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Mammalian brain cells show remarkable diversity in gene expression, anatomy and
function, yet the regulatory DNA landscape underlying this extensive heterogeneity is
poorly understood. Here we carry out acomprehensive assessment of the
epigenomes of mouse brain cell types by applying single-nucleus DNA methylation
sequencing"?to profile 103,982 nuclei (including 95,815 neurons and 8,167
non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum,
pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial
locations and projection targets. We constructed taxonomies of these epigenetic
types, annotated with signature genes, regulatory elements and transcription factors.
These features indicate the potential regulatory landscape supporting the
assignment of putative cell types and reveal repetitive usage of regulatorsin
excitatory and inhibitory cells for determining subtypes. The DNA methylation

landscape of excitatory neurons in the cortex and hippocampus varied continuously
along spatial gradients. Using this deep dataset, we constructed an artificial neural

network model that precisely predicts single neuron cell-type identity and brain area
spatial location. Integration of high-resolution DNA methylomes with single-nucleus
chromatin accessibility data® enabled prediction of high-confidence enhancer-gene

interactions for all identified cell types, which were subsequently validated by
cell-type-specific chromatin conformation capture experiments*. By combining
multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin)
fromsingle nuclei and annotating the regulatory genome of hundreds of cell typesin
the mouse brain, our DNA methylation atlas establishes the epigenetic basis for
neuronal diversity and spatial organization throughout the mouse cerebrum.

Epigenomic dynamics are associated with cell differentiation and matu-
rationinthe mammalian brain and have an essential role in regulating
neuronal functions and animal behaviour®. Cytosine DNA methylation
(5mC) is a stable covalent modification that persists in post-mitotic
cells throughout their lifetime and is critical for proper gene regula-
tion®. In mammalian genomes, SmC occurs predominantly at CpG sites
(mCG), showing dynamic patterns at regulatory elements with tissue
and cell-type specificity"*®, modulating binding affinity of transcrip-
tion factors’ and controlling gene transcription®. Non-CpG cytosines

arealso abundantly methylated (mCH, H denotes A, C, or T)—uniquely
in neurons—in the mouse and human brain®°, which can directly affect
DNA binding of methyl CpG binding protein 2 (MeCP2)"" 3, causing Rett
syndrome™. Levels of mCH at gene bodies are anti-correlated with gene
expression and show high heterogeneity across neuronal cell types™”.

Adeeper understanding of epigenomic diversity in the mouse brain
provides a complementary approach to transcriptome-based profil-
ing methods for identifying brain cell types and allows genome-wide
prediction of the regulatory elements and transcriptional networks
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Fig.1|Asurvey of single-cell DNA methylomesinthe mousebrain. a, The
workflow of dissection, FANS and snmC-seq2 sequencing.b-e, Dissected
regions of isocortex (b), OLF (c), HIP (d) and CNU (e). f, Three-level UMAP from
iterative analysis, colour coded asinb-e, panels show an example inwhich

underlying this diversity. Previous studies have demonstrated the utility
of studyingbrain celltypes and regulatory diversity using single-nucleus
methylome sequencing (snmC-seq)". This study uses snmC-seq2’to
perform thorough methylome profiling with detailed spatial dissec-
tion in the adult postnatal day 56 (P56) male mouse brain. In Liet al.,
the same tissue samples were profiled using single-nucleus assay for
transposase-accessible chromatin using sequencing (snATAC-seq) to
identify genome-wide accessible chromatin®, providing complemen-
tary epigenomic information to aid in cell-type-specific regulatory
genome annotation. Moreover, to further study cis-regulatory ele-
ments and their potential target genes across the genome, we applied
single-nucleus methylation and chromosome conformation capture
sequencing (sn-m3C-seq)* to profile the methylome and chromatin
conformation in the same cells.

These epigenomic datasets provide a detailed and comprehensive
census of the diversity of cell types across mouse brainregions, allow-
ing identification of cell-type-specific regulatory elements and their
candidate target genes and upstream transcription factors. Here we
construct asingle-cell base-resolution DNA methylation dataset con-
taining 103,982 methylomes from 45 dissected brain regions and use
aniterative analysis framework to identify 161 predicted mouse brain
subtypes. Comparing subtype-level methylomes enables us to identify
3.9 million genomic regions showing cell-type-specific mCG variation,
covering approximately 50% (1,240 Mb) of the mouse genome. We
show that differentially methylated transcription factor genes and
binding motifs can be associated with subtype taxonomy branches,
allowing the prediction of cell-type gene regulatory programs specific
for each developmental lineage. Integration of these data with cell
clustersidentified onthe basis of chromatin accessibility validates most
methylome-derived subtypes, enabling the prediction of 1.6 million
enhancer-like genomic regions. We identify cis-regulatory interac-
tions between enhancers and genes using computational prediction
and single-cell chromatin conformation profiling (in the hippocam-
pus (HIP)). We also identify spatial methylation gradients in cortical
excitatory neurons and dentate gyrus granule cells and associated

MSN-D1neurons are separated into subtypes. g, Proportions of cells in clusters
definedinthe three-leveliterative analysis. Brain atlasimagesina-d were
createdbased on Wangetal.’*and © 2017 Allen Institute for Brain Science.
Allen Brain Reference Atlas. Available from: atlas.brain-map.org.

transcription factors and motifs. We apply an artificial neural network
(ANN) modelto precisely predict single-neuron cell-type identity and
brain area spatial location using its methylome profile as input and
develop the brain cell methylation viewer (http://neomorph.salk.edu/
omb) as a portal for querying and visualization of cell- and cluster-level
methylation data.

Single-cell DNA methylome atlas

We used snmC-seq2? to profile genome-wide 5mC at single-cell
resolution (Fig. 1a) across the cortex, HIP, striatum and pallidum
(or cerebral nuclei, CNU), and olfactory areas (OLF) (Fig. 1b-e)
using adult male C57BL/6 mice’. In total, we analysed 45 dis-
sected regions in two replicates (Extended Data Fig. 1, Supple-
mentary Table 2). Fluorescence-activated nuclei sorting (FANS) of
antibody-labelled nuclei was applied to capture NeuN-positive neu-
rons (NeuN*, 92% of neurons), while also sampling a smaller number
of NeuN-negative (NeuN~, 8% of neurons) non-neuronal cells (Fig. 1a).
In total, we profiled the DNA methylomes of 103,982 single nuclei,
yielding, on average, 1.5 million stringently filtered reads per cell
(1.50 x10°+0.58 x10%, mean +s.d.) covering 6.2 £ 2.6% of the cytosines
in the mouse genome in each cell. These enabled reliable quantifi-
cation of the DNA methylation fraction for 25,905 +1,090 (95 + 4%)
100-kb bins and 44,944 + 4,438 (81 + 8%) gene bodies (Extended
DataFig.2a). The global methylation levels range from 0.2% to 7.6%
in non-CpG sites and 61.6% to 88.8% in CpG sites (Extended Data
Fig.2b, c).

Onthe basis of the mCH and mCG profilesin100-kb bins throughout
the genome, we performed a three-level iterative clustering analysis
to categorize the epigenomic cell populations (Fig. 1f, g). After qual-
ity control and preprocessing (Methods), in the first level (cell class),
we clustered 103,982 cells as 67,472 (65%) excitatory neurons, 28,343
(27%) inhibitory neurons, and 8,167 (8%) non-neurons (Supplemen-
tary Table 3). The second round of iterative analysis of each cell class
identified 41 cell major types in total (cluster size range 95-11,919),
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Fig.2|Epigenomicdiversity of neurons.a,b, Level2UMAP of excitatory (a)
and inhibitory (b) neurons, coloured by subtype, dissection region and global
mCH fraction. ¢, d, Integration UMAP of the HIP excitatory neurons profiled by
snmC-seq2 (c) and snATAC-seq (d; shows pseudo-cells). e, Overlap score of
a-types and m-types.f, Overlap of CG-DMR and ATAC peaks inmatched

and the third round separated these major types further into 161 cell
subtypes (cluster size range 12-6,551). All subtypes are highly con-
served across replicates, and replicates from the same brain region
are co-clustered compared with samples from other brain regions
(Extended Data Fig.2d-g).

The spatial distribution of each cell type is assessed based on where
the cells were dissected (Supplementary Table 5). Here we used uni-
form manifold approximation and projection (UMAP)" to visualize
cell spatial locations (Fig. 1f, Extended Data Fig. 3) and major cell
types (Extended Data Fig. 2h). Major non-neuronal cell types have
asimilar distribution across brain regions (Extended Data Fig. 1g),
except adult neuron progenitors (ANPs). We found two subtypes
of ANPs, presumably corresponding to neuronal precursors in the
subgranular zone of the dentate gyrus (DG)'® (ANP anp-dg) and the
rostral migratory stream'®in CNU and OLF (ANP anp-olf-cnu). Excita-
tory neurons from isocortex, OLF and HIP formed different major
types, with some exceptions, potentially owing to overlaps in dis-
sected regions (Supplementary Table 2). Cells from the isocortex
were further separated on the basis of their projection types"*%°.
Theintratelencephalic (IT) neurons fromall cortical regions contain
four major types corresponding to the laminar layers (L2/3, L4, L5
andL6), each of whichincludes cells fromall cortical regions, except
L4, which lack cells from the prefrontal cortex (PFC) and anterior
cingulate area (ACA). Excitatory neurons from the HIP were further
partitioned into major types corresponding to DG granule cells and
different subfields of cornus ammonis (CA). We also identified major
types from cortical subplate structures, including the claustrum
(CLA) and endopiriformnucleus (EP) fromisocortex and OLF dissec-
tions. GABAergic inhibitory neurons from isocortex and HIP cluster
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together into five major types, whereas interneurons from CNU and
OLF group into nine major types.

In total, we identified 68 excitatory and 77 inhibitory subtypes
(Fig.2a, b, Supplementary Table 7). Although there is no one-to-one
correspondence between subtypes and brainregions, individual sub-
types show differential regional enrichment (Fig. 2a, b, top right) and
distinct global mCH levels, ranging from 0.98% (DG dg-all) to 4.64%
(PAL-Inh Chat, aninhibitory subtype in pallidum (PAL)) (Fig. 2a, b, bot-
tomright). Specifically, isocortical excitatory subtypes usually consist
of cellsmajorly derived from either the sensorimotor (primary motor
(MOp), secondary motor (MOs), primary somatosensory (SSp), and
secondary somatosensory (SSs) cortex), medial (PFC and ACA), or
frontal areas (orbital (ORB) and agranular insular (Al) area).In the OLF,
excitatory cells from the anterior olfactory nucleus (AON) and main
olfactory bulb (MOB) are enriched in the subtype OLF-Exc Bmprib,
whereas cells from the piriform area (PIR) are relatively enriched in
the other OLF-Exc subtypes. Similarly, some inhibitory subtypesin
CNU and OLF also correspond to different substructures in these two
regions (Supplementary Note 1), indicating substantial spatial-related
methylation diversity among CNU and OLF interneurons. By contrast,
most caudal (CGE) or medial (MGE) ganglionic eminence-derivedinhibi-
tory subtypes contain cells derived predominantly from all cortical or
hippocampal regions. To better demonstrate the unprecedented level
of neuronal subtype and spatial diversity in their DNA methylomes, we
provide a web application to interactively display this information at
differentgranularity (http://neomorph.salk.edu/omb). We also provide
adetailed discussion of how exemplified subtypes correspond to cell
types with known functional and spatial features (Extended DataFig. 4)
inSupplementary Note 1.
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Consensus epigenomic profiles

Integrating single-cell datasets collected using different molecular pro-
filing modalities can help to establish a consensus cell-type atlas?®*. By
integrating the methylome datawith the chromatin accessibility data
profiled using snATAC-seq on the same brain samples from a parallel
study?, the two modalities validated each other at the subtype level
(Fig.2c,d, Extended DataFig. 5a-f, Supplementary Table 10). We then
calculated overlap scores between the original methylation subtypes
(m-types) and the chromatin accessibility subtypes (a-types), which fur-
ther quantified the matching of subtypes between the two modalities
(Fig. 2e, Extended DataFig. 5e, Methods). Moreover, the mCG DMRs (see
below) highly overlap with open chromatin peaksin the hippocampal
subtypes (Fig. 2f). Their mCG fractions and chromatin accessibility
levels show similar cell-type-specificity across hippocampal subtypes,
confirming the correct match of cell-type identities (Extended Data
Fig. 5f).

