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Abstract

Developmental tumors in children and young adults carry few genetic alterations, yet they have 

diverse clinical presentation. Focusing on Ewing sarcoma, we sought to establish the prevalence 

and characteristics of epigenetic heterogeneity in genetically homogeneous cancers. We performed 

genome-scale DNA methylation sequencing for a large cohort of Ewing sarcoma tumors and 

analyzed epigenetic heterogeneity on three levels: between cancers, between tumors, and within 

tumors. We observed consistent DNA hypomethylation at enhancers regulated by the disease-

defining EWS-FLI1 fusion protein, thus establishing epigenomic enhancer reprogramming as a 

ubiquitous and characteristic feature of Ewing sarcoma. DNA methylation differences between 

tumors identified a continuous disease spectrum underlying Ewing sarcoma, which reflected the 

strength of an EWS-FLI1 regulatory signature and a continuum between mesenchymal and stem 

cell signatures. There was substantial epigenetic heterogeneity within tumors, particularly in 
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patients with metastatic disease. In summary, our study provides a comprehensive assessment of 

epigenetic heterogeneity in Ewing sarcoma and thereby highlights the importance of considering 

nongenetic aspects of tumor heterogeneity in the context of cancer biology and personalized 

medicine.

Ewing sarcoma (EwS) is a developmental cancer defined and diagnosed by the presence of 

the EWS-FLI1 fusion oncogene1,2. Despite this shared molecular basis, the clinical 

presentation and disease courses of patients with EwS vary3–5. This heterogeneity is not 

reflected by the genetics of EwS, which is characterized by few somatic mutations6 and only 

three genes with recurrent genetic lesions (CDKN2A, STAG2 and TP53)7–9. We 

hypothesized that the observed clinical heterogeneity might coincide with widespread 

epigenetic heterogeneity, given that two recent studies established the relevance of 

epigenetics in EwS by identifying a direct link between the EWS-FLI1 fusion protein and 

widespread epigenomic reprogramming10,11.

To characterize epigenetic heterogeneity in EwS, we performed DNA methylation 

sequencing in a large collection of EwS tumors, many of which had previously undergone 

whole-genome sequencing9. We focused this analysis on DNA methylation as the classic 

epigenetic mark, which is intricately linked to cancer12 and well-suited for dissecting tumor 

heterogeneity13,14. On the basis of the resulting data set, we investigated epigenetic 

heterogeneity on three levels (Fig. 1a): (i) Analysis of inter-cancer heterogeneity identified 

EwS-specific patterns that accurately distinguished them from other cell types not 

expressing EWS-FLI1; (ii) analysis of inter-individual heterogeneity identified DNA 

methylation signatures that were stronger in some patients than in others, reflecting 

epigenomic differences between tumors; and (iii) analysis of intra-tumor heterogeneity 

quantified the variability among single cells within the same tumor.

In contrast to many other cancers, differences between EwS tumors did not uncover discrete 

subtypes, but instead defined a continuous spectrum along two distinct and biologically 

interpretable dimensions. Individual tumors differed by the strength of an EWS-FLI1 

regulatory signature and along a continuum defined by mesenchymal versus stem cell 

signatures, which potentially reflects the regulatory state of the cell from which the tumor 

was originally derived. Together, these two dimensions established an epigenetic disease 

spectrum underlying EwS, which was associated partially with somatic mutations in STAG2 
and TP53. EwS tumors also differed in their intra-tumor heterogeneity, and primary tumors 

from patients who presented with metastatic disease were more heterogeneous than those of 

patients with localized disease. In summary, this study provides a comprehensive assessment 

of DNA methylation heterogeneity in EwS, as well as a resource for studying epigenomic 

deregulation and tumor heterogeneity in genetically homogeneous cancers.
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Results

DNA methylation profiling uncovers a unique and predictive epigenomic signature of 
Ewing sarcoma

To dissect epigenetic tumor heterogeneity in EwS, we established DNA methylation maps 

for 140 EwS tumors (Supplementary Table 1). DNA methylation profiling was performed by 

using reduced representation bisulfite sequencing (RRBS)15,16, which is an accurate and 

high-throughput assay for DNA methylation profiling17. Data quality was consistently high 

(Supplementary Fig. 1a–c and Supplementary Table 2), and genomic coverage included not 

only CpG islands and promoter regions, but also many CpGs located in distal enhancers, 

CpG island shores and other functional elements (http://sheffield2017.computational-

epigenetics.org). For assay validation, we performed whole genome bisulfite sequencing 

(WGBS) on three representative samples and observed high consistency with the RRBS data 

(Supplementary Fig. 1d). We also profiled 16 EwS cell lines with RRBS, including six low-

passage cell lines derived from tumors that were part of our cohort. Finally, given the 

proposed role of mesenchymal stem cells (MSCs) as a potential cell-of-origin of EwS18, we 

generated RRBS data for 32 primary MSC samples obtained from bone marrow (n = 22), 

placenta (n = 2), and umbilical cord (n = 8) from both patients with EwS and healthy 

individuals (Supplementary Table 1).

On the basis of this data set, we investigated epigenetic heterogeneity between cancers, 

between patients, and within individual tumors (Fig. 1a). We compared the EwS tumor 

profiles to publicly available RRBS data for several other cancers and cell types 

(Supplementary Table 2). Unsupervised visualization using multidimensional scaling 

separated the EwS samples from all other cancers (Fig. 1b). To confirm and quantify this 

observation, we trained a logistic regression classifier on the DNA methylation profiles and 

found that this classifier could distinguish between EwS tumors and a diverse set of other 

cell types (Supplementary Table 2) with a cross-validated test-set accuracy of 98.6% 

(Supplementary Fig. 1e). Focusing on our RRBS data set, we also observed that the MSCs 

separated by tissue-of-origin independently of donor age (Fig. 1c), whereas the EwS cell 

lines continued to cluster with the EwS tumors, albeit with a tendency toward the edge. A 

logistic regression classifier distinguished between EwS tumors and MSCs with 99.4% 

accuracy (Supplementary Fig. 1f). Low-passage cell lines most closely resembled those 

tumors from which they were derived (Supplementary Fig. 1g), which highlights that 

patient-specific DNA methylation characteristics were retained in early-passage EwS cell 

lines cultured in vitro.

To determine an EwS-specific DNA methylation signature, we compared the EwS tumor 

profiles to a diverse set of RRBS profiles representing more than 50 different cell types 

(Supplementary Table 2). We identified 2,917 CpGs that were specifically hypomethylated 

in EwS (Fig. 1d) and 1,820 CpGs that were specifically hypermethylated (Fig. 1e) The EwS-

specific hypomethylated CpGs were exclusive to EwS samples and were heavily methylated 

in essentially all other cell types, whereas the difference was less pronounced for EwS-

specific hypermethylated CpGs. We performed region set enrichment analysis with LOLA19 

to test these CpGs for enrichment against the LOLA Core database, which consists of a 
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broad collection of DNaseI hypersensitive elements20, chromatin immunoprecipitation 

sequencing (ChIP-seq) peaks21,22 and other regulatory region sets23,24. EwS-specific 

hypomethylated CpGs were enriched for EwS-specific enhancers11 (Fig. 1d and 

Supplementary Table 3), which validates our use of DNA methylation as a marker of 

epigenomic reprogramming in EwS tumors. EwS-specific hypomethylated CpGs were also 

enriched for open chromatin in prostate cancer cell lines, which might be explained by the 

biological similarity between EWS-FLI1 and the prostate-specific TMPRSS2-ERG fusion 

protein, both of which include an ETS factor as a fusion partner25. By contrast, EwS-

specific hypermethylated CpGs overlapped with developmental regulators of various 

lineages, including polycomb-repressed regions in pluripotent stem cells, AP-1 binding sites, 

and binding sites of various developmental transcription factors (Fig. 1e and Supplementary 

Table 3). The characteristic DNA methylation profiles of EwS samples are also illustrated by 

epigenome snapshots of individual loci (Fig. 1f,g).

Collectively, these results establish a DNA methylation signature that was shared by all EwS 

tumors, distinguishing them with remarkable sensitivity and specificity from other cell types 

in our data set. EwS cells are thus marked by a highly characteristic epigenomic state, which 

we further investigated by ChIP-seq analysis for seven histone marks in three representative 

tumors (Supplementary Fig. 2). DNA methylation levels were consistently anti-correlated 

with histone H3 lysine 27 acetylation (H3K27ac), a defining mark of active enhancers26,27 

(Supplementary Fig. 3a,b). Furthermore, patient-specific differences in DNA methylation 

reflected patient-specific differences in H3K27ac, with 65% of the most variable regions 

showing a Pearson correlation below –0.8 (Supplementary Fig. 3c). These results confirm 

that the observed differences in DNA methylation reflect broader epigenomic differences 

between patients.

