic eminence-derived inhibi-
tory subtypes contain cells derived predominantly from all cortical or 
hippocampal regions. To better demonstrate the unprecedented level 
of neuronal subtype and spatial diversity in their DNA methylomes, we 
provide a web application to interactively display this information at 
different granularity (http://neomorph.salk.edu/omb). We also provide 
a detailed discussion of how exemplified subtypes correspond to cell 
types with known functional and spatial features (Extended Data Fig. 4) 
in Supplementary Note 1.
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Consensus epigenomic profiles
Integrating single-cell datasets collected using different molecular pro-
filing modalities can help to establish a consensus cell-type atlas20,21. By 
integrating the methylome data with the chromatin accessibility data 
profiled using snATAC-seq on the same brain samples from a parallel 
study3, the two modalities validated each other at the subtype level 
(Fig. 2c, d, Extended Data Fig. 5a–f, Supplementary Table 10). We then 
calculated overlap scores between the original methylation subtypes 
(m-types) and the chromatin accessibility subtypes (a-types), which fur-
ther quantified the matching of subtypes between the two modalities 
(Fig. 2e, Extended Data Fig. 5e, Methods). Moreover, the mCG DMRs (see 
below) highly overlap with open chromatin peaks in the hippocampal 
subtypes (Fig. 2f). Their mCG fractions and chromatin accessibility 
levels show similar cell-type-specificity across hippocampal subtypes, 
confirming the correct match of cell-type identities (Extended Data 
Fig. 5f).

Projection specificity of ET-L5 neurons
To further infer the projection targets of cell subtypes, we integrated 
our extra-telencephalic (ET) L5 neurons with epi-retro-seq data22. 
Epi-retro-seq uses retrograde viral labelling to select neurons pro-
jecting to specific brain regions, followed by methylome analysis of 
their epigenetic subtypes. Cells from the same brain region of the 
two datasets are colocalized on t-distributed stochastic neighbour 
embedding (t-SNE) analysis, validating the subtypes’ spatial distribu-
tion (Fig. 2g–i, Extended Data Fig. 5g–i). The overlap scores between 
unbiased (snmC-seq2) and targeted (epi-retro-seq) profiling experi-
ments (Extended Data Fig. 5j) indicate that some subtypes identified 
from the same cortical area show different projection specificity. For 

example, SSp and MOp neurons were mainly enriched in three subtypes 
marked by Kcnh1, Tmtc2 and Nectin1, respectively. However, neurons 
projecting to the medulla in the MOp and SSp only integrate with the 
subtype marked with Kcnh1 (Fig. 2j), suggesting that the subtypes 
identified in unbiased methylome profiling have distinct projection 
specificities.

Regulatory taxonomy of neuronal subtypes
Having developed a consensus map of cell types based on their DNA 
methylomes, we identified 16,451 differentially CH-methylated genes 
(CH-DMGs) and 3.9 million CG-differentially methylated regions 
(CG-DMRs, 624 ± 176 base pairs (bp) mean ± s.d.) between the subtypes 
(Extended Data Fig. 6, Methods, Supplementary Note 2). snmC-seq2 
captures both cell-type-specific gene expression and predicted reg-
ulatory events1,2. Specifically, both gene body mCH and mCG nega-
tively correlate with gene expression in neurons, with mCH showing 
a stronger correlation than mCG1,6,7,13. CG-DMRs provide predictions 
about cell-type-specific regulatory elements and transcription factors 
whose motifs enriched in these CG-DMRs predict the crucial regulators 
of the cell type1,7,8.

To further explore the gene regulatory relationship between neu-
ronal subtypes, we constructed taxonomy trees for excitatory and 
inhibitory subtypes, based on gene body mCH of CH-DMGs (Extended 
Data Fig. 7a, b, Methods). The dendrogram structures represent the 
similarities between these discrete subtypes and may reflect the devel-
opmental history of neuronal type specification19,23. Next, we used 
both CH-DMGs and CG-DMRs to annotate the tree and explore the 
features specifying cell subtypes (excitatory in Fig. 3a–c and inhibitory 
in Extended Data Fig. 7c, d). Specifically, we calculated a branch-specific 
methylation impact score for each gene or transcription factor motif 
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families, whose differential mCH fractions are concordant with their motif 
enrichment.
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that summarizes all of the pairwise comparisons related to that branch 
(Extended Data Fig. 7e; Methods). The impact score ranges from 0 to 
1, with a higher score predicting stronger functional relevance to the 
branch. We assign 6,038 unique genes to branches within the excitatory 
taxonomy (5,975 in inhibitory taxonomy), including 406 transcription 
factor genes (412 in inhibitory taxonomy) using genes with impact 
scores greater than 0.3. For example, motifs from the ROR (also known 
as NR1F) family were assigned to the branch that separates superfi-
cial layer IT neurons from deeper layer IT neurons (Fig. 3d–f, node 
9), whereas motifs from the CUX family were assigned to the IT-L2/3 
branch, separating it from IT-L4/5 neurons (Fig. 3d–f, node 11). Both of 
these families contain members, such as Cux1, Cux2 and Rorb, that show 
laminar expression in the corresponding layers and regulate cortical 
layer differentiation during development19.

After impact score assignment, each branch of this taxonomy 
was associated with multiple transcription factor genes and motifs, 
which potentially function in combination to shape cell-type identi-
ties24 (Fig. 3e, f). For example, we focused on two brain structures of 
interest: the CLA and the EP25,26. At the major-cell-type level, distinct 
clusters are marked by Npsr1 (EP) and B3gat2 (CLA). The known EP and 
CLA marker transcription factor Nr4a225 also shows hypomethylation 
in both clusters compared to other clusters. Accordingly, the NR4A2 
motif is also associated with a branch that splits CLA neurons from IT-L6 
neurons (Fig. 3d–f, node 6). On another branch separating EP from CLA 
and IT-L6 neurons, genes for several transcription factors, including 
NF-1 family members Nfia and Nfib and the RFX family member Rfx3, 
together with corresponding motifs (Fig. 3d–f, node 5) rank near the 
top. Our findings suggest that these transcription factors may function 
together with Nr4a2, potentially separating EP neurons from CLA and 
IT-L6 neurons.

Beyond identifying specific cell-subtype characteristics, we derived 
total impact (TI) scores to summarize the methylation variation of 
genes and motifs to understand their relative importance in cell type 
diversification and function (Extended Data Fig. 7f–k, Supplementary 
Note 3). By comparing the TI scores of genes and motifs calculated from 
the inhibitory and excitatory taxonomies, we found that there were 

more transcription factor genes and motifs having large TI scores in 
both cell classes than in either one or the other (Extended Data Fig. 7f, i).  
For instance, Bcl11b distinguishes OLF-Exc and IT neurons in the excita-
tory lineage and distinguishes CGE-Lamp5 and CGE-Vip in the inhibitory 
lineage. Similarly, Satb1 separates IT–L4 from IT-L2/3 and MGE from 
CGE in excitatory and inhibitory cells. These findings indicate broad 
repurposing of transcription factors for cell-type specification among 
distinct developmental lineages.

Enhancer–gene Interactions
To systematically identify enhancer-like regions in specific cell types, we 
predicted enhancer-DMRs (eDMR) by integrating matched DNA methy-
lome and chromatin accessibility profiles3 of 161 subtypes (Fig. 4a, 
Methods). We identified 1,612,198 eDMR (34% of CG-DMRs), 73% of 
which overlapped with separately identified snATAC-seq peaks (Fig. 4b). 
Fetal-enhancer DMRs (feDMR) (that is, eDMRs between development 
time points) of forebrain bulk tissues8 show high (88%) overlap with 
eDMRs. Surprisingly, the eDMRs also cover 74% of the feDMRs from 
other fetal tissues8, indicating extensive reuse of enhancer-like regula-
tory elements across mammalian tissue types (Fig. 4b).

Next, we examined the relationship between the cell-type-signature 
genes and their potential regulatory elements. We calculated the par-
tial correlation between all DMG–DMR pairs within 1 Mb distance 
using methylation levels across 145 neuronal subtypes (Methods). 
We identified a total of 1,038,853 (64%) eDMRs that correlated with 
at least one gene (correlation >0.3 with empirical P <0.005, two-sided 
permutation test, Extended Data Fig. 8a). Notably, for those strongly 
positive-correlated DMR–DMG pairs (correlation >0.5), the DMRs are 
largely (63%) within 100 kb of the transcription start sites (TSSs) of the 
corresponding genes but are depleted from ±1 kb (Fig. 4c, Extended 
Data Fig. 8b), whereas for the negatively correlated DMR–DMG pairs, 
only 11% of DMRs are found within 100 kb of the TSS (Extended Data 
Fig. 8c).

Using the gene–enhancer interactions predicted by this correlation 
analysis, we assigned eDMRs to their target genes. The percentages 
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of feDMR-overlapping eDMRs vary markedly among genes (Fig. 4d, 
Extended Data Fig. 8d, e). Of note, DMRs assigned to the same gene 
show different mCG specificity among subtypes. For example, 
Tle4-correlated eDMR could be partitioned into three groups (Extended 
Data Fig. 8e–g). One group (G2) of elements that displayed little diver-
sity in bulk data showed highly specific mCG and open-chromatin sig-
nals in MSN–D1/D2 neurons, whereas another group (G3) was specific 
to CT–L6 neurons. These two groups of DMRs suggest that possible 
alternative regulatory elements are used to regulate the same gene 
in different cell types, although further experiments are required to 
validate this hypothesis.

Together, these analyses allow us to carefully chart the specificity 
of regulatory elements identified in bulk tissues to the subtype level. 
Besides, we identified many regulatory elements that show more 
restricted specificity (for example, eDMRs correlated with Tle4 in 
MSN-D1/D2), providing abundant candidates for further pursuing 
enhancer-driven adeno-associated viruses (AAVs) that target highly 
specific cell types27.