Projection specificity of ET-L5 neurons

To further infer the projection targets of cell subtypes, we integrated
our extra-telencephalic (ET) L5 neurons with epi-retro-seq data®

Epi-retro-seq uses retrograde viral labelling to select neurons pro-
jecting to specific brain regions, followed by methylome analysis of
their epigenetic subtypes. Cells from the same brain region of the
two datasets are colocalized on ¢-distributed stochastic neighbour
embedding (¢-SNE) analysis, validating the subtypes’ spatial distribu-
tion (Fig. 2g-i, Extended Data Fig. 5g-i). The overlap scores between
unbiased (snmC-seq2) and targeted (epi-retro-seq) profiling experi-
ments (Extended Data Fig. 5j) indicate that some subtypes identified
fromthe same cortical area show different projection specificity. For

1-7ind. Thetop four genes are transcription factor genes (bold); these are
followed by other protein-coding genes. The scatter plots below show cells
involvedineachbranch.f, Branch-specific transcription factor motif families.
Thezoomed UMAPs show individual transcription factor genesin those
families, whose differential mCH fractions are concordant with their motif
enrichment.

example, SSpand MOp neurons were mainly enriched in three subtypes
marked by Kcnhl, Tmtc2 and Nectinl, respectively. However, neurons
projecting tothe medullainthe MOp and SSp only integrate with the
subtype marked with Kcnhl (Fig. 2j), suggesting that the subtypes
identified in unbiased methylome profiling have distinct projection
specificities.

Regulatory taxonomy of neuronal subtypes

Having developed a consensus map of cell types based on their DNA
methylomes, we identified 16,451 differentially CH-methylated genes
(CH-DMGs) and 3.9 million CG-differentially methylated regions
(CG-DMRs, 624 +176 base pairs (bp) mean £ s.d.) between the subtypes
(Extended Data Fig. 6, Methods, Supplementary Note 2). snmC-seq2
captures both cell-type-specific gene expression and predicted reg-
ulatory events'?. Specifically, both gene body mCH and mCG nega-
tively correlate with gene expression in neurons, with mCH showing
astronger correlation than mCG"*”, CG-DMRs provide predictions
aboutcell-type-specificregulatory elements and transcription factors
whose motifs enriched in these CG-DMRs predict the crucial regulators
of the cell type”®.

To further explore the gene regulatory relationship between neu-
ronal subtypes, we constructed taxonomy trees for excitatory and
inhibitory subtypes, based on gene body mCH of CH-DMGs (Extended
Data Fig. 7a, b, Methods). The dendrogram structures represent the
similarities between these discrete subtypes and may reflect the devel-
opmental history of neuronal type specification’?. Next, we used
both CH-DMGs and CG-DMRs to annotate the tree and explore the
features specifying cell subtypes (excitatory in Fig. 3a-candinhibitory
inExtended DataFig. 7c, d). Specifically, we calculated abranch-specific
methylation impact score for each gene or transcription factor motif

Nature | Vol 598 | 7 October 2021 | 123



Article

Differential looj
a b 1 6MeDMR  73% (€DMR) € snm3C-seq of HIP 9, | cas Vo
snmC-  snATAC- 85% (peak) 72% (e/DMR) . I3 e
seq2 seq 9 o
° 5 35% ar% 5% ggy, w 74% oo 0T
oo Y ©) <l . e CA3 = @
OP O ® * %’*‘" \’\/ALGMCC 3 5
N v piid o OLF a8
3D feDMR: CEJCDEPC %8 :
i c
(98% M AI DMR eDMR [l snATAC peak M Forebrain [ Other ﬁﬁg g & DG
L]
l*__l_‘_* Per cent of region overlap with: 54] 36,437 34 39 e OPC F.I,
mCG  Chromatin 21 26, 6142 a9 . B?Hers (&) £ -
i ibil 14 14 142 cells -
fraction accessibility iTm7 10 I12 7101012 Chr6'97.22 101.22 (Mb)'
REPTILE CGland Promoter  Exon Intron  Intergenic Transposable —EEs (Genome details)
CG- model CGl shore elements f h I ) 4
DMR c d Normalized interactions 5 a 06,13 8848 0653 | 9895 9900 095D 99.54 9958 (Mb)
! § £ | cay [ N TTTTTI i mCa
o MR 280 58| palin = 3 L = e
. o« o] = - =
DMG _ |cor. £ 08 L Swoleatl I I [T 4, Lol Al [ d|aTAC
8 3 ] bal 7 5 = 7 a e ATAG
Gelne;jenhancer =07 £ 40 E 99,00 99,10 99,20 99,30 99,40 (Mb)
andscape ; L A 0t AT
g H o . |oaT MR i, LN Ll i mCG
© -
806 5 20 ; % DG mCG
3 g3
3 ‘ seloml o onud oo . Al . |ATAC
0.5 —br-g-rope 2 8| pg ATAC
RETSS AF 500K TSS SO <* Foxp1 =i Foxp1-228
4 x No. of positively P Foxp1-225 oxp1-: Foxp1-221

correlated eDMRs

Fig.4|Gene-enhancerlandscapesinneuronal subtypes. a, Schematic of
enhancer calling using matched DNA methylome and chromatin accessibility
subtype profiles. Corr., correlation. b, Overlap of regulatory elements
identified in this study and other epigenomic studies (ATAC peaks®and
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d, Percentage of positively correlated eDMRs that overlap with forebrain
feDMRsineachgene. e, t-SNE of cells analysed by sn-m3C-seq coloured by

that summarizes all of the pairwise comparisons related to that branch
(Extended Data Fig. 7e; Methods). The impact score ranges from 0 to
1, with a higher score predicting stronger functional relevance to the
branch. We assign 6,038 unique genes to branches withinthe excitatory
taxonomy (5,975 ininhibitory taxonomy), including 406 transcription
factor genes (412 in inhibitory taxonomy) using genes with impact
scores greater than 0.3. For example, motifs from the ROR (also known
as NRIF) family were assigned to the branch that separates superfi-
cial layer IT neurons from deeper layer IT neurons (Fig. 3d-f, node
9), whereas motifs from the CUX family were assigned to the IT-L2/3
branch, separatingit fromIT-L4/5 neurons (Fig. 3d-f, node 11). Both of
these families contain members, such as CuxI, Cux2and Rorb, that show
laminar expression in the corresponding layers and regulate cortical
layer differentiation during development®.

After impact score assignment, each branch of this taxonomy
was associated with multiple transcription factor genes and motif's,
which potentially function in combination to shape cell-type identi-
ties** (Fig. 3e, f). For example, we focused on two brain structures of
interest: the CLA and the EP??, At the major-cell-type level, distinct
clusters are marked by Npsr1 (EP) and B3gat2 (CLA). Theknown EP and
CLA marker transcription factor Nr4a2” also shows hypomethylation
inboth clusters compared to other clusters. Accordingly, the NR4A2
motifisalsoassociated withabranch thatsplits CLA neurons fromIT-L6
neurons (Fig.3d-f, node 6). Onanother branch separating EP from CLA
and IT-L6 neurons, genes for several transcription factors, including
NF-1family members Nfia and Nfib and the RFX family member Rfx3,
together with corresponding motif's (Fig. 3d-f, node 5) rank near the
top. Our findings suggest that these transcription factors may function
together with Nr4a2, potentially separating EP neurons from CLA and
IT-L6 neurons.

Beyond identifying specific cell-subtype characteristics, we derived
total impact (TI) scores to summarize the methylation variation of
genes and motifs to understand their relative importance in cell type
diversification and function (Extended Data Fig. 7f-k, Supplementary
Note 3). By comparing the TIscores of genes and motifs calculated from
the inhibitory and excitatory taxonomies, we found that there were
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assigned major cell types.f, Interaction level (z-score across rows and columns)
of differential loopsineight clustersat25-kbresolution. g, h, Epigenomic
signatures surrounding Foxpl. g, Triangle heat maps showing CAland DG
chromatin contacts and differential loops. h, Genome browser sections
showing detailed mCG and ATAC profiles near anchors of four CAl-specific
loops. Red rectanglesindicate loop anchorsand red arrows indicate notable
regulatory elements.

more transcription factor genes and motifs having large Tl scores in
bothcell classes thanineither one or the other (Extended DataFig. 7f, i).
Forinstance, Bcl11b distinguishes OLF-Exc and IT neurons in the excita-
torylineage and distinguishes CGE-Lamp5 and CGE-Vipintheinhibitory
lineage. Similarly, Satb1 separates IT-L4 from IT-L2/3 and MGE from
CGE in excitatory and inhibitory cells. These findings indicate broad
repurposing of transcription factors for cell-type specificationamong
distinct developmental lineages.

Enhancer-gene Interactions

Tosystematically identify enhancer-like regionsinspecific cell types, we
predicted enhancer-DMRs (eDMR) by integrating matched DNA methy-
lome and chromatin accessibility profiles® of 161 subtypes (Fig. 4a,
Methods). We identified 1,612,198 eDMR (34% of CG-DMRs), 73% of
which overlapped with separately identified snATAC-seq peaks (Fig.4b).
Fetal-enhancer DMRs (feDMR) (that is, eDMRs between development
time points) of forebrain bulk tissues® show high (88%) overlap with
eDMRs. Surprisingly, the eDMRs also cover 74% of the feDMRs from
other fetal tissues®, indicating extensive reuse of enhancer-like regula-
tory elements across mammalian tissue types (Fig. 4b).

Next, we examined therelationship between the cell-type-signature
genes and their potential regulatory elements. We calculated the par-
tial correlation between all DMG-DMR pairs within 1 Mb distance
using methylation levels across 145 neuronal subtypes (Methods).
We identified a total of 1,038,853 (64%) eDMRs that correlated with
atleast one gene (correlation >0.3 with empirical P<0.005, two-sided
permutation test, Extended Data Fig. 8a). Notably, for those strongly
positive-correlated DMR-DMG pairs (correlation >0.5), the DMRs are
largely (63%) within 100 kb of the transcription startsites (TSSs) of the
corresponding genes but are depleted from +1kb (Fig. 4c, Extended
DataFig. 8b), whereas for the negatively correlated DMR-DMG pairs,
only 11% of DMRs are found within 100 kb of the TSS (Extended Data
Fig. 8c).

Using the gene-enhancer interactions predicted by this correlation
analysis, we assigned eDMRs to their target genes. The percentages



of feDMR-overlapping eDMRs vary markedly among genes (Fig. 4d,
Extended Data Fig. 8d, e). Of note, DMRs assigned to the same gene
show different mCG specificity among subtypes. For example,
Tle4-correlated eDMR could be partitioned into three groups (Extended
DataFig.8e-g). One group (G2) of elements that displayed little diver-
sity inbulk data showed highly specific mCG and open-chromatin sig-
nalsin MSN-D1/D2 neurons, whereas another group (G3) was specific
to CT-L6 neurons. These two groups of DMRs suggest that possible
alternative regulatory elements are used to regulate the same gene
in different cell types, although further experiments are required to
validate this hypothesis.

