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INTRODUCTION 
 

Telomeres are repetitive nucleotide sequences at the end 
of chromosomes that shorten with replication of somatic 

cells. Since the number of cell replication in vivo 
increases with age, telomere length (TL) is negatively 

correlated with age of proliferating somatic cells. Meta-

analysis of 124 cross-sectional studies and 5 longi-
tudinal studies showed that the correlation between 

leukocyte telomere length (LTL) and age ranges 
between r=-0.295 and r=-0.338 across adults [1].  
 

TL variation within somatic tissues of the individual is 

much smaller than that between individuals. Within the 
individual, TL variation across somatic tissues such as 

blood, skin, muscle and fat largely reflects their 
replicative history prior to adulthood, given that the 

rates of TL shortening in these tissues are similar during 

adulthood [2]. Shorter LTL is associated with cardio-
vascular disease, psychological stress, and lifespan [3-

10].  
 

Another DNA-based biomarker that changes with age is 

methylation of cytosine residues of cytosine-phosphate-
guanine dinucleotides (CpGs). Machine learning-based 

analyses of these changes generated algorithms, known 

as epigenetic clocks that use specific CpG methylation 
levels to estimate age (i.e., DNAm age) [11-14] and/or 

physiological age  [15-17].  Although  both  DNAm age  

and LTL are associated with chronological age, they 
exhibit only weak correlations with each other after 

adjusting for age [18-20], suggesting the distinct nature 

of their underlying mechanisms.  
 

DNA methylation assays are already highly robust and 

ready for biomarker development [21]. By contrast, 
despite two decades of population-based telomere 

research, the measurement of TL remains challenging 
and can be subject to technical confounding factors 

including but not limited to different methods of DNA 

extraction [22-24]. Furthermore, the terminal restriction 
fragments (TRFs), measured by Southern blotting, the 

accepted ‘gold standard’ of TL measurements, include 
not only the canonical region of telomeres but also the 

potentially variable sub-telomeric region [22, 25]. It 

would be ideal if the robustness inherent in DNA 
methylation analyses can be extended to TL 

measurement. Although there are reports of TL-related 

DNA methylation changes [26], it was unknown 
whether these reflect actual TL or associated biological 

features, including health outcomes.  
 

We present here a novel DNAm TL estimator 

(DNAmTL) based on methylation profiles of 140 CpGs. 
This epigenetic biomarker was developed by regressing 

measured LTL on blood methylation data from n=2,256 

individuals (training set). We show that DNAmTL 
correlates negatively with age in different tissues and 
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ABSTRACT 
 

Telomere length (TL) is associated with several aging-related diseases. Here, we present a DNA methylation 

estimator of TL (DNAmTL) based on 140 CpGs. Leukocyte DNAmTL is applicable across the entire age spectrum 

and is more strongly associated with age than measured leukocyte TL (LTL) (r ~-0.75 for DNAmTL versus r ~ -

0.35 for LTL). Leukocyte DNAmTL outperforms LTL in predicting: i) time-to-death (p=2.5E-20), ii) time-to-

coronary heart disease (p=6.6E-5), iii) time-to-congestive heart failure (p=3.5E-6), and iv) association with 

smoking history (p=1.21E-17). These associations are further validated in large scale methylation data (n=10k 

samples) from the Framingham Heart Study, Women's Health Initiative, Jackson Heart Study, InChianti, Lothian 

Birth Cohorts, Twins UK, and Bogalusa Heart Study. Leukocyte DNAmTL is also associated with measures of 

physical fitness/functioning (p=0.029), age-at-menopause (p=0.039), dietary variables (omega 3, fish, vegetable 

intake), educational attainment (p=3.3E-8) and income (p=3.1E-5). Experiments in cultured somatic cells 

show that DNAmTL dynamics reflect in part cell replication rather than TL per se. DNAmTL is not only an 

epigenetic biomarker of replicative history of cells, but a useful marker of age-related pathologies that are 

associated with it. 
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cell types and outperforms TRF-based LTL in 
predicting mortality and time-to-heart disease, as well 

as being associated with smoking history and other age-
related conditions. 

 

We also validated the applicability of DNAmTL on a 
large-scale data set (N=9,345) and uncovered asso-

ciations between age-adjusted DNAmTL with diet and 

clinical biomarkers.  
 

Monitoring cultured cells with or without telomerase 
revealed that DNAmTL records cell replication 

independently of telomere attrition. 

 

RESULTS 
 

Training and validation data from 3 cohorts 
 

In stage 1 of our project, we evaluated data from 

n=3,334 individuals for whom both LTL and Illumina 

methylation array data were available. These were from 
three different studies: Framingham Heart Study 

offspring cohort (FHS, N=878), Women’s Health 
Initiative (WHI, N=818) and Jackson Heart Study 

cohort (JHS, N=1638, Table 1 and Supplementary Note 

1). The same laboratory measured LTL by Southern 
blotting of the terminal restriction fragments [25]. DNA 

methylation levels were measured in different labs 

using the Illumina Infinium methylation array 
platform. 
 

An overview of the data sets is found in Table 1. These 
US cohorts were comprised of two ethnic groups: 41% 

of European ancestry and 59% of African Ancestry. The 
age of the individuals ranged from 22 to 93 years. The 

training set used for constructing DNAmTL was 

comprised of N=2,256 individuals from the WHI and 
JHS cohorts for whom LTL and DNAm data were 

assessed from the same blood sample (collected at the 

same time). Although fewer than 20% of individuals in 
the training set were of European ancestry, our test data 

demonstrated that the resulting DNAmTL estimator 
applied equally well to individuals of European 

ancestry. We used two test data sets. The first test data 

set involved N=1,078 individuals comprised of N=100 
from the WHI, N=100 from JHS, and N=878 from the 

FHS cohorts. The second test data set was collected in 

stage 2 of our analysis: it involved N=9,815 DNA 
methylation samples from additional cohorts 

(Bogalusa, Twins UK, Lothian Birth cohorts, 
InCHIANTI) to evaluate correlations between LTL 

and numerous age-related conditions and lifestyle 

factors. We also evaluated DNAmTL in publicly-
available data from adipose tissue (N=648 from the 

Twins UK study [27, 28]), liver (N=85) [28, 29], and  
 

monocytes (n=1264 from the Multi-Ethnic Study of 
Atherosclerosis) [30]. Finally, we tested DNAmTL in 

in vitro studies to ascertain its applicability to cultured 
cells and to probe the nature of DNAmTL’s association 

with TL. Additional details of these studies can be 

found in Supplementary Notes 1 and 2. 
 

DNAmTL versus measured TL in blood and adipose 

tissue 

 

We restricted the analysis to CpGs that are present on 
both the Illumina Infinium 450K array and the 

Illumina EPIC methylation array (Methods). Using the 

training data (n=2,256), we regressed measured LTL 
(mean TRFs) on blood CpG methylations using an 

elastic net regression model [31]. This resulted in the 
automatic selection of 140 CpGs whose methylation 

levels best-predicted LTL (Supplementary Data 1). 

The linear regression model allows a direct prediction 
of TL based on DNA methylation levels. The predicted 

TL value, also referred to as DNAmTL, possesses the 

same units (kilobase) as that of mean TRF. The 
correlation coefficient between DNAmTL and LTL in 

the training data was r=0.63, which was overly 
optimistic, as subsequent independent validation with 

test data sets produced lower correlations of r>0.40 

(Figure 1). Further, using 12 large validation data sets, 
we found that the correlation between DNAmTL and 

LTL ranged from r=0.38 to r=0.5 (last column of 
Table 1) with the exception of the Lothian Birth 

cohorts (where it was close to zero). The correlations 

between DNAmTL and LTL were not confounded by 
age, as was evident from the high correlations between 

age-adjusted DNAmTL and age-adjusted LTL (e.g. 

r=0.34 in FHS and r=0.43 in Bogalusa Herat Study, 
Supplementary Figures 1A and 2A). A stratified 

analysis showed that the correlation between 
DNAmTL and LTL were neither confounded by sex 

(Supplementary Figures 1-2B and C) nor ethnicity 

(Supplementary Figure 2D and E). The DNAmTL 
biomarker was robust against potential effects of pre-

processing steps in the DNAm data analysis as can be 

seen from the diverse normalization methods used by 
the different cohorts (Table 1). The DNAmTL 

measurement was also robust across time as can be 
seen with the FHS cohort where the blood samples for 

the LTL measurement (FHS exam 6) were collected 

9.3 years earlier than those used for the DNAm 
measurement (FHS exam 8). This time lag biased the 

correlation toward the null hypothesis, i.e. generated a 
correlation (r=0.44, Figure 1B) that was overly 

conservative. A separate analysis of non-blood tissue 

revealed a higher correlation of r=0.65 between 
DNAmTL and TRF-based in adipose tissue samples 

from the Twins UK study (Supplementary Figure 3B). 
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Table 1. Overview of training and test data. 