3D genome structure of hippocampus
Distal enhancers typically regulate gene expression through physical 
interaction with promoters28. Therefore, to examine whether physi-
cal chromatin contacts support our correlation-based predictions of 
enhancer–gene associations, we generated sn-m3C-seq4 data for 5,142 
single nuclei from the HIP (152,000 contacts per cell on average). We 
assigned these cells, on the basis of the sn-m3C-seq data, to eight major 
cell types based on integration with the snmC-seq2 HIP data. In total, 19,151 
chromosome loops were identified in at least one of the cell types at 25-kb 
resolution (range from 1,173 to 12,614 chromosome loops per cell type).

Using DG and CA1 as examples, a notably higher correlation was 
observed between enhancers and genes at loop anchors than between 
random enhancer–gene pairs (Extended Data Fig. 8h). Reciprocally, the 
enhancer–gene pairs showing stronger correlation with methylation 
were more likely to be found linked by chromosome loops or within 
the same looping region (Extended Data Fig. 8i). We also compared the 
concordance of methylation patterns between genes and enhancers 
linked by different methods and found the pairs linked by loop anchors 
or closest genes had the highest correlation of methylation (Extended 
Data Fig. 8j). Together, these analyses validate the physical proximity 
of enhancer–gene pairs predicted by our correlation-based method 
in specific cell types.

Additionally, we observed significant cell-type-specific 3D genome 
structures. The major cell types could be distinguished on UMAP 
embedding on the basis of chromosome interaction (Fig. 4e), indicating 
the dynamic nature of genome architecture across cell types. Among 
the 19,151 chromosome loops, 48.7% showed significantly different 
contact frequency between cell types (Fig. 4f). eDMRs were highly 
enriched at these differential loop anchors (Extended Data Fig. 8k). 
mCG levels at distal cis-elements are typically anti-correlated with 
enhancer activity8. Thus, we hypothesized that enhancers at differential 
loop anchors might also be hypomethylated in the corresponding cell 
type. Indeed, using the loops identified in DG and CA1 as examples, we 
observed that enhancers at the anchor of cell-type-specific loops show 
corresponding hypomethylation in the same cell type that the loop is 
specific to (Extended Data Fig. 8l).

Many differential loops were observed near marker genes of the 
corresponding cell type. For example, Foxp1, a gene for a CA1-specific 
transcription factor29, has chromosome loops surrounding its gene 
body in CA1 but not DG (Fig. 4g, h). eDMRs and open chromatin were 
observed at these loop anchors. Notably, three loops in CA1 anchored 
at the TSS of the same transcript of Foxp1 (Fig. 4h). Stronger demeth-
ylation and chromatin accessibility were also observed at the same 
transcript than in other transcripts (Fig. 4h, box E). These epigenetic 
patterns might suggest a specific transcript of Foxp1 (Foxp1-225) is 

selectively activated in CA1. by contrast, Lrrtm4, encoding a DG specific 
presynaptic protein that mediates excitatory synapse development30, 
shows extensive looping to distal elements in DG but not CA1 (Extended 
Data Fig. 8n). Notably, among 34 genes showing alternative loop usage, 
20 genes expressed in both DG and CA131; for example, the TSS of Grm7 
interacts with an upstream enhancer in DG and gene body enhancers 
in CA1 (Extended Data Fig. 8o).

mC gradients in IT neurons
Cortical excitatory IT neurons are classified into major types corre-
sponding to their laminar layers: L2/3, L4, L5 and L6 (Fig. 5a). In agree-
ment with the anti-correlation between transcript levels and DNA 
methylation, we found hypomethylation in IT neurons of the layer 
marker genes19 (Extended Data Fig. 9a). Furthermore, UMAP embed-
ding (Fig. 5a) reveals a continuous gradient of IT neurons resembling 
the medial–lateral distribution of the cortical regions (Fig. 5b), strongly 
suggesting that the arealization information is well preserved in the 
DNA methylome.

To systematically explore the spatial gradient of DNA methyla-
tion, we merged the cells into spatial groups on the basis of their 
cortical layer and region and generated a taxonomy between them 
(Methods). The taxonomy split the cells into four layer groups, fol-
lowed by cortical-region separation within each layer (Extended Data 
Fig. 9c), providing a clear structure for investigating layer-related or 
region-related methylation variation. Specifically, the layer-related 
transcription factors included many known laminar marker genes 
and their DNA-binding motifs (Extended Data Fig. 9d), whereas some 
also show regional specific methylation differences. For example, 
Cux1, encoding a homeobox transcription factor specific to L2/3 and 
L4 neurons, is hypomethylated in motor (MO) and somatosensory 
(SS) cortex, but is hypermethylated in L2/3 of other regions, in agree-
ment with patterns from in situ hybridization32. Cux2, which encodes 
another homeobox transcription factor, does not show the same 
regional specificity (Extended Data Fig. 9a). We also identified genes 
for many additional transcription factors that showed cortical region 
specificity (Fig. 5c, Extended Data Fig. 9e). For example, Etv6 is only 
hypomethylated in medial dissection regions across layers, whereas 
Zic4 is hypermethylated in those regions. By contrast, Rora shows an 
anterior–posterior methylation gradient within the L4 and L5 cells. 
Together, these observed methylome spatial gradients demonstrated 
the value of our dataset for further exploring the cortical arealization 
with cell-type resolution.

mC gradients in DG granule cells
Global methylation gradients are observed within large cell types. For 
example, DG granule cells were continuously distributed in the UMAP 
embedding from low to high global mCH and mCG (Fig. 5d, global mCH 
fraction 0.5–1.9%, mCG fraction 69–79%). This gradient correlated with 
the anterior–posterior position of brain sections. Granule cells from 
the most posterior DG regions had higher global methylation than cells 
from anterior regions (Fig. 5d).

mCH accumulates throughout the genome during postnatal brain 
development6,8. We reasoned that DG granule cells, which are continu-
ously replenished by ongoing neurogenesis throughout the lifespan, 
may accumulate mCH during their post-mitotic maturation. If so, global 
mCH should correlate with the age and maturity of granule cells. To 
investigate this, we divided DG granule cells into four groups on the 
basis of their global mCH levels and investigated regions of differen-
tial methylation between the groups. We identified 219,498 gradient 
CG-DMRs between the four groups, among which 139,387 showed a 
positive correlation with global mCH (+DMR), and 80,111 were nega-
tively correlated (−DMR) (Fig. 5e). Notably, genes overlapping +DMRs 
or −DMRs have different annotated functions: genes enriched in +DMRs 
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(+DMRgenes, n = 328) were associated with developmental processes, 
whereas those enriched in −DMRs (−DMRgenes, n = 112) were related 
to synaptic function (Extended Data Fig. 10a, b).

To further test the relationship between the +DMRgenes, −
DMRgenes and DG development, we examined the expression pat-
terns of these genes across time using a single-cell RNA-seq dataset 
that grouped DG cells into eight cell types, along their developmental 
trajectory from radial glia to mature granule cells33. The +DMRgenes 
were more highly expressed in immature cell types than in mature 
cell types (for example, Tcf4; Fig. 5f, Extended Data Fig. 10c), whereas 
the −DMRgenes showed the reverse trend (for example, Rfx3; Fig. 5g, 
Extended Data Fig. 10d). These results are consistent with the hypoth-
esis that young DG granule cells have low global mCH and low methyla-
tion at genes associated with neural precursors. Conversely, older DG 
granule cells accumulate greater global mCH and have low methylation 
at genes associated with mature neurons. Notably, the global mCH 
levels also correlate with the brain dissections (Fig. 5d), indicating 
that the spatial axis can partially explain the methylation gradient 
(Supplementary Note 4).

Next, we investigated whether the global methylation level is 
correlated with 3D genome architecture. By plotting the chroma-
tin interaction strength against the anchors’ genomic distance, we 
observed a higher proportion of short-range contacts and a smaller 
proportion of long-range contacts in the groups with higher global 
mCH (Extended Data Fig. 10f). Although compartment strengths were 
not correlated with the global methylation changes (Extended Data 
Fig. 10g), the number of intra-domain contacts was positively cor-
related with global mCH across single cells (Extended Data Fig. 10h). 
After normalizing for the effect of decay, we found that insulation 
scores at domain boundaries were significantly lower in the groups 

with high global mCH levels (Extended Data Fig. 10i; all P < 1 × 10−10, 
two-sided Wilcoxon signed-rank test). Together these suggest that 
local structures may be more condensed over flanking regions in 
the high-mCH cell groups.

Cell type and spatial prediction model
To further quantify the spatial and cell-type information encoded in 
a single cell’s DNA methylome, we built a multi-task deep ANN using 
cell-level methylome profiles from this study (Fig. 6a). Specifically, 
mCH levels of 100-kb bins were used to train and test the network 
with fivefold cross-validation (Method). The ANN predicted neu-
ronal subtype identity and spatial location simultaneously for each 
testing cell with 95% and 89% accuracy, respectively (Fig. 6b–d). 
Notably, the location prediction accuracy of the ANN was higher 
than using only the spatial distribution information of subtypes 
(overall increased by 38%, Extended Data Fig. 11c), suggesting that 
spatial diversity is well-preserved in the neuronal DNA methylome. 
We also notice higher levels of errors in location prediction of some 
cell types, especially in the cortical MGE and CGE inhibitory neurons 
(Fig. 6c, Extended Data Fig. 11c). This finding is consistent with previ-
ous transcriptome-based studies19,31, suggesting these neurons do 
not display strong cortical region specificity. Many cell-type marker 
genes are also enriched in features that capture most spatial informa-
tion (Fig. 6e, f). For example, besides distinguishing CT-L6 neurons 
from other cell types, Foxp2 shows notable mCH differences among 
dissected regions within CT-L6 (Fig. 6f). Notably, we also observed 
the moderate spatial specificity of astrocytes and oligodendrocytes 
using a separate model trained with methylomes of non-neuronal 
cells (Supplementary Note 5).
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Discussion
In this Article, we present a single-cell DNA methylomic atlas of the 
mouse brain with detailed spatial dissection. This comprehensive 
dataset enables high-throughput cell-type classification, marker gene 
prediction and identification of regulatory elements. The three-level 
iterative clustering defined 161 subtypes representing excitatory 
(68), inhibitory (77) and non-neuronal cells (16). The development of 
a hierarchical taxonomic architecture for cell subtypes on the basis of 
CH-DMGs allowed us to assign specific genes and transcription factor 
binding motifs to taxonomy branches using the methylation impact 
score. These assignments describe cell-type specificity at different 
levels, potentially relating to different developmental stages of each 
neuronal lineage. Notably, we found that transcription factor genes 
and their corresponding DNA-binding motifs were co-associated with 
the same branch in the taxonomy, providing a rich source of candidate 
transcription factors for future study.