Ewing sarcoma is epigenetically heterogeneous in the absence of discrete disease 
subtypes

To compare inter-individual heterogeneity in different cancer types, we calculated the 

coefficient of variation (CV, defined as the ratio between s.d. and mean) of DNA 

methylation levels across the genome, which has been proposed as a measure of global 

heterogeneity within a DNA methylation data set28. EwS fell in the medium-to-high range 

of CV values that we observed across several cancers and cell types (Fig. 2a). Specifically, 

the CV of EwS was on par with that of prostate cancer and chronic lymphocytic leukemia 

(CLL), two genetically heterogeneous cancers of the elderly (the average age of diagnosis is 

~66 years for prostate cancer and ~71 years for CLL, as opposed to ~15 years for EwS). 

This result is unlikely to be biased by differences in sample purity, given that CV values 

were similar between primary EwS tumors and EwS cell lines grown in vitro (Fig. 2a), and 

that there was no correlation between CV contribution and estimated tumor purity among 

the EwS tumors (Supplementary Fig. 4a). EwS tumors thus seem to be characterized by 

substantial epigenetic heterogeneity, which contrasts with the genetic homogeneity of EwS.

To dissect the biological basis of DNA methylation heterogeneity among EwS tumors, we 

focused on four types of genomic region with previously reported regulatory relevance in 

EwS (Fig. 2b and Supplementary Fig. 4b): (i) EwS-specific DNaseI elements based on 
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DNase-seq data for an EwS cell line (SK-N-MC)20; (ii) EWS-FLI1-correlated enhancers, 

defined as elements that lose H3K27ac signal upon EWS-FLI1 knockdown11; (iii) EWS-

FLI1 binding sites based on ChIP-seq for EWS-FLI1 in an EwS cell line (A673)25; and (iv) 

EWS-FLI1-anti-correlated enhancers, defined as elements that gain H3K27ac signal upon 

EWS-FLI1 knockdown11. DNA methylation levels were most variable at EwS-specific 

DNaseI elements and at EWS-FLI1-anti-correlated enhancers (Fig. 2b and Supplementary 

Fig. 4b,c). Inter-individual differences in DNA methylation in these regions were associated 

with differences in H3K27ac (Fig. 2c,d), which indicates that the observed patterns of DNA 

methylation heterogeneity reflect broader epigenomic variability at Ewing-specific 

regulatory regions.

We expected the inter-individual differences among EwS tumors to group them into a few 

distinct and epigenomically defined disease subtypes, as observed for other cancers29–33. 

To test this hypothesis, we applied various unsupervised clustering methods to our DNA 

methylation data set. However, none of these methods provided convincing evidence of 

distinct EwS subtypes, but rather identified broadly distributed patterns reminiscent of a 

continuous disease spectrum (Fig. 2e). The absence of any consistent and reproducible 

disease subtypes in our data set was confirmed by multiple lines of evidence, including 

coverage-based data filtering, imputation of missing values, use of pairwise shared CpGs, 

and averaging across tiling regions (Supplementary Fig. 5), and we also did not observe a 

consistent association between the data set’s principal components and various clinical 

variables (Supplementary Fig. 6).

DNA methylation heterogeneity defines an epigenetic disease spectrum in Ewing sarcoma

Given widespread inter-individual heterogeneity in the absence of well-defined patient 

clusters or disease subtypes, we focused once more on the four genomic region sets with 

regulatory relevance in EwS (introduced in Fig. 2b), and we analyzed how DNA methylation 

in these regions varied across samples. Overlaying all regions in each of the sets, we 

calculated four DNA methylation profiles that aggregate the DNA methylation levels of 

these regions (Fig. 3a). Because DNA methylation levels are anti-correlated with 

transcription factor occupancy and regulatory activity34–38, we used these aggregate DNA 

methylation profiles to define the ‘methylation-based inference of regulatory activity’ 

(MIRA) score as a quantitative measure of the regulatory activity of a given region set in a 

given sample (Fig. 3b).

By comparing aggregate DNA methylation profiles and MIRA scores in EwS samples with a 

diverse set of reference profiles (Supplementary Table 2), we observed the most striking 

differences for the first and the last of the four region sets (Fig. 3c). EwS-specific DNaseI 

elements showed strong dips and high MIRA scores specifically in EwS tumors and cell 

lines, indicating the presence of EwS-specific activity at these elements. EWS-FLI1 binding 

sites and EWS-FLI1-correlated enhancers behaved similarly, although these regions had 

lower DNA methylation levels in all tissues and a smaller difference in MIRA score between 

EwS and reference samples. Finally, for EWS-FLI1-anti-correlated enhancers, we observed 

higher levels of DNA methylation in the EwS samples and MIRA scores that were within 

the range observed among the reference samples.
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Focusing on the EwS-specific DNaseI elements and grouping the reference samples by cell 

type, only EwS tumors and EwS cell lines had positive MIRA scores (indicative of 

regulatory activity at these EwS-specific DNaseI elements), whereas all other cell types—

including various cancers, primary tissues, and cultured cell lines—had negative MIRA 

scores (Fig. 3d and Supplementary Fig. 7). By contrast, plotting the MIRA scores for EWS-

FLI1-anti-correlated enhancers (Fig. 3e) placed EwS tumors and EwS cell lines in the 

middle of a continuous spectrum. On the basis of the RRBS profiles and annotations of the 

reference samples, we found that this spectrum was marked by mesenchymal cells at one 

end (high MIRA scores, indicating strong regulatory activity) and pluripotent stem cells at 

the other end (low MIRA scores, indicating little or no regulatory activity).

Our analysis thus uncovered two biologically informative dimensions underlying the 

observed DNA methylation heterogeneity in EwS. The first dimension is defined by EwS-

specific DNaseI hypersensitive elements and seems to measure the degree to which a 

tumor’s epigenome has been reprogrammed to the characteristic regulatory state of EWS-

FLI1 expressing cells (Fig. 3f). The second dimension, which is defined by EWS-FLI1-anti-

correlated enhancers, reflects the relative strength of a mesenchymal differentiation 

signature as opposed to a signature associated with pluripotent stem cells (Fig. 3g). When 

plotted, the scores of individual EwS tumors along these two dimensions cover a continuous 

spectrum (Fig. 3f,g), with little correlation between the two (Pearson’s r = –0.23; 

Supplementary Fig. 8a).

The observed DNA methylation differences along these two dimensions could not be 

explained as a side effect of technical or biological biases. First, higher tumor purity was 

positively correlated with higher scores on the Ewing-like dimension mainly because of a 

few outliers with low tumor purity (r = 0.52 dropping to 0.17 when these samples are 

removed; Supplementary Fig. 8b). Second, the mesenchymal dimension was largely 

uncorrelated with tumor purity (r = –0.26, Supplementary Fig. 8c). Third, the distribution of 

EwS cell lines cultured in vitro (which did not have any adjacent tissue) was similar to the 

EwS tumors (Fig. 3f,g), which suggests that a sample’s position along these two dimensions 

is a cell-intrinsic property. Fourth, there was no apparent association between tumor location 

in the body and either of the two dimensions (Supplementary Fig. 8d). Our results thus 

establish an epigenetic disease spectrum underlying EwS, defined by ‘Ewing-like’ and 

‘mesenchymal versus stem-like’ regulatory signatures as its two dimensions.

Ewing sarcoma tumors are characterized by high and variable levels of intra-tumor 
heterogeneity

Having investigated DNA methylation heterogeneity between cancers (Fig. 1) and between 

individuals (Figs. 2 and 3), we next focused on DNA methylation differences between 

individual cells within the same tumor. RRBS provides a powerful tool for dissecting such 

intra-tumor heterogeneity, given that DNA methylation is a binary mark, and that each 

sequencing read captures the DNA methylation status of one allele obtained from one single 

cell. We used two bioinformatic methods for assessing intra-tumor heterogeneity in EwS: 

the ‘proportion of discordant reads’ (PDR) and the ‘proportion of sites with intermediate 

methylation’ (PIM).
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The PDR score has been proposed as a measure of locally disordered DNA methylation13. It 

is calculated as the proportion of discordant sequencing reads among all RRBS reads that 

cover at least four CpGs, where discordant reads are defined as those that contain both 

methylated and unmethylated CpGs, and concordant reads contain only methylated or only 

unmethylated CpGs. High PDR values have been interpreted as an indicator of epigenomic 

instability in individual cells, which might contribute to clonal evolution13. Calculating 

PDR scores for our data set, we observed that these values were strongly associated with 

average DNA methylation levels. They were highest in regions with intermediate DNA 

methylation levels (Supplementary Fig. 9a) and lowest in regions with DNA methylation 

levels near 0% or near 100% (Supplementary Fig. 9b). The average PDR score across all 

EwS tumors was in the same range as those for chondrosarcoma and prostate cancer, but 

lower than those for acute promyelocytic leukemia, CLL, and glioblastoma (Fig. 4a).

