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6Memorial Sloan-Kettering Cancer Center, New York, United States; 7Center for Cell
and Genome Science, University of Utah, Salt Lake City, United States

Abstract Epigenome modulation potentially provides a mechanism for organisms to adapt, within

and between generations. However, neither the extent to which this occurs, nor the mechanisms

involved are known. Here we investigate DNA methylation variation in Swedish Arabidopsis thaliana

accessions grown at two different temperatures. Environmental effects were limited to transposons,

where CHH methylation was found to increase with temperature. Genome-wide association studies

(GWAS) revealed that the extensive CHH methylation variation was strongly associated with genetic

variants in both cis and trans, including a major trans-association close to the DNA methyltransferase

CMT2. Unlike CHH methylation, CpG gene body methylation (GBM) was not affected by growth

temperature, but was instead correlated with the latitude of origin. Accessions from colder regions

had higher levels of GBM for a significant fraction of the genome, and this was associated with

increased transcription for the genes affected. GWAS revealed that this effect was largely due to

trans-acting loci, many of which showed evidence of local adaptation.

DOI: 10.7554/eLife.05255.001

Main
To better understand how genotype and environment interact to affect DNA methylation and

transcription, we grew 150 Arabidopsis thaliana accessions from Sweden (Long et al., 2013) in two

different environments, 10˚C and 16˚C, chosen because they lead to very different flowering behavior

(Atwell et al., 2010). Relying on existing genome sequence information (Long et al., 2013),

methylome- and transcriptome-sequencing data were generated (see ‘Materials and methods’).

In plants, DNA methylation occurs on cytosines in the CG, CHG, and CHH contexts (where H is any

nucleotide except for C), each of which is catalyzed by independent pathways (Finnegan et al., 1998;

Stroud et al., 2014). Consistent with previous results (Vaughn et al., 2007; Eichten et al., 2013;

Schmitz et al., 2013; Li et al., 2014; Seymour et al., 2014; Hagmann et al., 2015) we found

considerable variation between accessions regardless of context, even at the level of genome-wide

averages (Figure 1A). Temperature, on the other hand, did not appear to affect genome-wide CG or
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CHG methylation, but had a significant effect on CHH methylation, levels of which were 14% higher at

16˚C than at 10˚C, on average (Figure 1A). To investigate the genetic basis of DNA methylation, we

performed genome-wide association studies (GWAS) using different facets of average methylation as

the phenotype. For global CG and CHG methylation, no associations reached genome-wide

significance, while for CHH methylation a clear peak of association was observed on chromosome 4

(Figure 1—figure supplement 1). The association was even more significant when restricting

attention to average CHH methylation of large transposons (Figure 1B), in agreement with the notion

that this type of methylation mostly occurs in transposons in Arabidopsis (Stroud et al., 2013).

The association centered around a SNP at 10,459,127 on chromosome 4, 38 kb downstream from

the locus AT4G19020, which encodes a homolog of the CHG methyltransferase chromo-methylase-3

(Lindroth et al., 2001) that has recently been shown to catalyze both CHH and CHG methylation on

transposons, and is thus an excellent candidate (Zemach et al., 2013; Stroud et al., 2014). A multi-locus

mixed model (Segura et al., 2012) that included the identified SNP (CMT2a) as a fixed effect revealed

another SNP downstream of CMT2, at position 10,454,628 (CMT2b), 4.5 kb closer to CMT2 than

CMT2a, and in complete linkage disequilibrium with it (i.e., the non-reference alleles at CMT2a and

CMT2b are never seen together). Repeating the GWAS with both CMT2a and CMT2b as cofactors

identified no further loci (Figure 1—figure supplement 2). Both non-reference alleles are common in

southern Sweden, but are also found in the north (22.6% vs 9.5% and 30.6% vs 7.9% for CMT2a and

CMT2b, respectively). Accessions with the non-reference CMT2a allele have on average more CHH

methylation on transposons than those with the reference haplotype (p = 1.1e-03), while those with

the non-reference CMT2b allele have lower levels of CHH methylation than the reference haplotype

(p = 8.1e-03; Figure 1C). The associations were readily confirmed using an F2 population generated by

eLife digest Organisms need to adapt quickly to changes in their environment. Mutations in the

DNA sequence of genes can lead to new adaptations, but this can take many generations. Instead,

altering how genes are switched on by changing how the DNA is packaged in cells can allow

organisms to adapt within and between generations. One way that genes are controlled in organisms

is by a process known as DNA methylation, where ‘methyl’ tags are added to DNA and act as

markers for other proteins involved in activating genes.