Together, these analyses allow us to carefully chart the specificity
of regulatory elements identified in bulk tissues to the subtype level.
Besides, we identified many regulatory elements that show more
restricted specificity (for example, eDMRs correlated with Tle4 in
MSN-D1/D2), providing abundant candidates for further pursuing
enhancer-driven adeno-associated viruses (AAVs) that target highly
specific cell types?.

3D genome structure of hippocampus

Distal enhancers typically regulate gene expression through physical
interaction with promoters®. Therefore, to examine whether physi-
cal chromatin contacts support our correlation-based predictions of
enhancer-gene associations, we generated sn-m3C-seq* data for 5,142
single nuclei from the HIP (152,000 contacts per cell on average). We
assigned these cells, on the basis of the sn-m3C-seq data, to eight major
celltypesbased onintegration with the snmC-seq2 HIP data. In total, 19,151
chromosomeloops wereidentified inatleast one of the cell types at 25-kb
resolution (range from1,173 to 12,614 chromosome loops per cell type).

Using DG and CA1 as examples, a notably higher correlation was
observed between enhancers and genes atloop anchors thanbetween
random enhancer-gene pairs (Extended DataFig. 8h). Reciprocally, the
enhancer-gene pairs showing stronger correlation with methylation
were more likely to be found linked by chromosome loops or within
the same loopingregion (Extended Data Fig. 8i). We also compared the
concordance of methylation patterns between genes and enhancers
linked by different methods and found the pairs linked by loop anchors
or closest genes had the highest correlation of methylation (Extended
DataFig. 8j). Together, these analyses validate the physical proximity
of enhancer-gene pairs predicted by our correlation-based method
inspecific cell types.

Additionally, we observed significant cell-type-specific 3D genome
structures. The major cell types could be distinguished on UMAP
embedding on the basis of chromosome interaction (Fig. 4e), indicating
the dynamic nature of genome architecture across cell types. Among
the 19,151 chromosome loops, 48.7% showed significantly different
contact frequency between cell types (Fig. 4f). eDMRs were highly
enriched at these differential loop anchors (Extended Data Fig. 8k).
mCG levels at distal cis-elements are typically anti-correlated with
enhancer activity®. Thus, we hypothesized that enhancers at differential
loop anchors might also be hypomethylatedin the corresponding cell
type.Indeed, using the loopsidentifiedin DG and CAl as examples, we
observed thatenhancers at the anchor of cell-type-specific loops show
corresponding hypomethylationin the same cell type that the loop is
specific to (Extended Data Fig. 8I).

Many differential loops were observed near marker genes of the
corresponding cell type. For example, Foxpl, a gene for a CAl-specific
transcription factor?’, has chromosome loops surrounding its gene
body in CAlbut not DG (Fig. 4g, h). eDMRs and open chromatin were
observed atthese loop anchors. Notably, three loopsin CAlanchored
at the TSS of the same transcript of Foxp1 (Fig. 4h). Stronger demeth-
ylation and chromatin accessibility were also observed at the same
transcript than in other transcripts (Fig. 4h, box E). These epigenetic
patterns might suggest a specific transcript of FoxpI (Foxp1-225) is

selectively activated in CAl. by contrast, Lrrtm4, encoding a DG specific
presynaptic protein that mediates excitatory synapse development®,
shows extensive loopingto distal elementsin DG but not CA1 (Extended
DataFig. 8n). Notably,among 34 genes showing alternative loop usage,
20 genes expressed in both DG and CA1*; for example, the TSS of Grm7
interacts with an upstream enhancer in DG and gene body enhancers
in CAl (Extended Data Fig. 80).

mcCgradientsinIT neurons

Cortical excitatory IT neurons are classified into major types corre-
spondingto their laminarlayers:L2/3,L4,L5and L6 (Fig. 5a).In agree-
ment with the anti-correlation between transcript levels and DNA
methylation, we found hypomethylation in IT neurons of the layer
marker genes” (Extended Data Fig. 9a). Furthermore, UMAP embed-
ding (Fig. 5a) reveals a continuous gradient of IT neurons resembling
the medial-lateral distribution of the cortical regions (Fig. 5b), strongly
suggesting that the arealization information is well preserved in the
DNA methylome.

To systematically explore the spatial gradient of DNA methyla-
tion, we merged the cells into spatial groups on the basis of their
cortical layer and region and generated a taxonomy between them
(Methods). The taxonomy split the cells into four layer groups, fol-
lowed by cortical-region separation within each layer (Extended Data
Fig. 9¢), providing a clear structure for investigating layer-related or
region-related methylation variation. Specifically, the layer-related
transcription factors included many known laminar marker genes
and their DNA-binding motifs (Extended Data Fig. 9d), whereas some
also show regional specific methylation differences. For example,
CuxI, encoding ahomeobox transcription factor specific to L2/3 and
L4 neurons, is hypomethylated in motor (MO) and somatosensory
(SS) cortex, butis hypermethylated in L2/3 of other regions, in agree-
ment with patterns from in situ hybridization®. Cux2, which encodes
another homeobox transcription factor, does not show the same
regional specificity (Extended Data Fig. 9a). We also identified genes
for many additional transcription factors that showed cortical region
specificity (Fig. 5c, Extended Data Fig. 9e). For example, Etv6 is only
hypomethylated in medial dissection regions across layers, whereas
Zic4is hypermethylated in those regions. By contrast, Rora shows an
anterior-posterior methylation gradient within the L4 and L5 cells.
Together, these observed methylome spatial gradients demonstrated
thevalue of our dataset for further exploring the cortical arealization
with cell-type resolution.

mCgradientsin DG granule cells

Global methylation gradients are observed within large cell types. For
example, DG granule cells were continuously distributed in the UMAP
embedding from low to high globalmCH and mCG (Fig. 5d, globalmCH
fraction 0.5-1.9%, mCG fraction 69-79%). This gradient correlated with
the anterior-posterior position of brain sections. Granule cells from
the most posterior DG regions had higher global methylation than cells
from anterior regions (Fig. 5d).

mCH accumulates throughout the genome during postnatal brain
development®®, We reasoned that DG granule cells, which are continu-
ously replenished by ongoing neurogenesis throughout the lifespan,
may accumulate mCH during their post-mitotic maturation. If so, global
mCH should correlate with the age and maturity of granule cells. To
investigate this, we divided DG granule cells into four groups on the
basis of their global mCH levels and investigated regions of differen-
tial methylation between the groups. We identified 219,498 gradient
CG-DMRs between the four groups, among which 139,387 showed a
positive correlation with global mCH (+DMR), and 80,111 were nega-
tively correlated (-DMR) (Fig. 5e). Notably, genes overlapping +DMRs
or-DMRs have different annotated functions: genes enriched in +DMRs
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(+DMRgenes, n=328) were associated with developmental processes,
whereas those enriched in —-DMRs (-DMRgenes, n =112) were related
to synaptic function (Extended Data Fig. 10a, b).

To further test the relationship between the +DMRgenes, -
DMRgenes and DG development, we examined the expression pat-
terns of these genes across time using a single-cell RNA-seq dataset
that grouped DG cellsinto eight cell types, along their developmental
trajectory from radial glia to mature granule cells®. The +DMRgenes
were more highly expressed in immature cell types than in mature
celltypes (for example, Tcf4; Fig. 5f, Extended Data Fig.10c), whereas
the-DMRgenes showed the reverse trend (for example, Rfx3; Fig. 5g,
Extended DataFig.10d). These results are consistent with the hypoth-
esis that young DG granule cells have low global mCH and low methyla-
tion at genes associated with neural precursors. Conversely, older DG
granule cellsaccumulate greater global mCH and have low methylation
at genes associated with mature neurons. Notably, the global mCH
levels also correlate with the brain dissections (Fig. 5d), indicating
that the spatial axis can partially explain the methylation gradient
(Supplementary Note 4).

Next, we investigated whether the global methylation level is
correlated with 3D genome architecture. By plotting the chroma-
tin interaction strength against the anchors’ genomic distance, we
observed ahigher proportion of short-range contacts and asmaller
proportion of long-range contacts in the groups with higher global
mCH (Extended Data Fig.10f). Although compartment strengths were
not correlated with the global methylation changes (Extended Data
Fig.10g), the number of intra-domain contacts was positively cor-
related with global mCH across single cells (Extended Data Fig.10h).
After normalizing for the effect of decay, we found that insulation
scores at domain boundaries were significantly lower inthe groups
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with high global mCH levels (Extended Data Fig. 10i; all P<1x107'°,
two-sided Wilcoxon signed-rank test). Together these suggest that
local structures may be more condensed over flanking regions in
the high-mCH cell groups.

Cell type and spatial prediction model

To further quantify the spatial and cell-type information encoded in
asingle cell’s DNA methylome, we built a multi-task deep ANN using
cell-level methylome profiles from this study (Fig. 6a). Specifically,
mCH levels of 100-kb bins were used to train and test the network
with fivefold cross-validation (Method). The ANN predicted neu-
ronal subtype identity and spatial location simultaneously for each
testing cell with 95% and 89% accuracy, respectively (Fig. 6b-d).
Notably, the location prediction accuracy of the ANN was higher
than using only the spatial distribution information of subtypes
(overall increased by 38%, Extended Data Fig. 11c), suggesting that
spatial diversity is well-preserved in the neuronal DNA methylome.
We also notice higher levels of errors in location prediction of some
celltypes, especially inthe cortical MGE and CGE inhibitory neurons
(Fig. 6¢c, Extended Data Fig. 11c). This finding is consistent with previ-
ous transcriptome-based studies'*, suggesting these neurons do
not display strong cortical region specificity. Many cell-type marker
genesarealso enriched in features that capture most spatial informa-
tion (Fig. 6e, f). For example, besides distinguishing CT-L6 neurons
from other cell types, Foxp2 shows notable mCH differencesamong
dissected regions within CT-L6 (Fig. 6f). Notably, we also observed
the moderate spatial specificity of astrocytes and oligodendrocytes
using a separate model trained with methylomes of non-neuronal
cells (Supplementary Note 5).
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Discussion

In this Article, we present a single-cell DNA methylomic atlas of the
mouse brain with detailed spatial dissection. This comprehensive
dataset enables high-throughput cell-type classification, marker gene
prediction and identification of regulatory elements. The three-level
iterative clustering defined 161 subtypes representing excitatory
(68), inhibitory (77) and non-neuronal cells (16). The development of
ahierarchical taxonomic architecture for cell subtypes on the basis of
CH-DMGs allowed usto assign specific genes and transcription factor
binding motifs to taxonomy branches using the methylation impact
score. These assignments describe cell-type specificity at different
levels, potentially relating to different developmental stages of each
neuronal lineage. Notably, we found that transcription factor genes
andtheir corresponding DNA-binding motifs were co-associated with
the samebranchinthetaxonomy, providing arichsource of candidate
transcription factors for future study.

Through integration with snATAC-seq?, we matched subtypes clas-
sified inboth epigenomic modalities and used the combined informa-
tion to predict 1.6 million active-enhancer-like eDMRs, including 72%
of cell-type-specific elements missed from previous tissue-level bulk
studies®. To examine the associations of eDMRs and their targeting
genes, we applied multi-omic methods to establish an eDMR-gene
landscape using correlation-based prediction and chromatin confor-
mation profiling using sn-m3C-seq, resulting in the identification of
chromatin loops between eDMRs and their potential targeting genes
in specific cell types.