      Telomere length statistics 

Data N Female Race Age 

Array 

Normalization LTL DNAmTL Corr 

Train 

WHI  

BA23 718 100% 

EUR (59%) 

AFR (41%) 

66.5 

(50.2,80.2) GenomeStudio 

6.9 

(5.2,9.1) 

6.9 

(6.0, 7.8) 0.62 

JHS 1538 64% AFR 

56.6 

(22.2,93.1) Noob [68]  

7.1 

(4.9,10) 

7.2 

(5.9, 8.1) 0.62 

Test 

FHS 878 51% EUR 

57.0 

(33.0,82.0) Noob [68]  

7 

(5.5,8.7) 

6.8 

(5.4, 8.1) 0.44 

WHI  

BA23 100 100% 

EUR (49%) 

AFR (51%) 

65.3 

(51.9,79.8) GenomeStudio 

6.9 

(5.6,9) 

6.9 

(6.2, 7.5) 0.41 

JHS 100 55% AFR 

53.5 

(22.9,80) Noob [68]  

7.2 

(5.6,9) 

7.1 

(6.6, 7.8) 0.50 

 

Validation analysis 

FHSa,b 2356 54% EUR 

66.4 

(40, 92)  

7.0 

(5.5,8.7) 

6.8 

(5.4, 8.1) 0.44 

WHIa  

BA23 1389 100% 

EUR (41%) 

AFR (28%) 

HISP (31%) 

65.4 

(50.1, 80.2) Noob [68]  

6.9 

(5.6,9) 

6.9 

(6.2, 7.5) 

0.41 

WHI  

EMPC 1972 100% 

EUR (56%) 

AFR (28%) 

HISP(16%) 

62.9 

(49.5, 82.0) BMIQ [69]  

-- -- -- 

JHSa 209 56% AFR 

59.8 

(22.9, 84.6) Noob [68]  

7.2 

(5.6,9) 

7.1 

(6.6, 7.8) 0.50 

InChiantic 

924 

(484) 54% EUR 

72 

(21, 100) Noob [68]  
-- -- -- 

Twins UKd 794 100% EUR 

57.2 

(24.0,81.1) BMIQ [69]  

3.5 

(1.7, 6.4) 

7.0 

(5.6, 7.9) 0.38 

LBC 1921e 436  60% EUR 

79.1 

(77.7, 80.6) Noob [68]  

4.1 

 (1.9, 5.3) 

6.6  

(5.7, 7.4) -0.01 

LBC 1936e 906 50% EUR 

69.6 

(67.6, 71.3) Noob [68]  

4.1 

 (2.7, 7.1) 

6.7  

(6.1, 7.5) 0.08 

BHS 831 57% 

EUR (70%) 

AFR (30%) 

43.8 

(28.4, 54.6) watermelon [70]  

6.9 

(5.2, 9.5) 

7.0 

(6.4, 7.6) 0.43 

AfricanA=African American; EUR=European; HISP=Hispanics; LTL=leukocyte telomere length. 

The distributions of Age, LTL, and DNAmTL are presented in median (range) format. 
aThe validation set consists of two groups of individuals: (1) those individuals with TL measures that were included in test process, (2) 

those individuals without TL measures. 
bThe age distribution was based on exam 8. 
cThe statistics are based on the number of 924 observations across 484 individuals. 
dOf the 794 individuals, 779 were available with LTL measures. 
eAll subjects of the Lothian Birth Cohorts were born at roughly the same time (within 1.9 to 3.7 years). 
 

We display characteristics of (1) 3334 study participants in the training and test data sets that were used to develop and validate 

DNAmTL, and (2) 9345 participants (9875 blood samples) from 9 cohorts across 7 studies. The participated studies include 

Framingham Heart Study (FHS) offspring cohort, Women's Health Initiative (WHI), Jackson Heart Study (JHS), InChianti, Twins UK, 

Lothian Birth Cohorts (LBC), and Bogalusa Heart Study (BHS). Leukocyte TL measures were based on terminal restriction fraction 

measurement by Southern blotting Southern blotting in FHS, WHI, JHS, and BHS and were based on quantitative real-time polymerase 

chain reaction (qPCR) in Twins UK and LBC. The column "Array Normalization" refers to different methods of pre-processing DNA 

methylation array data. 
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DNAmTL across different blood cell types 

 

To test whether DNAmTL differs across blood types, we 

used sorted blood cells and peripheral blood mononuclear 

cells (PBMCs) from 6 men (aged between 27 and 32 
years old, Methods). We observed a statistically 

significant difference in median DNAmTL values 

(p=0.0033, Supplementary Figure 4) even though they 
were roughly comparable: CD8+ T cells (median=8.25), 

CD4+ T cells (median=7.64), B cells (median 
DNAmTL=7.43), PBMCs (median DNAmTL=7.55).  

 

DNAmTL versus qPCR TL in the Twins UK study 

 

We obtained leukocyte DNAm data from 792 
participants (all women) from the Twins UK study 

whose LTL was measured by Southern blotting 

(N=346) and/or quantitative polymerase chain reaction 
(qPCR, N=779) (Supplementary Note 1). The 

correlation between DNAmTL and qPCR- based LTL 

(r=0.39, Supplementary Figure 5A)  was  similar  to that  

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
of LTL measured by Southern blotting (r=0.40, 

Supplementary Figure 5B). 
 

DNAmTL correlates more strongly with age than 

TL 
 

Although DNAmTL was developed based on LTL, it 

displayed substantially stronger negative correlations 

with age at the time of blood draw (r ~ -0.80 to -0.62) 
than did measured LTL, based on our test datasets (r ~ -

0.40 to -0.30, Figure 2). Multivariate regression models 
in the test data show that LTL shortened by 0.022 

kilobases per year (p=2.3E-27) after adjusting for sex, 

race/ethnicity and other confounders (Table 2). 
Analogous multivariate regression models showed that 

DNAmTL reduced by 0.018 kilobases per year, but this 
was associated with a far more significant p value 

(p=6.0E-125) than that of measured LTL (p=2.3E-27). 

Although the DNAm-based biomarkers were derived 
from profiles of adults (22-93 years old), the resulting 

DNAmTL algorithm was equally applicable to profiles 

Figure 1. Measured LTL versus DNAmTL in training and test datasets. Scatter plots of DNA methylation-based telomere length 

(DNAmTL, x-axis) versus observed LTL measured by terminal restriction fragmentation (y-axis). DNAmTL and LTL are in units of kilobase 

(kb). (A) Training data. (B) Test data from the Framingham Heart Study. (C) Test data from the Women's Health Initiative (BA23 sub-

study). (D) Test data from the Jackson Heart Study. Each panel reports a Pearson correlation coefficient and correlation test p-value. 

Table 1 reports analogous results for additional cohorts (Bogalusa, Twins UK, etc). 
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from children; even to those who were younger than 13 
years of age, where a strong negative correlation of r=-

0.81 was observed between DNAmTL of blood and age 
(Supplementary Figure 6A). Such expected negative  

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

correlations with age were also seen with DNAmTL in 
adipose tissue (r=-0.41. Supplementary Figure 3A), 

liver (r=-0.71, Supplementary Figure 7A), and in 
(sorted) monocytes (r=-0.60, Supplementary Figure 8A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Chronological age versus measured LTL and DNAmTL. Chronological age versus measured LTL (panels A, C, E, in 

units of kilobase [kb]) and DNAmTL (panels B, D, F, in units of kb). (A, B) Test data from the FHS. (C, D) Test data from the WHI 

(N=100), (E, F) Test data from the JHS (N=100). Each panel reports a Pearson correlation coefficient and correlation test p-value. 
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Effect of sex and ethnicity 

 

Because age would confound any potential relationship 
between DNAmTL and age-related traits such as health, 

it would be useful to derive an age-adjusted estimate of 

DNAmTL (referred to as DNAmTLadjAge). We 
therefore regressed DNAmTL on age and the resulting 

raw residual was defined as DNAmTLadjAge. A 
negative value of DNAmTLadjAge would indicate 

DNAmTL that is shorter than expected based on age, 

while a positive value would indicate the opposite. We 
noted that  DNAmTLadjAge is  heritable (heritability 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 ℎ2=0.46, p=4.5E-11) according to a pedigree-based 

polygenic model analysis in the FHS cohort (N>2000, 
Methods).  
 

Women tend to exhibit longer LTL than men of the 
same age [32]. Similarly, our multivariate regression 

models revealed that age-adjusted LTL and age-
adjusted DNAmTL were indeed longer in females than 

in males. The p-values for age-adjusted LTL measured 

in this study (p=2.15E-4, N=1078) and that of a 
previous study [32] (p=5E-3, N ~ 730) were far less 

significant than those for age-adjusted DNAmTL 

Table 2. Multivariate regression analysis of leukocyte telomere length. 

Variable Coefficient (SE) t-statistic P 

Outcome: actual LTL (mean TRF)  

Intercept 8.43 (0.201) 41.88 2.43E-227 

Age -0.022 (0.002) -11.14 2.33E-27 

Female 0.132 (0.036) 3.71 2.15E-4 

Race: European 0.029 (0.112) 0.26 7.97E-1 

smoke: Former 0.132 (0.063) 2.11 3.50E-2 

smoke: Never 0.113 (0.062) 1.82 6.95E-2 

BMI -0.007 (0.003) -2.15 3.16E-2 

JHS 0.005 (0.126) 0.04 9.66E-1 

WHI BA23 -0.093 (0.084) -1.10 2.73E-1 

Outcome: DNAmTL 

Intercept 8.046 (0.069) 116.16 <1.0E-300 

Age -0.018 (0.001) -27.32 5.97E-125 

Female 0.099 (0.012) 8.14 1.14E-15 

Race: European -0.136 (0.039) -3.52 4.57E-4 

smoke: Former 0.08 (0.022) 3.72 2.09E-4 

smoke: Never 0.096 (0.021) 4.51 7.11E-6 

BMI -0.002 (0.001) -2.19 2.91E-2 

JHS 0.069 (0.044) 1.59 1.11E-1 

WHI BA23 0.049 (0.029) 1.69 9.15E-2 

BMI=body mass index; SE=standard error. 
 