DNA is made of four different molecules called ‘nucleotides’ that are arranged in different orders

to produce a vast variety of DNA sequences. One type of DNA methylation can happen at sites

where a nucleotide called cytosine is followed by two other non-cytosine nucleotides. Another type

of methylation can take place at sites where a cytosine is followed by a guanine nucleotide. However,

it is not clear how big a role DNA methylation plays in allowing organisms to adapt to their changing

environment.

Here, Dubin, Zhang, Meng, Remigereau et al. studied DNA methylation in a plant called

Arabidopsis thaliana. Several different varieties of A. thaliana plants from Sweden were grown at two

different temperatures. The experiments showed that the A. thaliana plants grown at higher

temperatures were more likely to have methyl tags attached to sections of DNA called transposons,

which are able to move around the genome. There was a lot of variety in the levels of this DNA

methylation in the different plants, and some of it was shown to be associated with variation in

a gene that is involved in DNA methylation.

However, not all of the DNA methylation in these plants was sensitive to the temperature the

plants were grown in. Dubin, Zhang, Meng, Remigereau et al. show that the pattern of a type of DNA

methylation that is found within genes depends on how far north in Sweden the plants’ ancestors

came from rather than the temperature the plants were grown in. Plants that originated from colder

regions, farther north, had more DNA methylation within many genes and these genes were more

active.

These findings suggest that genetic differences in these plants strongly influence the levels of

DNA methylation, and they provide the first direct link between DNA methylation and adaption to

the environment. Future studies should reveal how DNA methylation is regulated in these plants, and

whether it plays a key role in adaptation, or merely reflects other changes in the genome.

DOI: 10.7554/eLife.05255.002
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crossing accessions with the CMT2a and CMT2b non-reference alleles (Figure 2). No significant

differences in CMT2 mRNA levels were observed between the alleles in our data and limited Sanger

sequencing of cDNA showed no evidence of splicing variants (although, as will be discussed below, we

did detect a putative rare null allele). Several non-synonymous polymorphisms in the methyltransferase

and BAH domains of CMT2 were detected (Supplementary files 1 and 2) but they do not explain the

phenotype as well as the CMT2a and CMT2b SNPs.

The effect of genetic variation on local CHH methylation was examined by calculating the

methylation level in 200 bp sliding windows across the genome (100 bp overlap between windows)

and running GWAS for the 200,000 differentially methylated regions (DMRs; see ‘Materials and

methods’) that varied most between individuals. 36023 DMRs had at least one genome-wide

significant association (Bonferroni-corrected p-value of 0.05; 7273 remain after correcting for

multiple GWAS using an FDR of 0.05). 45% (15,031) of the DMRs had a significant cis-association

within 100 kb, while the rest showed evidence of trans-regulation, including the dramatic effect

of CMT2 on chromosome 4 which accounted for approximately 21% (7392) of all significant

associations (Figure 3A).

Figure 1. The effect of CMT2 on genome-wide CHH methylation levels. (A) Genome-wide average methylation level reaction norms for each accession

(156 samples at 10˚C and 125 samples at 16˚C). Only CHH levels differ significantly between temperatures (Wilcoxon rank sum test; p = 1.7e-16).

(B) Manhattan plot of genome-wide association studies (GWAS) results using average levels of CHH methylation for 151 accessions at 10˚C on large

transposons as the phenotype (the peak is also seen at 16˚C [not shown]). The threshold line indicates a Bonferroni-corrected p-value of 0.05.

(C) CHH methylation on large (over 2 kb) transposons at 10˚C by CMT2 two-locus genotype (population sizes are 36, 82, and 24 for CMT2anr/nr/CMT2br/r,

CMT2ar/r/CMT2br/r, CMT2ar/r/CMT2bnr/nr, respectively). The values plotted are the Best Linear Unbiased Predictor (BLUP) estimates after correcting for

population structure. Since accessions are homozygous, only four genotypes are possible, of which only three exist due to complete linkage

disequilibrium between CMT2a and CMT2b. Figure 1—figure supplement 1 shows Manhattan plots of GWAS results for global methylation averages.

Figure 1—figure supplement 2 shows Stepwise GWAS using average CHH methylation of TE’s.

DOI: 10.7554/eLife.05255.003

The following figure supplements are available for figure 1:

Figure supplement 1. Manhattan plots of GWAS results for global methylation averages.