Our brain-wide epigenomic dataset reveals extraordinary spatial
diversity encoded inthe DNA methylomes of neurons. The ANN trained

on the single-cell methylome profiles accurately reproduced the
detailed brain-dissection information within most subtypes, indicat-
ingthe existence of large spatial methylation gradients throughout the
brain. Echoing cortex development studies®*, glutamatergic neurons
areregionalized by a protomap formed from an early developmental
gradient of transcription factor expression. Similarly, we observed that
many transcription factor genes and their corresponding DNA-binding
motifs showed gradients of DNA methylationin adultIT neurons from
distinct cortical regions. Additionally, we also found intra-subtype
methylation gradientsin DG granule cells that correlate with the spatial
axisinthe DG. These gradient-related CG-DMRs are enriched in essen-
tial neurodevelopmental and synaptic genes®%, suggesting that these
spatially resolved DNA methylation gradients reflect past regulatory
events occurring during brain maturation. We qualify our findings by
noting that snmC-seq2 is a sodium bisulfite-based method and cannot
distinguish between 5-methylcytosine and 5-hydroxymethylcytosine,
which has been shown to accumulate in some brain regions®. New
methods will be needed to simultaneously measure the full comple-
ment of cytosine base modifications at the single-cell level.

Overall, our analysis highlights the power of this dataset power for
characterizing cell types using gene activity information from both
codingregions and the regulatory elements inthe non-coding regions
of the genome. This comprehensive epigenomic dataset provides a
valuable resource for answering fundamental questions about gene
regulation in specifying cell-type spatial diversity and provides the
raw material to develop new genetic tools for targeting specific cell
types and functional testing.
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Methods

Mouse brain tissues

Allexperimental procedures using live animals were approved by the
Salk Institute Animal Care and Use Committee under protocol number
18-00006. Adult (P56) C57BL/6) male mice were purchased fromJack-
son Laboratories and maintained in the Salk animal barrier facility on
12 h dark-light cycles with food ad libitum for a maximum of 10 days.
Brains were extracted and sliced coronally at 600 pm from the frontal
poleacross the whole brain (for atotal of 18 slices) inanice-cold dissec-
tion buffer containing 2.5mMKClI, 0.5mM CaCl,, 7 mM MgCl,,1.25 mM
NaH,PO,, 110 mM sucrose, 10 mM glucose and 25 mM NaHCO,. The
solution was keptice-cold and bubbled with 95% O,, 5% CO, for at least
15min before starting the slicing procedure. Slices were keptin12-well
plates containingice-cold dissection buffers (for amaximum of 20 min)
until dissection aided by an SZX16 Olympus microscope equipped
with an SDF PLAPO 1XPF objective. Olympus cellSens Dimension 1.8
was used for image acquisition. Each brain region was dissected from
slices along the anterior-posterior axis according to the Allen Brain
reference Atlas CCFv3' (see Extended Data Fig. 1 for the depiction
of a posterior view of each coronal slice). Slices were kept in ice-cold
dissection media during dissection and immediately frozenindryice
for posterior pooling and nuclei production. For nucleiisolation, each
dissected region was pooled from 6-30 animals, and two biological
replicas were processed for each slice.

Fluorescence-activated nucleisorting

Nuclei were isolated as previously described"®. Isolated nuclei
were labelled by incubation with 1:1,000 dilution of Alexa Fluor
488-conjugated anti-NeuN antibody (MAB377X, Millipore) and a1:1,000
dilution of Hoechst 33342 at 4 °C for 1 h with continuous shaking. FANS
of single nuclei was performed using a BD Influx sorter with an 85-um
nozzle at 22.5PSIsheath pressure. Single nuclei were sorted into each
well of a 384-well plate preloaded with 2 pl of proteinase K digestion
buffer (1 ul M-Digestion Buffer (Zymo, D5021-9), 0.1 ul of 20 pg pl™
proteinase K and 0.9 pul H,0). The alignment of the receiving 384-well
plate was performed by sorting sheath flow into wells of anempty plate
and making adjustments based on the liquid drop position. Single-cell
(one-drop single) mode was selected to ensure the stringency of sort-
ing. For each 384-well plate, columns 1-22 were sorted with NeuN*
(488+) gate, and column 23-24 with NeuN™ (488-) gate, reaching an
11:1ratio of NeuN* to NeuN™ nuclei. BD Influx Software v1.2.0.142 was
used to select cell populations.

Library preparation and lllumina sequencing

Detailed methods for bisulfite conversion and library preparation
were previously described for snmC-seq2? The snmC-seq2 and
sn-m3C-seq (see below) libraries generated from mouse brain tissues
were sequenced using an [llumina Novaseq 6000 instrument with S4
flow cells using the 150-bp paired-end mode. Freedom EVOware v2.7
was used for library preparation, and Illlumina MiSeq control software
v3.1.0.13 and NovaSeq 6000 control software v1.6.0/Real-Time Analysis
(RTA) v3.4.4 were used for sequencing.

The sn-m3C-seq specific steps of library preparation

Single-nucleus methyl-3C sequencing (sn-m3C-seq) was performed
as previously described*. In brief, the same batch of dissected tissue
samples from the dorsal dentate gyrus (DG-1and DG-2, Supplementary
Table 2), ventral dentate gyrus (DG-3 and DG-4), dorsal HIP (CA-1and
CA-2),and ventral HIP (CA-3 and CA-4), were frozenin liquid nitrogen.
The samples were then pulverized while frozen using a mortar and
pestle, and then immediately fixed with 2% formaldehyde in DPBS
for 10 min. The samples were quenched with 0.2 M glycine and stored
at —80 °C until ready for further processing. After isolating nuclei as
previously described*, nuclei were digested overnight with Nlalll and

ligated for 4 h. Nuclei were then stained with Hoechst 33342 (but not
stained with NeuN antibody) and filtered through a 0.2-pm filter, and
sorted similarly to the snmC-seq2 samples. Libraries were generated
using the snmC-seq2 method.

Mouse brain region nomenclature

The mouse brain dissection and naming of anatomical structuresin this
study followed the Allen Mouse Brain common coordinate framework
(CCF)*. Onthebasis of the hierarchical structure of the Allen CCF, we used
athree-level spatial region organization tofacilitate description: (1) the
major region, for example, isocortex, HIP; (2) the sub-region, for exam-
ple, MOp, SSp, withinisocortex; (3) the dissection region, for example,
MOp-1and MOp-2, within MOp. Supplementary Table 1 contains the full
names of all abbreviations used inthis study. All brain atlasimages were
created based on Wang et al.* and ©2017 Allen Institute for Brain Science.
AllenBrain Reference Atlas. Available from: http://atlas.brain-map.org/.

Analysis stages

The following method sections were divided into three stages. The first
stage, ‘Mapping and feature generation’,describes mapping and gener-
atingfiles in the single-cell methylation-specific data format. The sec-
ondstage, ‘Clustering related’, describes clustering, identifying DMGs,
orintegrating other datasets, whichallhappened at the single-cell level.
Thethird stage, ‘Cell-type-specific regulatory elements’, describes the
identification of putative cell-type-specific regulatory elements using
cluster-merged methylomes. Other figure-specific analysis topics may
combine results from more than one stage.

Mapping and feature generation

Mapping and feature-count pipeline. We implemented a versa-
tile mapping pipeline, YAP (https://hqg-1.gitbook.io/mc/), for all the
single-cell-methylome-based technologies developed by our group™*~.
The main steps of this pipeline include: (1) demultiplexing FASTQ files
intosingle cells; (2) reads level quality control (QC); (3) mapping; (4) BAM
file processing and QC; and (5) final molecular profile generation. The
details of the five steps for snmC-seq2 were previously described?. We
mapped all of the reads to the mouse mm10 genome. We calculated the
methylcytosine counts and total cytosine counts for two sets of genomic
regionsin each cell after mapping. Non-overlapping chromosome 100-kb
bins of the mm10 genome (generated by “bedtools makewindows -w
100000”) were used for clustering analysis and ANN model training,
andthegenebodyregions +2 kb defined by the mouse GENCODE vm22
were used for cluster annotation and integration with other modalities.

sn-m3C-seq-specific steps or read mapping and chromatin con-
tact analysis. Methylome sequencing reads were mapped following
the TAURUS-MH pipeline, as previously described*. Specifically, reads
were trimmed for lllumina adaptors, and then an additional 10 bp was
trimmed onboth sides. Then R1and R2 reads were mapped separately
tothe mm10 genome using Bismark with Bowtie. The unmapped reads
were collected and splitinto shorter reads representing the first 40 bp,
thelast 40 bp, and the middle part of the original reads (if read length
>80 bp after trimming). The split reads were mapped again using Bis-
mark with Bowtie. The reads with MAPQ <10 were removed. Thefiltered
bamfiles from splitand unsplit R1and R2 reads were deduplicated with
Picard and merged into a single bam file to generate the methylation
data. Methylpy (v1.4.2)* was used to generate an ALLC file (base-level
methylation counts) from the bamfile for every single cell. We paired the
Rland R2bamfiles where each read-pair represents a potential contact
togenerate the Hi-C contact map. For generating contact files, read pairs
where the two ends mapped within1kbp of each other, were removed.

Clustering-related methods
Single-cell methylome data quality control and preprocessing.
Cellfiltering. We filtered the cells on the basis of these main mapping
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metrics: (1) mCCC level <0.03; (2) overall mCG level >0.5; (3) overall
mCH level <0.2; (4) total final reads >500,000; and (5) Bismark mapping
rate>0.5. Other metrics such as genome coverage, PCR duplicates rate
andindexratiowere also generated and evaluated during filtering. How-
ever, after removing outliers with the main metrics 1-5, few additional
outliers were found. Note the mCCC level is used as the estimation of
the upper bound of bisulfite non-conversion rate'.

Featurefiltering.100 kb genomic bin features were filtered by remov-
ing bins with mean total cytosine base calls <250 (low coverage) or
>3,000 (unusually high-coverage regions). Regions that overlap with
the ENCODE blacklist® were also excluded from further analysis.

Computation and normalization of the methylation level. For CG
and CH methylation, the methylation level computation from the
methylcytosine and total cytosine matrices contains two steps: (1)
prior estimation for the beta-binomial distribution, and (2) posterior
level calculation and normalization per cell.

Step 1: for each cell, we calculated the sample mean mand variance
voftheraw methylcytosine level (mc/cov), where covisthetotal cyto-
sine base coverage and mc is the methylcytosine base coverage, for
each sequence context (CG or CH). The shape parameters (a, ) of the
betadistribution were then estimated using the method of moments:

a=m(m(1-m)/v-1)
B=0-m)(m(1-m)/v-1)

This approach used different priors for different methylation types
for each cell and used weaker priors to cells with more information
(higher raw variance).

Step 2: we then calculated the posterior: mc = % forallbinsin
eachcell. Like the counts per million reads (CPM) normalizationin the
single-cellRNA-seq analysis, we normalized this posterior methylation
ratio by the cell’s global mean methylation, m=a/(a + ). Thus, all the
posterior mcvalues with O cov will have a constant value of 1after nor-
malization. The resulting normalized mc level matrix contains no NA
(not available) value, and features with lower cov tend to have amean
value closetol.

Selection of highly variable features. Highly variable methylation
features were selected with a modified approach using the scanpy.
pp.highly_variable_genes function from the scanpy 1.4.3 package*.
Inbrief, the scanpy.pp.highly_variable_genes function normalized the
dispersion of agene by scaling with the mean and standard deviation
of the dispersions for genes falling into a given bin for mean expres-
sion of genes. In our modified approach, we reasoned that both the
mean methylation level and the mean cov of a feature (100 kb bin or
gene) could impact mclevel dispersion. We grouped features that fall
into a combined bin of mean and cov. We then normalized the disper-
sion within each mean-cov group. After dispersion normalization,
we selected the top 3,000 features based on normalized dispersion
for clustering analysis.

Dimension reduction and combination of different mC types. For
each selected feature, mc levels were scaled to unit variance and zero
mean. We then performed principal componentanalysis (PCA) onthe
scaled mclevel matrix. The number of principal components (PCs) was
selected by inspecting the variance ratio of each PC using the elbow
method. The CH and CG PCs were then concatenated together for
further analysis in clustering and manifold learning (Supplementary
Table 6 for parameters of PCA and clustering analysis).