Through integration with snATAC-seq3, we matched subtypes clas-
sified in both epigenomic modalities and used the combined informa-
tion to predict 1.6 million active-enhancer-like eDMRs, including 72% 
of cell-type-specific elements missed from previous tissue-level bulk 
studies8. To examine the associations of eDMRs and their targeting 
genes, we applied multi-omic methods to establish an eDMR–gene 
landscape using correlation-based prediction and chromatin confor-
mation profiling using sn-m3C-seq, resulting in the identification of 
chromatin loops between eDMRs and their potential targeting genes 
in specific cell types.

Our brain-wide epigenomic dataset reveals extraordinary spatial 
diversity encoded in the DNA methylomes of neurons. The ANN trained 

on the single-cell methylome profiles accurately reproduced the 
detailed brain-dissection information within most subtypes, indicat-
ing the existence of large spatial methylation gradients throughout the 
brain. Echoing cortex development studies34, glutamatergic neurons 
are regionalized by a protomap formed from an early developmental 
gradient of transcription factor expression. Similarly, we observed that 
many transcription factor genes and their corresponding DNA-binding 
motifs showed gradients of DNA methylation in adult IT neurons from 
distinct cortical regions. Additionally, we also found intra-subtype 
methylation gradients in DG granule cells that correlate with the spatial 
axis in the DG. These gradient-related CG-DMRs are enriched in essen-
tial neurodevelopmental and synaptic genes33,35, suggesting that these 
spatially resolved DNA methylation gradients reflect past regulatory 
events occurring during brain maturation. We qualify our findings by 
noting that snmC-seq2 is a sodium bisulfite-based method and cannot 
distinguish between 5-methylcytosine and 5-hydroxymethylcytosine, 
which has been shown to accumulate in some brain regions36. New 
methods will be needed to simultaneously measure the full comple-
ment of cytosine base modifications at the single-cell level.

Overall, our analysis highlights the power of this dataset power for 
characterizing cell types using gene activity information from both 
coding regions and the regulatory elements in the non-coding regions 
of the genome. This comprehensive epigenomic dataset provides a 
valuable resource for answering fundamental questions about gene 
regulation in specifying cell-type spatial diversity and provides the 
raw material to develop new genetic tools for targeting specific cell 
types and functional testing.
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Methods

Mouse brain tissues
All experimental procedures using live animals were approved by the 
Salk Institute Animal Care and Use Committee under protocol number 
18-00006. Adult (P56) C57BL/6J male mice were purchased from Jack-
son Laboratories and maintained in the Salk animal barrier facility on 
12 h dark-light cycles with food ad libitum for a maximum of 10 days. 
Brains were extracted and sliced coronally at 600 μm from the frontal 
pole across the whole brain (for a total of 18 slices) in an ice-cold dissec-
tion buffer containing 2.5 mM KCl, 0.5 mM CaCl2, 7 mM MgCl2, 1.25 mM  
NaH2PO4, 110 mM sucrose, 10 mM glucose and 25 mM NaHCO3. The 
solution was kept ice-cold and bubbled with 95% O2, 5% CO2 for at least 
15 min before starting the slicing procedure. Slices were kept in 12-well 
plates containing ice-cold dissection buffers (for a maximum of 20 min)  
until dissection aided by an SZX16 Olympus microscope equipped 
with an SDF PLAPO 1XPF objective. Olympus cellSens Dimension 1.8 
was used for image acquisition. Each brain region was dissected from 
slices along the anterior-posterior axis according to the Allen Brain 
reference Atlas CCFv316 (see Extended Data Fig. 1 for the depiction 
of a posterior view of each coronal slice). Slices were kept in ice-cold 
dissection media during dissection and immediately frozen in dry ice 
for posterior pooling and nuclei production. For nuclei isolation, each 
dissected region was pooled from 6–30 animals, and two biological 
replicas were processed for each slice.

Fluorescence-activated nuclei sorting
Nuclei were isolated as previously described1,6. Isolated nuclei 
were labelled by incubation with 1:1,000 dilution of Alexa Fluor 
488-conjugated anti-NeuN antibody (MAB377X, Millipore) and a 1:1,000 
dilution of Hoechst 33342 at 4 °C for 1 h with continuous shaking. FANS 
of single nuclei was performed using a BD Influx sorter with an 85-μm 
nozzle at 22.5 PSI sheath pressure. Single nuclei were sorted into each 
well of a 384-well plate preloaded with 2 μl of proteinase K digestion 
buffer (1 μl M-Digestion Buffer (Zymo, D5021-9), 0.1 μl of 20 μg μl−1 
proteinase K and 0.9 μl H2O). The alignment of the receiving 384-well 
plate was performed by sorting sheath flow into wells of an empty plate 
and making adjustments based on the liquid drop position. Single-cell 
(one-drop single) mode was selected to ensure the stringency of sort-
ing. For each 384-well plate, columns 1–22 were sorted with NeuN+ 
(488+) gate, and column 23-24 with NeuN− (488−) gate, reaching an 
11:1 ratio of NeuN+ to NeuN− nuclei. BD Influx Software v1.2.0.142 was 
used to select cell populations.

Library preparation and Illumina sequencing
Detailed methods for bisulfite conversion and library preparation 
were previously described for snmC-seq21,2. The snmC-seq2 and 
sn-m3C-seq (see below) libraries generated from mouse brain tissues 
were sequenced using an Illumina Novaseq 6000 instrument with S4 
flow cells using the 150-bp paired-end mode. Freedom EVOware v2.7 
was used for library preparation, and Illumina MiSeq control software 
v3.1.0.13 and NovaSeq 6000 control software v1.6.0/Real-Time Analysis 
(RTA) v3.4.4 were used for sequencing.

The sn-m3C-seq specific steps of library preparation
Single-nucleus methyl-3C sequencing (sn-m3C-seq) was performed 
as previously described4. In brief, the same batch of dissected tissue 
samples from the dorsal dentate gyrus (DG-1 and DG-2, Supplementary 
Table 2), ventral dentate gyrus (DG-3 and DG-4), dorsal HIP (CA-1 and 
CA-2), and ventral HIP (CA-3 and CA-4), were frozen in liquid nitrogen. 
The samples were then pulverized while frozen using a mortar and 
pestle, and then immediately fixed with 2% formaldehyde in DPBS 
for 10 min. The samples were quenched with 0.2 M glycine and stored 
at −80 °C until ready for further processing. After isolating nuclei as 
previously described4, nuclei were digested overnight with NlaIII and 

ligated for 4 h. Nuclei were then stained with Hoechst 33342 (but not 
stained with NeuN antibody) and filtered through a 0.2-μm filter, and 
sorted similarly to the snmC-seq2 samples. Libraries were generated 
using the snmC-seq2 method.

Mouse brain region nomenclature
The mouse brain dissection and naming of anatomical structures in this 
study followed the Allen Mouse Brain common coordinate framework 
(CCF)16. On the basis of the hierarchical structure of the Allen CCF, we used 
a three-level spatial region organization to facilitate description: (1) the 
major region, for example, isocortex, HIP; (2) the sub-region, for exam-
ple, MOp, SSp, within isocortex; (3) the dissection region, for example, 
MOp-1 and MOp-2, within MOp. Supplementary Table 1 contains the full 
names of all abbreviations used in this study. All brain atlas images were 
created based on Wang et al.16 and ©2017 Allen Institute for Brain Science. 
Allen Brain Reference Atlas. Available from: http://atlas.brain-map.org/.

Analysis stages
The following method sections were divided into three stages. The first 
stage, ‘Mapping and feature generation’, describes mapping and gener-
ating files in the single-cell methylation-specific data format. The sec-
ond stage, ‘Clustering related’, describes clustering, identifying DMGs, 
or integrating other datasets, which all happened at the single-cell level. 
The third stage, ‘Cell-type-specific regulatory elements’, describes the 
identification of putative cell-type-specific regulatory elements using 
cluster-merged methylomes. Other figure-specific analysis topics may 
combine results from more than one stage.

Mapping and feature generation
Mapping and feature-count pipeline. We implemented a versa-
tile mapping pipeline, YAP (https://hq-1.gitbook.io/mc/), for all the 
single-cell-methylome-based technologies developed by our group1,2,37. 
The main steps of this pipeline include: (1) demultiplexing FASTQ files 
into single cells; (2) reads level quality control (QC); (3) mapping; (4) BAM 
file processing and QC; and (5) final molecular profile generation. The 
details of the five steps for snmC-seq2 were previously described2. We 
mapped all of the reads to the mouse mm10 genome. We calculated the 
methylcytosine counts and total cytosine counts for two sets of genomic 
regions in each cell after mapping. Non-overlapping chromosome 100-kb 
bins of the mm10 genome (generated by “bedtools makewindows -w 
100000”) were used for clustering analysis and ANN model training, 
and the gene body regions ±2 kb defined by the mouse GENCODE vm22 
were used for cluster annotation and integration with other modalities.

sn-m3C-seq-specific steps or read mapping and chromatin con-
tact analysis. Methylome sequencing reads were mapped following 
the TAURUS-MH pipeline, as previously described4. Specifically, reads 
were trimmed for Illumina adaptors, and then an additional 10 bp was 
trimmed on both sides. Then R1 and R2 reads were mapped separately 
to the mm10 genome using Bismark with Bowtie. The unmapped reads 
were collected and split into shorter reads representing the first 40 bp, 
the last 40 bp, and the middle part of the original reads (if read length 
>80 bp after trimming). The split reads were mapped again using Bis-
mark with Bowtie. The reads with MAPQ <10 were removed. The filtered 
bam files from split and unsplit R1 and R2 reads were deduplicated with 
Picard and merged into a single bam file to generate the methylation 
data. Methylpy (v1.4.2)38 was used to generate an ALLC file (base-level 
methylation counts) from the bam file for every single cell. We paired the 
R1 and R2 bam files where each read-pair represents a potential contact 
to generate the Hi-C contact map. For generating contact files, read pairs 
where the two ends mapped within 1 kbp of each other, were removed.