DOI: 10.7554/eLife.05255.004

Figure supplement 2. Stepwise GWAS using average CHH methylation of TE’s as a phenotype.

DOI: 10.7554/eLife.05255.005
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To quantify the regulation of DMRs, we partitioned the variance of CHH methylation into

environmental (E), CMT2, CMT2 X E, cis, cis X E, trans, and trans X E using a mixed model (Figure 3B).

The analysis confirmed substantial cis and trans associations, with the environment modulating the

genetic effects rather than having a major direct effect. At least for the cis associations, a possible

explanation is that SNPs tag polymorphic TE insertions, with the insertion allele being silenced in

a temperature-sensitive manner.

The effect of temperature on CHH methylation could also be seen at the local level. We defined

‘temperature DMRs’ by looking for windows that differed significantly between temperatures.

Comparing 16˚C–10˚C, each accession on average gained CHH methylation at ∼400 temperature

DMRs and lost it at ∼200 temperature DMRs (false discovery rate = 0.05). CHH methylation is

associated with transposable elements (TEs; Finnegan et al., 1998), and in agreement with this, 79%

of the temperature DMRs where methylation was gained at 16˚C were located within 500 bp of an

annotated TE (with 60% directly overlapping one). These temperature DMRs were enriched in

a small subset of TEs (835, or 2.7% of total, permutation based p-value = 0.05) that were more

highly methylated than other transposons, but with lower methylation levels immediately adjacent

(Figure 4A). Compared to TEs without temperature DMRs, these ‘variable’ TEs also tended to be

euchromatic (Figure 4B), highly expressed (Figure 4C), and recently inserted (‘evolutionarily

young’ TE insertions for which orthologs are not present in Arabidopsis lyrata [Zhong et al., 2012]

comprised 75% of the variable TEs vs 68% of non-variable TEs). At the super-family level, members

Figure 2. CHH methylation levels in an F2 population map to CMT2. (A) CHH methylation on large

transposons by CMT2 genotype in an F2 population of 113 individuals (population sizes are 19, 52, and 38 for

CMT2anr/nr/CMT2br/r, CMT2ar/r/CMT2br/r, CMT2ar/r/CMT2bnr/nr, respectively; 4 individuals whose genotype at

CMT2 could not be accurately inferred were omitted). (B) Mapping of CHH methylation of long TEs in the

same population. The dotted line indicates a LOD threshold with a genome-wide p-value of 0.05 obtained

using 1000 permutations, and the vertical blue line shows the marker interval that contains CMT2.

DOI: 10.7554/eLife.05255.006
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Figure 3. Genetic basis CHH methylation variation. (A) GWAS for CHH differentially methylated regions (DMRs) at

10˚C in 151 accessions, defined using 200 bp sliding windows across the genome and selecting the 200,000

most variable ones. For each DMR, SNPs significantly associated at the Bonferroni-corrected 0.05-level are plotted.

(B) Variance-components analysis of the CHH DMRs. For each DMR, a mixed model with cis, CMT2, and

Figure 3. continued on next page
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of the SINE, SINE-like, Helitrons and Mutator-like DNA TE superfamilies were over-represented

among the variable transposons, and at the family level, 36 families were over-represented,

including the AtREP, Vandal and HAT DNA transposons, as well as COPIA78/ONSEN and META1

retroelements (Table 1). Interestingly, COPIA78 has been shown to become active in response to

heat stress (Pecinka et al., 2010; Ito et al., 2011) apparently due to heat-shock promoter

elements in its LTR regions (Cavrak et al., 2014).

In order to gain further insight into the mechanisms responsible for variation in CHH methylation,

we bisulfite-sequenced knockout lines of CMT2 (SAIL_906_G03) and DCL3 (dcl3-5 [Daxinger et al.,

2009], a component of the RdDM pathway), and identified 10,138 DCL3-dependant DMRs and

33,422 CMT2-dependent DMRs as described in section ‘DMR calling on DNA methylation mutants’ of

the ‘Materials and methods’. As expected under the assumption that CMT2 is responsible for the

massive GWAS peak on chromosome 4, the GWAS peak at this locus remains if we consider only the

CMT2-dependent DMRs, but not for DCL3-dependent DMRs (Figure 5—figure supplement 1).

