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Summary  

Background 

The World Health Organization (WHO) classification of brain tumors describes 15 subtypes of 

meningioma. Nine of these are allotted to WHO grade I, and three each to grade II, and WHO grade III, 

respectively. Grading is purely based purely on histology, molecular markers are lacking. While the 

current classification and grading approach is of prognostic value, it harbors shortcomings such as ill-

defined parameters for subtypes and grading criteria prone to arbitrary judgment.  

Methods 

We investigated genome-wide DNA methylation patterns of 479 meningiomas to identify distinct 

methylation classes (MC) of meningioma. The MCs were further characterized by DNA copy-number 

analysis, mutational profiling and RNA sequencing. We validated our findings in an independent cohort 

of 140 meningiomas. 

Findings 

DNA methylation profiling distinguished six distinct MCs associated with typical mutational, 

cytogenetic, and gene expression patterns. Meningioma MCs exhibit a more homogeneous clinical 

course and allow prognostication with significantly higher power than the current morphology-based 

WHO classification. Meningioma MCs more accurately identify patients at high risk of recurrence 

among tumors with WHO grade I histology, and patients at lower risk of recurrence among WHO grade 

II tumors. DNA methylation-based classification and grading reduces the number of meningioma 

subtypes from 15, as historically defined by histology, to six clinically relevant MCs, each with a 

characteristic molecular profile.  

Interpretation 

DNA methylation-based meningioma classification captures biologically more homogenous groups and 

has a higher power for predicting tumor recurrence than the current WHO classification. The approach 

presented here is highly useful for stratifying meningioma patients for observation or post-surgery 

treatment groups. We consider epigenetic tumor classification highly relevant for future diagnosis and 

treatment of meningioma. 
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Introduction 

The meninges exert a protective function for the entire central nervous system (CNS). During 

development, their precursor cells merge from mesodermal structures and the neural crest, actively 

contributing to the differentiation of the brain1-3. However, meningeal cells may transform to initiate 

tumors, which represent . These meningiomas are the most frequent primary intra-cranial and spinal 

tumors 4. While 80 % of meningiomas show benign clinical behaviour and can be cured by resection 

alone, about 20 % recur and need additional treatment such as repeated surgery, irradiation and 

systemic therapy4,5. Histopathological evaluation aims at the  to identifyication of cases at risk for 

recurrence. The histological differentiation classification into subtypes initially dates back to the 19th 

century. In thea first internationally recognized classification approach in 1928, Bailey and Cushing 

distinguished a meningothelial, fibroblastic, and angiomatous subtypes 6, and to this day, allocation to 

subtype is purely based solely on histological findings. The current WHO classification recognizes 15 

subtypes and three grades of malignancy4, but some of the diagnostic criteria are vaguely defined and 

subject to a high inter-observer bias, indicating thea need for more reliable biomarkers5,7.  

For various other CNS tumors, molecular profiling has identified distinct subtypes with characteristic 

aberrations. Many of these correlate with prognosis or provide targets for treatment, and therefore 

support clinical decision making, e.g. epigenetic subgroups in medulloblastoma8-10 and ependymoma11, 

or isocitrate dehydrogenase (IDH) status in diffuse glioma12-14. Recent studies identified telomerase 

reverse transcriptase (TERT) promoter mutations in a small subset of meningiomas to be associated 

with higher risk of recurrence and shorter time to progression15,16, and four large exome-sequencing 

efforts focusing on WHO grade I meningiomas have identified recurrently mutated genes beyond the 

long-known association with NF2 17-20. Yet, these findings  only cover only a fraction of meningiomas 

and have not all been adequatelythoroughly tested for their prognostic relevance. In this study, we 

aimed at a comprehensive characterization of the entire molecular genetic landscape of meningioma 

in order to identify biologically and clinically relevant subgroups that able to refine the current 

classification scheme. 
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Results 

 

DNA methylation analysis identifies six distinct methylation classes of meningioma 

We generated genome-wide DNA methylation profiles from a discovery cohort of 497 meningiomas 

(Suppl. Fig. 1) along with 309 samples of other extra-axial skull tumors that histologically mimic 

meningioma variants, including solitary fibrous tumor/hemangiopericytoma, schwannoma, malignant 

peripheral nerve sheath tumors, chordoma, chondrosarcoma, fibrous dysplasia, and 

hemangioblastoma. Despite shareding mesodermal origin, unsupervised clustering of DNA 

methylation data clearly segregated all meningiomas from these other skull tumors (Suppl. Fig 2). 