Consensus clustering. Consensus clustering on concatenated PCs.
We used a consensus clustering approach based on multiple Leiden
clustering over k-nearest neighbour (KNN) graph to account for the
randomness of the Leiden clustering algorithms. After selecting domi-
nant PCs from PCA in both mCH and mCG matrices, we concatenated
the PCstogether to construct aKNN graph using scanpy.pp.neighbours

with Euclidean distance. Given fixed resolution parameters, we re-
peated the Leiden clustering 300 times on the KNN graph with differ-
ent random starts and combined these cluster assignments as a new
feature matrix, where each single Leiden result is a feature. We then
used the outlier-aware DBSCAN algorithm from the scikit-learn pack-
age to perform consensus clustering over the Leiden feature matrix
using the hamming distance. Different epsilon parameters of DBSCAN
aretraversed to generate consensus cluster versions with the number
of clusters that range from the minimum to the maximum number of
clusters observedin the multiple Leiden runs. Each version contained
afew outliers; these usually fall into three categories: (1) cells located
betweentwo clusters had gradient differencesinstead of clear borders,
for example, border of IT layers; (2) cells with alow number of reads
potentially lack information in essential features to determine the
specific cluster; and (3) cells with a high number of reads that were
potential doublets. The number of type1and 2 outliers depends on the
resolution parameter and is discussed in the choice of the resolution
parameter section. The type 3 outliers were very rare after cell filter-
ing. The supervised model evaluation below then determined the final
consensus cluster version.

Supervised model evaluation on the clustering assignment. We per-
formed arecursive feature elimination with cross-validation (RFECV)*
process from the scikit-learn package to evaluate clustering reproduc-
ibility for each consensus clustering version. We first removed the
outliers fromthis process, and then we held out 10% of the cells as the
final testing dataset. For the remaining 90% of the cells, we used ten-
fold cross-validation to train a multiclass prediction model using the
input PCs as features and sklearn.metrics.balanced_accuracy _score*?
as an evaluation score. The multiclass prediction model is based on
BalancedRandomForestClassifier from the imblearn package, which
accounts for imbalanced classification problems**. After training, we
used the 10% testing dataset to test the model performance using the
score frombalanced_accuracy_score. We kept the best model and corre-
sponding clustering assignments as the final clustering version. Finally,
we used this prediction model to predict outliers’ cluster assignments.
We rescued the outlier with prediction probability >0.3, otherwise
labelling them as outliers.

Manifold learning for visualization. In each round of clustering analy-
sis, the t-SNE**¢ and UMAP” embedding were run on the PC matrix
the same as the clustering input using the implementation from the
scanpy*’ package. The coordinates from both algorithms were in Sup-
plementary Table 5.

Choice of resolution parameter. Choosing the resolution parameter
ofthe Leiden algorithmis critical for determining the final number of
clusters. We selected the resolution parameter by three criteria: (1). the
portion of outliers <0.05in the final consensus clustering version; (2)
the ultimate prediction model accuracy >0.9; and (3) the average cell
per cluster =30, which controls the cluster size to reach the minimum
coverage required for further epigenome analysis such as DMR calls.
All three criteria prevented the over-splitting of the clusters; thus,
we selected the maximum resolution parameter under meeting the
criteriausing a grid search.

Cellclass (level 1 clustering) annotation. We annotated non-neuron
cellsbased onboth the NeuN~ gate origin and low global mCH fraction.
Given the strong anti-correlation between CH methylation and gene
expression, we used hypo-CH-methylation at gene bodies +2 kb of
pan-excitatory markers such as Slc17a7 and Su2b, and pan-inhibitory
markers such as Gadl and Gad2 to annotate excitatory and inhibitory
cell classes, respectively.

Majortype (level 2) and subtypes (level 3) annotations. We used both
gene body +2 kb hypo-CH-methylation (or hypo-CG-methylation for
non-neurons) of well-known marker genes and the dissection informa-
tion to annotate neuron and non-neuron clusters. All cluster marker
genesarelisted in Supplementary Table 7, together with the description
of the cluster names, references to the marker gene information, and



the URL to the databrowser. The major cell types were annotated based
onwell-known marker genes reported in the previous studies™**# %,
Whenever possible, we name these clusters with canonical names (for
example, IT-L23, L6b) or using descriptive names that reflect the spe-
cific spatial location of the cluster (for example, EP, CLA, IG-CA2). For
subtypes, we named the clusters via its parent major type name fol-
lowed by a subtype marker gene name.

Pairwise DMG identification. We used a pairwise strategy to calcu-
late DMGs for each pair of clusters within the same round of analysis.
We used the gene body +2 kb regions of all the protein-coding and
long non-coding RNA genes with evidence level 1 or 2 from the mouse
GENCODE vm22. We used the single-cell level mCH fraction normal-
ized by the global mCH level (as in ‘Computation and normalization of
the methylation level’in the clustering step above) to calculate mark-
ers between all neuronal clusters. We compared non-neuron clusters
separately using the mCG fraction normalized by the global mCG level.
For each pairwise comparison, we used the Wilcoxon rank-sumtest to
select genes with a significant decrease (hypo-methylation). Marker
genes were chosen based on adjusted P <107 with multitest correc-
tion using the Benjamini-Hochberg procedure, delta-normalized
methylation level change <-0.5 (hypo-methylation) and area under
thereceiver-operating curve (AUROC) >0.8. Werequired each cluster
to have >5DMGs compared to any other cluster. Otherwise, the small-
est cluster that did not meet this criterion was merged to the closest
cluster based on Euclidean distance between cluster centroids in the
PC matrix used for clustering. Then the marker identification process
was repeated until all clusters found enough marker genes.

Three levels of iterative clustering analysis. On the basis of the
consensus clustering steps described above, we used an iterative ap-
proach to cluster the data into three levels of categories. In the first
level, termed CellClass, clustering analysis is done using all cells and
thenmanually merged into three canonical classes: excitatory neurons,
inhibitory neurons, and non-neurons based on marker genes. Within
each CellClass, we performed all the preprocessing and clustering steps
again to obtain clusters for the MajorType level using the same stop
criteria. Furthermore, within each MajorType, we obtained clusters
for the SubType level. All clusters’ annotations and relationships are
presented in Supplementary Table 7.

Subtype taxonomy tree. To build the taxonomy tree of subtypes, we
selected the top 50 genes that showed the most significant changes
for each subtypes’ pairwise comparisons. We then used the union of
these genes from all subtypes and obtained 2,503 unique genes. We
calculated the medianmCH level of these genes in each subtype and ap-
pliedbootstrap resampling-based hierarchical clustering with average
linkage and the correlation metric using the R package pvclust (v.2.2)*°.

Impact score and total impact score. We defined the impact score
(IS) to summarize pairwise comparisons for two subtype groups, where
one group, A, contains M clusters and the other group, B, contains N
clusters. For each gene or motif, the number of total related pairwise
comparisons is M x N, the number of significant comparisons with
desired change (hypo-methylation for gene or enrichment for motif)
isaingroupAandbingroupB.ThelSisthencalculatedaslS, = 2-b and

ISg = /5 - 7\, for the two directions. For either group, IS rangensdfrcl)vm -1
to1,and O means noimpact, 1 means fullimpact and -1 means full im-
pactinthe other group (Extended Data Fig. 7e).

We explored two scenarios using the IS to describe cluster charac-
teristics (Extended DataFig. 7e). The first scenario is considering each
pair of branches in the subtype taxonomy tree as comprising group A
and group B. Thus, the IS can quantify and rank genes or motifs to the
upper nodes based on the leaves’ pairwise comparisons (Fig. 3d-f).
Thesecond scenario summarizes the totalimpact for specific genes or

motifs regarding the taxonomy tree based on the calculationin the first
scenario (Extended Data Fig. 7f-k). Ina subtype taxonomy tree with n
subtypes, the total non-singleton node was n -1, and each node i had
a height h;and associated IS, for one of the branches (IS; = -IS,). The
node-height-weighted total IS (IS,,,;) was then calculated as:

n-1

lStotal = z hi>< IlSA|
i=1

The larger total IS indicated that a gene or motif shows more
cell-type-taxonomy-related significant changes. The total IS can also
be calculatedinasub-tree or any combination of interests torank genes
and motifs most related to that combination (See ‘Figure-specific meth-
ods’ for Fig. 5 regarding calculating layer and region total IS from the
sametree).

Integration with snATAC-seq data. A portion of the same brain tissue
sample used in this study for methylome profiling was also processed
using snATAC-seq in a parallel study of chromatin accessibility®. The
final high-quality snATAC-seq cells were assigned to 160 chromatin
accessibility clusters (a-types). The snATAC-seq-specific data analysis
stepsaredescribedin Lietal.. Here, we performed cross-modality data

integration and label-transferring to assign the 160 a-types to the 161

methylome subtypesin the following steps:

(1) Wemanually grouped both modalitiesinto five integration groups
(for example, all IT neurons as a group) and only performed the
integration of cells within the same group to decrease computa-
tion time. These groups were distinct in the clustering steps of
both modalities and can be matched with great confidence using
known marker genes. Steps 2-6 were repeated for each group. See
Extended Data Fig. 5 for the group design.

(2) We used asimilar approach as described above to identify pair-

wise differential accessible genes (DAGs) between all pairs of

a-types. The cut-off for DAGis adjusted P<107,fold change >2 and

AUROC>0.8.

Wethen gathered DMGs from comparisons of related subtypesin

the same group. Both DAGs and DMGs were filtered according to

whether theyrecurredin>5 pairwise comparisons. Theintersection
of the remaining genes was used as the feature set of integration.

Afteridentifying DAGs using cell-level snATAC-seq data, we merged

the snATAC-seq cells into pseudo-cells toincrease snATAC-seq data

coverage. Within each a-type, we did a k-means clustering (k=no.
of cells in that cluster/50) on the same PCs used in snATAC-seq

clustering. We discarded small k-means clusters with less than 10

cells (about 5% of the cells) and merged each remaining k-means

clusterinto a pseudo-cell. On average, a pseudo-cell had about 50

times more fragments than a single cell.

(5) We then used the MNN based Scanorama® method with default

parameters to integrate the snmC-seq cells and snATAC-seq

pseudo-cells using genes from step 3. After Scanorama integra-
tion, we did co-clustering on the integrated PC matrix using the
clustering approaches described above.

We used theintermediate clustering assignment from step 5to cal-

culate the overlap score (below) between the original methylome

subtypes and the a-types. We used overlap score >0.3 to assign
a-typestoeach methylome subtype. For those subtypes that have
no match under this threshold, we assigned the top a-type ranked

by the overlap score (Supplementary Tables 10, 11).
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Overlap score. We used the overlap score to match a-type and methy-
lome subtypes. The overlap score, range from O to 1, was defined as
the sum of the minimum proportion of samples in each cluster over-
lapped within each co-cluster®?. A higher score between one methylome
subtype and one a-cluster indicates they consistently co-clustered
withinone or more co-clusters. Besides matching clustersinintegration
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analysis, the overlap score was also used in two other cases: (1) to quan-
tify replicates and region overlaps over methylome subtypes (Extended
DataFig. 2e-g); and (2) to quantify the overlap of each L5-ET subtype
overlapping with ‘soma location’ and ‘projection target’ labels from
epi-retro-seq cells (Extended Data Fig. 5j) through integration with
the epi-retro-seq dataset.