Clustering-related methods
Single-cell methylome data quality control and preprocessing. 
Cell filtering. We filtered the cells on the basis of these main mapping 
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metrics: (1) mCCC level <0.03; (2) overall mCG level >0.5; (3) overall 
mCH level <0.2; (4) total final reads >500,000; and (5) Bismark mapping 
rate >0.5. Other metrics such as genome coverage, PCR duplicates rate 
and index ratio were also generated and evaluated during filtering. How-
ever, after removing outliers with the main metrics 1–5, few additional 
outliers were found. Note the mCCC level is used as the estimation of 
the upper bound of bisulfite non-conversion rate1.

Feature filtering. 100 kb genomic bin features were filtered by remov-
ing bins with mean total cytosine base calls <250 (low coverage) or 
>3,000 (unusually high-coverage regions). Regions that overlap with 
the ENCODE blacklist39 were also excluded from further analysis.

Computation and normalization of the methylation level. For CG 
and CH methylation, the methylation level computation from the 
methylcytosine and total cytosine matrices contains two steps: (1) 
prior estimation for the beta-binomial distribution, and (2) posterior 
level calculation and normalization per cell.

Step 1: for each cell, we calculated the sample mean m and variance 
v of the raw methylcytosine level (mc/cov), where cov is the total cyto-
sine base coverage and mc is the methylcytosine base coverage, for 
each sequence context (CG or CH). The shape parameters (α, β) of the 
beta distribution were then estimated using the method of moments:

α m m m v= ( (1 − )/ − 1)

β m m m v= (1 − )( (1 − )/ − 1)

This approach used different priors for different methylation types 
for each cell and used weaker priors to cells with more information 
(higher raw variance).

Step 2: we then calculated the posterior: �mc = α
α β

+ mc
+ + cov

 for all bins in 
each cell. Like the counts per million reads (CPM) normalization in the 
single-cell RNA-seq analysis, we normalized this posterior methylation 
ratio by the cell’s global mean methylation, m = α/(α + β). Thus, all the 
posterior �mc values with 0 cov will have a constant value of 1 after nor-
malization. The resulting normalized mc level matrix contains no NA 
(not available) value, and features with lower cov tend to have a mean 
value close to 1.

Selection of highly variable features. Highly variable methylation 
features were selected with a modified approach using the scanpy.
pp.highly_variable_genes function from the scanpy 1.4.3 package40. 
In brief, the scanpy.pp.highly_variable_genes function normalized the 
dispersion of a gene by scaling with the mean and standard deviation 
of the dispersions for genes falling into a given bin for mean expres-
sion of genes. In our modified approach, we reasoned that both the 
mean methylation level and the mean cov of a feature (100 kb bin or 
gene) could impact mc level dispersion. We grouped features that fall 
into a combined bin of mean and cov. We then normalized the disper-
sion within each mean–cov group. After dispersion normalization, 
we selected the top 3,000 features based on normalized dispersion 
for clustering analysis.

Dimension reduction and combination of different mC types. For 
each selected feature, mc levels were scaled to unit variance and zero 
mean. We then performed principal component analysis (PCA) on the 
scaled mc level matrix. The number of principal components (PCs) was 
selected by inspecting the variance ratio of each PC using the elbow 
method. The CH and CG PCs were then concatenated together for 
further analysis in clustering and manifold learning (Supplementary 
Table 6 for parameters of PCA and clustering analysis).

Consensus clustering. Consensus clustering on concatenated PCs. 
We used a consensus clustering approach based on multiple Leiden 
clustering41 over k-nearest neighbour (KNN) graph to account for the 
randomness of the Leiden clustering algorithms. After selecting domi-
nant PCs from PCA in both mCH and mCG matrices, we concatenated 
the PCs together to construct a KNN graph using scanpy.pp.neighbours 

with Euclidean distance. Given fixed resolution parameters, we re-
peated the Leiden clustering 300 times on the KNN graph with differ-
ent random starts and combined these cluster assignments as a new 
feature matrix, where each single Leiden result is a feature. We then 
used the outlier-aware DBSCAN algorithm from the scikit-learn pack-
age to perform consensus clustering over the Leiden feature matrix 
using the hamming distance. Different epsilon parameters of DBSCAN 
are traversed to generate consensus cluster versions with the number 
of clusters that range from the minimum to the maximum number of 
clusters observed in the multiple Leiden runs. Each version contained 
a few outliers; these usually fall into three categories: (1) cells located 
between two clusters had gradient differences instead of clear borders, 
for example, border of IT layers; (2) cells with a low number of reads 
potentially lack information in essential features to determine the 
specific cluster; and (3) cells with a high number of reads that were 
potential doublets. The number of type 1 and 2 outliers depends on the 
resolution parameter and is discussed in the choice of the resolution 
parameter section. The type 3 outliers were very rare after cell filter-
ing. The supervised model evaluation below then determined the final 
consensus cluster version.

Supervised model evaluation on the clustering assignment. We per-
formed a recursive feature elimination with cross-validation (RFECV)42 
process from the scikit-learn package to evaluate clustering reproduc-
ibility for each consensus clustering version. We first removed the 
outliers from this process, and then we held out 10% of the cells as the 
final testing dataset. For the remaining 90% of the cells, we used ten-
fold cross-validation to train a multiclass prediction model using the 
input PCs as features and sklearn.metrics.balanced_accuracy_score43 
as an evaluation score. The multiclass prediction model is based on 
BalancedRandomForestClassifier from the imblearn package, which 
accounts for imbalanced classification problems44. After training, we 
used the 10% testing dataset to test the model performance using the 
score from balanced_accuracy_score. We kept the best model and corre-
sponding clustering assignments as the final clustering version. Finally, 
we used this prediction model to predict outliers’ cluster assignments. 
We rescued the outlier with prediction probability >0.3, otherwise 
labelling them as outliers.

Manifold learning for visualization. In each round of clustering analy-
sis, the t-SNE45,46 and UMAP17 embedding were run on the PC matrix 
the same as the clustering input using the implementation from the 
scanpy40 package. The coordinates from both algorithms were in Sup-
plementary Table 5.

Choice of resolution parameter. Choosing the resolution parameter 
of the Leiden algorithm is critical for determining the final number of 
clusters. We selected the resolution parameter by three criteria: (1). the 
portion of outliers <0.05 in the final consensus clustering version; (2) 
the ultimate prediction model accuracy >0.9; and (3) the average cell 
per cluster ≥ 30, which controls the cluster size to reach the minimum 
coverage required for further epigenome analysis such as DMR calls. 
All three criteria prevented the over-splitting of the clusters; thus, 
we selected the maximum resolution parameter under meeting the 
criteria using a grid search.

Cell class (level 1 clustering) annotation. We annotated non-neuron 
cells based on both the NeuN− gate origin and low global mCH fraction. 
Given the strong anti-correlation between CH methylation and gene 
expression, we used hypo-CH-methylation at gene bodies ±2 kb of 
pan-excitatory markers such as Slc17a7 and Sv2b, and pan-inhibitory 
markers such as Gad1 and Gad2 to annotate excitatory and inhibitory 
cell classes, respectively.

Major type (level 2) and subtypes (level 3) annotations. We used both 
gene body ±2 kb hypo-CH-methylation (or hypo-CG-methylation for 
non-neurons) of well-known marker genes and the dissection informa-
tion to annotate neuron and non-neuron clusters. All cluster marker 
genes are listed in Supplementary Table 7, together with the description 
of the cluster names, references to the marker gene information, and 



the URL to the data browser. The major cell types were annotated based 
on well-known marker genes reported in the previous studies1,19,31,47–49. 
Whenever possible, we name these clusters with canonical names (for 
example, IT-L23, L6b) or using descriptive names that reflect the spe-
cific spatial location of the cluster (for example, EP, CLA, IG-CA2). For 
subtypes, we named the clusters via its parent major type name fol-
lowed by a subtype marker gene name.

Pairwise DMG identification. We used a pairwise strategy to calcu-
late DMGs for each pair of clusters within the same round of analysis. 
We used the gene body ±2 kb regions of all the protein-coding and 
long non-coding RNA genes with evidence level 1 or 2 from the mouse 
GENCODE vm22. We used the single-cell level mCH fraction normal-
ized by the global mCH level (as in ‘Computation and normalization of 
the methylation level’ in the clustering step above) to calculate mark-
ers between all neuronal clusters. We compared non-neuron clusters 
separately using the mCG fraction normalized by the global mCG level. 
For each pairwise comparison, we used the Wilcoxon rank-sum test to 
select genes with a significant decrease (hypo-methylation). Marker 
genes were chosen based on adjusted P < 10−3 with multitest correc-
tion using the Benjamini–Hochberg procedure, delta-normalized 
methylation level change <−0.5 (hypo-methylation) and area under 
the receiver-operating curve (AUROC) >0.8. We required each cluster 
to have ≥5 DMGs compared to any other cluster. Otherwise, the small-
est cluster that did not meet this criterion was merged to the closest 
cluster based on Euclidean distance between cluster centroids in the 
PC matrix used for clustering. Then the marker identification process 
was repeated until all clusters found enough marker genes.

Three levels of iterative clustering analysis. On the basis of the 
consensus clustering steps described above, we used an iterative ap-
proach to cluster the data into three levels of categories. In the first 
level, termed CellClass, clustering analysis is done using all cells and 
then manually merged into three canonical classes: excitatory neurons, 
inhibitory neurons, and non-neurons based on marker genes. Within 
each CellClass, we performed all the preprocessing and clustering steps 
again to obtain clusters for the MajorType level using the same stop 
criteria. Furthermore, within each MajorType, we obtained clusters 
for the SubType level. All clusters’ annotations and relationships are 
presented in Supplementary Table 7.