In the upper panel, we present results from a multivariate linear regression model analysis of actual LTL 

(mean TRF, dependent variable) on different covariates (rows) in the test data set (comprised of 1078 

individuals). The model was regressed on age, sex, race/ethnicity, smoking status, and study cohort. 

Race/ethnicity is a dichotomized variable (European versus African Ancestry). Smoking status is a three-

category variable: never, former and current smokers (as a reference). Study cohort is a trivariate variable 

(FHS, WHI BA23 and JHS cohort). 
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(p=1.14E-15, Table 2). Roughly, women showed longer 
telomere length than men by 0.1 kilobase, given by 

DNAm or TRF measures (Table 2). We also found 
longer age-adjusted DNAmTL in female compared to 

male liver samples (P=0.017, Supplementary Figure 

7C). With regards to ethnicity, age-adjusted DNAmTL 
of PBMCs (Table 2) and monocytes (Supplementary 

Figure 8B) revealed that US population of African 

ancestry have a longer LTL than those of European 
ancestry, consistent with previous observations made 

with TRF-based measured TL. Once again, the 
association of age-adjusted DNAmTL (p=1.6E-33, N ~ 

1200) with ethnicity was stronger than those seen with 

age-adjusted LTL measured by TRF (p=1E-4) or 
quantitative polymerase chain reaction (p=1E-3, N ~ 

2450) [33]. Overall, these results demonstrate that 
DNAmTL exhibits substantially more significant 

associations with age, sex and ethnicity than measured 

LTL. 
 

DNAmTL is often superior to measured LTL in 

predicting mortality and health outcomes 

 

Next, we compared the performance of 
DNAmTLadjAge with age-adjusted LTL in predicting 

time-to-death or time-to-heart disease in the training 

and test datasets (N=3,334) for which both measures 
were available (Figure 3). We found that longer 

DNAmTLadjAge was significantly associated with a 
lower hazard ratio (HR) for time-to-death, all-cause 

mortality (HR=0.31 and P=6.7E-9), time-to-coronary 

heart disease (CHD, HR=0.55and, p=9.5E-3), and time-
to-congestive heart failure (CHF, HR=0.32and, p=9.7E-

4, Figure 3). In women, later age at menopause was 

associated with significantly higher values of 
DNAmTLadjAge (p=0.025). Furthermore, physical 

activity was also positively associated with 
DNAmTLadjAge (p=0.013).  

 

By comparison, the results from age-adjusted LTLs 
(LTLadjAge) were far less significant in predicting 

lifespan (HR=0.81 and p=4.7E-3 compared to HR=0.31 

and p=6.7E-9 for DNAmTL, Figure 3A, B) and were 
not significantly associated with time-to-CHD, time-to-

CHF, age at menopause and physical activity (p>0.3, 
Figure 3).  

 

We want to emphasize that our comparison between 
DNAmTLadjAge and LTLadjAge involved the same set 

of individuals for whom both measures were available, 
i.e. each association test used the same sample size and 

distribution in age, sex, and ethnicity. These results 

show that DNAmTLadjAge outperforms LTLadjAge 
when it comes to predicting important health-related 

conditions. However, our comparative analysis was 

subject to a limitation: the measures of LTLadjAge and 

DNAmTLadjAge in the FHS cohort corresponded to 
two different blood samples collected at different time 

points. We addressed this limitation in two ways. First, 
we repeated the analysis by omitting the FHS data. In 

the resulting test data (n=100 samples from the WHI 

and n=100 samples from the JHS), DNAmTLadjAge 
continued to outperform LTLadjAge (Supplementary 

Table 1). Second, we compared DNAmTLadjAge with 

LTL in a host of additional cohorts (Bogalusa Heart 
Study, Twins UK, Lothian Birth Cohorts) as detailed 

below. 
 

Evaluating DNAmTL in large scale validation data 

 
In the second phase of validation, we sought to test 

these associations with even larger, independent data 
sets. In total, we analyzed N=9,875 Illumina 

methylation arrays from blood samples of N=9,345 

individuals from 9 cohorts across 7 studies: FHS, WHI 
BA23, WHI EMPC, JHS, InChianti, Lothian Birth 

Cohorts of 1921 and 1936 (LBC), UK Twins, and 

Bogalusa Heart Study (BHS, Table 1, Methods, and 
Supplementary Note 1). Of the samples, 4,039 

individuals were available with measured LTL 
measurements based on Southern blot or quantitative 

polymerase chain reaction (qPCR). The data set was 

comprised of three different ethnic groups: European 
(77%), African (15%), and Hispanic (8%) ancestries. 

All but one cohort (BHS) were available for mortality 
analysis (N=9,044 methylation arrays on 8,514 

individuals) with sufficient follow-up period. The mean 

chronological age at the time of the blood draw was 
65.6 years and the mean follow-up time (for all-cause 

mortality) was 11.8 years (Supplementary Table 2). 

Once again, DNAmTL was negatively correlated with 
chronological age in all cohorts with sufficient variation 

in chronological age (−0.83 ≤ 𝑟𝑟 ≤ −0.42), in which 
we excluded the Lothian Birth Cohort studies 

comprising individuals with similar ages 

(Supplementary Figure 9).  
 

Further analyses of these data confirmed that higher 
values of DNAmTLadjAge were indeed associated with 

longer lifespan (Figure 4). Each kilobase increase of 

DNAmTLadjAge was associated with a hazard ratio of 
0.37 for mortality (p=2.5E-20, Figure 4A), similar to 

what we observed in the training and test dataset 

(HR=0.31, Figure 3A). Higher values of 
DNAmTLadjAge were also associated with longer 

time-to-CHD (HR=0.51 and p=6.6E-5) and longer time-
to-CHF (HR=0.27 and p=3.6E-6, Figure 4 D and G), 

mirroring yet again the results obtained from the 

training and test data sets.  
 

Two types of multivariate Cox regression models de-
monstrated that these associations remained  significant 
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Figure 3. Comparing measured LTL with DNAmTL with respect to age-related conditions. Meta-analysis forest plots for 

relating age-related conditions (rows) to age-adjusted LTL (left panels) and age-adjusted DNAmTL (right panels). Panels in the first row (A, 

B) presents meta-analysis forest plots for Cox regression models of time-to-death. Meta-analysis of Cox regression models for (C, D) time-

to-coronary heart disease (CHD) and (E, F) time-to-congestive heart failure (CHF). Rows in the forest plot correspond to training and test 

datasets (used for developing DNAmTL) stratified by race/ethnicity Each row presents the summary statistic at a (stratified) study 

da.taset and reports sample size (N), number of events, P value, hazard ratio and a 95% confidence interval resulting from a Cox 

regression model. (G, H) Meta-analysis for the association with age at menopause. (I, J) Meta-analysis for the association with self-

reported physical activity status (yes/no). (G-J) Each row (study data set) presents the summary statistic, P value, beta coefficient and a 

95% confidence interval resulting from a linear (mixed) regression model. In general, an insignificant Cochran Q test p-value (denoted by 

Het. P) is desirable because it suggests that results do not differ significantly across the strata. However, an insignificant Q test p-value 

could also reflect lack of statistical power. 
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even after adjusting for (1) blood cell counts (Figure 4 
B, E, H), and (2) classical risk factors (Figure 4 C, F, I) 

including body mass index, educational level, alcohol 
intake, smoking pack-years, prior history of diabetes, 

prior history of cancer, and hypertension status. 

 
We went further and evaluated DNAmTLadjAge in 

different strata including age (younger/older than 65 

years), prevalent clinical conditions at baseline and 
found that DNAmTLadjAge remained a significant 

predictor of time-to-death in each of these strata 
(Supplementary Table 3), e.g. HR=0.26 for individuals 

aged < 65 years and HR=0.41 for older individuals aged 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

years. DNAmTLadjAge also remained a significant 
predictor of time-to-CHF in most strata (Supplementary 

Table 4) and of time-to-CHD in specific strata such 
older age, normal BMI, or higher education attainment 

(Supplementary Table 5). 