To complement and extend these analyses, we investigated intermediate DNA methylation 

levels as an alternative measure of epigenetic intra-tumor heterogeneity. The PIM score 

leverages the binary character of DNA methylation: a single allele in a single cell is either 

0% or 100% methylated, and intermediate DNA methylation arises from averaging across a 

heterogeneous population that comprises both methylated and unmethylated alleles of a 

given CpG. Intermediate DNA methylation levels thus reflect cell-to-cell heterogeneity. We 

identified CpGs with intermediate DNA methylation levels in a given sample using a 

Bayesian binomial credibility interval (Fig. 4b and Supplementary Fig. 9c) and calculated 

PIM scores for each sample. To compare PIM scores between data sets, we controlled for 

differential CpG coverage by restricting the analysis to shared CpGs in each pair of samples, 

calculating relative PIM scores as the ratio of pairwise shared CpG sites with intermediate 

DNA methylation in one sample versus another (Fig. 4b). All pairwise relative PIM scores 

for a given sample versus all other samples were averaged, and their sample-specific mean 

was used as an indicator of the sample’s overall level of intra-tumor heterogeneity.

We observed high relative PIM scores among the EwS tumors (Fig. 4c), which places them 

in a range of intra-tumor heterogeneity similar to that of acute promyelocytic leukemia and 

CLL, and above that of prostate cancer. There was substantial variability between EwS 

tumors, in part owing to differences in tumor purity (r = –0.46, corresponding to 21% 

variance explained), which we statistically corrected for as described below. The more 

homogeneous EwS cell lines had lower average relative PIM scores than EwS tumors 

(Wilcoxon P value < 10–4), but even their PIM scores were higher than those of prostate 

cancer.

Comparing PDR and PIM scores genome-wide, we observed substantial correlation not only 

across genomic regions (r = 0.76; Fig. 4d), but also across samples within a given genomic 

region (median r = 0.51; Supplementary Fig. 9d), which suggests the measures capture 

related but distinct aspects of intra-tumor heterogeneity. For example, PIM identifies regions 

with a combination of fully methylated and fully unmethylated reads as heterogeneous, 

whereas PDR does not; by contrast, PDR identifies regions with consistent and reproducible 

patterns of methylated and unmethylated CpGs as disordered, whereas PIM considers them 

homogeneous (Fig. 4d). One practical advantage of PIM over PDR is that it can assess 

heterogeneity at any covered CpG, not just those in reads spanning at least four CpGs, which 
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resulted in much higher genomic coverage for PIM (Supplementary Fig. 9e). Regions with 

high average PDR or PIM among the EwS samples (mean score across samples exceeding 

80%) were strongly enriched for intronic as well as intergenic regions, highlighting that 

intra-tumor heterogeneity is most prevalent outside of gene promoters (Supplementary Fig. 

9f,g). In summary, our analyses identified high and variable levels of intra-tumor 

heterogeneity in EwS, which were in the same range as those observed for much more 

genetically heterogeneous cancers.

DNA methylation heterogeneity in EwS can be linked to genetic and clinical data

On the basis of the pronounced differences in epigenetic heterogeneity that we observed 

among EwS tumors, we explored associations with genetic as well as clinical data. Focusing 

on the 79 EwS tumors that had whole-genome sequencing data9 (which allowed us to 

statistically control for differences in tumor purity), we compared the heterogeneity scores 

defined above (MIRA, PDR, and PIM) with patient annotations such as age, metastatic 

status at diagnosis, tumor size, tumor location, relapse status, and mutations for STAG2, 

TP53, and CDKN2A. After controlling for tumor purity and sex using linear models 

(Supplementary Fig. 10), we identified significant associations between MIRA scores and 

somatic mutation status, between PDR scores and tumor location, and between PIM scores 

and metastatic status at diagnosis (Fig. 5a and Supplementary Figs. 11 and 12).

Comparing 16 tumors with a STAG2 mutation to 63 tumors without such a mutation, we 

observed significantly lower MIRA scores for EWS-FLI1-anti-correlated enhancers in the 

STAG2 mutated tumors (Wilcoxon P value < 0.01; Fig. 5b). This result places the STAG2 
mutated tumors in the more stem-like area of the EwS spectrum, which is consistent with 

recent research showing that cohesin mutants enforce stem cell programs39. The deletion of 

CDKN2A, which is a relatively common genetic lesion in EwS, showed no significant 

association (Wilcoxon P value > 0.1; Supplementary Fig. 11), but among the seven TP53-

mutated tumors in our cohort, we observed increased MIRA scores for EwS-specific DNaseI 

elements; this places TP53 mutants in the more Ewing-like area of the spectrum (Wilcoxon 

P value < 0.03; Fig. 5c).

Focusing on intra-tumor heterogeneity, we observed significantly higher PDR scores for 

tumors whose primary location was in the spine (Wilcoxon P value < 0.02). EwS tumors in 

the spine also had lower MIRA scores for EWS-FLI1-correlated enhancers and for EwS-

specific DNaseI elements (Supplementary Fig. 12). However, given that only six tumors 

with primary location in the spine were included in our data set, there is limited statistical 

support for such an association between intra-tumor heterogeneity and tumor location.

Finally, we observed a significant association between PIM scores and metastatic status at 

diagnosis. On average, primary tumors from patients whose disease was already metastatic 

at diagnosis had higher PIM scores (indicating higher intra-tumor heterogeneity) than those 

observed for patients with localized disease (Wilcoxon P value < 0.03; Fig. 5d). A logistic 

regression model predicting metastatic status at diagnosis solely on the basis of PIM score 

performed significantly better than expected by chance, with an area under curve (AUC) 

value of 0.66 and a permutation P value below 0.04 (Fig. 5e).
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Discussion

Our study establishes the prevalence and characteristics of epigenetic tumor heterogeneity in 

EwS on the basis of DNA methylation sequencing and bioinformatic analysis of a large 

patient cohort. Analyzing DNA methylation patterns across cancer types, we identified 

patterns of enhancer reprogramming that were shared by all EwS samples. But we also 

observed substantial epigenetic tumor heterogeneity between patients and within tumors, 

which stands in stark contrast to the genetic homogeneity of EwS.

We and others have previously reported characteristic changes of the epigenome in EWS-

FLI1 expressing cells10,11, yet we were surprised to see how unique and predictive the 

DNA methylation patterns of EwS were in comparison to a broad range of reference 

samples. Bioinformatic classification based on our DNA methylation data set resulted in 

test-set accuracies close to 100% for distinguishing EwS samples from various other cell 

types (including MSCs, a potential cell-of-origin of EwS). Regions that were demethylated 

in EwS but methylated in other cell types were strongly enriched for EwS-specific DNaseI 

elements, most of which were located outside of gene promoters and constitute putative 

enhancer elements. Our data thus support the conceptualization of EwS as an ‘enhancer 

disease,’ with widespread epigenomic reprogramming driven by EWS-FLI1.

Epigenetic heterogeneity between patients with EwS followed unexpected patterns. Rather 

than identifying a small number of distinct subtypes, as observed for many other cancers29–

33, we found that DNA methylation differences in EwS gave rise to a continuous disease 

spectrum along two dimensions. First, the EWS-FLI1 regulatory signature was stronger in 

some EwS tumors than in others, and also slightly stronger in cell lines than in tumors. 

Second, the EwS tumors were broadly scattered across a continuum, with a mesenchymal 

regulatory signature on one end and a pluripotent stem cell signature on the other end. We 

speculate that the latter dimension might reflect the differentiation state of the cell-of-origin 

from which a specific EwS tumor has been derived, whereas the former dimension might 

reflect the depth and degree with which the epigenome of the cancer cells has been 

reprogrammed to the characteristic EwS-specific enhancer state.

We also observed substantial epigenetic heterogeneity within individual tumors, which we 

bioinformatically quantified on the basis of the RRBS data. Primary tumors from patients 

that were metastatic at diagnosis had higher PIM scores (indicating higher intra-tumor 

heterogeneity) than tumors of patients with localized disease. This observation is consistent 

with the emerging view that tumor heterogeneity tends to be higher in patients with more 

aggressive disease40. However, at this stage, we can only speculate whether the observed 

patterns of epigenetic heterogeneity might have any causal role in EwS (for example, by 

fueling clonal evolution41) and to what degree the patterns are caused by other regulatory 

mechanisms, such as EWS-FLI1 binding to the DNA.