Unsupervised clustering of meningiomas alone revealed two major epigenetic groups (Groups A and 

B, Fig. 1A), with both groups further subdividing divisible into four and two subgroups, respectively, 

termed “methylation classes” (MCs). Based on further molecular and clinical characteristics outlined 

below, the four MCs of Group A were designated MC benign 1 through 3 (MC ben-1, ben-2, ben-3) and 

MC intermediate A (MC int-A). The two MCs of Group B MC intermediate B (MC int-B), and malignant 

(MC mal). 

There was an enrichment of grade I tumors among MC ben-1, MC ben-2, and MC ben-3, and an 

enrichment of WHO grade III tumors in MC mal, while WHO grade II tumors where scattered across all 

MCs. Analysis of 75 primary and matched recurrent tumors from 37 patients showed that association 

with Group A or B was stable upon recurrence (Fig. 1B), supporting further assessment of methylation 

profiling for diagnostic and prognostic implications. 

 

MC predict clinical course with higher accuracy than WHO grading 

The wide spectrum of clinical behavior among WHO grade I and II meningiomas points towards the 

limited prognostic power of the current classification, particularly at the border between grade I and 

II. As a result, deciding on radiotherapy based on the current grading is heavily debated 5. Thus, we 

correlated meningioma MCs with progression-free survival (PFS) to evaluate their potential for 

predicting outcome compared to WHO grading (Fig. 2A, B). We further combined MCs exhibiting 

virtually identical benign (MC ben-1, MC ben-2, MC ben-3) or intermediate (MC int-A, MC int-B) 

outcome into combined MCs (Fig. 2C). Classification by individual and combined MCs demonstrates 

more precise prognostication than by WHO grading (Fig. 2D, Brier prediction test, p <0·01). These 

findings were confirmed in 140 meningiomas from an independent validation cohort (Suppl. Fig 3A, B).  

We next focused on the predictiveon power of MCs within WHO grades and, particularly, patients 

divergently diagnosed by WHO grading and DNA methylation-based classification. Patients with WHO 

grade I meningiomas molecularly assigned to an intermediate MC experienced a less favorable clinical 

course than patients with WHO grade I meningiomas diagnosed solely based on histology. In fact, there 
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outcome was indistinguishable from that of patients with WHO grade II meningiomas (Fig. 3A). 

Likewise, patients with WHO grade II meningiomas molecularly assigned to a benign MC had a better 

outcome than the average outcome of patients with WHO grade II meningiomas. Consequently, 

stratification for MC is of higher value for prediction of PFS than WHO grading. Within the combined 

MCs, WHO grading confers limited additional information (Fig. 3B, Suppl. Table 2). However, combined 

MCs delineate subgroups with significantly distinct prognosis within all WHO grades (Fig. 3C), 

demonstrating the benefit of MC-based grading for patients and the potential to significantly reduce 

under- or overtreatment. 

 

Methylation classes are associated with distinct driver mutations and copy-number-alterations 

We next sequenced 304 meningiomas with sufficient material available using a custom hybrid-capture 

next-generation sequencing (NGS) panel dedicated to 40 genes previously reported to be mutant in 

meningioma (Suppl. Table 1), based on our recently established custom NGS approach for routine 

brain tumor diagnostics21. Known recurrent mutations (most frequently NF2, followed by TRAF7 and 

AKT1) were significantly enriched in certain MCs (Suppl. Table 3, Fig. 4). Within Group A, NF2 mutations 

were observed in 63 % of MC ben-1 tumors (accumulation of parameter in this MC p <0·0001, Fisher’s 

exact test). MC ben-2 contained the vast majority of meningiomas carrying AKT1 (33 % in this 

subgroup; p < 0·0001), SMO (7 %; p =0·0002), KLF4 (15 %; p < 0·0001), and TRAF7 (49 %; p < 0·0001) 

mutations and rarely NF2 mutations. Only one AKT1 and five KLF4 mutations were detected outside 

this MC. MC ben-3 exhibited NF2 mutations in 32 % and PIK3CA mutations in 11 % of tumors, 

representing the majority (5/7, 71 %) of PIK3CA mutations in the cohort. MC int-A carried NF2 

mutations in 53 %. Within Group B, MC int-B tumors harbored NF2 mutations in 35 % and MC mal in 

31 %. SUFU mutations were confined to Group B, with 5 % of MC int-B and 6 % MC mal tumors being 

mutated. Four out of five TERT promoter mutations mapped to the meningiomas in Group B (p = 0·005 

Fisher’s exact test).  