Cell-type-specific regulatory elements

DMR analysis. After clustering analysis, we used the subtype clus-
ter assignments to merge single-cell ALLC files into the pseudo-bulk
level and then used methylpy (v1.4.2)*® DMRfind function to calcu-
late mCG DMRs across all subtypes. The base calls of each pair of CpG
siteswere added before analysis. Inbrief, the methylpy function used a
permutation-based root mean square test of goodness of fit to identify
differentially methylated sites (DMS) simultaneously across all samples
(subtypesinthis case), and then merge the DMS within 250 bp into the
DMR. We further excluded DMS calls that have low absolute mCG level
differences by using a robust-mean-based approach. For each DMR
merged from the DMS, we ordered all the samples by their mCG frac-
tionand calculated the robust mean m using the samples between 25th
and 75th percentiles. We then reassigned hypo-DMR and hyper-DMR
to each sample when a region met two criteria: (1) the sample mCG
fraction of this DMR is lower than (m - 0.3) for hypo-DMR or (m + 0.3)
for hyper-DMR, and (2) the DMR is originally a significant hypo- or
hyper-DMRinthatsamplejudged by methylpy. DMRs without any hypo-
or hyper-DMR assignment were excluded from further analyses. On the
basis of these filtering criteria, we estimate the false discovery rate of
calling DMRsis 2.7% (Supplementary Note 2, Extended Data Fig. 6).

Enhancer prediction using DNA methylation and chromatin
accessibility. We performed enhancer prediction using the REPTILE>
algorithm. REPTILE isarandom-forest-based supervised method that
incorporates different epigenomic profiles with base-level DNA meth-
ylation datatolearnand then distinguish the epigenomic signatures of
enhancers and genomic background. We trained the modelin a similar
way as in the previous studies®*?, using CG methylation, chromatin
accessibility of each subtype and mouse embryonic stem cells (mouse
ES cells). The model was first trained on mouse ES cell data and then
predicted a quantitative score that we termed enhancer score for each
subtype’s DMRs. The positives were 2 kb regions centred at the sum-
mits of thetop 5,000 EP300 peaksin mouse ES cells. Negativesinclude
randomly chosen 5,000 promoters and 30,000 2-kb genomic bins.
The bins have no overlap with any positive region or gene promoter?.

Methylation and chromatin accessibility profiles in bigwig format
for mouse ES cells were from the GEO database (GSM723018). The mCG
fraction bigwig file was generated from subtype-merged ALLC files
using the ALLCools package (https://github.com/lhqing/ALLCools). For
chromatinaccessibility of each subtype, we merged all fragments from
snATAC-seq cells that were assigned to this subtypein the integration
analysis and used deeptools bamcoverage to generate CPM normalized
bigwig files. All bigwig file bin sizes were 50 bp.

Motif-enrichment analysis. We used 719 motif PWMs from the JASPAR
2020 CORE vertebrates database, where each motif was able to assign
corresponding mouse transcription factor genes. The specific DMR
sets used in each motif-enrichment analysis are described in figure
specific methods below. For each set of DMRs, we standardized the
region length to the centre +250bp and used the FIMO tool from the
MEME suite® to scan the motifs in each enhancer with the log-odds
score P <107 as the threshold. To calculate motif enrichment, we use
the adult non-neuronal mouse tissue DMRs' as background regions
unless expressly noted. We subtracted enhancersin the region set from
the background and then scanned the motifs in background regions
using the same approach. We then used Fisher’s exact test to find motifs
enrichedintheregion set and the Benjamini-Hochberg procedure to

correct multiple tests. We used the TFClass* classification to group
transcription factors with similar motifs.

DMR-DMG partial correlation. To calculate DMR-DMG partial cor-
relation, we used the mCG fraction of DMRs and the mCH fraction of
DMGs in each neuronal subtype. We first used linear regression to re-
gressout variance due to global methylation difference (using scanpy.
pp.regress_out function), then use the residual matrix to calculate
the Pearson correlation between DMR and DMG pairs where the DMR
centre is within 1 Mb of the TSSs of the DMG. We shuffled the subtype
ordersinboth matrices and recalculated all pairs 100 times to generate
the null distribution.

Identification of loops and differential loops from sn-m3C-seq
data. After merging the chromatin contacts from cells belonging to the
sametype, we generated a.hicfile of the cell-type with Juicer tools pre.
HICCUPS" was used to identify loopsineach cell type. The loops from
eight major cell types were concatenated and deduplicated and used as
the total samples for differential loop calling. A loop-by-cell matrix was
generated, in which each element represents the number of contacts
supportingeachloopineachcell. The matrix was used as input of EdgeR
toidentify differential interactions with ANOVA tests. Loops with FDR
<107 and minimum-maximum fold change >2 were used as differential
loops. Note that the abundance of cell typesis highly variable, leading
todifferent coverages of contact maps after merging all the cells from
each celltype. Since HICCUPS loop calling is sensitive to the coverage,
more loops were identified in the abundant cell types (for example,
12,614 loops were called in DG, containing 1,933 cells) compared to
the less abundant ones (for example, 1,173 loops were called in MGE,
containing 145 cells). Therefore, we do not compare the feature counts
related to the loops across cell types directly in our analyses.

Figure-specific methods

3D model of dissection regions (Fig.1b-e). We created in silico dissec-
tion regions based on the Allen CCF** 3D model using Blender 2.8 that
precisely follow our dissection plan. To ease visualization of all different
regions, we modified the layout and removed some of the symmetric
structures, but all the actual dissections were applied symmetrically
to both hemispheres.

Calculating the genome feature detected ratio (Extended Data
Fig. 2a). The detected ratio of chromosome 100-kb bins and gene
bodies is calculated as the percentage of bins with >20 total cytosine
coverage. Non-overlapping chromosome 100-kb bins were generated
by bedtools makewindows -w 100000; gene bodies were defined by
GENCODE vm22.

Integration with epi-retro-seq L5-ET cells (Fig. 2g-j, Extended Data
Fig.5g-j). Epi-retro-seqis an snmC-seq2-based method that combines
retrograde AAV labelling®. The L5-ET cells’ non-overlapping chromo-
some 100-kb bin matrix gathered by the epi-retro-seq dataset was
concatenated with all the L5-ET cells from this study for co-clustering
and embedding as described in ‘Clustering-related methods’. We then
calculated the OS between subtypes in this study and the ‘soma loca-
tion’ or ‘projection target’ labels of epi-retro-seq cells. The first OS
helped quantify how consistent the spatial location is between the two
studies; the second OS allowed us to impute the projection targets of
subtypesin this study.

Pairwise DMR and motif-enrichment analysis (Fig. 3¢, f). The total
subtype DMRs were identified as described in ‘Cell-type-specific regula-
tory elements’ by comparing all subtypes. We then assigned DMRs to
each subtype pair ifthe DMRs were: (1) significantly hypomethylated in
only one of the subtypes; and (2) the mCG fraction difference between
the two subtypes is >0.4. Each subtype pair was associated with two
exclusive sets of pairwise DMRs. We carried out motif-enrichment
analysis described in ‘Cell-type-specific regulatory elements’ on each
DMR set using the other set as background. Motifs enriched in either
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direction were then used to calculate theimpact score and were associ-
ated with upper nodes of the taxonomy.

OverlappingeDMR withgenomeregions (Fig.4b). The cluster-specific
SnATAC-seq peaks were identified in Li et al.>. We used bedtools merge
toaggregate the total non-overlap peak regions and bedtools intersect
to calculate the overlap between peaks and eDMRs. The developing
forebrain and other tissue feDMRs were identified in He et al.® using
methylC-seq®® for bulk whole-genome bisulfite sequencing. All of the
genome features used in Fig. 4b were defined as in He et al.%, except
using an updated mm10 CGl region and RepeatMaster transposable
elements lists (UCSC table browser downloaded on 9 October 2019).

Heat maps of the gene-enhancer landscape (Extended Data Fig. 8e).
The eDMRs for each gene were selected by eDMR-gene correlation of
>0.3.Sections of the heat maps in Extended Data Fig. 8e were gathered
by (1) mCG fraction of each eDMR in 161 subtypes from this study; (2)
SnATAC-seq subtype-level fragments per kilobase of transcript per mil-
lion mapped reads (FPKM) of each eDMR in the same subtype orders.
The subtype snATAC profiles were merged fromintegration results as
described in ‘Clustering-related methods’; (3) mCG fraction of each
eDMR in forebrain tissue during ten developing time points from
embryonic day 10.5 (E10.5) to PO (data from He et al.?); (4) H3K27ac
FPKM of eacheDMR in 7 developing time points from E11.5to PO (data
from Gorkin et al.”®); (5) H3K27ac FPKM of each eDMR in P56 frontal
braintissue (data from Lister et al.?); and (6) eDMR is overlapped with
forebrain feDMR using bedtools intersect.

Embedding of cells with chromosome interactions (Fig. 4e). scHi-
Cluster®® was used to generate the t-SNE embedding of the sn-m3C-seq
cells. Specifically, a contact matrix at 1-Mb resolution was generated
for each chromosome of each cell. The matrices were then smoothed
by linear convolution with pad =1and random walk with restart prob-
ability = 0.5. The top 20th percentile of strongest interactions on the
smoothed map was extracted, binarized and used for PCA. The first
20 PCs were used for t-SNE.

IT layer dissection region group DMG and DMR analysis (Fig. 5a-c).
To collect enough cells for dissection region analysis, we used only
the major types (corresponding to L2/3, L4, L5 and L6) of IT neurons.
We grouped cellsinto groups accordingto layer dissection region and
kept groups with >50 cells for further analysis (Extended Data Fig. 9b).
We performed pairwise DMG, DMR and motif-enrichment analysis,
the same as the subtype analysis in Fig. 3, but using the layer dissec-
tion region group labels. We then built a spatial taxonomy for these
groupsand used it to calculateimpact scores. Torank layer-related or
dissection-region-related genes and motifs separately, we used two
sets of the branches (Extended Data Fig. 9¢, top set for layers, bottom
set forregions) in the taxonomy and calculated two totalimpact scores
using the equations above.

DG cell group and gradient DMR analysis (Fig. 5e). DG cells were
grouped into four evenly sized groups according to the cells’ global
mCH levels, with cut-off thresholds at 0.45%, 0.55% and 0.69%. We then
randomly chose 400 cells from each group to call gradient-DMRs using
methods describedin ‘Clustering-related methods’. To ensure the DMRs
identified between intra-DG groups were not due to stochasticity, we
alsorandomly sampled 15 groups of 400 cells fromall DG cells regard-
less of their global mCH and called DMRs among them as control-DMRs
(2,003 using the same filtering condition). Only 0.04% of gradient DMRs
overlapped with the control DMRs; these were removed from further
analysis. Pearson correlations (p) of mCG fractions of each gradient
DMRwas calculated against alinear sequence (1, 2, 3, 4) to quantify the
gradient trend. DMRs with p <—0.75 or p >0.75 were considered to be
significantly correlated. Weakly correlated DMRs (10% of DMRs) were
notincluded in further analysis.

DMR-and DMS-enriched genes (Fig. 5f,g). Toinvestigate the correlated
DMR or DMS enrichmentinspecific gene bodies, we compared the num-
ber of DMS and cytosine inside the gene body with the number of DMS
and cytosine in the +1 Mb regions using Fisher’s exact test. We chose

genes passing two criteria: (1) adjusted P <0.01 with multitest correc-
tion using the Benjamini-Hochberg procedure, and (2) overlap with
>20 DMSs. Gene ontology analysis of DMR and DMS enriched genes
was carried out using GOATOOLS®. All protein-coding genes with gene
body length >5kb were used as background to prevent gene-length bias.

Compartment strength analysis (Extended Data Fig.10g). We normal-
ized the total chromosome contacts by z-scorein each 1-Mb bin of the
DG contact matrix, and the bins with normalized coverage between -1
and 2 were kept for the analysis. After filtering, the PC1 of the genome-
wide Knight-Ruiz-normalized®® contact matrix was used as the com-
partment score. The score was divided into 50 categories with equal
sizes from low to high, and bins were assigned to the categories. The
intra-chromosomal observation/expectation (ove) matrices of each
group were used to quantify the compartment strength. We computed
the average ove values within each pair of categories to generate the
50 x50 saddle matrices. The compartment strength was computed with
the average of the upper left and lower right 10 x 10 matrices divided by
the average of the upper right and lower left 10 x 10 matrices®.