Subtype taxonomy tree. To build the taxonomy tree of subtypes, we 
selected the top 50 genes that showed the most significant changes 
for each subtypes’ pairwise comparisons. We then used the union of 
these genes from all subtypes and obtained 2,503 unique genes. We 
calculated the median mCH level of these genes in each subtype and ap-
plied bootstrap resampling-based hierarchical clustering with average 
linkage and the correlation metric using the R package pvclust (v.2.2)50.

Impact score and total impact score. We defined the impact score 
(IS) to summarize pairwise comparisons for two subtype groups, where 
one group, A, contains M clusters and the other group, B, contains N 
clusters. For each gene or motif, the number of total related pairwise 
comparisons is M × N, the number of significant comparisons with 
desired change (hypo-methylation for gene or enrichment for motif) 
is a in group A and b in group B. The IS is then calculated as IS = a b

M NA
−
×  and 

IS = b a
M NB

−
×  for the two directions. For either group, IS ranges from −1 

to 1, and 0 means no impact, 1 means full impact and −1 means full im-
pact in the other group (Extended Data Fig. 7e).

We explored two scenarios using the IS to describe cluster charac-
teristics (Extended Data Fig. 7e). The first scenario is considering each 
pair of branches in the subtype taxonomy tree as comprising group A 
and group B. Thus, the IS can quantify and rank genes or motifs to the 
upper nodes based on the leaves’ pairwise comparisons (Fig. 3d–f). 
The second scenario summarizes the total impact for specific genes or 

motifs regarding the taxonomy tree based on the calculation in the first 
scenario (Extended Data Fig. 7f–k). In a subtype taxonomy tree with n 
subtypes, the total non-singleton node was n − 1, and each node i had 
a height hi and associated ISA for one of the branches (ISB = −ISA). The 
node-height-weighted total IS (IStotal) was then calculated as:

∑ hIS = × IS
i

n

itotal
=1

−1

A

The larger total IS indicated that a gene or motif shows more 
cell-type-taxonomy-related significant changes. The total IS can also 
be calculated in a sub-tree or any combination of interests to rank genes 
and motifs most related to that combination (See ‘Figure-specific meth-
ods’ for Fig. 5 regarding calculating layer and region total IS from the 
same tree).

Integration with snATAC-seq data. A portion of the same brain tissue 
sample used in this study for methylome profiling was also processed 
using snATAC-seq in a parallel study of chromatin accessibility3. The 
final high-quality snATAC-seq cells were assigned to 160 chromatin 
accessibility clusters (a-types). The snATAC-seq-specific data analysis 
steps are described in Li et al.3. Here, we performed cross-modality data 
integration and label-transferring to assign the 160 a-types to the 161 
methylome subtypes in the following steps:
(1) � We manually grouped both modalities into five integration groups 

(for example, all IT neurons as a group) and only performed the 
integration of cells within the same group to decrease computa-
tion time. These groups were distinct in the clustering steps of 
both modalities and can be matched with great confidence using 
known marker genes. Steps 2–6 were repeated for each group. See 
Extended Data Fig. 5 for the group design.

(2) � We used a similar approach as described above to identify pair-
wise differential accessible genes (DAGs) between all pairs of 
a-types. The cut-off for DAG is adjusted P <10−3, fold change >2 and  
AUROC >0.8.

(3) � We then gathered DMGs from comparisons of related subtypes in 
the same group. Both DAGs and DMGs were filtered according to 
whether they recurred in >5 pairwise comparisons. The intersection 
of the remaining genes was used as the feature set of integration.

(4) � After identifying DAGs using cell-level snATAC-seq data, we merged 
the snATAC-seq cells into pseudo-cells to increase snATAC-seq data 
coverage. Within each a-type, we did a k-means clustering (k = no. 
of cells in that cluster/50) on the same PCs used in snATAC-seq 
clustering. We discarded small k-means clusters with less than 10 
cells (about 5% of the cells) and merged each remaining k-means 
cluster into a pseudo-cell. On average, a pseudo-cell had about 50 
times more fragments than a single cell.

(5) � We then used the MNN based Scanorama51 method with default 
parameters to integrate the snmC-seq cells and snATAC-seq 
pseudo-cells using genes from step 3. After Scanorama integra-
tion, we did co-clustering on the integrated PC matrix using the 
clustering approaches described above.

(6) � We used the intermediate clustering assignment from step 5 to cal-
culate the overlap score (below) between the original methylome 
subtypes and the a-types. We used overlap score >0.3 to assign 
a-types to each methylome subtype. For those subtypes that have 
no match under this threshold, we assigned the top a-type ranked 
by the overlap score (Supplementary Tables 10, 11).

Overlap score. We used the overlap score to match a-type and methy-
lome subtypes. The overlap score, range from 0 to 1, was defined as 
the sum of the minimum proportion of samples in each cluster over-
lapped within each co-cluster52. A higher score between one methylome 
subtype and one a-cluster indicates they consistently co-clustered 
within one or more co-clusters. Besides matching clusters in integration 
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analysis, the overlap score was also used in two other cases: (1) to quan-
tify replicates and region overlaps over methylome subtypes (Extended 
Data Fig. 2e–g); and (2) to quantify the overlap of each L5-ET subtype 
overlapping with ‘soma location’ and ‘projection target’ labels from 
epi-retro-seq cells (Extended Data Fig. 5j) through integration with 
the epi-retro-seq dataset.

Cell-type-specific regulatory elements
DMR analysis. After clustering analysis, we used the subtype clus-
ter assignments to merge single-cell ALLC files into the pseudo-bulk 
level and then used methylpy (v1.4.2)38 DMRfind function to calcu-
late mCG DMRs across all subtypes. The base calls of each pair of CpG 
sites were added before analysis. In brief, the methylpy function used a 
permutation-based root mean square test of goodness of fit to identify 
differentially methylated sites (DMS) simultaneously across all samples 
(subtypes in this case), and then merge the DMS within 250 bp into the 
DMR. We further excluded DMS calls that have low absolute mCG level 
differences by using a robust-mean-based approach. For each DMR 
merged from the DMS, we ordered all the samples by their mCG frac-
tion and calculated the robust mean m using the samples between 25th 
and 75th percentiles. We then reassigned hypo-DMR and hyper-DMR 
to each sample when a region met two criteria: (1) the sample mCG 
fraction of this DMR is lower than (m − 0.3) for hypo-DMR or (m + 0.3) 
for hyper-DMR, and (2) the DMR is originally a significant hypo- or 
hyper-DMR in that sample judged by methylpy. DMRs without any hypo- 
or hyper-DMR assignment were excluded from further analyses. On the 
basis of these filtering criteria, we estimate the false discovery rate of 
calling DMRs is 2.7% (Supplementary Note 2, Extended Data Fig. 6).

Enhancer prediction using DNA methylation and chromatin  
accessibility. We performed enhancer prediction using the REPTILE53 
algorithm. REPTILE is a random-forest-based supervised method that 
incorporates different epigenomic profiles with base-level DNA meth-
ylation data to learn and then distinguish the epigenomic signatures of 
enhancers and genomic background. We trained the model in a similar 
way as in the previous studies8,53, using CG methylation, chromatin 
accessibility of each subtype and mouse embryonic stem cells (mouse 
ES cells). The model was first trained on mouse ES cell data and then 
predicted a quantitative score that we termed enhancer score for each 
subtype’s DMRs. The positives were 2 kb regions centred at the sum-
mits of the top 5,000 EP300 peaks in mouse ES cells. Negatives include 
randomly chosen 5,000 promoters and 30,000 2-kb genomic bins. 
The bins have no overlap with any positive region or gene promoter8.

Methylation and chromatin accessibility profiles in bigwig format 
for mouse ES cells were from the GEO database (GSM723018). The mCG 
fraction bigwig file was generated from subtype-merged ALLC files 
using the ALLCools package (https://github.com/lhqing/ALLCools). For 
chromatin accessibility of each subtype, we merged all fragments from 
snATAC-seq cells that were assigned to this subtype in the integration 
analysis and used deeptools bamcoverage to generate CPM normalized 
bigwig files. All bigwig file bin sizes were 50 bp.

Motif-enrichment analysis. We used 719 motif PWMs from the JASPAR 
2020 CORE vertebrates database54, where each motif was able to assign 
corresponding mouse transcription factor genes. The specific DMR 
sets used in each motif-enrichment analysis are described in figure 
specific methods below. For each set of DMRs, we standardized the 
region length to the centre ±250bp and used the FIMO tool from the 
MEME suite55 to scan the motifs in each enhancer with the log-odds 
score P <10−6 as the threshold. To calculate motif enrichment, we use 
the adult non-neuronal mouse tissue DMRs10 as background regions 
unless expressly noted. We subtracted enhancers in the region set from 
the background and then scanned the motifs in background regions 
using the same approach. We then used Fisher’s exact test to find motifs 
enriched in the region set and the Benjamini–Hochberg procedure to 

correct multiple tests. We used the TFClass56 classification to group 
transcription factors with similar motifs.

DMR–DMG partial correlation. To calculate DMR–DMG partial cor-
relation, we used the mCG fraction of DMRs and the mCH fraction of 
DMGs in each neuronal subtype. We first used linear regression to re-
gress out variance due to global methylation difference (using scanpy.
pp.regress_out function), then use the residual matrix to calculate 
the Pearson correlation between DMR and DMG pairs where the DMR 
centre is within 1 Mb of the TSSs of the DMG. We shuffled the subtype 
orders in both matrices and recalculated all pairs 100 times to generate 
the null distribution.