Annotation of copy-number-variations (CNV) revealed that MCs are associated with distinct 

cytogenetic aberrations (Fig. 4A, B): MC ben-1 was associated with deletions of 22q (95 %) but 

otherwise virtually no CNV. MC ben-2 presented with absence of recurrent CNVs. Typical for MC ben-

3 were multiple chromosomal gains most frequently affecting chromosome 5 (47 %). MC int-A 

frequently exhibited losses on 1p (70 %) and 22q (84 %). In Group B, MC int-B frequently exhibited 

losses on 1p (89 %), 10 and 22 (89 %), all features also shared with MC malignant. However, in MC mal, 

a higher frequency of CDKN2A deletion occurred (70%).  

Representative cases with sufficient material available of all MCs underwent RNA-sequencing in order 

to identify differentially upregulated genes and activated pathways (Suppl. Fig. 4). (In preparation…) 
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Methylation classes and WHO subtypes, localization, and gender 

Examining the distribution of histological subtypes across MCs revealed which histological subtypes 

comprise the MCs are composed of and, conversely, to which MC the samples of a respective subtype 

are assigned (Fig. 5). The rare lymphoplasmacyteell-rich meningiomas (WHO grade I) was not assessed 

due to the overwhelming dominance of constitutional (non-tumor) DNA in these samples. In general, 

two patterns were observed: Either a given MC was strongly associated with a small set of or even 

single subtypes, or samples of a MC or subtype, respectively, being widely spread across all variants. 

MC ben-1 comprised the majority of fibroblastic meningiomas and is also enriched for psammomatous 

meningioma. Fibroblastic meningiomas frequently harbor calcifications called psammoma bodies, and 

a high abundance of these calcifications defines psammomatous meningioma. The overexpression of 

SERPINF1 (Suppl. Fig. 4), which has been implicated in osteogenesis and calcification, in MC ben-1 

might contribute to this histologically detected phenomenon. MC ben-2 was highly enriched for 

meningothelial meningiomas, and contained the vast majority of secretory meningiomas. MC ben-3 

harboured cases from several subtypes but was particularly enriched for angiomatous meningiomas. 

This is in line with the overexpression of vessel-associated markers in samples of this MC (Suppl. Fig. 

4). Transitional meningioma, a hybrid of meningothelial and fibroblastic histology, dissolved into 

several MCs, along with the samples of the rare microcystic, clear cell, chordoid, metaplastic and 

psammomatous subtype. 

The two intermediate MCs were predominantly constituted composed of atypical meningiomas. 

However, a considerable fraction of atypical meningioma (n=31) fell into MC ben-1. These observations 

majorly contribute to the higher prognostic power of MC class over histology. Anaplastic meningiomas 

predominantly mapped to MC malignant. Of note, the six rhabdoid/papillary meningiomas, by 

definition WHO grade III, all ended up in one of the MC benign or intermediate meningioma groups. 

However, the number was too low to assess the statistical relevance of WHO grading and MC 

classification individually for rhabdoid/papillary meningioma. 

Transitional meningioma WHO grade I was much more frequently assigned to an intermediate MC 

than fibroblastic or meningothelial meningioma, mostly to MC int-A. Atypical meningiomas assigned 

to a benign MC accumulated in MC ben-1.  

The most frequent localizations for all subgroups were the frontal and central convexity, except for 

MC ben-2 (Fig 6). For the latter, basal localization was common, in line with the high occurrence of 

AKT1 and SMO mutations in this MC, which are known to be enriched in this localization 19,22. 

Interestingly, all MC mal cases were located alongt the convexity. In contrast, none of the basal tumors 

was allotted to MC mal, including four intraventricular and ten spinal meningiomas that all 

localizedwent to intermediate or benign MCs. Gender and Aage distribution was equal throughout all 

Commented [REJ1]: Parasagittal? 
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MCs.  Wwith the exception of a predominance of male patient in MC mal, while all other MCs mainly 

comprised female patients (Fig 6).  
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Discussion 

The 15 subtypes of meningioma included in the current WHO classification have evolved over decades. 