Furthermore, while CHH methylation varied with temperature at both DCL3- and CMT2-dependent

DMRs (Figure 5), DCL3-dependent DMRs were much more strongly associated with previously

identified temperature DMRs (4703 out of 10,138 DCL3-dependent DMRs, or 46%, overlapped

temperature-sensitive DMRs, whereas the corresponding numbers for CMT2-dependent DMRs

were 2299 out of 33,422, or 7%; Fisher’s exact p-value < 2.2e-16), suggesting that much of the

temperature variation in CHH methylation is due to components of the RdDM pathway. This result

is consistent with previous findings showing that RNA silencing is less active at lower temperatures

(Romon et al., 2013).

Interestingly, we observed one accession from northern Sweden, TAA-03, with almost undetectable

levels of CHH methylation at CMT2-dependant DMRs (Figure 5). Further investigation suggested that it

has a deletion or rearrangement in CMT2, as we were unable to map reads between positions 2813 and

4944 (intron 7 to exon 16, Figure 5—figure supplement 2). Sanger-sequencing indicates the insertion

of a stretch of TC dinucleotide repeats of at least 330 bp. The same deletion appears to be present in

three more accessions from northern Sweden (TAA-14, TAA-18, and Gro-3) a situation reminiscent

of the homologous CMT1 gene, which seems to be non-functional in most Arabidopsis accessions

(Henikoff and Comai, 1998). Although CMT2 null alleles have no obvious phenotype, the gene is

highly conserved in plants (with the exception of maize; Zemach et al., 2013; West et al., 2014).

It has recently been suggested that natural variation in CMT2 is associated with adaptation to

climate (Shen et al., 2014), although the alleles identified in that study do not overlap with the ones

identified here. Given the sensitivity of CHH methylation to growth temperature observed here, we

next investigated the correlation between DNA methylation and the climate of origin (Hancock et al.,

2011). While CHH methylation was moderately correlated with photosynthetically active radiation

(PAR) in spring (Pearson’s r = 0.38), and CHG showed correlation with aridity (r = 0.35) and the

number of frost-free days (Pearson’s r = 0.30), by far the strongest signal was a strong positive

correlation between CG methylation and latitude (Pearson’s r = 0.70), as well as with a number of

environmental variables that co-vary with latitude in our sample, such as minimum temperature and

daytime length (Table 2, Figure 6A). As a result of the strong latitudinal correlation, accessions

originating from northern Sweden (minimum temperature below −10˚C) had on average 11% higher

global CG methylation compared to those from the south (Figure 6A). The correlation appears to be

driven by gene body methylation (GBM): as the correlation for CG methylation on transposons was

much weaker (Figure 6A, Figure 6—figure supplement 1). Because the methylation variation

observed for genes with average CG methylation below 5% appeared mostly to be noise

(Figure 6—figure supplement 2, see also the ‘Materials and methods’ section), we classified

genes into ‘unmethylated’ and ‘having GBM’ using this as a cutoff (5%). We also eliminated genes

showing a transposon-like pattern of methylation in which not only CG, but also the CHH and CHG

contexts are highly methylated (Zemach et al., 2013). In what follows, we use GBM to refer only to

Figure 3. Continued

genome-wide trans effects, plus environment and genetic interactions with environment was fitted (see ‘Materials

and methods’). DMRs were binned by the total variance explained by the model. The density of DMRs in each bin is

shown at the top, and the bottom shows the average variance-decomposition for each bin.

DOI: 10.7554/eLife.05255.007
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gene body CG methylation for this filtered set. In order to better understand the observed

variation in GBM, we examined CG methylation at the single nucleotide resolution within GBM

containing genes. Although methylation was detectable (using a cut-off of 1%) at a similar number

of sites in the north and south (1085292 vs 1079443 CG sites), those in the north showed a distinct

skew towards higher methylation levels (Figure 6—figure supplement 3). Likewise when the

difference between average methylation levels in the north and south was calculated individually

for each of the cytosines, the majority of cytosines showed a small increase in the north compared

to the south (Figure 6—figure supplement 4). From this we concluded that there is a general

small increase in methylation of most CG dinucleotides in GBM genes, rather than large changes in

a specific subset. GBM primarily occurs on long, evolutionary conserved genes that tend to be

moderately-to-highly expressed, and is positively correlated with gene expression (Zilberman et al.,

2007; Takuno and Gaut, 2012). Genes with higher GBM tended to be more highly expressed in our

data as well, and—more interestingly—accessions with higher average GBM showed slightly higher

average expression of methylated genes (although the correlation was weak, Figure 6—figure

supplement 5). Given that northern accessions had higher GBM, this meant that genes with GBM

were on average more highly expressed in northern than in southern accessions, while unmethylated

genes showed little difference (Figure 6B). GBM has previously been shown to be anti-correlated

with temperature-dependent gene expression (Kumar and Wigge, 2010). While no large-scale

north-south expression differences were observed between 10˚C and 16˚C in our data, northern

accessions showed considerably less variation in expression between the two temperatures for

genes with GBM (Wilcoxon p-value = 1.2e-05), while no such difference was observed for genes

without it (Figure 6—figure supplement 6).