Identification of loops and differential loops from sn-m3C-seq 
data. After merging the chromatin contacts from cells belonging to the 
same type, we generated a .hic file of the cell-type with Juicer tools pre. 
HICCUPS57 was used to identify loops in each cell type. The loops from 
eight major cell types were concatenated and deduplicated and used as 
the total samples for differential loop calling. A loop-by-cell matrix was 
generated, in which each element represents the number of contacts 
supporting each loop in each cell. The matrix was used as input of EdgeR 
to identify differential interactions with ANOVA tests. Loops with FDR 
<10−5 and minimum–maximum fold change >2 were used as differential 
loops. Note that the abundance of cell types is highly variable, leading 
to different coverages of contact maps after merging all the cells from 
each cell type. Since HICCUPS loop calling is sensitive to the coverage, 
more loops were identified in the abundant cell types (for example, 
12,614 loops were called in DG, containing 1,933 cells) compared to 
the less abundant ones (for example, 1,173 loops were called in MGE, 
containing 145 cells). Therefore, we do not compare the feature counts 
related to the loops across cell types directly in our analyses.

Figure-specific methods
3D model of dissection regions (Fig. 1b–e). We created in silico dissec-
tion regions based on the Allen CCF16 3D model using Blender 2.8 that 
precisely follow our dissection plan. To ease visualization of all different 
regions, we modified the layout and removed some of the symmetric 
structures, but all the actual dissections were applied symmetrically 
to both hemispheres.

Calculating the genome feature detected ratio (Extended Data 
Fig. 2a). The detected ratio of chromosome 100-kb bins and gene 
bodies is calculated as the percentage of bins with >20 total cytosine 
coverage. Non-overlapping chromosome 100-kb bins were generated 
by bedtools makewindows -w 100000; gene bodies were defined by 
GENCODE vm22.

Integration with epi-retro-seq L5-ET cells (Fig. 2g–j, Extended Data 
Fig. 5g–j). Epi-retro-seq is an snmC-seq2-based method that combines 
retrograde AAV labelling22. The L5-ET cells’ non-overlapping chromo-
some 100-kb bin matrix gathered by the epi-retro-seq dataset was 
concatenated with all the L5-ET cells from this study for co-clustering 
and embedding as described in ‘Clustering-related methods’. We then 
calculated the OS between subtypes in this study and the ‘soma loca-
tion’ or ‘projection target’ labels of epi-retro-seq cells. The first OS 
helped quantify how consistent the spatial location is between the two 
studies; the second OS allowed us to impute the projection targets of 
subtypes in this study.

Pairwise DMR and motif-enrichment analysis (Fig. 3c, f). The total 
subtype DMRs were identified as described in ‘Cell-type-specific regula-
tory elements’ by comparing all subtypes. We then assigned DMRs to 
each subtype pair if the DMRs were: (1) significantly hypomethylated in 
only one of the subtypes; and (2) the mCG fraction difference between 
the two subtypes is >0.4. Each subtype pair was associated with two 
exclusive sets of pairwise DMRs. We carried out motif-enrichment 
analysis described in ‘Cell-type-specific regulatory elements’ on each 
DMR set using the other set as background. Motifs enriched in either 

https://github.com/lhqing/ALLCools


direction were then used to calculate the impact score and were associ-
ated with upper nodes of the taxonomy.

Overlapping eDMR with genome regions (Fig. 4b). The cluster-specific 
snATAC-seq peaks were identified in Li et al.3. We used bedtools merge 
to aggregate the total non-overlap peak regions and bedtools intersect 
to calculate the overlap between peaks and eDMRs. The developing 
forebrain and other tissue feDMRs were identified in He et al.8 using 
methylC-seq58 for bulk whole-genome bisulfite sequencing. All of the 
genome features used in Fig. 4b were defined as in He et al.3, except 
using an updated mm10 CGI region and RepeatMaster transposable 
elements lists (UCSC table browser downloaded on 9 October 2019).

Heat maps of the gene–enhancer landscape (Extended Data Fig. 8e). 
The eDMRs for each gene were selected by eDMR–gene correlation of 
>0.3. Sections of the heat maps in Extended Data Fig. 8e were gathered 
by (1) mCG fraction of each eDMR in 161 subtypes from this study; (2) 
snATAC-seq subtype-level fragments per kilobase of transcript per mil-
lion mapped reads (FPKM) of each eDMR in the same subtype orders. 
The subtype snATAC profiles were merged from integration results as 
described in ‘Clustering-related methods’; (3) mCG fraction of each 
eDMR in forebrain tissue during ten developing time points from 
embryonic day 10.5 (E10.5) to P0 (data from He et al.8); (4) H3K27ac 
FPKM of each eDMR in 7 developing time points from E11.5 to P0 (data 
from Gorkin et al.59); (5) H3K27ac FPKM of each eDMR in P56 frontal 
brain tissue (data from Lister et al.6); and (6) eDMR is overlapped with 
forebrain feDMR using bedtools intersect.

Embedding of cells with chromosome interactions (Fig. 4e). scHi-
Cluster60 was used to generate the t-SNE embedding of the sn-m3C-seq 
cells. Specifically, a contact matrix at 1-Mb resolution was generated 
for each chromosome of each cell. The matrices were then smoothed 
by linear convolution with pad = 1 and random walk with restart prob-
ability = 0.5. The top 20th percentile of strongest interactions on the 
smoothed map was extracted, binarized and used for PCA. The first 
20 PCs were used for t-SNE.

IT layer dissection region group DMG and DMR analysis (Fig. 5a–c). 
To collect enough cells for dissection region analysis, we used only 
the major types (corresponding to L2/3, L4, L5 and L6) of IT neurons. 
We grouped cells into groups according to layer dissection region and 
kept groups with >50 cells for further analysis (Extended Data Fig. 9b). 
We performed pairwise DMG, DMR and motif-enrichment analysis, 
the same as the subtype analysis in Fig. 3, but using the layer dissec-
tion region group labels. We then built a spatial taxonomy for these 
groups and used it to calculate impact scores. To rank layer-related or 
dissection-region-related genes and motifs separately, we used two 
sets of the branches (Extended Data Fig. 9c, top set for layers, bottom 
set for regions) in the taxonomy and calculated two total impact scores 
using the equations above.

DG cell group and gradient DMR analysis (Fig. 5e). DG cells were 
grouped into four evenly sized groups according to the cells’ global 
mCH levels, with cut-off thresholds at 0.45%, 0.55% and 0.69%. We then 
randomly chose 400 cells from each group to call gradient-DMRs using 
methods described in ‘Clustering-related methods’. To ensure the DMRs 
identified between intra-DG groups were not due to stochasticity, we 
also randomly sampled 15 groups of 400 cells from all DG cells regard-
less of their global mCH and called DMRs among them as control-DMRs 
(2,003 using the same filtering condition). Only 0.04% of gradient DMRs 
overlapped with the control DMRs; these were removed from further 
analysis. Pearson correlations (ρ) of mCG fractions of each gradient 
DMR was calculated against a linear sequence (1, 2, 3, 4) to quantify the 
gradient trend. DMRs with ρ <−0.75 or ρ >0.75 were considered to be 
significantly correlated. Weakly correlated DMRs (10% of DMRs) were 
not included in further analysis.

DMR- and DMS-enriched genes (Fig. 5f, g). To investigate the correlated 
DMR or DMS enrichment in specific gene bodies, we compared the num-
ber of DMS and cytosine inside the gene body with the number of DMS 
 and cytosine in the ±1 Mb regions using Fisher’s exact test. We chose 

genes passing two criteria: (1) adjusted P <0.01 with multitest correc-
tion using the Benjamini–Hochberg procedure, and (2) overlap with 
>20 DMSs. Gene ontology analysis of DMR and DMS enriched genes 
was carried out using GOATOOLS61. All protein-coding genes with gene 
body length >5 kb were used as background to prevent gene-length bias.

Compartment strength analysis (Extended Data Fig. 10g). We normal-
ized the total chromosome contacts by z-score in each 1-Mb bin of the 
DG contact matrix, and the bins with normalized coverage between −1  
and 2 were kept for the analysis. After filtering, the PC1 of the genome- 
wide Knight–Ruiz-normalized62 contact matrix was used as the com-
partment score. The score was divided into 50 categories with equal 
sizes from low to high, and bins were assigned to the categories. The 
intra-chromosomal observation/expectation (ove) matrices of each 
group were used to quantify the compartment strength. We computed 
the average ove values within each pair of categories to generate the 
50 × 50 saddle matrices. The compartment strength was computed with 
the average of the upper left and lower right 10 × 10 matrices divided by 
the average of the upper right and lower left 10 × 10 matrices63.

Domain analysis (Extended Data Fig. 10i). We identified 4,580 contact 
domains at 10-kb resolution in DG using Arrowhead57. For bin i, the 
insulation score I is computed by

I
A

A A
=

mean

max(mean , mean )i
i i i i j i i j

i i i i j i i j i i i i j i i j

−10≤ ′< ; ≤ ′ < +10 ′ ′

−10≤ ′< ; −10≤ ′ < ′ ′ ≤ ′< +10; ≤ ′ < +10 ′ ′

where A is the ove of Knight–Ruiz-normalized matrices and mean is 
the average of A over the range in the subcript. For each group, insula-
tion scores of domain boundaries and 100-kb flanking regions were 
computed and averaged across all boundaries.

Prediction model description. Related to Fig. 6. To reduce the com-
puting complexity, we applied PCA on the dataset of 100-kb bin mCH 
features to obtain the first 3,000 PCs, which retain 61% of the variance 
of the original data. These 3,000 PCs were then used to train and test the 
predicting model. We used an ANN with two hidden layers to simultane-
ously predict cell subtypes and their dissection regions. The input layer 
contains 3,000 nodes, followed by a shared layer with 1,000 nodes. The 
shared layer is further connected simultaneously to two branch hidden 
layers of the subsection region’s subtype, each containing 200 nodes. 
The corresponding one-hot encoding output layers follow branch 
hidden layers. We used fivefold cross-validation to access the model 
performance. We applied the dropout technique64 with a dropout rate 
P = 0.5 on each hidden layer to prevent overfitting during the training. 
Adam optimization65 was used to train the network with a cross-entropy 
loss function. The training epoch number and batch size are 10 and 
100, respectively. The training and testing processes were conducted 
via TensorFlow 2.066.