The major aim of introducing including this variety of subgroups was to cover the whole histological 

spectrum of meningioma and to avoid misclassification. For example, meningeal tumors with chordoid 

or rhabdoid cytology may initially raise suspicionthe impression of a chordoma or rhabdoid tumor 

rather than but not point towardsa meningioma. Therefore, particular subtypes with these ambiguous 

features were introduced into the classification in order to draw attention to the morphologic diversity 

of highlight the existence of these cytological differentiations in meningiomas. In addition, some 

cytological features have been reported to be associated with distinct outcomes. Although oftenthis 

was based on small series, it prompted the allocation allotment of distinct WHO grades to specific 

meningioma subtypes. However, this approach has been increasingly questioned due to suboptimal 

inter-observer reproducibility7,23, most recently reported in a large Radiation Therapy Oncology Group 

(RTOG) meningioma trial 7 in which the authors expressed the urgent need for more objective 

molecular markers.  

This resulted in an overall critical view of clinicians with respect to the current meningioma WHO 

classification and grading, which has been reiteratedexpressed in the most recent published European 

Association of Neuro-oncology (EANO) guideline for the diagnosis and treatment of meningiomas5. 

Accordingly, Rrevisiting meningioma diagnostics based on epigenetic profiling by defining MCs with 

enhanced predictive power will greatly improve the acceptance of meningioma classification and 

facilitate more successfully guideclinical decisions regarding postoperative treatment. An overview ofn 

the molecular and clinical hallmarks of the six meningioma MCs is given in Figure 6.  

 

Distinct methylation profiles suggest different development 

Beyond the identification of clinically relevant groups and the basis for a novel classification, our 

dataset might give provide insight into the development of meningiomas. This has previously been 

shown for other entities such as: F the four variants of medulloblastoma, distinguishable by their DNA 

methylation patterns, which were shown to be determined by different precursor cell populations8,24-

26, and exhibit very different clinical characteristics and therapy needs. Our data indicate that the 

spectrum of meningiomas is divided into two major epigenetically highly distinct Groups (A and B, Fig. 

1). This strong separation suggests either the existence of distinct cells of origin or an underlying event 

with a major impact on genome-wide DNA methylation. The distinctive very different DNA methylation 

profiles of Groups A and B, despite the shared occurrence of NF2 mutations, might suggest that 

meningiomas arise from two different precursor cell populations. Based on our own and published 

high-throughput sequencing data, there is no evidence for the existence of a single mutation being 

solely responsible for the separation of these two groups. However, we cannot fully exclude the 
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existence of alterations not readily detectable by these approaches, such as translocations or fusions, 

causing the responsible changes in the methylome. Moreover, the fact that patients with meningiomas 

clustering in Group A share a predominantly benign, with a small proportion exhibiting a semi-

aggressive clinical course, and that patients with meningiomas of Group B follow a semi-aggressive to 

malignant clinical course, may further argue towards for a distinct cell of origin with different intrinsic 

propensities for malignant transformation. However, analyses dissecting the full regulatory 

background of the tumor cells in comparison to arachnoidal cells, e.g. by ChIP-Sequencing, are needed 

to fully elucidate this.  

 

 

Methylation-based versus WHO subgrouping versus other molecular markers 

Extensive whole exome or -genome sequencing has provided a large body of information on the 

mutational landscape of meningioma17-20. Four distinct meningioma mutational subgroups have been 

proposed, defined by mutations either in NF2, TRAF7, the hedgehog pathway, or POLR2A18. However, 

such a model of meningioma development based on mutational analysis alone currently does not 

currently satisfy the clinical need for distinction between patients in need of adjuvant treatment or 

not. A major drawback is the lack of risk stratification among NF2-mutant cases thatwhich can present 

with any clinical course. While the strong association of AKT1, TRAF7/KLF4, or SMO mutations with 

benign, or TERT promoter mutations with unfavorable course may allow for mutation-based risk 

assessment in these subgroups, the current inability to stratify NF2-mutated meningiomas for other 

mutational events associated with clinical outcome is a major obstacle for a classification and grading 

system based on mutational profiling alone. 

SimilarlySimilarly, strong limitations apply to approaches based on copy-number-profiles: They 

leverage the accumulation of aberrations during progression but are not capable of predicting the 

clinical behavior upfront. The current dataset attributes the highest prognostic power to methylome-

based subgrouping, which proves to be superior to WHO classification (Fig. 2, 3).  However, with an 

exclusively mutation-based subgrouping for classification of the full spectrum of meningioma is not yet 

in place. 