Domainanalysis (Extended Data Fig.10i). Weidentified 4,580 contact
domains at 10-kb resolution in DG using Arrowhead®. For bin i, the
insulation score/is computed by
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where A is the ove of Knight-Ruiz-normalized matrices and mean is
theaverage of A over the range in the subcript. For each group, insula-
tion scores of domain boundaries and 100-kb flanking regions were
computed and averaged across all boundaries.

Prediction model description. Related to Fig. 6. To reduce the com-
puting complexity, we applied PCA on the dataset of 100-kb bin mCH
featuresto obtain the first 3,000 PCs, which retain 61% of the variance
ofthe original data. These 3,000 PCs were thenused to train and test the
predictingmodel. We used an ANN with two hidden layers to simultane-
ously predict cell subtypes and their dissection regions. The input layer
contains 3,000 nodes, followed by ashared layer with1,000 nodes. The
shared layeris further connected simultaneously to two branch hidden
layers of the subsection region’s subtype, each containing 200 nodes.
The corresponding one-hot encoding output layers follow branch
hidden layers. We used fivefold cross-validation to access the model
performance. We applied the dropout technique®* with adropout rate
P=0.5oneachhiddenlayerto prevent overfitting during the training.
Adam optimization®®was used to train the network with a cross-entropy
loss function. The training epoch number and batch size are 10 and
100, respectively. The training and testing processes were conducted
via TensorFlow 2.0%.

Model performance. The two output layers generate two proba-
bilistic vectors for each single cell input as the prediction results for
cell subtypes and dissection regions, respectively. The subtype and
dissectionregion label with the highest probabilities were used as the
predictionresults for each cell to calculate accuracy. When calculating
the cell dissection region accuracy (Fig. 6¢), we defined two kinds of
accuracy with different stringency: (1) the exact accuracy using the
predicted label, and (2) the fuzzy accuracy using predicted labels or
its potential overlap neighbours. The potential overlap neighbours
curated based on Allen CCF (Extended Data Fig. 11a, Supplementary
Table 2) stood for adjacent regions of a particular dissection region.
The exact accuracy of the ANN model is 69% and the fuzzy accuracy
is 89%. To evaluate how much of the dissection region accuracy was
improved via ANN, we calculated fuzzy accuracy based only on naive
guesses in each subtype based on the dissection region composition
(grey dotsin Extended Data Fig. 11c). We also trained additional mod-
els using logistic regression and random forest for benchmarks. The
performance of ANN on subtype predictionis comparable with logistic
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regression and random forest. By contrast, the performance in loca-
tion prediction is substantially improved against the other two mod-
els (Extended Data Fig. 11b), suggesting that distinguishing the cells
from different dissected regions may require nonlinear relationships
between genomic regions. We used scikit-learn (v0.23) for logistic
regression and random forest implementation and the multinomial
objective function for multi-class classification. N_estimators were
setto1,000 for the random forest.

Biological feature importance for dissection region prediction
(Fig. 6e). To assess which DNA regions store information of cell spa-
tial origins that is distinguishable using our model, we evaluated the
importance of PC features by examining how permutation of each PC
feature across cells affects prediction accuracy. We tested five per-
mutations for each feature and used decreasing average accuracy to
indicate PC feature importance. We examined genes contained in the
100-kb bins with the top 1% PCA factor loadings for the mostimportant
PC feature for a given cell type.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Single-cell raw and processed data included in this study were depos-
ited to NCBI Gene Expression Omnibus and Sequence Read Archive
with accession number GSE132489 (each experiment has a sepa-
rate accession number recorded in GSE132489; see Supplementary
Table 13), and to the NeMO archive: https://assets.nemoarchive.org/
dat-vmivr5x. Single-cell methylation data can be visualized at the Brain
Cell Methylation Viewer: http://neomorph.salk.edu/omb/home. Clus-
ter merged methylome profiles can be visualized at http://neomorph.
salk.edu/mouse_brain.php. Other datasets used in the paper include
single-nuclei ATAC-seq data’ from http://catlas.org, mouse embryo
forebrain development data® from the ENCODE portal (https:/www.
encodeproject.org/), the developing hippocampal single-cell RNA-seq
data from GSE104323, DNA methylation and chromatin accessibility
profiles for mouse ES cells from GSM723018 and the JASPAR 2020 CORE
vertebrates database from http://jaspar.genereg.net/.

Code availability

The mapping pipeline for snmC-seq2 data s available at https://hq-1.
gitbook.io/mc/; the ALLCools package for post-mapping analysis
and snmC-seq2 related data structure are available at https://github.
com/lhqing/ALLCools; the jupyter notebooks for reproducing specific
analysis are at https://github.com/lhqging/mouse_brain_2020; and the
source code of the Brain Cell Methylation Viewer is at https://github.
com/lhging/omb.
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Extended DataFig.1|Braindissectionregions. a, Schematic of brain
dissection steps. Each male C57BL/6 mouse brain (age P56) was dissected into

600-pumslices. We then dissected brain regions from both hemispheres within

aspecificslice.b-e, 3D mouse brainschematic adapted from Allen CCFv3 to
display the four major brainregions and 45 dissection regions. Each colour
representsadissectionregion.f,2D mouse brainatlas adapted from Allen
Mouse Brain Reference Atlas, the first sagittalimage showing the location of

each coronalslice, followed by 11 posterior view images of all coronal slices, the

same 45 dissectionregionsare labelled on the correspondingslice. All coronal
images follow the same scale as the sagittalimage. The posterior view of each
sliceis the anterior view of the next slice. g, Anintegrated overview of brain
region composition, subtype and cell numbers of the major types. All brain
atlasimages were created based on Wang et al.’* and © 2017 Allen Institute for
Brain Science. Allen Brain Reference Atlas. Available from: http://www.atlas.
brain-map.org.
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Extended DataFig.2|Major Type labelling and basic mapping metrics of
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Extended DataFig. 4 |Supporting details of cellular and spatial diversity of
neurons at thesubtypelevel. a, Level 3UMAP of IG-CA2 neurons coloured by
subtypes.Bar plot showing sub-region composition of the subtypes: (1) Xprl,
(2) Chrm3, and (3) Peak1. b, The 3D modelillustrates the spatial relationships
betweenrelated anatomical structures.c, mCH fraction of marker genesinIG-
CA2cells.d, Methylome, and chromatin accessibility genome browser view of
Ntf3genes anditsupstreamregions. ATAC and eDMR information are from
Fig.4 analysis. e, Three different views of the in situ hybridization experiment
(source: https://mouse.brain-map.org/gene/show/17972; the same patterns
were shownin three biological replicates) from Allen Brain Atlas*®, showing the
Ntf3geneexpressedinbothIGand CA2.f, Level 3 UMAP of MSN-D1 neurons
coloured by subtype. Numbersindicate four subtypes: (1) Khdrbs3, (2) Hrh1(3)

PIxncl, and (4) Ntnl.g, The 3D model of related striatum dissection regions.
h,i, mCH fraction (h), and aninsitu hybridization experiment (source: https://
mouse.brain-map.org/gene/show/13769; the same patterns were shownin two
biological replicates) from Allen Brain Atlas*® (i) of the Khdrbs3 gene, red
arrowsindicate patchregionsin CP.j, Genome browser view of Khdrbs3 genes
similartod.k, Level 3UMAP of MSN-D1 neurons coloured by dissection
regions. 1, Theregion composition of each subtype of MSN-D1and MSN-D2.
m, MSN-D2 subtypes: (1) Nrp2, (2) Caszl, (3) Col14al, and (4) Slc24a2.n,0, mCH
fraction of MSN-D1 (n) and MSN-D2 (o) subtype marker genes. All brain atlas
images (b, g) were created based on Wang et al.’*and © 2017 Allen Institute for
BrainScience. Allen Brain Reference Atlas. Available from: http://atlas.brain-
map.org.
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Extended DataFig. 5|Integration withsnATAC-seq and epi-retro-seq.

a-d, Integration UMAP for snmC-seq2 cells and snATAC-seq pseudo-cells from
each cellgroup: excitatory IT neurons (a), other excitatory neurons (b),
inhibitory neurons (c) and non-neuronal cells (d). Each panelis coloured by
subtypes from the corresponding study, the other datasetis shownin grey in
the background. e, Overlap score matrix matching the 160 a-types to the 161
m-types.f, mCG fraction (left), and chromatin accessibility (right) of

cluster-specific CG-DMRs (columns) in HIP subtypes (rows). g, h, Same
integration t-SNE asFig. 2g, i coloured by the dissection regions but using all
cells profiled by epi-retro-seq (g) or snmC-seq2 (h), cells from brain regions
that have only been profiled via one of the methods are circled out. i, Same
t-SNE as (h) coloured by snmC-seq2 subtypes.j, Overlap score matrix matching
the subtypesto the ‘SomaLocation (source)’ and ‘Projection target’
information labels of epi-retro-seqcells.
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were excludedin further analyses.d, The oddsratio of transcription factor
motifenrichmentinsingle-DMS DMRs (sDMRs) and multi-DMS DMRs

008 Motif Enrichment In Single/Multi-DMS DMRs
o
E <
0.05 =
Pt
0.04 E .
[
o 121
>
0.03 &
= 1.0 4
D .
-0.02 )
=
0 08 1 Sig. Enriched
-0.01 ié) e Both
B 06 4 . Multl-group
- 0.00 ‘S Single-group
j23
T None
O 04 T x r .
0.0 0.5 1.0 1.5 2.0
045 ORs of multi-DMS DMRs vs shuffle-DMR
0.12
0.09
- 0.06
-0.03
-0.00
0.20
0.16
0.12
-0.08
- 0.04
- 0.00

(mDMRs). Eachdot represents atranscription factor. Transcription factors
whose motifs are significantly enriched in both sDMRs and mDMRs are
colouredingreen, and transcription factors that are significant only insDMR
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Extended DataFig.7|Subtype taxonomy with related genes and motifs.

a, b, Subtype taxonomy of excitatory (a) and inhibitory (b) neurons. Leaf nodes
are coloured by subtypes, and the bar plot shows subregion composition.