 
Our analyses revealed that higher DNAmTLadjAge 

values were associated with measures of physical 

fitness/functioning (P=7.6E-3), and disease-free status 
(p=0.019), while prior history of cancer was associated 

with lower DNAmTLadjAge values (p=0.053, 
Supplementary Figure 10). Interestingly, we also found   

a nominally significant association (p=0.026) between 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

Figure 4. Meta-analysis forest plots for predicting time-to-death due to all-cause mortality and time-to-cardiovascular 

disease in independent validation data. Meta-analysis forest plot for combining Cox regression hazard ratios for time-to-death, 

time-to-coronary heart disease (CHD), and time-to-congestive heart failure (CHF), based on age-adjusted DNAmTL (DNAmTLadjAge). The 

sample sizes for the analysis were up to 9,044 methylation arrays (8,541 individuals) across 8 cohorts. Left panels, middle panels, and 

right panels report meta-analysis results for (1) simple Cox regression models, (2) multivariate Cox models adjusted for blood cell counts, 

and (3) multivariate Cox model adjusted for traditional risk factors, respectively. Each row reports the hazard ratio associated with 

DNAmTLadjAge. (1) The simple Cox models (left panels) were adjusted for chronological age, sex and adjusted for intra-pedigree 

correlation and batch effects as needed. (2) The models in the middle panels involved additional covariates: imputed blood cell counts 

based on DNA methylation data. (3) The models in the right panels different from those of (1) by additional demographic characteristics, 

psychosocial behavior, and clinical covariates (Methods). Each panel reports a meta-analysis forest plot for combining hazard ratios 

associated with time to event. Each row presents the summary statistic at a (stratified) study dataset and reports sample size (N), number 

of events, hazard ratio and a 95% confidence interval resulting from a Cox regression model. In general, an insignificant Cochran Q test p-

value (denoted by Het. P) is desirable.  
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age-at-menopause and DNAmTLadjAge. We found that 
one year later age-at-menopause was associated 0.001 

kilobase longer LTL (Supplementary Figure 10A). Our 
cross-sectional analyses, however, do not allow 

determination of cause-and-effect relationships, but we 

note that age-at-menopause is also associated with 
epigenetic aging [34].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Life-style factors and clinical biomarkers 

 

To assess the effect of life-style factors and diet on 
DNAmTLadjAge in blood, we meta-analyzed large data 

sets from the FHS and WHI cohort (N up to 6,977, 

Methods) including their associations with clinical 
measurements.  Age-adjusted DNAmTL was positively  

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

Figure 5. Cross sectional associations between age-adjusted DNAmTL versus lifestyle/dietary variables. Association analysis 

between age-adjusted DNAmTL (DNAmTLadjAge) and 43 variables including 15 self-reported diet, 9 dietary biomarkers, 14 variables related 

to metabolic traits and central adiposity, and 5 life style factors, based on the meta-analysis across the FHS WHI, LBC 1921 and LBC 1936 

cohort. Robust correlation coefficients (biweight midcorrelation ) analysis were performed on the FHS and WHI cohort while generalized 

linear regression analysis adjusted for sex was performed on the LBC 1921 and 1936 cohort, respectively. For each variable, we display 

number of datasets, number of total subjects, the robust correlation results from the meta-analysis, FHS, and the WHI cohort and the Z 

statistics for the LBC respectively. The meta-analysis was based on Stouffer’s method for the majority of the variables or fixed effect models. 

The 2-color scale (blue to red) color-codes bicor correlation coefficients in the range [-1, 1] or Z statistics. The green color scale (light to dark) 

applied to unadjusted P values. Cell entry "--" denotes not available. The correlation analysis results stratified by sex using the FHS cohort are 

listed in Supplementary Figure 11 and stratified by ethnic group using the WHI cohort are listed in Supplementary Figure 12, respectively. 
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correlated with plasma-based estimates of mean 
carotenoid levels (robust correlation r=0.10, unadjusted 

p=1.5E-5), beta-Cryptoxanthin (r=0.10 and p=3.8E-6) 
and high-density lipoprotein (HDL, r=0.04 and p=1.3E-

3) (Figure 5, Supplementary Figures 11 and 12). The 

positive correlation between DNAmTLadjAge and self-
reported measures of carotene intake (p=4.0E-3, N=766 

from the Lothian Birth Cohort from the year 1936) was 

consistent with these findings. Positive associations 
with DNAmTLadjAge were also observed for self-

reported measures of fruit (p=3.1E-5), vegetable 
(p=1.2E-3), dairy (p=7.1E-3), fish (P=0.018), and 

carbohydrate consumption (p=0.02). Positive correla-

tions were also evident between DNAmTLadjAge and 
socio-economic factors such as level of educational 

attainment (p=3.3E-8) and income (p=3.1E-5). These 
associations held for each sex separately in the FHS 

cohort (Supplementary Figure 11).  

 
There were also features that correlated negatively with 

DNAmTL. Smoking was strongly associated with lower 

DNAmTL values in leukocytes (p=2.3E-16) and in 
adipose tissue (P=0.036, Supplementary Figure 3D). C-

reactive protein (p=4.3E-9), triglyceride levels (p=3.2E-
4) and insulin levels (p=3.5E-4) were negatively cor-  

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

related with DNAmTLadjAge in both FHS and WHI 
cohorts. There were also negative correlations of 

DNAmTLadjAge (in leukocytes) with waist-to-hip ratio 
(p=2.4E-3), body-mass index (BMI, p=3.6E-3) and 

physical exercise (p=0.02).  

 
We caution the reader that our p-values are not adjusted 

for multiple comparisons. 

 
DNAmTL of leukocytes exhibits stronger association 

with smoking than does measured LTL 

 

Next, we used 4,039 subjects from our seven validation 

cohorts to interrogate the impact of smoking on 
telomere shortening in leukocytes (Methods). A detailed 

smoking history (smoking pack-years) was known for 
roughly half of these individuals (N=2216). The 

smoking variable was based on pack-years when 

available otherwise based on never versus ever 
smoking. We adjusted the smoking variable for 

potential confounders (age, sex and ethnicity) of the 

relationship with LTL. Our large-scale meta-analysis 
showed that DNAmTL greatly outperformed measured 

LTL (Stouffer’s meta p=1.2E-17 versus meta p=0.029) 
with regards to association with smoking (Table 3).  

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

Table 3. Smoking impacting on DNA methylation-based telomere length. 

   DNAmTL 

 

LTL 

Cohort N Variable T P 

 

T P 

FHS1 878 Pack years -2.08 3.81E-2 

 

0.54 0.59 

WHI BA231 97 Pack years 0.45 6.53E-1 

 

1.30 0.2 

JHS1 100 Smoker -3.00 3.38E-3 

 

-1.87 6.40E-2 

LBC 19212 404 Pack years -3.53 4.59E-4 

 
-0.92 0.36 

LBC 19362 796 Pack years -3.55  4.04E-4 

 
0.55 0.58 

UK Twin2 792 Smoker -2.79 5.23E-3 

 

-3.23 1.23E-3 

BHS1 831 Smoker -6.83 1.70E-11 

 

-1.83 6.77E-2 

ALL 4039 Smoking impact -8.55 1.21E-17 

 

-2.19 0.029 

The Smoker variable was coded as a binary variable for never versus ever smokers, where estimate was referred to ever smokers. 
1Telomere length was based on terminal restriction fraction measurement by Southern blotting. 
2Telomere length was measured using quantitative real-time polymerase chain reaction (qPCR). 
 

The table summarized the meta-analysis for the smoking impact on plasma DNA methylation based telomere length (DNAm TL) versus 

the impact on qPCR or southern blot-based leukocyte TL. The association tests were performed at each study cohort respectively then 

combined by the Stouffer’s method weighted by square root of sample size. The smoking variable was based on a binary variable for 

former/current smokers versus never or pack years provided the variable was available.  
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According to fixed effect models analysis (Methods), 
we found DNAmTL was shortened by 0.022±0.0002 

kilobases per smoking pack-year (P=5.9E-07) while TL 
was not significantly lengthened by 1.3E-04±5.0E-04 

kilobases per smoking pack-year (P=0.79). In an 

analogous analysis, we found that smokers had 
significantly shorter DNAmTL by 0.063±0.009 kilo-

bases associated with a very robust P value (3.2E-13). 

The smokers also exhibited shorter TL (0.01±0.003 
kilobases) but with far less significant P value (7.5E-

04). Focusing on individual cohorts corroborated these 
findings, e.g. the association of smoking with DNAmTL 

(p=1.70E-11) was significantly greater than the 

association of smoking with LTL (p=6.77E-2, Table 3) 
in the BHS cohort. We also carried out a sensitivity 

analysis that compared age-adjusted LTL between 
current smokers and former/never smokers in the BHS 

and subgroups defined by sex and ethnicity. Our 

sensitivity analysis confirmed that smoking was indeed 
significantly associated with shorter age-adjusted 

DNAmTL in each subgroup (1.95E-8 ≤ p ≤ 4.39E-3, 

Supplementary Figure 13). Conversely, no significant 
associations were observed between LTL and smoking 

in these subgroups (0.12 ≤ p ≤ 0.87, Supplementary 
Figure 14).  

 

Omega 3 intake is associated with longer DNAmTL 

 

We were interested in investigating the relationship 
between DNAmTL and omega-3 polyunsaturated fatty 

acid (PUFA) supplementation in a large observational 

cohort study. We found omega-3 supplement intake to 
correlate positively with age-adjusted DNAmTL (bicor 

r=0.088 and p=4.4E-5), and this correlation was far 

more significant than that exhibited by age-adjusted 
LTL (bicor r=0.085 and p=0.016, Supplementary Figure 

15). For DNAmTLadjAge, the effect of omega 3 
supplementation was more pronounced in males 

(r=0.08, p=0.012) than in females (r=0.047, p=0.11). A 

multivariate linear mixed effects model analysis 
resulted in suggestive evidence (p=0.09) that omega-3 

intake is associated with longer DNAmTLadjAge even 

after adjusting for sex, BMI, educational levels, and 
smoking pack year. 

 
DNAmTL relates to imputed blood cell composition 

 

LTL is known to correlate with the abundance of naïve 
CD8+ T cells and other cell types [8]. Similarly, we 

found DNAmTL to be significantly correlated with 
several quantitative measures of leukocytes that were 

imputed using DNAm data (Methods) such as naïve 

CD8+ T cells (𝑟𝑟 = 0.42, p=2.2E-151) and exhausted 

CD8+ T cells (𝑟𝑟 = −0.36, p=3.0E-102; Supplementary 

Figure 16 and Supplementary Data 2). A multivariate 
regression model revealed that 25% of the variation of 

age-adjusted DNAmTL and 4.6 % of the variation in 
age-adjusted LTL could be attributed to imputed 

leukocyte cell composition in the FHS test data. 
Overall, DNAmTL exhibited substantially stronger 

correlations with imputed leukocyte cell composition 

than did LTL (Supplementary Figure 16 and 
Supplementary Data 2).  