Finally, our study describes broadly applicable methods for dissecting epigenetic 

heterogeneity, which contribute to ongoing research into the biological and medical 

relevance of tumor heterogeneity42. Focusing on DNA methylation as a measure of 

epigenetic heterogeneity has important advantages, including its correlation with other 
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epigenomic marks and with transcription factor binding (we observed a clear footprint of 

EWS-FLI1 binding in our DNA methylation maps), high accuracy and robustness of clinical 

DNA methylation assays43, and existing proof of concept that DNA methylation biomarkers 

can help to inform personalized cancer therapy44,45.

Online Methods

Ewing sarcoma tumors

EwS tumor samples from 140 patients were included in the analysis (Supplementary Table 

1). In all cases, the EwS diagnosis was ascertained by testing for the presence of an EWS-

ETS fusion. Of the 140 EwS tumors, 96 were provided by the tumor bank at the Institut 

Curie (Paris, France), 25 tumors by CCRI (Vienna, Austria), 11 by Biobank Graz (Graz, 

Austria), and eight by the biobank of the European Intergroup Cooperative Ewing’s Sarcoma 

Study (Münster, Germany). Most of the French samples (79 out of 96) have recently 

undergone whole-genome sequencing9, thus providing comprehensive maps of genetic 

lesions that were included in the analysis. Genome-sequencing data also established 

estimates of tumor purity for these samples, which were obtained from the supplementary 

material of the previous study9. Specifically, tumor purity was estimated on the basis of the 

loss of heterozygosity, copy number change, and mutated allele fraction of single-nucleotide 

variants using established methodology46. Most patients with EwS were treated according 

to the EuroEwing protocol47 or slight variations thereof. Informed consent was obtained 

according to the Declaration of Helsinki, and the study was approved and overseen by the 

ethics committees of the contributing institutions.

Ewing sarcoma cell lines

EwS cell lines were obtained from several sources. The STA-ET series was established at 

the CCRI (Vienna, Austria)48. STA-ET-2.1 and STA-ET-2.2 were generated from a biopsy 

of the primary tumor and a bone marrow infiltrate from one patient; STA-ET-7.1 and STA-

ET-7.3 were generated from the primary tumor and a distant metastasis; STA-ET-8.1 

(primary tumor) and STA-ET-8.2 (pleural effusion) were also established from the same 

patient. STA-ET-5, STA-ET-7.1, STA-ET-9, STA-ET-10, STA-ET-21, and STA-ET-22 were 

established from tumors that were included in the cohort of 140 tumor samples selected for 

this study. SK-N-MC cells were obtained from J. Beidler (Memorial Sloan Kettering Cancer 

Center, New York, USA). WE68 and WE68M2 were established from the same patient and 

provided by F. Van Valen (University Hospital Münster, Germany). CHLA-9 and CHLA-10 

were established from the same patient and provided by P. Sorensen (British Columbia, 

Canada). Additional annotations are listed in Supplementary Table 1.

Mesenchymal stem cells

Low-passage human MSCs were provided by the Centro de Investigación del Cáncer 

(Salamanca, Spain) and Paracelsus Medical University (Salzburg, Austria). They were 

obtained from the bone marrow of patients with EwS, as well as from bone marrow, 

umbilical cord, and placenta of healthy individuals. MSCs were cultured as previously 

described49,50. Additional annotations are listed in Supplementary Table 1.
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DNA extraction

DNA was isolated from 10 mg to 25 mg of snap-frozen tumors, cell lines, and MSCs by 

standard proteinase K digestion and phenol/chloroform extraction. DNA was quantified 

using a Qubit 2.0 Fluorometer (ThermoFisher Scientific, Q32866) and the Qubit dsDNA BR 

Assay Kit (ThermoFisher Scientific, Q32850).

RRBS

RRBS was performed as described previously51,52, starting with 100 ng of genomic DNA 

per sample. Custom-designed methylated and unmethylated oligonucleotides were added at 

a concentration of 0.1% to serve as spike-in controls for monitoring bisulfite conversion 

efficiency. After adaptor ligation, RRBS libraries were quantified by qPCR and pooled in 

combinations of six. For library enrichment, the number of PCR cycles was determined by 

qPCR and never exceeded 18 cycles. The library was purified twice using Agencourt 

AMPure XP beads (Beckman Coulter, A63880). Quality control for the final library was 

performed by measuring the DNA concentration with the Qubit dsDNA HS assay 

(ThermoFisher Scientific, Q32851) on Qubit 2.0 Fluorometer (ThermoFisher Scientific, 

Q32866) and by determining library fragment sizes with the Experion DNA 1K Analysis kit 

(Bio-Rad, 700-7107) on the Experion Automated Electrophoresis Station (Bio-Rad, 

701-7000). Libraries were sequenced on Illumina HiSeq 2000/2500 machines.

WGBS

WGBS for three primary human tumors was performed using the μWGBS workflow 

described previously53, starting with 50 ng of genomic DNA per sample. Bisulfite 

conversion followed the EZ DNA Methylation-Direct Kit (Zymo Research, D5020), with the 

modification of eluting the DNA in only 9 μl of elution buffer. Custom-designed methylated 

and unmethylated oligonucleotides were added at a concentration of 0.1% to serve as spike-

in controls for monitoring bisulfite conversion efficiency. Libraries for next-generation 

sequencing were prepared using the EpiGnome Methyl-Seq kit (Epicentre, EGMK81312). 

The library was purified twice using Agencourt AMPure XP beads (Beckman Coulter, 

A63880). Quality control for the final library was performed by measuring the DNA 

concentration with the Qubit dsDNA HS assay (Life Technologies, Q32851) on Qubit 2.0 

Fluorometer (Life Technologies, Q32866) and by determining library fragment sizes with 

the Experion DNA 1K Analysis kit (Bio-Rad, 700-7107) on the Experion Automated 

Electrophoresis Station (Bio-Rad, 701-7000). Libraries were sequenced on Illumina HiSeq 

2000/2500 machines.

ChIP-seq

ChIP-seq for three primary human tumors was done as described previously11. Chromatin 

was prepared from 20 to 50 sections (25 μm each) of snap-frozen tumors obtained by 

microtome sectioning. The following antibodies were used: H3K4me3 (1 μg/ChIP; 

Diagenode, C15410003-50), H3K27me3 (1 μg/ChIP; Diagenode, C15410195), H3K4me1 (1 

μg/ChIP; Diagenode, C15410194), H3K27ac (1 μg/ChIP; Diagenode, C15410196), 

H3K56ac (4 μl/ChIP; Active Motif, 39281), H3K9me3 (1 μg/ChIP; Diagenode, 

C15410193), and H3K36me3 (1 μg/ChIP; Diagenode, C15410192). Library preparation for 
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ChIP DNA and input control DNA was performed using the NEBNext Ultra kit (New 

England Biolabs, E7370S/L) following the manufacturer’s instructions. Quality control for 

the final libraries was done by measuring the DNA concentration with the Qubit dsDNA HS 

assay (Life Technologies, Q32851) on Qubit 2.0 Fluorometer (Life Technologies, Q32866) 

and by determining library fragment sizes with the Experion DNA 1K Analysis kit (Bio-

Rad, 700-7107) on the Experion Automated Electrophoresis Station (Bio-Rad, 701-7000). 

Libraries were sequenced on Illumina HiSeq 2000/2500 machines.

RRBS/WGBS data processing

Bisulfite sequencing data were processed with a custom pipeline (http://

sheffield2017.computational-epigenetics.org), which was based on Pypiper (http://

databio.org/pypiper) and Looper (http://databio.org/looper). Read sequences were trimmed 

using Trimmomatic with ILLUMINACLIP settings “:2:40:7 SLIDINGWINDOW:4:15 

MAXINFO:20:0.50 MINLEN:18”. Reads were aligned to the GRCh38 assembly of the 

human genome, using BSMAP in its RRBS mapping mode for RRBS54,55 and Bismark v.

0.12.2 for WGBS56. DNA methylation levels for individual CpGs were calculated using 

custom Python scripts. Bisulfite conversion efficiency was estimated by aligning unmapped 

reads to the spike-in genome for methylated or unmethylated control sequences. CpGs 

located in repetitive regions according to the UCSC RepeatMasker track were excluded from 

further analysis. RRBS reference data from public databases (Supplementary Table 2) were 

downloaded from GEO as raw sequence data and processed with the same pipeline.