 

An integrated diagnosis for meningioma evaluation 

The WHO 2016 revision of the classification of for CNS tumors classification supports the concept of 

an integrated diagnosis. It relies on a multilayered approach combining data from histology, molecular 

genetic analyses, and clinical findings4,27,28. Adopting this WHO approach to the diagnosis of 

meningioma, the morphological layer corresponds to the current diagnostic standard, i.e. diagnosing 

the 15 WHO meningioma subtypes and grading according to the morphological scheme. In absence of 
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molecular analyses the morphological diagnosis should be suffixed with NOS (not otherwise specified), 

as agreed for parenchymal brain tumors without molecular workup4. The molecular diagnostic layer 

contains either DNA methylation or mutation analyses or both. With methylation analysis performed, 

one of the six MCs can be diagnosed. Mutational data may only enable inferring the MC for a subset 

within the MC ben-2, e.g. for AKT1 mutant cases, but not in each instance. If the data allow diagnosis 

of ng a MC, this results in a significantly improvedmore powerful prediction of the clinical course. This 

corresponds to the current approach for in other entities, e.g. ependymoma and medulloblastoma, 

infor which methylation data has proven to be more relevant than histological grading4,11. Based on 

the data presented here, the integrated diagnosis of meningioma will not only also highlight identify 

the prognostically relevant MC with regard to prognosis but also providein addition refer to the 

morphological subtype identified on in histological examination.  

Collectively, the accompanying dataset and proposed accompanying classification scheme proposed 

here advances meningioma diagnostics from the traditional histopathological approach histology into 

an integrated profiling with higher accuracy of in risk assessment for individual patients.  
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Materials and Methods 

Samples 

Samples with clinical data were retrospectively collected from the Dept. of Neuropathology 

Heidelberg, Germany (local and referral cases), Dept. of Neurosurgery Heidelberg and the FORAMEN 

network, the Dept. of Neurology and Neuropathology, Zürich, Switzerland, and the Neurological 

Institute (Edinger Institute) Frankfurt/Main, Germany. Additional samples without survival 

annotation were included from the Dept. of Neuropathology Berlin, Bonn, Magdeburg, Münster, 

Tübingen (all Germany), and Bristol (UK). The validation cohort was provided by the Medical 

University of Vienna.  

Methylation analysis, copy-number analysis 

Illumina 450k Human BeadChip (discovery cohort) and 850k EPIC (validation cohort) analysis were 

performed as previously described (ref). Unsupervised clustering for the discovery and validation 

cohort was performed based on XYZ (Euclidian ward SD 0.2). Copy-number aberrations were inferred 

from methylation array data (Ref VH).  

Copy number analysis in MCs 

Damian 

Panel and RNA sequencing 

Panel sequencing for genes reported to be mutant in meningioma (Suppl Table 2) was performed 

applying a custom hybrid-capture approach (Agilent) as described before (Ref). RNA libraries were 

generated with TruSeq RNA Access (Illumina). Sequencing was performed on a NextSeq 500 

(Illumina).  

Expression analysis based on RNA-seq data 

Konstantin  

Statistical analysis of clinical parameters 

Distribution of survival times was estimated by the method of Kaplan and Meier and compared 

between groups with the log-rank test. Hazard ratios including 95% confidence intervals based on Cox 

regression models were calculated. For the multivariable Cox regression model, imputations of missing 

covariate values was done applying the multivariate imputations using chained equations (mice) 

algorithm with 100 imputation runs. Hazard ratio for age is given per 10 year increment. Prediction 

error curves based on the Brier score were computed. Integrated Brier score was tested between risk 

stratifications using 1000 bootstrap samples. P-values below 0.05 were considered statistically 

significant. Analyses were performed with statistical software R 3.3. Details and referecens are given 

in the supplemental information.  
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Figure 1 Unsupervised clustering of methylation data of 497 meningioma samples (A). Unsupervised 

clustering of matched primary and recurrent samples (matched primary/recurrent samples of identical 

patient identified by arrows) combined with reference samples from group A and B shows that no shift 

between groups occurs upon recurrence (B). 
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Figure 2 Progression free survival (PFS) of 228 case with clinical data stratified for WHO grade (A), 

methylation class (B), combined methylation classes (C). Brier prediction plot calculated for the models 

A-C (D, WHO vs combined MCs p=0·0138, 0·0096, 0·0062 for 5, 10 and 12 years, respectively). 
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Figure 3 Figure 3 Comparison of WHO grading and methylation-based risk prediction: WHO grade I 

cases allotted to an intermediate methylation class show PFS similar to the average grade II tumors. 