 

DNAmTL CpGs tend to be located near telomeres 

and enriched with cis-mQTL 

 

To test if the 140 CpGs of DNAmTL model were 

enriched at regions near telomeres, we performed 

hypergeometric tests based on the regions threshold up 
to 3 Mb (Methods). Our analysis showed that the 140 

CpGs had moderate enrichment (hypergeometric 
p=8.1E-3, Supplementary Table 6) within sub-telomeric 

regions. Sensitivity analysis based on different 

thresholds validated the result (p=5.9E-3 ≤ P ≤ 0.039, 
Supplementary Table 6). Furthermore, we tested 

whether the 140 CpG sites overlapped with 52,916 cis 

methylation quantitative trait loci (cis-mQTL [35], 
Methods). Strikingly, 51 out of the 140 CpGs markers 

were known cis-mQTL (hypergeometric p=2.6E-15, 
Supplementary Data 1) which is consistent with the 

high heritability observed for DNAmTL (additive 

h2=0.46). Several of the 51 SNPs (from cis-mQTL) 
were implicated in complex traits according to GWAS 

data bases (Methods), e.g. rs2147904 in 1p34.2 (P ≥ 
1.0E-14), rs305082 in 16q24.1 (P ≥8.0E-131) and 

rs945631 in 1p22.1 (P=2.0E-8) are known to be 

associated with granulocyte composition in blood. 
Further, rs945631 is also implicated in circulating 

phospholipid trans fatty acids at a suggestive P 

value=3.0E-06 (Supplementary Data 3). Bipolar 
disorder (P ≥ 2.0E-09) was identified when we 

inspected the SNPs in linkage disequilibrium with the 
51 markers (Methods and Supplementary Data 3). 

 

DNAmTL and LTL exhibits different patterns of 

SNP associations  

 

Alternatively, we briefly examined SNP association of 
DNAmTL across 10 loci implicated in measured LTL 

with genome-wide significance [36-38] (Methods). We 
previously found that SNPs in the TERT locus to be 

associated with epigenetic aging rates [19]. Inspecting 

the overlap regions between the 10 loci and the 140 
CpGs (in DNAmTL, Supplementary Data 1), 

cg00580497 is located nearby the right arm of the TERT 
locus (within 500kb) and cg02282640 is located nearby 

the right arm of another highlighted gene MPHOSPH6 

[38]. However, using the FHS cohort, we did not find 
these SNPs or those at other loci to exhibit any sig-

nificant associations (P<0.05) with DNAmLTLadjAge 

(Supplementary Table 7).  
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Functional annotation of CpGs implicated in 

DNAmTL 

 

We analyzed the genomic locations of the 140 CpGs 

underlying the DNAmTL using the GREAT software 

tool which assigns potential biological meaning to a set 
of genomic locations (here CpGs) by analyzing the 

annotations of nearby genes. Ten gene sets were iden-

tified as significant at a stringent Bonferroni corrected 
significance level (p<0.05) including “Cadherin, N-

terminal” that mediate cell adhesion, polarization and 
migration (nominal p=1.0E-7) and SODD/TNFR1 

signaling pathway (nominal p=5.2E-5, Supplementary 

Data 4). When focusing only on the subset of 72 CpGs 
that have negative coefficients in the DNAmTL model 

(increasingly de-methylated with telomere shortening), 
we found 10 statistically significant gene sets at a 

Bonferroni corrected p<0.05 including calcium-

dependent adhesion and “Cadherin, N-terminal” 
(p=2.8E-10). When focusing only on the 68 CpGs with 

positive coefficients in the DNAmTL model we 

identified 4 gene sets at a Bonferroni corrected p<0.05 
including the vascular endothelial growth factor (VEGF) 

signaling pathway (p=7.4E-5). The expression of these 
gene sets remains to be validated, and for moment their 

identities do not immediately proffer obvious clues as to 

how they may be linked with telomere attrition, making 
their involvement all the more intriguing. 

 
DNAmTL is often inferior to epigenetic clocks 

 

Numerous lines of evidence suggest that telomere 
attrition and epigenetic aging are distinct cellular 

features that are well-associated with the aging process. 

As such both TL and epigenetic clocks are potential 
estimators of biological age [9]. To ascertain how 

related they are to each other, we calculated, pairwise 
correlations between DNAmTLadjAge and four “age-

independent” measures of epigenetic age acceleration 

derived from (1) the pan-tissue epigenetic clock by 
Horvath (2013) [39] (2) the blood-based clock by 

Hannum et al. (2013) [11], (3) the DNAm PhenoAge 

estimator by Levine et al. (2018) [15], and (4) the 
DNAm GrimAge estimator by Lu et al. (2019) [17]. 

Using N=2356 samples from the FHS, we found that 
DNAmTLadjAge exhibited moderate negative cor-

relations with the four epigenetic age acceleration 

measures (−0.44 ≤ 𝑟𝑟 ≤ −0.20, Supplementary Figure 
17). We then compared the performance between 

DNAmTL and epigenetic clocks in predicting health 
outcomes. Using the validation data (N=6,850), we 

found that DNAmTLadjAge rivals measures of age 

acceleration based on Hannum’s [11] or Horvath’s 
clock [12], but was clearly inferior to age-adjusted 

DNAm PhenoAge [15] or DNAm GrimAge [17]. In 
particular, we demonstrated that AgeAccelGrim (based 

on DNAm GrimAge) greatly outperformed 
DNAmTLadjAge with regards to predicting time-to-

death (Cox P=5.8E-71 for AgeAccelGrim versus 
p=4.1E-15 for DNAmTLadjAge), time-to-CHD 

(p=2.5E-23 for AgeAccelGrim versus p=6.6E-5), and 

time-to-CHF (p=1.8E-35 versus p=3.6E-6, Sup-
plementary Figure 18).  

 

DNAmTL applied to in vitro cultured cells 
 

All the above analyses have shown that associations of 

several human traits and health outcomes with 
DNAmTL were much stronger than with LTL. What 

then might be the biological meaning of DNAmTL? We 
examined this question by monitoring DNAmTL in 

cultured somatic cells without and with expressed 

telomerase activity. Primary keratinocytes isolated from 
healthy human skin were grown with serial passaging 

upon confluence, where cell numbers were obtained, 

and their population doublings determined. DNA 
methylation profiles of cells after different population 

doublings were measured using Illumina EPIC array. 
DNAmTL was correlated with population doubling in 

both telomerase- negative and telomerase-positive cells, 

which displayed no telomere shortening (Figure 6 and 
Figure 7). Collectively, these findings suggest that 

DNAmTL records cell replication rather than TL. In the 
following, we provide more details. Primary keratin-

ocytes isolated from healthy human skin were grown 

with serial passaging upon confluence, where cell 
numbers were obtained, and their population doublings 

determined. DNA methylation profiles of cells after 

different population doublings were measured using 
Illumina EPIC array. As would be expected, DNAmTL 

of keratinocytes from five heathy donors reduced in 
function of cumulative population doubling (Figure 

6A). Accordingly, while the DNAmTL values of 

neonatal donors 1 to 4 were mutually comparable, that 
of donor 5, which are keratinocytes from a 65 years-old 

donor was markedly smaller, which is in keeping with 
established telomere biology. However, when neonatal 

fibroblasts and adult coronary endothelial cells (EC) 

were compared, the DNAmTL values of adult EC were 
greater than those of neonatal fibroblasts (Figure 6B). 

Possible tissue-specific influence on telomere length 

was ruled out by TRF southern blot analyses which 
revealed that telomeres of neonatal fibroblasts were 

indeed longer than those of adult endothelial cells 
(Figure 6C). This challenges the notion that DNAmTL 

is a surrogate for telomere length in non-blood tissue. If 

it were, then DNAmTL of primary cells that are 
transduced with hTERT should be augmented since this 

enzyme replicates and stabilizes telomeres. The results 
in Figure 7A show that this was not the case, as 

DNAmTL values of primary human fibroblasts con-

tinued  to decrease even  though they  became  immor- 
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talized, and TRF Southern blotting (Figure 7B) 
confirmed that their telomeres were indeed significantly 

increased and stabilized after the introduction of 
hTERT. Collectively, these studies show that DNAmTL 

is not the same as telomere length (especially when it 

comes to in vitro studies), hence indicating that it is 
instead, a DNA methylation-based surrogate for 

biological outcomes that are linked to telomere length in 
blood samples from adults.  

 

DISCUSSION 
 
Considerable technical challenges are inherent in the 

process of measuring telomere length [40, 41].  Our stu- 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

dy was motivated by the recent insight that machine-
learning methods (such as elastic net) can be used to 

develop remarkably robust DNAm based estimators of 
chronological age and mortality risk [12, 14, 15, 17]. 

This robustness is due as much to the mathematical 

prowess of machine learning, as to the nature of the 
biomolecule that is measured, namely methylated DNA. 

Previously reported telomere-associated changes of 
methylation at sub-telomeric regions [26] raised the 

possibility that these changes may be predictive of 

telomere length.  
 