ChIP-seq data processing

ChIP-seq reads were aligned to the GRCh38 assembly of the human genome using the 

Bowtie2 short-read aligner (version 2.2.4)57 in end-to-end mode and processed with 

SAMtools (version 1.2)58, followed by peak finding with MACS2 (version 

2.1.0.20150420)59 with factor-specific parameter settings as provided by the developers60. 

The bdgcmp algorithm of MACS2 was used in subtraction mode to generate signal plots, 

which were incorporated into a UCSC Genome Browser track hub for interactive 

visualization61. For samples that had two or more replicates, the Bioconductor package 

DiffBind (version 1.16.3)62 was used to characterize significantly differentially occupied 

peak regions on the basis of the MACS2 peak calls.

Bioinformatic analysis of heterogeneity between cancer types

To assess how well DNA methylation discriminates between EwS and non-EwS samples, we 

calculated the mean DNA methylation values of 5-kb tiling regions across the genome in 

each sample, and we used these data as attributes for predicting whether or not a sample was 

an EwS sample (tumor or cell line). Logistic regression classifiers were trained using 

liblineaR (version 1.94-2)63, and their performance was evaluated by fivefold cross-

validation. For comparison, we measured the prediction performance on randomized data in 

100 repetitions with randomly shuffled class labels. Receiver operating characteristic (ROC) 

curves were plotted using ROCR64. To assess EwS-specific differential DNA methylation, 

we focused on individual CpGs and used Wilcoxon rank-sum tests to compare DNA 

methylation values of all EwS tumors to those of three independent reference sets: The 

MSCs included in this study, a cancer diversity panel assembled from public data, and a cell-
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type diversity panel that was composed primarily of the ENCODE RRBS data set65 

(Supplementary Table 2). Individual CpGs were classified as differentially methylated if the 

Wilcoxon P value was less than 0.01 and the absolute DNA methylation difference was at 

least 0.15 in each of these comparisons, and we restricted the analysis to CpGs covered by at 

least 30 EwS tumors and at least 30 samples from the cell-type diversity panel. We 

performed enrichment analysis of differentially methylated genomic regions using the 

LOLA Bioconductor package v1.1.3 and the LOLA Core database19. To visualize DNA 

methylation differences at individual regions, we produced locus-specific DNA methylation 

plots (Fig. 1f,g), averaging DNA methylation levels across 50 bins spanning the region of 

interest.

Bioinformatic analysis of heterogeneity among tumor samples

For the remaining analyses, the 11 formalin-fixed paraffin-embedded (FFPE) from Graz 

were excluded because of their lower data quality when compared to the 129 fresh-frozen 

samples. Global DNA methylation heterogeneity between tumor samples was quantified by 

the coefficient of variation (CV), as described previously28. For each set of samples, the CV 

was calculated from the distribution of genome-wide average DNA methylation levels in 5-

kb tiling regions across samples, dividing the s.d. by the mean of the distribution. Region-

specific DNA methylation heterogeneity was analyzed for sets of genomic regions with 

characteristic regulatory dynamics in EWS-FLI1 expressing cell lines11. First, EwS-specific 

DNaseI elements were defined by using ENCODE DNaseI data across 112 cell types21. We 

downloaded the processed DNaseI data matrix from an earlier study20 and selected elements 

with chromatin-accessibility scores consistently above 0.4 in SK-N-MC cells (an EwS cell 

line) and below 0.1 in all other samples. Second, EWS-FLI1 binding sites were derived from 

raw ChIP-seq data for EWS-FLI1 in the A673 cells (an EwS cell line)25. Third and fourth, 

we included EWS-FLI1-correlated enhancers and EWS-FLI1-anti-correlated enhancers, as 

defined in our previous study looking at the effect of EWS-FLI1 knockdown on H3K27ac 

peaks11. Heterogeneity between tumor samples was quantified as follows: for each region 

set, we aggregated DNA methylation levels in each region and retained only regions with at 

least ten sequencing reads. We then calculated the CV across samples for each region in the 

set. We used the median of these region-specific CV values as the score for each region set.

Bioinformatic analysis of sample clustering

To assess whether the DNA methylation profiles could be grouped into any consistent and 

reproducible clusters, we used several combinations of filtering, imputation, aggregation and 

clustering methods. All analyses were done in R (https://www.r-project.org/). These analyses 

were based on single CpG methylation calls without any binning, as well as mean DNA 

methylation values for 5-kb tiling regions in each sample. We calculated distance and 

similarity matrices on the basis of all CpGs with a coverage of at least 10 reads in a pairwise 

manner to minimize the loss of coverage due to missing values. To calculate these matrices, 

we used the dist and the cor functions of the stats package in R with the parameter use = 
“pairwise.complete.obs”. Correlation matrices as obtained with the cor function were 

converted into distance-like matrices by subtracting the correlation values from 1. We then 

used these distance matrices as input for clustering. We tried five methods for sample 

clustering and unsupervised subtype identification: multidimensional scaling, principal 
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component analysis, independent component analysis, non-negative matrix factorization, 

and hierarchical clustering. As a measure of cluster quality, we calculated the mean 

silhouette width using the silhouette function of the cluster package. For non-negative matrix 

factorization (NMF), the NMF package was used66. Independent component analysis (ICA) 

was done using the fastICA package, which implements the algorithm of Hyvarinen and 

Oja67.

Bioinformatic definition of the epigenetic disease spectrum

To define the dimensions of the epigenetic disease spectrum, we focused on DNA 

methylation profiles for the four regulatory region types described above. We first split each 

region into 21 bins and averaged DNA methylation values in each of these bins. We then 

aggregated each of the 21 bins across all regions of that type, yielding a single vector with 

21 values for each of the four region sets in each sample. Composite plots were prepared for 

each sample, providing aggregate DNA methylation patterns across all regions of a given 

type in each sample. The MIRA score reduces the dimensionality of the vector by 

summarizing the profile into a single number, calculated as the log ratio between DNA 

methylation values for the center bin (bin 0) and the average of two flanking bins (bins –5 

and +5). For each sample and region set, the MIRA score represents the inferred sample-

specific activity of the corresponding set of regulatory regions. The R functions used to 

calculate the MIRA scores are available from http://sheffield2017.computational-

epigenetics.org.

Bioinformatic analysis of heterogeneity within individual tumors

The proportion of discordant reads (PDR) score was calculated as previously described13. 

Aligned RRBS read containing at least four CpGs were classified as concordant if all CpGs 

had the same DNA methylation state or discordant if they had different states. We 

determined the proportion of discordant reads for each CpG covered by at least ten reads. To 

assess the relationship between DNA methylation levels and PDR scores, we averaged both 

on 5-kb tiling regions and then binned all regions by their DNA methylation levels in 

increments of 5 percentage points. Consistent with the definition of PDR, low PDR levels 

were observed for regions with high (>75%) and low (<25%) levels of DNA methylation 

(Supplementary Fig. 9b).

To complement the PDR score, which focuses on co-methylation of neighboring CpGs in the 

same sequencing read, we developed the proportion of sites with intermediate methylation 

(PIM) score as a CpG-centric (rather than read-centric) measure of intra-tumor 

heterogeneity. For all CpGs covered by at least ten reads, we first classified each CpG as 

uniformly or intermediately methylated as follows: if a 95% binomial Bayesian credibility 

interval estimate of the CpG’s DNA methylation level was completely above 75% or below 

25%, the CpG was considered uniformly methylated, whereas all other CpGs were 

considered intermediately methylated (Supplementary Fig. 9c). We then calculated the 

proportion of intermediately methylated CpGs to obtain the PIM score for a given sample. In 

pairwise comparisons between samples, we controlled for differential RRBS coverage by 

restricting the analysis to the subset of CpGs that pass coverage filtering in both samples 

being compared. The final PIM score of each sample is the mean log ratio of relative PIM 
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scores between that sample and any other sample in the data set. The R functions used to 

calculate PIM scores are available from http://sheffield2017.computational-epigenetics.org.

Association with clinical data

To explore links between DNA methylation and clinical or genetic annotations, we divided 

samples according to annotation status and compared their corresponding measures of DNA 

methylation heterogeneity using the Wilcoxon rank-sum test. We also investigated links with 

the primary site of tumor location by grouping tumors according to their locations and 

testing for pairwise differences between tumors of each location against all others. To 

remove the confounding effect of tumor purity and gender, which were significantly 

associated with several measures of DNA methylation heterogeneity (Supplementary Fig. 