Model performance. The two output layers generate two proba-
bilistic vectors for each single cell input as the prediction results for 
cell subtypes and dissection regions, respectively. The subtype and 
dissection region label with the highest probabilities were used as the 
prediction results for each cell to calculate accuracy. When calculating 
the cell dissection region accuracy (Fig. 6c), we defined two kinds of 
accuracy with different stringency: (1) the exact accuracy using the 
predicted label, and (2) the fuzzy accuracy using predicted labels or 
its potential overlap neighbours. The potential overlap neighbours 
curated based on Allen CCF (Extended Data Fig. 11a, Supplementary 
Table 2) stood for adjacent regions of a particular dissection region. 
The exact accuracy of the ANN model is 69% and the fuzzy accuracy 
is 89%. To evaluate how much of the dissection region accuracy was 
improved via ANN, we calculated fuzzy accuracy based only on naive 
guesses in each subtype based on the dissection region composition 
(grey dots in Extended Data Fig. 11c). We also trained additional mod-
els using logistic regression and random forest for benchmarks. The 
performance of ANN on subtype prediction is comparable with logistic 
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regression and random forest. By contrast, the performance in loca-
tion prediction is substantially improved against the other two mod-
els (Extended Data Fig. 11b), suggesting that distinguishing the cells 
from different dissected regions may require nonlinear relationships 
between genomic regions. We used scikit-learn (v0.23) for logistic 
regression and random forest implementation and the multinomial 
objective function for multi-class classification. N_estimators were 
set to 1,000 for the random forest.

Biological feature importance for dissection region prediction 
(Fig. 6e). To assess which DNA regions store information of cell spa-
tial origins that is distinguishable using our model, we evaluated the 
importance of PC features by examining how permutation of each PC 
feature across cells affects prediction accuracy. We tested five per-
mutations for each feature and used decreasing average accuracy to 
indicate PC feature importance. We examined genes contained in the 
100-kb bins with the top 1% PCA factor loadings for the most important 
PC feature for a given cell type.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Single-cell raw and processed data included in this study were depos-
ited to NCBI Gene Expression Omnibus and Sequence Read Archive 
with accession number GSE132489 (each experiment has a sepa-
rate accession number recorded in GSE132489; see Supplementary 
Table 13), and to the NeMO archive: https://assets.nemoarchive.org/
dat-vmivr5x. Single-cell methylation data can be visualized at the Brain 
Cell Methylation Viewer: http://neomorph.salk.edu/omb/home. Clus-
ter merged methylome profiles can be visualized at http://neomorph.
salk.edu/mouse_brain.php. Other datasets used in the paper include 
single-nuclei ATAC-seq data3 from http://catlas.org, mouse embryo 
forebrain development data8 from the ENCODE portal (https://www.
encodeproject.org/), the developing hippocampal single-cell RNA-seq 
data from GSE104323, DNA methylation and chromatin accessibility 
profiles for mouse ES cells from GSM723018 and the JASPAR 2020 CORE 
vertebrates database from http://jaspar.genereg.net/.

Code availability
The mapping pipeline for snmC-seq2 data is available at https://hq-1.
gitbook.io/mc/; the ALLCools package for post-mapping analysis 
and snmC-seq2 related data structure are available at https://github.
com/lhqing/ALLCools; the jupyter notebooks for reproducing specific 
analysis are at https://github.com/lhqing/mouse_brain_2020; and the 
source code of the Brain Cell Methylation Viewer is at https://github.
com/lhqing/omb.
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Extended Data Fig. 1 | Brain dissection regions. a, Schematic of brain 
dissection steps. Each male C57BL/6 mouse brain (age P56) was dissected into 
600-μm slices. We then dissected brain regions from both hemispheres within 
a specific slice. b–e, 3D mouse brain schematic adapted from Allen CCFv3 to 
display the four major brain regions and 45 dissection regions. Each colour 
represents a dissection region. f, 2D mouse brain atlas adapted from Allen 
Mouse Brain Reference Atlas, the first sagittal image showing the location of 
each coronal slice, followed by 11 posterior view images of all coronal slices, the 

same 45 dissection regions are labelled on the corresponding slice. All coronal 
images follow the same scale as the sagittal image. The posterior view of each 
slice is the anterior view of the next slice. g, An integrated overview of brain 
region composition, subtype and cell numbers of the major types. All brain 
atlas images were created based on Wang et al.16 and © 2017 Allen Institute for 
Brain Science. Allen Brain Reference Atlas. Available from: http://www.atlas.
brain-map.org.

http://www.atlas.brain-map.org
http://www.atlas.brain-map.org
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Extended Data Fig. 2 | Major Type labelling and basic mapping metrics of 
snmC-seq2. a, The number of final pass QC reads, the percentage of 
non-overlapping chromosome 100-kb bins detected, and the percentage of 
GENCODE vm22 genes detected per cell. b, Violin plots for all of the key 
metrics, group by major types. c, L1 UMAP coloured by NeuN antibody FACS 
gates and other snmC-seq2 key read mapping metrics. d, Heat map of Pearson 
correlation between the average methylome profiles (mean mCH and mCG 
fraction of all chromosome 100-kb bins across all cells belong to a replicate 

sample) of the 92 replicates from 45 brain regions. The violin plot below 
summarizes the value between replicates within the same brain region or 
between different brain regions. e–g, Pairwise overlap score (measuring 
co-clustering of two replicates) of excitatory subtypes (e), inhibitory subtypes 
(f), and non-neuronal subtypes (g). The violin plots summarize the subtype 
overlap score between replicates within the same brain region or between 
different brain regions. h, L1 UMAP coloured and labelled by major cell types.



Extended Data Fig. 3 | Cell-type composition of dissection regions. a-d, L1 
UMAP labelled by major types and partially coloured by dissection regions for 
cells from isocortex (a), OLF (b), HIP (c) and cerebral nucleus (d). Other cells are 

shown in grey as background. e, Similar compound bar plot as Extended Data 
Fig. 1g, arranged top to bottom, showing the organization of dissection regions 
and the major type composition of each dissection region.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Supporting details of cellular and spatial diversity of 
neurons at the subtype level. a, Level 3 UMAP of IG-CA2 neurons coloured by 
subtypes. Bar plot showing sub-region composition of the subtypes: (1) Xpr1, 
(2) Chrm3, and (3) Peak1. b, The 3D model illustrates the spatial relationships 
between related anatomical structures. c, mCH fraction of marker genes in IG-
CA2 cells. d, Methylome, and chromatin accessibility genome browser view of 
Ntf3 genes and its upstream regions. ATAC and eDMR information are from 
Fig. 4 analysis. e, Three different views of the in situ hybridization experiment 
(source: https://mouse.brain-map.org/gene/show/17972; the same patterns 
were shown in three biological replicates) from Allen Brain Atlas48, showing the 
Ntf3 gene expressed in both IG and CA2. f, Level 3 UMAP of MSN-D1 neurons 
coloured by subtype. Numbers indicate four subtypes: (1) Khdrbs3, (2) Hrh1 (3) 

Plxnc1, and (4) Ntn1. g, The 3D model of related striatum dissection regions.  
h, i, mCH fraction (h), and an in situ hybridization experiment (source: https://
mouse.brain-map.org/gene/show/13769; the same patterns were shown in two 
biological replicates) from Allen Brain Atlas48 (i) of the Khdrbs3 gene, red 
arrows indicate patch regions in CP. j, Genome browser view of Khdrbs3 genes 
similar to d. k, Level 3 UMAP of MSN-D1 neurons coloured by dissection 
regions. l, The region composition of each subtype of MSN-D1 and MSN-D2.  
m, MSN-D2 subtypes: (1) Nrp2, (2) Casz1, (3) Col14a1, and (4) Slc24a2. n, o, mCH 
fraction of MSN-D1 (n) and MSN-D2 (o) subtype marker genes. All brain atlas 
images (b, g) were created based on Wang et al.16 and © 2017 Allen Institute for 
Brain Science. Allen Brain Reference Atlas. Available from: http://atlas.brain-
map.org.

https://mouse.brain-map.org/gene/show/17972
https://mouse.brain-map.org/gene/show/13769
https://mouse.brain-map.org/gene/show/13769
http://atlas.brain-map.org
http://atlas.brain-map.org
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Extended Data Fig. 5 | Integration with snATAC-seq and epi-retro-seq.  
a–d, Integration UMAP for snmC-seq2 cells and snATAC-seq pseudo-cells from 
each cell group: excitatory IT neurons (a), other excitatory neurons (b), 
inhibitory neurons (c) and non-neuronal cells (d). Each panel is coloured by 
subtypes from the corresponding study, the other dataset is shown in grey in 
the background. e, Overlap score matrix matching the 160 a-types to the 161 
m-types. f, mCG fraction (left), and chromatin accessibility (right) of 

cluster-specific CG-DMRs (columns) in HIP subtypes (rows). g, h, Same 
integration t-SNE as Fig. 2g, i coloured by the dissection regions but using all 
cells profiled by epi-retro-seq (g) or snmC-seq2 (h), cells from brain regions 
that have only been profiled via one of the methods are circled out. i, Same 
t-SNE as (h) coloured by snmC-seq2 subtypes. j, Overlap score matrix matching 
the subtypes to the ‘Soma Location (source)’ and ‘Projection target’ 
information labels of epi-retro-seq cells.