Our overall goals were a) to test whether an optimal 

pattern of DNAm associated  with  TL,  i.e.,  DNAmTL,  

Figure 6. Application of DNAmTL on in vitro keratinocytes, neonatal fibroblasts and adult coronary artery endothelial 

cells.  Panel (A) depicts decreasing DNAmTL values of keratinocytes from five heathy donors as a function of cumulative population 

doubling (y-axis, in units in kilobase). Panel (B) show that DNAmTL values of neonatal fibroblasts are smaller than those of adult coronary 

artery endothelial cells (EC). Both cell types exhibit decreasing DNAmTL in function of cumulative population doubling (x-axis). Panel (C) is 

the average telomere length measurement of neonatal fibroblasts and adult endothelial cells, which revealed that the telomeres of the 

former are longer than those of the latter.  
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captures associations with features of human aging-

related traits and behaviors, and b) to gain a better 
understanding of the biological meaning of such asso-

ciations. Using independent test data, we show that 
DNAmTL exhibits moderately strong correlations with 

measured TL (based on Southern blotting or qPCR) in 

blood and adipose tissue of individuals of different 
racial groups.  

 
Since leukocyte DNAmTL is based on accurate 

measurements of methylated CpG, it is possible that its 

associations with LTL-related traits might actually be 
more robust than mean LTL. Indeed, we found that 

DNAmTL outperformed LTL (based on Southern 

blotting or qPCR) in detecting association with age, sex, 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

ethnicity, lifestyle factors (diet, smoking, education, 

body mass index), and several clinical biomarkers (lipid 
levels, insulin). In addition, DNAmTL had a better 

predictive power than LTL for time-to-death and time-
to coronary heart disease or heart failure. DNAmTL 

was also associated with physical functioning, age-at-

menopause and diet (vegetable consumption, omega 3 
intake) in the following direction: longer DNAmTL was 

associated with good health behavior and practices.  
 

In addition to accurate measurement of methylated 

CpG, there might be another explanation for these 

associations and their biological meaning. Our studies 

in cultured cells with or without telomerase indicate that 

DNAmTL changes in function of cell replication 

Figure 7. Application of DNAmTL on hTERT-transduced primary human fibroblasts. Panel (A) DNAmTL 

of primary neonatal fibroblasts without (Donor A and B) or with hTERT (Donor A hTERT and Donor B hTERT) 

transduction demonstrated linear and continued decrease in value regardless of hTERT status. This contrasts with 

average telomere length measurement by TRF southern blotting (Panel B), which revealed substantial increase in 

telomere length of primary neonatal fibroblasts that were transduced with hTERT-expression vector.  
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independently of telomere attrition. Hence DNAmTL 

might be a read-out of cellular proliferation. This would 

be consistent with the better ability of leukocyte 

DNAmTL than LTL to capture associations with human 

traits and exposures that likely increase the turnover of 

hematopoietic stem/progenitor cells (HSPCs), which is 

the main determinant of LTL shortening [42-44]. Given 

the wide inter-individual LTL variation at birth [45], at 

any age, LTL reflects not only the accruing number of 

HSPC replication but also LTL at birth. Moreover, 

HSPC do have some telomerase activity [46], which is 

likely variable across individuals; therefore, HSPC TL 

shortening per replication might differ across 

individuals. The joint effect of inter-individual 

variations in LTL at birth and the amount of LTL 

shortening per HSPC replication thereafter might 

confound the ability of LTL to serve as an index of 

HSPC replication. This, however, does not apply to 

DNAmTL, as it is independent of telomerase activity.  

 

Our results demonstrate that DNAmTL provides an 

attractive alternative to measured average TL when it 

comes to predicting health outcomes. The superiority of 

DNAmTL over measured LTL when it comes to 

determining the effects of modifiable behavior (e.g., 

smoking, BMI), is clearly an important feature that 

make DNAmTL a useful tool in seeking behavioral 

interventions that support healthy aging. The view that 

DNAmTL captures biologically relevant variation is 

also supported by our study of blood cell counts where 

DNAmTLadjAge is more strongly related to widely 

used biomarkers of immune-senescence (naive and 

exhausted cytotoxic T cells) than is measured LTL.  

 

Although the training data were based on leukocyte 

DNA methylation profiles, we show that DNAmTL is 

applicable to other tissues as well (e.g. liver, adipose, 

and sorted monocytes). The general applicability of 

DNAmTL is important, if it were to be a powerful and 

robust tool. Similar extrapolation of DNAmTL is seen 

with its applicability to the entire age-span, despite the 

fact that the training data were based on adults (22-94 

years old).  

 

Having outlined the strengths of the analyses, we wish 

to acknowledge several limitations and how they were 

mitigated. First, the training and validation data used in 

the development of DNAmTL differed in terms of the 

underlying ethnic composition. However, subsequent 

analyses demonstrated that DNAmTL applies to all 

groups – indicating yet again that DNAmTL has 

successfully captured the underlying biological 

principle associated with LTL. Second, the DNA 

methylation data and LTL measurements in the 

Framingham test data were collected at different time 

points as described above. Nevertheless, the conclusions 

derived from those particular assessments were 

confirmed with analyses of a subset where both LTL 

measurements and DNAmTL were carried out with the 

same DNA samples. Importantly, we validated the 

significant correlation between DNAmTL and LTL in 

additional cohorts (Table 1). Third, our training data 

focused only on blood samples. We have demonstrated, 

however, that DNAmTL also applies to adipose and 

liver tissue, and we have also in vitro evidence that it 

also applies to keratinocytes and fibroblasts. It is to be 

noted that the unit of DNAmTL is retained as kilobases 

even though our in vitro studies demonstrate that its 

impressive correlation with TL notwithstanding, 

DNAmTL does not estimate actual telomere length. The 

preservation of the kilobase unit is purely on the basis 

that DNAmTL was trained using telomeres that are 

measured in these units. 
 

While one of the 140 CpGs underlying DNAmTL is 
located near the TERT locus, it remains to be seen how 

these CpGs relate to telomere biology. The moderate 

enrichment of the DNAmTL CpGs within regions 
proximal to telomeres is consistent with previous 

reports of TL-associated changes in sub-telomeric 
methylation levels [26]. Our cis-mQTL study revealed 

51 neighboring SNPs. Several of these SNPs are related 

to blood cell composition (e.g. granulocytes) and one 
SNP was found to be associated with bipolar disorder, 

which might be linked to LTL [47, 48]. 
 

We initiated this investigation, leveraging experience 

gained from our work with epigenetic clocks, [12, 14, 

15, 17], which we have used in past research to 

demonstrate the difference between telomere attrition 

and epigenetic aging [49]. Our present findings support 

this conclusion. The epigenetic clocks and DNAmTL do 

not share CpGs and the respective genes proximal to 

their CpGs also do not seem to overlap in function. For 

example, the 140 CpGs underlying DNAmTL tend to be 

located near cadherin and cell signaling genes while 

other functional categories were implicated by 

epigenetic clocks. We find that DNAmTL is associated 

with the four epigenetic clocks in the expected way, 

which is that low values of DNAmTLadjAge 

correspond to high epigenetic age acceleration. 

Comparative analysis of 3 large cohorts revealed that 

DNAmTL is in general inferior to epigenetic clocks 

(especially DNAm GrimAge [17]) in predicting lifespan 

and other age-related traits. This is unsurprising as 

DNAm GrimAge was trained using lifespan data. The 

DNAmTL is nonetheless, an important epigenetic 

biomarker because it might provide a mechanistic link 

between cell replication and aging-related diseases and 

environmental exposures. Notwithstanding the clear 

difference between telomere-associated aging and 

epigenetic aging, there is a moderate level of 
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association between DNAmTL and epigenetic clocks, 

which is to be expected as they (directly or indirectly) 

relate to age-related DNAm changes, distinctiveness 

aside [50].  

 

The successful transition of telomere-associated aging 

into a methylation-based assay allows one to use a 

single platform (e.g. the Illumina methylation array) to 

measure two distinct mechanisms of aging - epigenetic 

aging and telomere-associated aging.  

 

Like epigenetic clocks, we expect that DNAmTL will 

become a useful biomarker in human interventional 

studies. A proof-of-concept study is provided by our 

preliminary analysis of omega-3 polyunsaturated fatty 

acid (PUFAs) supplementation. Several large-scale 

studies failed to detect convincing association between 

omega-3 PUFA supplementation and risk of cardiac 

death, sudden death, myocardial infarction, stroke, or 

all-cause mortality [51-53].  However, we find omega-3 

intake to be positively correlated with DNAmTLadjAge 

(robust r=0.088 and P=4.4E-5) and with age-adjusted 

TRF-based LTL (robust r=0.085 and P=0.016, 

Supplementary Figure 15). Future randomized control-

led trials should aim to validate these associations. 

Overall, we expect that DNAmTL will become an 

attractive molecular biomarker of aging due to its 

greater sensitivity to age related conditions than 

measured TL, its ease of use and robustness. 

 

MATERIALS AND METHODS 
 

Epidemiological cohorts 

 

To establish DNAm-based telomere length in 

leukocytes we used N=2256 individuals from the WHI 

BA23 and JHS cohort in the training process and 

N=1078 individuals from the FHS cohort, WHI [54, 

55], JHS [56] cohort in the test process, as listed in 

Table 1. More details of the study cohorts are described 

in Supplementary Note 1. 