As for CHH DMRs, the genetic basis of GBM was examined using a variance-component approach

(Figure 7A). The results were dramatically different: relative to CHH methylation, the trans effects for

GBM are massive, and the environment appears to have no effect (in agreement with the observation

Figure 4. CHH methylation varies with temperature. (A) Average methylation levels over variable transposons at 10˚C (orange) vs 16˚C (red), and over non-

variable transposons at 10˚C (purple) vs 16˚C (dark blue). Methylation for variable TEs is significantly higher (permutation p-value for CHH methylation =

0.05). (B) The density of variable (red) and non-variable TEs along chromosomes in 500 kb windows. Density is defined as the percentage of the total

number in either category in each window; pericentromeric regions are shaded grey. (C) The expression of TEs at both temperatures. Variable TEs are

more highly expressed than non-variable TEs, but the difference is only statistically significant at 16˚C (Wilcoxon: 10˚C, p = 0.15; 16˚C, p = 0.023).

DOI: 10.7554/eLife.05255.008
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Table 1. Super-families (italics) and families that are over-represented among ‘variable’ TEs

TE (super-)family Expected Observed Enrichment 95th Quantile

RathE1_cons 5 26 4.56 10

RathE3_cons 2 9 3.23 6

RathE2_cons 1 5 2.52 4

SINE 3 7 2.00 7

RC/Helitron 346 444 1.28 368

DNA/MuDR 144 184 1.27 162

ATREP2 4 53 12.07 8

RP1_AT 2 27 11.59 5

ATTIRX1C 1 12 11.49 3

ATREP13 2 28 9.87 6

VANDAL22 1 11 8.56 3

SIMPLEHAT1 1 11 7.34 4

VANDAL2N1 1 10 7.32 3

ATREP8 2 13 6.47 5

VANDAL2 1 7 6.08 3

ATREP10 1 10 5.93 4

AT9NMU1 1 7 5.81 3

ATN9_1 1 10 5.75 4

SIMPLEHAT2 1 11 5.63 4

META1 3 20 5.41 7

ATDNAI27T9A 3 15 4.83 6

ATREP2A 3 15 4.83 6

ATCOPIA78 0 3 4.67 2

VANDAL18NA 0 3 4.67 2

RathE1_cons 5 26 4.56 10

VANDAL14 0 3 4.48 2

SIMPLEGUY1 3 13 4.19 6

ATDNATA1 0 3 4.00 2

TNAT2A 1 4 3.93 3

ATREP7 4 16 3.64 8

RathE3_cons 2 9 3.23 6

ATREP14 1 4 3.18 3

ATREP16 1 4 3.18 3

LIMPET1 3 9 2.90 6

ATREP6 4 14 2.89 8

ARNOLDY2 7 22 2.85 13

ATSINE4 2 7 2.67 5

ATDNAI27T9C 2 7 2.42 6

ATREP3 38 92 2.39 49

ARNOLDY1 6 14 2.21 11

ATREP1 13 23 1.73 19

HELITRONY3 37 51 1.36 48

DOI: 10.7554/eLife.05255.009
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that only CHH methylation levels vary with tem-