In turn, WHO grade II cases assigned to a benign methylation class have longer PFS than the average 

WHO grade II cases (A). Hazard ratio (including 95% confidence intervals) forest plot for WHO 

grading, overall and stratified for combined methylation classes (B). Hazard ratio forest plot for 

combined methylation classes, overall and stratified for WHO grading (C). While sub-stratification for 

WHO grade among MCs is of limited additional value (B), MCs stratify for distinct PFS within WHO 

grades (C).  
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Figure 4 Distribution of mutations across sample that underwent panel-sequencing (304) stratified 

for MCs (A). Copy number variations across all samples that underwent 450k analysis (497) the MCs 

(B).  
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Figure 5 Association of histological subtypes and MCs  
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Figure 6 Schematic overview over the six identified MCs and their molecular and clinical 

characteristics   
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Supplementary Figure 1 
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Supplementary Figure 2 
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Supplementary Figure 3 

 

Validation cohort stratified for WHO grade (A) and combined methylation classes (B). 
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Supplementary Figure 4 

A 

 

B 

 

Most differentially expressed genes in the six MCs (A) and ClueGo based on KEGG source data for MC 

ben-2 (B) (further MCs following)  
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Supplementary Table 1 

In preparation 

Supplementary Tables 2 

Multivariable analysis  

 
coef  HR = exp(coef)  95% CI  p-value  

age  -0.23  0.80  [0.66, 0.96]  0.02  

male sex  0.19  1.20  [0.71, 2.04]  0.49  

SimpsonGrade2  -0.02  0.98  [0.55, 1.75]  0.95  

SimpsonGrade3  0.07  1.07  [0.49, 2.35]  0.86  

SimpsonGrade4-5  0.20  1.22  [0.53, 2.84]  0.64  

convexity  0.14  1.15  [0.61, 2.18]  0.66  

frontal  0.34  1.40  [0.60, 3.26]  0.43  

other  0.18  1.19  [0.25, 5.74]  0.83  

posterior fossa  -0.01  0.99  [0.35, 2.80]  0.98  

ClinSubgroupintermediate  1.56  4.78  [2.48, 9.21]  < 0.0001  

ClinSubgroupmalignant  2.96  19.30  [7.91, 47.07]  < 0.0001  

center HD  -0.60  0.55  [0.27, 1.12]  0.10  

center Zurich  -0.30  0.74  [0.34, 1.62]  0.45  

WHOII  0.31  1.37  [0.69, 2.71]  0.37  

WHOIII  1.01  2.75  [1.22, 6.20]  0.01  

 

 
coef  HR = exp(coef)  95% CI  p-value  

age  -0.22  0.80  [0.66, 0.97]  0.03  

male sex  0.23  1.26  [0.74, 2.12]  0.39  

Simpson Grade2  0.04  1.04  [0.58, 1.87]  0.90  

Simpson Grade3  0.27  1.31  [0.60, 2.88]  0.50  

Simpson Grade4-5  0.37  1.45  [0.63, 3.37]  0.39  

convexity  0.25  1.28  [0.67, 2.44]  0.45  

frontal  0.52  1.69  [0.73, 3.91]  0.22  

other  0.09  1.09  [0.23, 5.24]  0.91  

posterior fossa  -0.04  0.96  [0.34, 2.69]  0.94  

ClinSubgroupintermediate  1.84  6.29  [3.48, 11.39]  < 0.0001  

ClinSubgroupmalignant  3.41  30.38  [13.49, 68.38]  < 0.0001  

centerHD  -0.42  0.66  [0.34, 1.29]  0.22  

centerZurich  -0.04  0.96  [0.46, 1.99]  0.91  
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Supplementary Table 3 

Distribution of Mutations across MCs 

 

  PIK3CA AKT1 KLF4 TRAF7 NF2 SMO SUFU TERT n 

Ben-2 1 1% 24 32% 11 15% 36 49% 0 0% 5 7% 0 0% 0 0% 74 

Ben-1 0 0% 0 0% 0 0% 1 1% 42 63% 0 0% 0 0% 0 0% 67 

Ben-3 5 11% 0 0% 5 11% 5 11% 15 32% 0 0% 0 0% 0 0% 47 

Int-A 1 2% 1 2% 0 0% 1 2% 32 53% 0 0% 0 0% 1 3% 60 

Int-B 0 0% 0 0% 0 0% 1 5% 7 35% 0 0% 1 5% 1 5% 20 

Mal 0 0% 0 0%   0% 0 0% 11 31% 0 0% 2 6% 3 9% 35 
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