 

Our validation analyses involved N=9,785 Illumina 

Infinium 450k or EPIC 850k arrays measuring blood 

methylation levels in N=9,345 individuals from seven 

independent cohorts across nine studies: the FHS 

dataset (N=2,356), WHI BA23 (N=1,389), WHI EMPC 

(N=1972), JHS (N=209), InChianti (N=924 from 1 to 2 

longitudinal measures on 484 individuals), Lothian 

Birth Cohort of 1921 (N=404) and 1946 (N=906), 

Twins UK (N=794) and Bogalusa Heart Study ( N=831, 

Table 1, Supplementary Table 1, and Supple-mentary 

Note 1). All statistical analyses were adjusted for the 

correlation structure due to pedigree effects or repeated 

measurements as described below. 

LTL measurements in training and test datasets 

 

The same lab generated the LTL data across the 3 

cohorts [25]. LTL was measured using Southern blots 

of the terminal restriction fragment length. After 

extraction, DNA was inspected for integrity, digested, 

resolved by gel electrophoresis, transferred to a 

membrane, hybridized with labeled probes and exposed 

to X-ray film using chemiluminescence, as previously 

described in [25]. The inter-assay coefficient of 

variation for blinded pair sets was 2.0% for the WHI, 

1.4% for the JHS and 2.4% for the FHS [25]. 

 

Average telomere length measurement of in vitro 

cultured cells 

 

DNA from primary human fibroblasts were extracted 

according to the protocol provided by Zymo Research 

(USA) using the mini-prep kit (Cat No: D4004). 1.5 

micrograms of DNA were digested with Hinf I and RsaI 

prior to being resolved through a 0.8 % agarose gel. 

DNA was transferred to Hybond N+ nylon membrane 

by Southern transfer, after which it was baked for 20 

minutes 120oC. The subsequent steps of this process are 

as described in the protocol provided by TeloTAGGG 

(Cat No:12209136001, Sigma Aldrich, USA). 

Chemiluminescence signal was captured using a Kodak 

Gel Documentation apparatus and quantified using 

Kodak quantification software. Average telomere length 

was ascertained using the formula described within the 

protocol provided. 

 

Transduction of primary human fibroblasts with 

hTERT 

 

Primary human fibroblasts were isolated from neonatal 

foreskin and transduced with hTERT using recombinant 

retroviruses according to methods previously described 

[49]. 

 

Estimation of surrogate DNAm based telomere 

length in leukocytes 

 

We developed an estimate of LTL based only on DNA 

methylation levels. The estimate was established using 

the elastic net regression model implemented in the R 

package glmnet [51]. The elastic net regression model 

corresponds to a choice of 0.5 for the alpha parameter in 

the glmnet function. Ten-fold cross validation was 

performed in the (WHI and JHS) training data to 

specify the underlying tuning parameter λ. The final 
model was based on lambda.1se, i.e., the λ value that 
led to the minimum cross validated error within one 

standard error. 
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DNAmTL applied to different blood cell types 

 

To evaluate how DNAmTL (and epigenetic clocks such 
as DNAmAge [12], and DNAmAgeSkinBlood [14]) 

differ across different blood cell types, we analyzed 

DNA methylation data from sorted blood cells from 6 
men aged from 27 and 32 years old. DNA methylation 

profiles were generated from peripheral blood mono-

nuclear cells (PBMC) and single cell types: CD4+T, 
CD8+T, and B cells were measured using the Illumina 

Infinium 450k platform.  
 

DNA methylation data 

 

The DNA methylation profiling was based on the 

Illumina Infinium HumanMethylation450K BeadChip 
in the FHS and WHI cohort and was based on the 

Illumina Infinium EPIC 850K BeadChip in the JHS 

cohort. To ensure future use with EPIC arrays, we 
focused on the subset of 450,161 CpGs that were 

present on both platforms. We kept the original 

normalization methods to ensure consistency with 
previous publications. The WHI BA23 were normalized 

using the background correction method implemented 
in the software GenomeStudio. WHI EMPC were 

normalized based on BMIQ [57] for beta-mixture 

quantile normalization. The JHS data were normalized 
using the "noob" normalization method implemented in 

the minfi R package [58, 59].  
 

Statistical models used in validation analysis 
 

Our validation analysis involved several regression 
models. Cox regression for various censored outcomes 

such as time to death (all-cause mortality), time-to-

CHD, time-to-CHF, and time to any cancer. 
Multivariate linear regression for our DNAm based 

measures (independent variable) associated with and 
number of age-related conditions (dependent variable) 

and physical function score, respectively. Linear 

regression was used to relate age at menopause 
(independent variable) with DNAmTL. Logistic 

regression analysis for binary outcomes allowing us to 

estimate odds ratios for the binary variables such as 
cancer status, hypertension, type 2 diabetes, and 

disease-free status. The multimorbidity index was 
defined as the number of age-related conditions 

including arthritis, cataract, cancer, CHD, CHF, 

emphysema, glaucoma, lipid condition, osteoporosis, 
type 2 diabetes (see Supplementary Note 1). In our 

validation analysis, we used the age-adjusted variable, 
DNAmTLadjAge, which is not correlated with 

chronological age. All regression models included the 

following covariates: chronological age, sex, and batch 
effect as needed. To avoid bias due to familial 

correlations from pedigrees in the FHS cohort or intra-

subject correlations resulting from repeated measure-
ments, we used the following techniques. For censored 

time variables, we used robust standard errors, the 
Huber sandwich estimator, implemented in the R 

function "coxph". We used linear mixed models with a 

random intercept term, implemented in the R function 
“lme”. We used generalized estimation equation models 

(GEE), implemented in the gee function, for our logistic 

regression models. Additional covariates related to 
demographic characteristics, psychosocial behaviors 

and clinical covariates were adjusted in multivariate 
Cox models analysis. Those additional covariates 

include BMI, educational attainment (category), alcohol 

consumption (gram/day), self-reported smoking pack-
years, three medical covariates: status of (any) cancer, 

hypertension and type 2 diabetes at baseline. BMI was 
categorized into 3 groups: 18.5 -24.9 (normal), b) 25 to 

29.9 (overweight), and c) >=30 (obese). The categories 

associated with educational attainment were a) less than 
high school, b) high school degree, c) some college, and 

d) college degree and above. Smoking pack-years and 

educational variables were not available in the JHS 
cohort. Smoking status (never, former and current) was 

used in the analysis of the JHS cohort. Our stratified 
analysis was conducted in strata defined by age (<65 

versus ≥ 65 years), BMI, education, prior history of 
hypertension, type 2 diabetes or cancer. All models used 
in the stratified analysis adjusted for age, sex, and 

(possibly) batch effect. 
 

Meta-analysis 

 

We mainly used fixed effects meta-analysis models 

weighted by inverse variance to combine the results 

across validation study sets into a single estimate. 
Toward this end, we used the metafor R function. 

Alternatively, we used Stouffer’s meta-analysis method 
(weighted by the square root of sample size) to combine 

results for variables whose scale/definition differed 

across study sets, e.g. multimorbidity (number of age-
related conditions), disease-free status and physical 

function scores. 

 
Cox models that include blood cell counts 
 

We also fit multivariate Cox regression models that 

adjusted for imputed blood cell counts in addition to 
chronological age, batch, and pedigree structure, for 

predicting time-to-death and time-to-CHD. The blood 
cell counts were imputed based on DNA methylation 

levels as described elsewhere [60, 61]. To avoid multi-

collinearities between blood cell counts, we only 
included the following seven blood cell counts into the 

multivariate model: naïve CD8+T, exhausted cytotoxic 

CD8+ T cells, plasma blasts, CD4+T, natural killer 
cells, monocytes and granulocytes. 
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Heritability analysis 

 

In general, DNAm based biomarkers are highly 

heritable [19, 62, 63]. To evaluate whether 

DNAmTLadjAge is heritable as well, we estimated the 

narrow sense heritability 𝒉𝒉𝟐𝟐 using the polygenic models 

defined in SOLAR and its R interface solarius [64]. 

Heritability is defined as the total proportion of 

phenotypic variance attributable to genetic variation in 

the polygenic model. The quantitative trait DNAmTL 

was adjusted for both age and sex. The robust polygenic 

model (with the option of a t-distribution) was used to 

estimate heritability. The heritability estimate corres-

pondents to the variance component associated with the 

kinship coefficient. We used all individuals from the 

FHS cohort for whom DNA methylation data were 

available (irrespective of the availability of the observed 

LTL measure).  

 

SNP associations of DNAmTL 

 

We performed 14 SNP associations across 10 distinct 

susceptibility loci associated with LTL reported from 

three large-scale studies: (I) meta-analysis association 

of LTL in chromosome 5 TERT only (N=53,724) [36], 

(II) a genome-wide meta-analysis of LTL (N=37,684) 

[37], or (III) a genome-wide meta-analysis of LTL 

(N=26,089) [38]. SNP associations were performed for 

DNAmTLadjAge and LTLadjAge respectively, using 

the individuals of the FHS cohort available for both 

measures (N=811). The association analysis was based 

on linear mixed models whose random covariance 

matrix was determined by kinship coefficients of the 

pedigree structure, adjusted for sex and three principal 

components as fixed effects. We conducted the 

association tests using the function "relmatLmer" from 

the R library "lme4qt". 