10), we statistically corrected for these associations. This adjustment restricts the 

comparison to a subset of tumors (n = 76) from the French cohort for which genome 

sequencing data and quantitative estimates of tumor purity were available1. To quantify the 

association between PIM scores and metastatic status at diagnosis, we built logistic 

regression models predicting the clinical annotation from the PIM score on all data and 

assessed their model performance on the data set using the ROC area under curve (AUC) 

metric in comparison to 1,000 permutations with shuffled class labels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank all patients who have donated samples for this study. We also thank the team of the 
Biomedical Sequencing Facility at CeMM for support with next generation sequencing; the members of the 
Delattre, Kovar, and Bock labs for discussions; A. Rendeiro and C. Dietz for contributing to the analysis pipelines; 
K. Clement for sharing his implementation of the PDR score; A. Lankester for providing MSCs; and the following 
physicians for providing tumor samples: J.M. Guinebretière, L. Brugières, A. de Muret, R. Tichit, N. Sirvent, F. 
Millot, F. Guilhot, J.P. Vannier, C. Michot, E. Plouvier, A. Gomez-Brouchet, J. Rivel, B. Petit, F. Dijoud, F. 
Larousserie, A. Kurt, A. Foulet, A.S. Desfachelles, H. Sartelet, I. Quintin Roue, J. Otten, J. Chasles, C. Bouvier, C. 
Soler, M. Peuchmaur, and X. Rialland. This study was funded by a grant from the Austrian National Bank’s 
Jubiläumsfonds to E.M.T. (OeNB project number: 15714) and by a peer-reviewed institutional grant to E.M.T., 
which was based on a charitable donation of the Kapsch group (http://www.kapsch.net/kapschgroup) to St. Anna 
Kinderkrebsforschung. The French samples were collected in the context of the Plateforme Hospitalière de 
Génétique Moléculaire des Cancers of the Institut Curie and Centre Hospitalier de Versailles, with support by grants 
from INSERM within the framework of the International Cancer Genome Consortium program and from the Ligue 
Nationale Contre Le Cancer (Equipe labellisée), and the Société Française des Cancers de l’Enfant. The following 
associations supported this work: Courir pour Mathieu, Dans les pas du Géant, Olivier Chape, Les Bagouzamanon, 
Enfants et Santé, and les Amis de Claire. The study was performed in the context of the following European Union 
consortia: Euro Ewing (grant agreement no. 602856), BLUEPRINT (grant agreement no. 282510), PROVABES 
(grant agreement no. 01KT1310), ASSET (grant agreement no. 259348), and TECHNOBEAT (grant agreement no. 
668724). N.C.S. was supported by a long-term fellowship of the Human Frontier Science Program 
(LT000211/2014). J.K. was supported by a DOC Fellowship of the Austrian Academy of Sciences. D.S. was 
supported by the Institut Curie-SIRIC (Site de Recherche Intégrée en Cancérologie) program. E.d.A. was supported 
by Ministry of Economy and Competitiveness of Spain-FEDER grants (RD12/0036/0017, PI14/01466), María 
García-Estrada Foundation, and Pablo Ugarte Association. C.B. was supported by a New Frontiers Group award of 
the Austrian Academy of Sciences and by a European Research Council (ERC) Starting Grant (European Union’s 
Horizon 2020 research and innovation program; grant 679146). E.M.T. was supported by fellowships of the 
Austrian Science Fund (FWF, Lise Meitner Fellowship M1448-B13; and Elise Richter Fellowship V506-B28).

Sheffield et al. Page 16

Nat Med. Author manuscript; available in PMC 2018 May 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

http://sheffield2017.computational-epigenetics.org
http://www.kapsch.net/kapschgroup


References

1. de Álava, E., Lessnick, SL., Sorensen, PHB. Ewing sarcoma. WHO Classification of tumours of soft 
tissue and bone. Fletcher, CDM.Bridge, JA.Hogendoorn, PCW., Mertens, F., editors. 2013. p. 
306-309.

2. Delattre O, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome 
translocation in human tumours. Nature. 1992; 359:162–165. DOI: 10.1038/359162a0 [PubMed: 
1522903] 

3. Parham DM, et al. Neuroectodermal differentiation in Ewing’s sarcoma family of tumors does not 
predict tumor behavior. Hum Pathol. 1999; 30:911–918. DOI: 10.1016/S0046-8177(99)90244-7 
[PubMed: 10452503] 

4. Pinto A, Dickman P, Parham D. Pathobiologic markers of the ewing sarcoma family of tumors: state 
of the art and prediction of behaviour. Sarcoma. 2011; 2011 856190. doi: 10.1155/2011/856190

5. Schmidt D, Herrmann C, Jürgens H, Harms D. Malignant peripheral neuroectodermal tumor and its 
necessary distinction from Ewing’s sarcoma. A report from the Kiel Pediatric Tumor Registry. 
Cancer. 1991; 68:2251–2259. DOI: 10.1002/1097-0142(19911115)68:10%3c2251::AID-
CNCR2820681025%3e3.0.CO;2-X [PubMed: 1655208] 

6. Lawrence MS, et al. Mutational heterogeneity in cancer and the search for new cancer-associated 
genes. Nature. 2013; 499:214–218. DOI: 10.1038/nature12213 [PubMed: 23770567] 

7. Brohl AS, et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent 
STAG2 mutation. PLoS Genet. 2014; 10:e1004475.doi: 10.1371/journal.pgen.1004475 [PubMed: 
25010205] 

8. Crompton BD, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014; 
4:1326–1341. DOI: 10.1158/2159-8290.CD-13-1037 [PubMed: 25186949] 

9. Tirode F, et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-
association of STAG2 and TP53 mutations. Cancer Discov. 2014; 4:1342–1353. DOI: 
10.1158/2159-8290.CD-14-0622 [PubMed: 25223734] 

10. Riggi N, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate 
or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014; 26:668–681. DOI: 10.1016/
j.ccell.2014.10.004 [PubMed: 25453903] 

11. Tomazou EM, et al. Epigenome mapping reveals distinct modes of gene regulation and widespread 
enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Reports. 2015; 
10:1082–1095. DOI: 10.1016/j.celrep.2015.01.042 [PubMed: 25704812] 

12. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational 
implications. Nat Rev Cancer. 2011; 11:726–734. DOI: 10.1038/nrc3130 [PubMed: 21941284] 

13. Landau DA, et al. Locally disordered methylation forms the basis of intratumor methylome 
variation in chronic lymphocytic leukemia. Cancer Cell. 2014; 26:813–825. DOI: 10.1016/j.ccell.
2014.10.012 [PubMed: 25490447] 

14. Li S, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute 
myeloid leukemia. Nat Med. 2016; 22:792–799. DOI: 10.1038/nm.4125 [PubMed: 27322744] 

15. Gu H, et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide 
resolution. Nat Methods. 2010; 7:133–136. DOI: 10.1038/nmeth.1414 [PubMed: 20062050] 

16. Meissner A, et al. Reduced representation bisulfite sequencing for comparative high-resolution 
DNA methylation analysis. Nucleic Acids Res. 2005; 33:5868–5877. DOI: 10.1093/nar/gki901 
[PubMed: 16224102] 

17. Bock C, et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. 
Nat Biotechnol. 2010; 28:1106–1114. DOI: 10.1038/nbt.1681 [PubMed: 20852634] 

18. Lin PP, Wang Y, Lozano G. Mesenchymal stem cells and the origin of Ewing’s sarcoma. Sarcoma. 
2011; 2011:276463.doi: 10.1155/2011/276463 [PubMed: 20953407] 

19. Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory 
elements in R and Bioconductor. Bioinformatics. 2016; 32:587–589. DOI: 10.1093/bioinformatics/
btv612 [PubMed: 26508757] 

Sheffield et al. Page 17

Nat Med. Author manuscript; available in PMC 2018 May 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



20. Sheffield NC, et al. Patterns of regulatory activity across diverse human cell types predict tissue 
identity, transcription factor binding, and long-range interactions. Genome Res. 2013; 23:777–788. 
DOI: 10.1101/gr.152140.112 [PubMed: 23482648] 

21. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human 
genome. Nature. 2012; 489:57–74. DOI: 10.1038/nature11247 [PubMed: 22955616] 

22. Kundaje A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518:317–
330. DOI: 10.1038/nature14248 [PubMed: 25693563] 

23. Liu T, et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 
2011; 12:R83.doi: 10.1186/gb-2011-12-8-r83 [PubMed: 21859476] 

24. Sánchez-Castillo M, et al. CODEX: a next-generation sequencing experiment database for the 
haematopoietic and embryonic stem cell communities. Nucleic Acids Res. 2015; 43:D1117–
D1123. DOI: 10.1093/nar/gku895 [PubMed: 25270877] 

25. Bilke S, et al. Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate 
cancer. Genome Res. 2013; 23:1797–1809. DOI: 10.1101/gr.151340.112 [PubMed: 23940108] 