Extended Data Fig. 6 | Controlling the FDR of CG-DMRs. a, b, The proportion 
of subtype (a) or shuffled DMRs (b) in each block of specific effect size and 
number of DMSs. c, The empirical FDR of each block, calculated by (no. of 
shuffle-DMRs/no. of subtype-DMRs) in each block. DMRs with effect size <0.3 
were excluded in further analyses. d, The odds ratio of transcription factor 
motif enrichment in single-DMS DMRs (sDMRs) and multi-DMS DMRs 

(mDMRs). Each dot represents a transcription factor. Transcription factors 
whose motifs are significantly enriched in both sDMRs and mDMRs are 
coloured in green, and transcription factors that are significant only in sDMR 
or mDMRs are coloured in red or blue, respectively. Non-significant 
transcription factors are shown in grey.
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Extended Data Fig. 7 | Subtype taxonomy with related genes and motifs.  
a, b, Subtype taxonomy of excitatory (a) and inhibitory (b) neurons. Leaf nodes 
are coloured by subtypes, and the bar plot shows subregion composition.  
c, d, Counts heat map of pairwise CH-DMG (c) and CG-DMR (d) between 77 
inhibitory subtypes. e, Schematic of impact score calculation (left), and two 
scenarios of discussing impact scores (right). f–h, Top transcription factors (f), 
other genes (g) and enriched motifs (h) ranked by total impact score based on 

the excitatory subtype taxonomy. i–k, Top transcription factors (i), other 
genes ( j) and enriched motifs (k) ranked by total impact score based on the 
inhibitory subtype taxonomy. l, Comparison of the total impact scores 
calculated from either excitatory subtype taxonomy (x-axis) or inhibitory 
subtype taxonomy ( y-axis) for transcription factors, other genes and enriched 
motifs. m, An example gene Tshz1 only shows subtype diversity in inhibitory 
subtypes but not in excitatory subtypes.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Gene-Enhancer landscape related. a, Distribution of 
actual DMR–DMG partial correlation compared to the shuffled null 
distribution. b, c, DMR–DMG correlation ( y-axis), and the distance between 
DMR centre and gene TSS (x-axis), each point is a DMR–DMG pair, colour 
represents points kernel density. The positively (b) and negatively (c) 
correlated DMRs are shown separately, owing to very different genome 
location distributions that are plotted on the top histograms. d, The gene body 
mCH fraction of Bcl11b (top) and Tle4 (bottom) gene. e, The predicted enhancer 
landscape of Bcl11b (top) and Tle4 (bottom). Each row is a correlated eDMR to 
the gene, columns from left to right are: (1) mCG fraction and (2) ATAC FPKM in 
161 subtypes; (3) bulk developing forebrain tissue mCG fraction and (4) 
H3K27ac FPKM; (5) adult frontal cortex H3K27ac FPKM; and (6) feDMR or not.  
f, detailed view of surrounding eDMRs that are correlated with Tle4 gene body 
mCH. Alternative eDMRs appear only in either CT-L6 or MSN-D1/D2 can be seen 
both upstream and downstream of the gene. g, Level 1 UMAP coloured by 
corresponding cell major types shown in f. h, Partial correlation between mCG 
of enhancers and mCH of genes on separated loop anchors of DG (left) and CA1 
(right) compared to random anchors with comparable distance (n = 4,171, 
4,036, 4,326, 5,133 (left to right)), P = 5.9 × 10−74 for DG and 3.0 × 10−158 for CA1, 
two-sided Wilcoxon rank-sum tests. i, Proportion of loop supported enhancer-

gene pairs among the pairs linked by correlation analyses surpassing different 
correlation thresholds in DG (left) and CA1 (right). The proportion of pairs that 
the gene and enhancer located on separated anchors of the same loop (blue, 
left y-axis) or within the same loop (orange, right y-axis) is shown. j, Proportion 
of loop supported enhancer-gene pairs among those linked by correlation 
analyses surpassing different correlation thresholds at each specific distance. 
k, Number of enhancers per loop anchor (blue) or per differential loop anchor 
(orange) compared to randomly selected 25-kb regions across the genome.; 
P < 0.005, two-sided permutation test with 2,000 times repeats. l, mCG of 
enhancers linking to DG specific loops (blue, n = 13,854) and CA1-specific loops 
(orange, n = 14,373) in DG (left, P = 2.9× 10−3) or CA1 (right, P = 3.5 × 10−5). P values 
were computed with two-sided Wilcoxon rank-sum tests. m, Partial correlation 
between mCG of enhancers and mCH of genes linked by different methods 
(n = 4,171, 127,730, 28,203, 10,058 (left to right)). The elements of box plots are 
defined as: centre line, median; box limits, first and third quartiles; whiskers, 
1.5 × interquartile range. n, o, Interaction maps, mCH, mCG, ATAC and 
differential loops tracks surrounding Lrrtm4 (n) and Grm7 (o). Circles on the 
interaction maps represent differential loops between DG and CA1, where 
green represents DG loops, and cyan represents CA1 loops.



Extended Data Fig. 9 | DNA methylation gradient of IT neurons.  
a, Representative marker genes for laminar layers separation. The same 
dissection region layout in Fig. 5b was used here. b, Layer-dissection-region  
cell group taxonomy. c, Dot plot sized by the number of cells in each 

layer-dissection-region combination in excitatory IT neurons. Each group 
needs at least 50 cells to be included in the analysis. d, e, The top layer (d) and 
dissection region (e) for related TFs and JASPAR motifs ranked by total impact 
score.
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Extended Data Fig. 10 | DNA methylation gradient of DG granule cells.  
a, b, Top enriched Gene Ontology (GO) terms for +DMRgenes (a) and −
DMRgenes (b). Significant +DMRgenes and −DMRgenes are coloured in red and 
blue, respectively. c, d, For the +DMRgene Tcf4 (c) or the −DMRgene Rfx3 (d), 
the browser view of +DMRs or −DMRs, mCG or mCH in each DG cells groups and 
adult neural progenitors (ANP), L3 UMAP coloured by gene body mCG, and 
scRNA-Seq UMAP coloured by gene expression are shown. e, The proportion of 

dorsal or ventral DMRs that overlap with +DMRs and −DMRs. f, Interaction 
frequency decays with increasing genome distances in different groups.  
g, Saddle plots for different groups of DG cells separated by global mCH. Values 
in the title represent the compartment’s strengths. h, Correlation between 
global mCH and proportion of intra-domain contacts across 1,904 DG cells.  
i, Insulation scores of 9,160 domain boundaries and flanking 100-kb regions.



Extended Data Fig. 11 | Evaluation of the predictive model. a, The neighbour 
relation among the potential overlapping dissection regions. The network is 
constructed based on information of the dissection scheme and the ‘Potential 
overlap’ column in Supplementary Table 2 and is used to compute the fuzzy 
accuracy. b, The exact accuracy of subtype prediction (top), dissected region 
prediction (middle), and fuzzy accuracy of dissected region prediction 
(bottom) of neural network (NN, blue), logistic regression (LR, orange) and 

random forest (RF, green). c, d, Prediction accuracy of dissection region at cell 
subtype level of neurons (c) and non-neuronal cells (d). Coloured points denote 
the prediction accuracy of the model, whereas grey points denote the random 
guess accuracy when cell subtypes and corresponding spatial distributions are 
given. g, h, GO-term enrichment of top-loading genes of features that are 
important for predicting the spatial location of CT-L6 (g) and L6b (h).
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methylation data can be visualized at the Brain Cell Methylation Viewer: http://neomorph.salk.edu/omb/home. Cluster merged methylome profiles can be 
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Note the mCCC level is used as the estimation of the upper bound of bisulfite non-conversion rate. The criterion include pre-established ones 
in Luo. et al 2018, and new ones to exclude additional outliers as justified in the manuscript.

Replication Each dissected region has at least two replicates, each replicate was pooled from 6-30 animals separately for nuclei preparation and 
downstream analyses. Data are highly consistent between replicates (Extended Data Fig. 2d-g).

Randomization Randomization is not applicable, since the cells collected are random by nature.
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+) gate, and column 23-24 with NeuN- (488-) gate, reaching an 11:1 ratio of NeuN+ to NeuN- nuclei.

Instrument BD Influx

Software BD Influx Sortware v1.2.0.142

Cell population abundance We sort NeuN+ (488+) gate and NeuN- (488-) gate with an 11:1 ratio into each 384-well plate.

Gating strategy Intact nuclei were first discriminated from debris by virtue of their bright DNA labeling (Hoechst Height signal) followed by 
light scattering profiles (Forward Scatter (FSC) Height vs Side Scatter (SSC) Height). Events with high Pulse Width 
measurements for FSC and SSC were then excluded as aggregates. Next, NeuN-AlexaFluor 488 positive or negative nuclei 
were selected, reaching an 11:1 ratio of NeuN+ to NeuN- nuclei.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


	DNA methylation atlas of the mouse brain at single-cell resolution

	Single-cell DNA methylome atlas

	Consensus epigenomic profiles

	Projection specificity of ET-L5 neurons

	Regulatory taxonomy of neuronal subtypes

	Enhancer–gene Interactions

	3D genome structure of hippocampus

	mC gradients in IT neurons

	mC gradients in DG granule cells

	Cell type and spatial prediction model

	Discussion

	Online content

	Fig. 1 A survey of single-cell DNA methylomes in the mouse brain.
	Fig. 2 Epigenomic diversity of neurons.
	Fig. 3 Relating genes and regulatory elements to cell subtype taxonomy.
	Fig. 4 Gene–enhancer landscapes in neuronal subtypes.
	Fig. 5 Brain-wide spatial gradients of DNA methylation.
	Fig. 6 A methylome-based predictive model captures both cellular and spatial characteristics of neurons.
	Extended Data Fig. 1 Brain dissection regions.
	Extended Data Fig. 2 Major Type labelling and basic mapping metrics of snmC-seq2.
	Extended Data Fig. 3 Cell-type composition of dissection regions.
	Extended Data Fig. 4 Supporting details of cellular and spatial diversity of neurons at the subtype level.
	Extended Data Fig. 5 Integration with snATAC-seq and epi-retro-seq.
	Extended Data Fig. 6 Controlling the FDR of CG-DMRs.
	Extended Data Fig. 7 Subtype taxonomy with related genes and motifs.
	Extended Data Fig. 8 Gene-Enhancer landscape related.
	Extended Data Fig. 9 DNA methylation gradient of IT neurons.
	Extended Data Fig. 10 DNA methylation gradient of DG granule cells.
	Extended Data Fig. 11 Evaluation of the predictive model.