  

LTL measures versus blood cell composition 

 

The imputed blood cell abundance measures were 

related to TRF based and DNAm based LTL measures, 

using the training datasets from the WHI BA23 and the 

JHS cohort and the test dataset from the FHS cohort, 

involving n=3,134 individuals. The following imputed 

blood cell counts were analyzed: B cell, naïve CD4+ T, 

CD4+ T, naïve CD8+ T, CD8+ T, exhausted cytotoxic 

CD8+ T cells (defined as CD8 positive CD28 negative 

CD45R negative), plasma blasts, natural killer cells, 

monocytes, and granulocytes. The blood cell com-

position imputation of the naive T cells, exhausted T 

cells, and plasma blasts was based on the Horvath 

method [65]. The remaining cell types were imputed 

using the Houseman method [61]. More details are 

described in Supplementary Methods. To avoid 

confounded by age, we used the age-adjusted DNAmTL 

(DNAmTLadjAge) variable for analysis. The cor-

relation results were combined across studies via the 

same fixed effects meta-analysis model. 

 

GREAT analysis 

 

We applied the GREAT analysis software tool to three 

sets of CpGs: (1) all the 140 CpGs underlying 
DNAmTL model, (2) the 72 CpGs with negative 

coefficients in the model, and (3) the other 68 CpGs 

with positive coefficients in the model. CpGs in non-
coding regions typically lack annotation with respect to 

biological functions. GREAT assigns biological 

meaning to a set of non-coding genomic regions 
(implicated by the CpGs) by analyzing the annotations 

of the nearby genes. Toward this end, the GREAT 
software performs both a binomial test (over genomic 

regions) and a hypergeometric test over genes when 

using a whole genome background. We performed the 
enrichment based on default settings (Proximal: 5.0 kb 

upstream, 1.0 kb downstream, plus Distal: up to 1,000 
kb) for gene sets associated with GO terms, MSigDB, 

PANTHER, KEGG and InterPro pathway. To avoid 

large numbers of multiple comparisons, we restricted 
the analysis to the gene sets with between 5 and 3,000 

genes. We report nominal P values and two adjustments 

for multiple comparisons: Bonferroni correction and the 
Benjamini-Hochberg false discovery rate. 

 
Diet and lifestyle factors 

 

We performed a robust correlation analysis (biweight 

midcorrelation, bicor) or generalized linear regression 

analysis between DNAmTLadjAge and 43 variables 

including 15 self-reported dietary variables, 9 dietary 

biomarkers, 14 variables related to metabolic related 

traits and central adiposity, and 5 life style factors, 

using the FHS, WHI, LBC 1921 and/or LBC 1936 

cohort (N up to 6977), as listed in the first two columns 

in Figure 5. In the FHS cohort, we conducted the robust 

correlation analysis in males and females, respectively. 

Next we combined the results via fixed effect models 

weighted by inverse variance. In the FHS cohort, we 

used linear mixed effects models to account for 

pedigree structure. In the WHI cohort, we conducted the 

robust correlation analysis in each ethnic group 

separately. Next we combined the results via fixed 

effects meta-analysis models. In the LBC cohorts, we 

performed generalized linear regression analysis 

adjusted for sex for the 1921 and 1936 follow-up, 

respectively. Most of the final results were combined 

based on the Stouffer’s method weighted by the square 

root of sample size across the study cohorts. A few 

variables that were only available in both FHS and WHI 

cohort and presented in the same scaling of effect sizes 

were combined based on the fixed effect models 
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weighted by inverse variance. In the FHS cohort, the 

diet and the clinical variables were based on the datasets 

archived in dbGAP pht002350.v4.p10 and 

pht000742.v5.p10, respectively. Both datasets were 

collected at exam 8, aligned with the blood drawn for 

DNA methylation profiles. In the WHI cohort, blood 

biomarkers were measured from fasting plasma 

collected at baseline. Food groups and nutrients are 

inclusive, including all types and all preparation 

methods, e.g. folic acid includes synthetic and natural, 

and dairy includes cheese and all types of milk. The 

individual variables are explained in [66].  

 

Interrogating smoking impact on telomere length in 

blood 

 

We used the 4,039 subjects across seven studies from 

our validation cohorts to compare the smoking 

association with (1) DNAm TL and with (2) measured 

LTL. Multivariate linear regression analysis of telomere 

length on smoking was performed on each study, 

adjusted for chronological age and adjusted sex, 

ethnicity and pedigree effects as needed. Smoking 

information was based on pack years when available 

(N=2216) otherwise based on a binary variable (never 

smokers versus ever smokers). The Stouffer’s method 

weighted by square root of sample size was performed 

to combine the results across all studies. Fixed effect 

models weighted by inverse variance were applied to 

the studies with pack years information and the other 

studies only with the binary smoking variable, 

respectively. 

 
Enrichment analysis of CpGs in DNAmTL near 

telomeres 

 

We performed hypergeometric analysis for evaluating 

the overlap between the 140 CpGs comprising our 

DNAm TL model and the CpGs nearby telomere 

regions from 3 mega base (Mb) at each chromosome 

tail. In the hypergeometric test, the margin for the total 

number of CpGs across whole genome was based on 

453093 CpGs present in both 450k and Epic arrays. 

We also performed sensitivity analysis based on a 

variety of regions thresholded at 2, 4, 6 and 8 Mb 

respectively. 

 

Enrichment analysis of CpGs in DNAmTL annotated 

with DNA methylation quantitative trait locus (mQTL), 

conducted in McRae et al. [35]. The hypergeometric test 

was used to evaluate the overlap of the 140 CpGs with 

52915 cis-mQTL. The mQTL CpGs were identified 

using a stringent criterion described in the original 

reference: a cis-mQTL was identified either in the  

 

Brisbane Systems Genetics Study or in the Lothian 

Birth Cohorts at P < 1.0E-11 and was replicated in the 

other cohort at P < 1.0E-6.  

 

The resulting 51 SNPs underlying cis-mQTL loci were 

cross referenced to GWAS Catalog tool (version v1.02 

database, see URL). We not only report SNPs that met 

genome-wide (P < 5.0E-8) significance levels but also 

suggestive significance (P< 5.0E-6). Similarly, we 

characterized the 51 SNP using the HaploReg (version 

4.1) tool [67] (see URL) which allows one to visualize 

SNPs in linkage disequilibrium (LD r2 ≥ 0.8 based on 
European ancestry).  

 

In vitro cultured cell procedure  

 

Isolation and culture of primary cells  

Primary human neonatal fibroblasts were isolated from 

circumcised foreskins. Informed consent was obtained 

prior to collection of human skin samples with approval 

from the Oxford Research Ethics Committee; reference 

10/H0605/1. The tissue was cut into small pieces and 

digested overnight at 4 °C with 0.5 mg/ml Liberase DH 

in CnT-07 keratinocyte medium (CellnTech) supple-

mented with penicillin/streptomycin (Sigma) and 

gentamycin/amphotericin (Life Tech). Following 

digestion, the epidermis was peeled off from the tissue 

pieces. The de-epidermized tissue pieces were placed 

faced down on plastic cell culture plates and allowed to 

partially dry before addition of DMEM supplemented 

with 10% FBS and antibiotics. After several days 

incubation in a 37 °C, 5% CO2 humidified environment, 

fibroblasts can be seen to migrate out from the tissue 

pieces and when their growth reached confluence, they 

were trypsinized, counted and seeded into fresh plates 

for experiments. Adult human coronary artery 

endothelial cells (HCAEC) were purchased from Cell 

Applications (USA) and cultured in MesoEndo Cell 

Growth Medium (Sigma) at 37 °C humidified incubator 

with 5% CO2. 

 

Neonatal foreskin fibroblasts 

100,000 cells were seeded into a 10cm plate and 

cultured as described above. Upon confluence the cells 

were harvested with trypsin digestion followed by 

neutralization with soybean trypsin inhibitor. The 

number of cells was ascertained and 100,000 was 

taken and seeded into a fresh plate. The remaining 

cells were used for DNA extraction. Population 

doubling was calculated with the following formula: 

[log(number of cells harvested) – log(number of cells 

seeded)] x 3.32. Cumulative population doubling was 

obtained by addition of population doubling of each 

passage. 
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Adult human coronary artery endothelial cells 

500,000 cells were seeded into a fibronectin-coated 

75cm2 flask and cultured as described. The procedure of 

passing the cells, counting and ascertaining population 

doubling is similar to those described for neonatal 

foreskin fibroblasts above. 

 

Retroviral-mediated transduction of cells with hTERT 

vectors 

Retroviral vectors bearing wildtype hTERT (Addgene, 

cat. 1774), was transfected into Phoenix A cells using 

the calcium chloride method according to the 

manufacturer’s instructions (Profection Cat No: E1200 

Promega). The next day, media were removed from the 

transfectants and replaced with DMEM supplemented 

with 10% foetal calf serum. The following day, the 

media containing recombinant retroviruses were 

collected, filtered through 0.45micron filter and mixed 

with polybrene (Sigma) up to 9ug/ml and used to feed 

the cells intended for infection. The next day, fresh 

media containing puromycin (1ug/ml) was given to the 

cells. After 3-4 days when all the control cells in the 

uninfected plates were dead, the surviving infectants 

were grown and used for experiments as described 

above. 

 

DNA extraction in the in vitro experiments  

DNA was extracted from cells using the Zymo Quick 

DNA mini-prep plus kit (D4069) according to the 

manufacturer’s instructions and DNA methylation 

levels were measured on Illumina 850 EPIC arrays 

according to the manufacturer’s instructions. 

 

URLs 

 

GWASCatalog, 

https://www.ebi.ac.uk/gwas/search?query=28346442 

HaploReg, 

http://www.broadinstitute.org/mammals/haploreg/haplo

reg.php 
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