c,d, Counts heat map of pairwise CH-DMG (c) and CG-DMR (d) between 77
inhibitory subtypes. e, Schematic of impact score calculation (left), and two
scenarios of discussingimpactscores (right). f-h, Top transcription factors (f),
other genes (g) and enriched motifs (h) ranked by totalimpact score based on



a ; b 63% 1%
Kemal Density Correlated DMR
Distribution Correlated DMR
DMR-DMG +100kb. Distribution
4
Shuffle
s s
2 5 E
2 I
3 3
0 T T T 1
-1.0 -0.5 0.0 0.5 1.0 LTSS ¢ 500K Tss +500K o
Correlation NS Distance to TSS AR Distance to TSS
d  Gene Body mCH Fraction e Cell Type Specificity In Adult Brain (Single Cell) D History (Bulk)
Bel11b mCG Fraction Chromatin Accessibility =~ mCG Fraction H3K27ac ~
T
~ 3
2
- - i i °
1 1
o &
®, < :
N " 2 f Displayed Clusters
g o 8
L1-UMAP 2
3 MSN-
Tle4 @ D2
N D1
<
o
< L6-CT
a
5
o
3
5
N L1-UMAP
3
s = =
WGBS H3K27ac ChiP-seq
161 subtype profiles 161 matched profiles N
from snmC-seq2 SNATAC-seq Forebrain Bulk-seq
9 & Intragenic (Tle4 Downstream) Tle4 Intragenic (Tle4 Upstream)
R &
$
& @ 143000 14,320kb 14,340kb 14,360kb  Chr19 14,500kb 14,600kb 15,470kb 15,490kb 155100
< L L f N | Il | L s L L
L6-CT [l
mCH | MSN-D1 il kit ofallll GRMARE . ABSRBALAL M kol UL
wiSN-02 |l Ml bl JURANEAN, AU b il e
L6-CT (00, NN TN A N 0N 00 Mk 1, o] ] G
LeoT| =t v r t t =t eDMA[ e e eiemrrem s e e
mCG | wswv-o1 [Tl T @I o LT, (R ATV ) DRIV (NN s R AR 0 A G NN i, SRS
eDMR | MSN-D1 eDMR
MSN-D2 mCG
MSN-D2 = = eDMR -
Ghvomatin | 6CT - L 4 ks | 7 b = ad o
Access. | MSN-DT| A i al o 1 N '\
MSN-D2[ g A i 1 1 A
it # et Hl <« 188
h == Anchor I Propotion of correlated gene-enancer pairs ] anchor_all loop_all domain
= cul DG CA1 03 1o 06
e ® 010 0.¢ 65 &
3 05 S ‘ 02 08 04
8o S 008 Be 01 06 02
S 00 g g O :
£ < 006 o8
F-05 S 004 06 0.4 5 g 0.0 04 0.0
DG CA1 03 04 05 06 c 03 04 05 0.6 o < hor 10k \ 10k
Minimal Corr. Threshold © anchor_ loop_
Cluster 5 E 02 08 Correlation
£ : thresholds
— Loops Random | o Enhancers linked to DG loops 5 8, 01 06 — 8
Diff. loops — Random =3 Enhancers linked to CA1 loops & 04 o9
100 o 0.0 02 >03
° o -500k -250k TSS 250k 500k  -500k -250k TSS 250k 500k
§ 50 Q 05 Distance to TSS Distance to TSS
© 0.0
0
16 18 20 22 oG GAt
Overlapped enhancers / Anchor Cluster
m

o

Partial Corr.
L o o
o o 5,
Y
o
=

CA1

I78.41 M chré  Lmtm4 +—————— 8241M 108.64M chré Grm7 F———— 112.64 MI

Extended DataFig. 8 |See next page for caption.



Article

Extended DataFig. 8| Gene-Enhancerlandscaperelated. a, Distribution of
actual DMR-DMG partial correlation compared to the shuffled null
distribution. b, c, DMR-DMG correlation (y-axis), and the distance between
DMR centre and gene TSS (x-axis), each pointisa DMR-DMG pair, colour
represents points kernel density. The positively (b) and negatively (c)
correlated DMRs are shown separately, owing to very different genome
location distributions thatare plotted on the top histograms. d, The gene body
mCH fraction of Bcl11b (top) and Tle4 (bottom) gene. e, The predicted enhancer
landscape of Bcl11b (top) and Tle4 (bottom). Eachrowisacorrelated eDMR to
thegene, columns from left torightare: (1) mCG fractionand (2) ATACFPKMin
161subtypes; (3) bulk developing forebrain tissue mCG fraction and (4)
H3K27ac FPKM; (5) adult frontal cortex H3K27ac FPKM; and (6) feDMR or not.
f,detailed view of surrounding eDMRs that are correlated with Tle4 gene body
mCH. Alternative eDMRs appear only in either CT-L6 or MSN-D1/D2 can be seen
bothupstreamand downstream of the gene. g, Level 1lUMAP coloured by
corresponding cell major types showninf. h, Partial correlation between mCG
of enhancers and mCH of genes on separated loop anchors of DG (left) and CA1
(right) compared to random anchors with comparable distance (n=4,171,
4,036,4,326,5,133 (left toright)), P=5.9 x107* for DG and 3.0 x 10 *¥for CALl,
two-sided Wilcoxon rank-sum tests. i, Proportion of loop supported enhancer-

gene pairsamong the pairs linked by correlation analyses surpassing different
correlation thresholdsin DG (left) and CA1 (right). The proportion of pairs that
thegeneand enhancerlocated onseparated anchors of the sameloop (blue,
left y-axis) or within the same loop (orange, right y-axis) is shown. j, Proportion
ofloop supported enhancer-gene pairs among those linked by correlation
analyses surpassing different correlation thresholds at each specific distance.
k, Number of enhancers per loop anchor (blue) or per differential loop anchor
(orange) compared to randomly selected 25-kb regions across the genome.;
P<0.005, two-sided permutation test with 2,000 times repeats. 1, mCG of
enhancerslinking to DG specific loops (blue, n=13,854) and CAl-specificloops
(orange, n=14,373)in DG (left, P=2.9x107%) or CA1(right, P=3.5x107°). Pvalues
were computed with two-sided Wilcoxon rank-sum tests. m, Partial correlation
between mCG of enhancers and mCH of genes linked by different methods
(n=4,171,127,730, 28,203,10,058 (left toright)). The elements of box plots are
defined as: centre line, median; box limits, first and third quartiles; whiskers,
1.5xinterquartilerange.n, o, Interaction maps, mCH, mCG, ATAC and
differential loops tracks surrounding Lrrtm4 (n) and Grm7 (o). Circles on the
interaction maps representdifferentialloops between DG and CA1, where
greenrepresents DG loops, and cyanrepresents CAlloops.
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Extended DataFig.11|Evaluation of the predictive model.a, The neighbour
relationamong the potential overlapping dissection regions. The network is
constructed based oninformation of the dissection scheme and the ‘Potential
overlap’ columninSupplementary Table 2and isused to compute the fuzzy
accuracy. b, The exactaccuracy of subtype prediction (top), dissected region
prediction (middle), and fuzzy accuracy of dissected region prediction
(bottom) of neural network (NN, blue), logistic regression (LR, orange) and

random forest (RF, green). ¢, d, Prediction accuracy of dissection regionat cell
subtype level of neurons (c) and non-neuronal cells (d). Coloured points denote
the predictionaccuracy of the model, whereas grey points denote the random
guessaccuracy when cell subtypes and corresponding spatial distributions are
given. g, h, GO-term enrichment of top-loading genes of features that are
important for predicting the spatial location of CT-L6 (g) and L6b (h).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed
E The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

E A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

E The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXNX OO OO0 OO0
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  BD Influx Sortware v1.2.0.142 (flow cytometry), Freedom EVOware v2.7 (library preparation), lllumina MiSeq control software v3.1.0.13 and
NovaSeq 6000 control software v1.6.0/RTA v3.4.4 (sequencing), Olympus cellSens Dimension 1.8 (image acquisition)

Data analysis bedtools 2.27, methylpy 1.4.2, scanpy 1.4.3, juicer tools 1.14.08, REPTILE (https://github.com/yupenghe/REPTILE.git), scHiCluster (https://
github.com/zhoujt1994/scHiCluster.git)
the mapping pipeline for snmC-seq2 data: https://cemba-data.readthedocs.io/en/latest/, including the following packages: bismark 0.20,
bowtie2 2.3, cutadapt 1.18, picard 2.18, samtools 1.9, htslib 1.9;
The ALLCools package for post-mapping analysis and snmC-seq?2 related data structure: https://github.com/lhging/ALLCools;
The jupyter notebooks for specific analysis: https://github.com/lhging/mouse_brain_2020.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Single-cell raw and processed data included in this study were deposited to NCBI GEO/SRA with accession number GSE132489 (each experiment has a separate
accession number recorded in GSE132489, see Supplementary Table 12), and to the NeMO archive: https://assets.nemoarchive.org/dat-vmivr5x. Single-cell
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methylation data can be visualized at the Brain Cell Methylation Viewer: http://neomorph.salk.edu/omb/home. Cluster merged methylome profiles can be
visualized at http://neomorph.salk.edu/mouse_brain.php . Other datasets used in the paper include single-nuclei ATAC-Seq data from http://catlas.org, mouse
embryo forebrain development data from ENCODE portal (https://www.encodeproject.org/), the developing hippocampal single-cell RNA-seq data from
GSE104323, DNA methylation and chromatin accessibility profiles for mESC from GSM723018, and JASPAR 2020 CORE vertebrates database from http://meme-
suite.org/db/motifs.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size At least 3,072 nuclei (eight 384-well plates) from each dissected region (1,536 nuclei from each replicate). The sample size allowed us to
obtain high coverage methylomes for each subtype, and perform confident downstream analyses.

Data exclusions  We filtered the cells based on these main mapping metrics: 1) mCCC level < 0.03, 2) overall mCG level > 0.5, 3) overall mCH level < 0.2, 4) total
final reads > 500,000, 5) bismark mapping rate > 0.5. Other metrics such as genome coverage, PCR duplicates rate, index ratio were also
generated and evaluated during filtering. However, after removing outliers with the main metrics 1-5, few additional outliers can be found.
Note the mCCC level is used as the estimation of the upper bound of bisulfite non-conversion rate. The criterion include pre-established ones
in Luo. et al 2018, and new ones to exclude additional outliers as justified in the manuscript.

Replication Each dissected region has at least two replicates, each replicate was pooled from 6-30 animals separately for nuclei preparation and
downstream analyses. Data are highly consistent between replicates (Extended Data Fig. 2d-g).

Randomization  Randomization is not applicable, since the cells collected are random by nature.

Blinding Blinding is not applicable, since all data are collected from mice.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines D X] Flow cytometry
Palaeontology and archaeology E D MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern

XNXXOXXO S
OD0OXOOKX

Antibodies
Antibodies used AlexaFluor488-conjugated anti-NeuN antibody (MAB377X, Millipore)
Validation All antibodies have been previously published for use in immunohistochemistry and flow cytometry experiments. See vendor's page

here: https://www.emdmillipore.com/US/en/product/Anti-NeuN-Antibody-clone-A60-Alexa-Fluor488-conjugated, MM_NF-MAB377X

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult (P56) C57BL/6J male mice. Housing condition: Temperature: 21-23 C, relative humidity: 61-63%

Wild animals the study did not involve wild animals
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Field-collected samples  the study did not involve samples collected from the field

Ethics oversight All experimental procedures using live animals were approved by the Salk Institute Animal Care and Use Committee under protocol
number 18-00006.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

E The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

E The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).

E All plots are contour plots with outliers or pseudocolor plots.

E A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

Isolated nuclei were labeled by incubation with 1:1000 dilution of AlexaFluor488-conjugated anti-NeuN antibody (MAB377X,
Millipore) and a 1:1000 dilution of Hoechst 33342 at 4°C for 1 hour with continuous shaking. Fluorescence-Activated Nuclei
Sorting (FANS) of single nuclei was performed using a BD Influx sorter with an 85um nozzle at 22.5 PSI sheath pressure. Single
nuclei were sorted into each well of a 384-well plate preloaded with 2 pl of Proteinase K digestion buffer (1ul M-Digestion
Buffer, 0.1l 20 pg/ul Proteinase K and 0.9ul H20). The alignment of the receiving 384-well plate was performed by sorting
sheath flow into wells of an empty plate and making adjustments based on the liquid drop position. Single-cell (1 drop single)
mode was selected to ensure the stringency of sorting. For each 384-well plate, columns 1-22 were sorted with NeuN+ (488
+) gate, and column 23-24 with NeuN- (488-) gate, reaching an 11:1 ratio of NeuN+ to NeuN- nuclei.

BD Influx

BD Influx Sortware v1.2.0.142

We sort NeuN+ (488+) gate and NeuN- (488-) gate with an 11:1 ratio into each 384-well plate.

Intact nuclei were first discriminated from debris by virtue of their bright DNA labeling (Hoechst Height signal) followed by
light scattering profiles (Forward Scatter (FSC) Height vs Side Scatter (SSC) Height). Events with high Pulse Width

measurements for FSC and SSC were then excluded as aggregates. Next, NeuN-AlexaFluor 488 positive or negative nuclei
were selected, reaching an 11:1 ratio of NeuN+ to NeuN- nuclei.

E Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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