26. Creyghton MP, et al. Histone H3K27ac separates active from poised enhancers and predicts 
developmental state. Proc Natl Acad Sci USA. 2010; 107:21931–21936. DOI: 10.1073/pnas.
1016071107 [PubMed: 21106759] 

27. Heintzman ND, et al. Histone modifications at human enhancers reflect global cell-type-specific 
gene expression. Nature. 2009; 459:108–112. DOI: 10.1038/nature07829 [PubMed: 19295514] 

28. Agirre X, et al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of 
B cell-specific enhancers. Genome Res. 2015; 25:478–487. DOI: 10.1101/gr.180240.114 
[PubMed: 25644835] 

29. Abe M, et al. CpG island methylator phenotype is a strong determinant of poor prognosis in 
neuroblastomas. Cancer Res. 2005; 65:828–834. [PubMed: 15705880] 

30. Hovestadt V, et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation 
sequencing. Nature. 2014; 510:537–541. DOI: 10.1038/nature13268 [PubMed: 24847876] 

31. Johann PD, et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups 
with distinct enhancer landscapes. Cancer Cell. 2016; 29:379–393. DOI: 10.1016/j.ccell.
2016.02.001 [PubMed: 26923874] 

32. Kulis M, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in 
chronic lymphocytic leukemia. Nat Genet. 2012; 44:1236–1242. DOI: 10.1038/ng.2443 [PubMed: 
23064414] 

33. Mazor T, et al. DNA methylation and somatic mutations converge on the cell cycle and define 
similar evolutionary histories in brain tumors. Cancer Cell. 2015; 28:307–317. DOI: 10.1016/
j.ccell.2015.07.012 [PubMed: 26373278] 

34. Aran D, Hellman A. Unmasking risk loci: DNA methylation illuminates the biology of cancer 
predisposition: analyzing DNA methylation of transcriptional enhancers reveals missed regulatory 
links between cancer risk loci and genes. BioEssays. 2014; 36:184–190. DOI: 10.1002/bies.
201300119 [PubMed: 24277586] 

35. Bock C, et al. DNA methylation dynamics during in vivo differentiation of blood and skin stem 
cells. Mol Cell. 2012; 47:633–647. DOI: 10.1016/j.molcel.2012.06.019 [PubMed: 22841485] 

36. Burger L, Gaidatzis D, Schübeler D, Stadler MB. Identification of active regulatory regions from 
DNA methylation data. Nucleic Acids Res. 2013; 41:e155.doi: 10.1093/nar/gkt599 [PubMed: 
23828043] 

37. Hon GC, et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps 
from adult mouse tissues. Nat Genet. 2013; 45:1198–1206. DOI: 10.1038/ng.2746 [PubMed: 
23995138] 

38. Stadler MB, et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. 
Nature. 2011; 480:490–495. [PubMed: 22170606] 

39. Mazumdar C, et al. Leukemia-associated cohesin mutants dominantly enforce stem cell programs 
and impair human hematopoietic progenitor differentiation. Cell Stem Cell. 2015; 17:675–688. 
DOI: 10.1016/j.stem.2015.09.017 [PubMed: 26607380] 

40. Tabassum DP, Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer. 2015; 15:473–483. 
DOI: 10.1038/nrc3971 [PubMed: 26156638] 

Sheffield et al. Page 18

Nat Med. Author manuscript; available in PMC 2018 May 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



41. Mazor T, Pankov A, Song JS, Costello JF. Intratumoral heterogeneity of the epigenome. Cancer 
Cell. 2016; 29:440–451. DOI: 10.1016/j.ccell.2016.03.009 [PubMed: 27070699] 

42. Alizadeh AA, et al. Toward understanding and exploiting tumor heterogeneity. Nat Med. 2015; 
21:846–853. DOI: 10.1038/nm.3915 [PubMed: 26248267] 

43. Bock C, et al. BLUEPRINT consortium. Quantitative comparison of DNA methylation assays for 
biomarker development and clinical applications. Nat Biotechnol. 2016; 34:726–737. DOI: 
10.1038/nbt.3605 [PubMed: 27347756] 

44. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev 
Genet. 2012; 13:679–692. DOI: 10.1038/nrg3270 [PubMed: 22945394] 

45. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003; 3:253–
266. DOI: 10.1038/nrc1045 [PubMed: 12671664] 

46. Chen X, et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell. 2013; 
24:710–724. DOI: 10.1016/j.ccr.2013.11.002 [PubMed: 24332040] 

47. Ladenstein R, et al. Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 
99 trial. J Clin Oncol. 2010; 28:3284–3291. DOI: 10.1200/JCO.2009.22.9864 [PubMed: 
20547982] 

48. Ambros IM, et al. MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive 
neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral 
primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. 
Cancer. 1991; 67:1886–1893. DOI: 10.1002/1097-0142(19910401)67:7%3c1886::AID-
CNCR2820670712%3e3.0.CO;2-U [PubMed: 1848471] 

49. Amaral AT, et al. Characterization of human mesenchymal stem cells from ewing sarcoma patients. 
Pathogenetic implications. PLoS One. 2014; 9:e85814.doi: 10.1371/journal.pone.0085814 
[PubMed: 24498265] 

50. Reinisch A, et al. Epigenetic and in vivo comparison of diverse MSC sources reveals an 
endochondral signature for human hematopoietic niche formation. Blood. 2015; 125:249–260. 
DOI: 10.1182/blood-2014-04-572255 [PubMed: 25406351] 

51. Klughammer J, et al. Differential DNA methylation analysis without a reference genome. Cell 
Reports. 2015; 13:2621–2633. DOI: 10.1016/j.celrep.2015.11.024 [PubMed: 26673328] 

52. Veillard A-C, Datlinger P, Laczik M, Squazzo S, Bock C. Diagenode premium RRBS technology: 
cost-effective DNA methylation mapping with superior CpG resolution and coverage. Nat 
Methods. 2016; 13 (Application Note), •••. 

53. Farlik M, et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic 
cell-state dynamics. Cell Reports. 2015; 10:1386–1397. DOI: 10.1016/j.celrep.2015.02.001 
[PubMed: 25732828] 

54. Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics. 
2009; 10:232.doi: 10.1186/1471-2105-10-232 [PubMed: 19635165] 

55. Xi Y, et al. RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation 
bisulfite sequencing. Bioinformatics. 2012; 28:430–432. DOI: 10.1093/bioinformatics/btr668 
[PubMed: 22155871] 

56. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq 
applications. Bioinformatics. 2011; 27:1571–1572. DOI: 10.1093/bioinformatics/btr167 [PubMed: 
21493656] 

57. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357–
359. DOI: 10.1038/nmeth.1923 [PubMed: 22388286] 

58. Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–
2079. DOI: 10.1093/bioinformatics/btp352 [PubMed: 19505943] 

59. Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:R137.doi: 
10.1186/gb-2008-9-9-r137 [PubMed: 18798982] 

60. Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nat Protoc. 
2012; 7:1728–1740. DOI: 10.1038/nprot.2012.101 [PubMed: 22936215] 

61. Speir ML, et al. The UCSC Genome Browser database: 2016 update. Nucleic Acids Res. 2016; 
44(D1):D717–D725. DOI: 10.1093/nar/gkv1275 [PubMed: 26590259] 

Sheffield et al. Page 19

Nat Med. Author manuscript; available in PMC 2018 May 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



62. Ross-Innes CS, et al. Differential oestrogen receptor binding is associated with clinical outcome in 
breast cancer. Nature. 2012; 481:389–393. [PubMed: 22217937] 

63. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. LIBLINEAR: A library for large linear 
classification. J Mach Learn Res. 2008; 9:1871–1874.

64. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. 
Bioinformatics. 2005; 21:3940–3941. DOI: 10.1093/bioinformatics/bti623 [PubMed: 16096348] 

65. Varley KE, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome 
Res. 2013; 23:555–567. DOI: 10.1101/gr.147942.112 [PubMed: 23325432] 

66. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC 
Bioinformatics. 2010; 11:367.doi: 10.1186/1471-2105-11-367 [PubMed: 20598126] 

67. Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 
2000; 13:411–430. DOI: 10.1016/S0893-6080(00)00026-5 [PubMed: 10946390] 

Sheffield et al. Page 20

Nat Med. Author manuscript; available in PMC 2018 May 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



Figure 1. DNA methylation profiling reveals a characteristic epigenomic signature of Ewing 
sarcoma.
(a) Epigenetic heterogeneity in Ewing sarcoma (EwS) analyzed at three levels: between 

cancer types (inter-cancer), between EwS tumors (inter-individual), and within EwS tumors 

(intratumor). (b) Multidimensional scaling plot showing this study’s RRBS profiles, which 

includes EwS tumors, EwS cell lines, and mesenchymal stem cells (MSCs) derived from 

bone marrow (BM), umbilical cord (UC), and placenta (PL), in the context of published 

RRBS profiles for other cancers (Supplementary Table 2). DNA methylation levels were 
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averaged across 5-kb tiling regions. APL, acute promyelocytic leukemia; CHS, 

chondrosarcoma; CLL, chronic lymphocytic leukemia; CRPC, castration-resistant prostate 

cancer. (c) Multidimensional scaling plot as shown in b, but focusing specifically on EwS 

tumors, EwS cell lines, and MSCs. (d) DNA methylation heat map for CpGs with lower 

DNA methylation levels in EwS tumors as compared to reference profiles for other cancers 

and for a diverse set of other cell types (Supplementary Table 2). Bar plots indicate 

significant overlap of EwS-specific hypomethylated regions with public annotation data, 

based on LOLA analysis19 (Supplementary Table 3). (e) As in d, but focusing on CpGs with 

higher DNA methylation levels in EwS tumors as compared to the reference profiles. (f) 
Example of EwS-specific hypomethylation at the CCND1 locus, with substantially lower 

DNA methylation (and anti-correlated histone H3K27 acetylation) in EwS tumors and EwS 

cell lines as compared to all reference samples. DNA methylation levels are shown for 50 

bins spanning the locus (yellow, high methylation; blue, low methylation; white, no data). 

H3K27ac profiles include a cross-tissue consensus track from the ENCODE project, as well 

as ChIP-seq data for an EwS cell line (A673sh) with inducible knock-down of EWS-FLI1 

(EWS-FLI1 high/low)11 and this study’s data for three EwS tumors (tumors 119, 120, and 

121). (g) As in f, but focusing on EwS-specific hypermethylation of a putative regulatory 

region at the GATA2 locus.
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Figure 2. DNA methylation in EwS shows inter-individual heterogeneity without distinct 
subtypes.
(a) Bar plot showing the coefficient of variation across samples for median DNA 

methylation levels per sample as a measure of heterogeneity between samples. The 

coefficient of variation was calculated separately for EwS cell lines, EwS tumors, and MSCs 

derived from bone marrow (BM), umbilical cord (UC) and placenta (PL) from this study, 

and for reference profiles of other cancers. APL, acute promyelocytic leukemia; CHS, 

chondrosarcoma; CLL, chronic lymphocytic leukemia; CRPC, castration-resistant prostate 

cancer. (b) DNA methylation profiles for four types of EwS-linked regulatory regions: (i) 

EwS-specific DNaseI elements based on DNase-seq in the SK-N-MC cell line; (ii) EWS-
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FLI1 binding sites based on ChIP-seq for EWS-FLI1 in the A673sh cell line; (iii) EWS-

FLI1-correlated enhancers based on decreased H3K27ac ChIP-seq signal upon EWS-FLI1 

knockdown in A673sh; and (iv) EWS-FLI1-anti-correlated enhancers based on increased 

H3K27ac ChIP-seq signal upon EWS-FLI1 knockdown in A673sh. 50 randomly selected 

regions are shown to illustrate DNA methylation variability between tumors (see 

Supplementary Fig. 4b for all data). (c) Example of epigenetic heterogeneity at one EWS-

FLI1-correlated enhancer showing opposing trends in DNA methylation versus H3K27ac 

among three EwS tumors (119, 120, and 121). Black vertical lines represent CpG sites, with 

the height indicating their DNA methylation levels. (d) As in c, but focusing on epigenetic 

heterogeneity at one EWS-FLI1-anti-correlated enhancer. (e) EwS tumor grouping using five 

alternative methods for sample clustering and unsupervised subtype identification, showing 

no evidence of epigenetically defined disease subtypes in EwS.
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Figure 3. DNA methylation at regulatory elements defines an epigenetic disease spectrum 
underlying EwS.
(a,b) Conceptual outline of the ‘methylation-based inference of regulatory activity’ (MIRA) 

score. (a) First, all genomic regions of a given annotation type (such as EwS-specific 

DNaseI elements) are superimposed and their aggregate DNA methylation profiles derived. 

(b) Next, the MIRA score of a given region type in a given sample is calculated as the 

logarithm of the ratio between the mean DNA methylation level at the aggregate DNA 

methylation profile’s flanking regions versus the corresponding value at the region’s center. 

High MIRA scores correspond to a strong dip in DNA methylation and high inferred 

regulatory activity, whereas MIRA scores close to zero correspond to flat DNA methylation 

Sheffield et al. Page 25

Nat Med. Author manuscript; available in PMC 2018 May 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



profiles and little potential for regulatory activity. (c) Aggregate DNA methylation profiles 

for four types of EwS-linked regulatory regions: EwS-specific DNaseI elements, EWS-

FLI1-correlated enhancers, EWS-FLI1 binding sites, and EWS-FLI1-anti-correlated 

enhancers. Each line corresponds to the aggregate DNA methylation profile of an EwS 

sample (blue) or non-EwS reference sample (red). Box plots show MIRA scores for the 

corresponding region sets (boxes represent median and quartiles, and whiskers extend from 

the box to the most extreme point located within 1.5 times the inter-quartile range). (d) Bar 

plot for samples grouped by cell type and ordered according to the mean MIRA score for 

EwS-specific DNaseI elements. Aggregate DNA methylation profiles for myoblasts, 

pluripotent stem cells, and MSCs are shown to illustrate low regulatory activity in these 

regions, whereas high MIRA scores for EwS tumors and EwS cell lines indicate high 

regulatory activity. (e) As in d, but focusing on MIRA scores for EWS-FLI1-anti-correlated 

enhancers. (f) Distribution of MIRA scores for EWS-specific DNaseI elements, which 

places the EwS tumors on an epigenetic disease spectrum with different levels of “Ewing-

ness”. (g) Distribution of MIRA scores for EWS-FLI1-anti-correlated enhancers, which 

places the EwS tumors on an epigenetic disease spectrum that is linked to a stem-like 

regulatory signature on the one end and a mesenchymal regulatory signature on the other 

end.
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Figure 4. DNA methylation patterns identify widespread intra-tumor heterogeneity in EwS.
(a) Distribution of sample-specific PDR scores of EwS tumors, EwS cell lines, and MSCs 

derived from bone marrow (BM), umbilical cord (UC), and placenta (PL) from this study, as 

compared to reference profiles for other cancers. APL, acute promyelocytic leukemia; CHS, 

chondrosarcoma; CLL, chronic lymphocytic leukemia; CRPC, castration-resistant prostate 

cancer (boxes represent median and quartiles, and whiskers extend from the box to the most 

extreme point located within 1.5 times the inter-quartile range). (b) Conceptual outline of 

the PIM score, which measures the proportion of CpG sites with intermediate DNA 

methylation levels. Higher PIM scores indicate higher levels of intra-tumor heterogeneity. 

(c) As in a, but focusing on sample-specific relative PIM scores. (d) Density scatterplot (left) 

showing the relationship between PDR and PIM scores for 5-kb tiling regions, including 

only regions with more than 25 CpG dinucleotides. The two scores are correlated (r = 0.76), 

but there are also many regions with divergent scores, which is illustrated by two conceptual 

examples (right).
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Figure 5. DNA methylation heterogeneity in EwS is associated with genetic and clinical data.
(a) Heat map illustrating the association between measures of epigenetic heterogeneity and 

genetic, as well as clinical annotations among the EwS tumors. Brighter colors indicate 

higher significance according to the Wilcoxon rank-sum test. (b) Violin plot comparing the 

MIRA score at EWS-FLI1-anti-correlated enhancers (which corresponds to the 

mesenchymal versus stem-like dimension of the disease spectrum) for EwS tumors with or 

without mutations in STAG2 (boxes represent median and quartiles, and whiskers extend 

from the box to the most extreme point located within 1.5 times the inter-quartile range). (c) 
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Violin plot comparing the MIRA score at EwS-specific DNaseI elements (which 

corresponds to the Ewing-like dimension of the disease spectrum) for EwS tumors with or 

without mutations in TP53. (d) Violin plot comparing the PIM score between primary EwS 

tumors of patients whose disease was metastatic at diagnosis versus patients with localized 

disease. (e) Receiver operating characteristic (ROC) curve and area under curve (AUC) 

value for predicting whether a patient was metastatic at diagnosis on the basis of the PIM 

score. Inset, distribution of AUC values and the resulting P value according to permutation 

testing with randomly shuffled labels.
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