perature, see Figure 1A). To identify the genes

responsible, we also performed GWAS for each

gene with GBM (Figure 7B). A total of 3241

significant associations were found for 2315

genes. 43% of these genes had a significant

cis-association (within 100 kb of the gene of

interest), which could represent local variants

affecting methylation directly, or indirectly by

affecting gene expression (Gutierrez-Arcelus

et al., 2013). No evidence for major trans-acting

loci like CMT2 was found, but 69% of all sig-

nificant associations were in trans. A comparison

of the direction of the effect of GBM-associated

SNPs in cis and trans revealed a striking pattern

(Figure 7C). While the non-reference alleles of

cis-SNPs were 1.18 times more likely to be

associated with decreased rather than increased

GBM (p = 2.01e-04), the non-reference alleles of

trans-SNPs were 3.48 times more likely to be

associated with increased GBM (p = 2.2e-16),

and the non-reference alleles at the 15 trans-

SNPs that were associated with GBM at five or

more genes were always positively correlated

(Figure 7C). Furthermore, while cis-SNPs

showed a wide distribution of allele frequencies

similar to random SNPs, trans-SNPs showed

a much more limited distribution of frequencies

(Figure 8A) and were also much more strongly

correlated with latitude (Figure 8B,C). The cor-

relation between GBM and latitude thus

appears mostly to be due to trans-acting SNPs.

The 15 highly associated trans-SNPs were

largely limited to northern Sweden, and were in

strong linkage disequilibrium with each other

(Figure 8—figure supplement 1). A. thaliana

from northern Sweden show signs of multiple

strong selective sweeps (Long et al., 2013) and harbors many polymorphisms that appear to

be involved in local adaptation (specifically to minimum temperature; Hancock et al., 2011).

The 15 SNPs were more than ninefold over-represented in the previously identified sweep

regions (empirical p-value = 5.1e-03) and over fivefold over-represented within 2 kb of SNPs

in the 1% tail of those associated with minimum temperature (Hancock et al., 2011) (empirical

p-value = 3.1e-04), (Table 3). The ancestral state could be determined for 10 of the 15 SNPs, and

in 8 of these cases, the non-reference allele was derived, further supporting sweeps in northern

Sweden.

That the difference in GBM between north and south is likely to reflect local adaptation is also

clear from its relative magnitude. The north vs south divide explains a much higher fraction of the

additive genetic variance for GBM (Qst = 0.772; see ‘Materials and methods’) than of the SNP

variance (Fst = 0.187). This strongly suggest that the phenotypic differentiation is driven by selection

rather than genetic drift (Leinonen et al., 2013).

Identifying the causal variants is challenging, a gene-ontology analysis of genes within 100 kb (the

average size of the sweep regions, Long et al., 2013), of the 15 trans-SNPs found enrichment of loci

associated with mRNA transcription (GO0009299, p-value = 2.62e-03). Genes involved in epigenetic

processes are not captured well by standard gene-ontology, but we found that genes from the plant

chromatin database (www.chromdb.org/) were significantly overrepresented in these regions as well

(permutation p-value = 0.012; Table 4).

Figure 5. Temperature dependent CHH methylation

variation at RdDM and CMT2 controlled DMRs. CHH

methylation at CMT2- and DCL3-dependent DMRs

in natural accessions grown at 10˚C and 16˚C (cf.

Figure 1A, each population has 110 individuals). The

difference between temperatures was highly significant for

both types of DMR (Wilcoxon p-value = 9.1e-11 and

p-value = 5.9e-12 respectively). Black points/grey lines

indicate accessions with the CMT2 reference allele; green,

the CMT2a non-reference allele; and orange, the CMT2b

non-reference allele. Red is the TAA-03 accession, which

has a putative null allele of CMT2. Average methylation

levels for each of the genotypes are shown in bars to the

side Figure 5—figure supplement 1 shows GWAS on

CMT2 and DCL3 dependant DMRs. Figure 5—figure

supplement 2 shows a putative null allele of CMT2.

DOI: 10.7554/eLife.05255.010

The following figure supplements are available for

figure 5:

Figure supplement 1. GWAS on CMT2 and DCL3

dependent DMRs.

DOI: 10.7554/eLife.05255.011

Figure supplement 2. Putative null allele of CMT2.

DOI: 10.7554/eLife.05255.012
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We also looked for genes whose expression variation is consistent with a causal role. We identified

68 genes within 100 kB of one of the 15-trans SNPs whose expression is highly correlated (Wilcoxon

test p < 0.001) with the adjacent SNP after correction for population structure (Table 5). No significant

enrichment of Gene Ontology terms was observed among these genes, and manual inspection

identified no proteins directly involved in DNA methylation. Instead, a number of proteins involved

in the regulation of gene expression and/or chromatin accessibility were present (Table 5). This may

suggest that the increased gene-body methylation observed in the north is not directly due to

increased DNA methylation, but may be caused by increases in gene expression driven either by

differences in transcription factors networks or chromatin compaction. Identification of the causal

variants behind this phenomenon should provide insight into how plants adapt to their local

environment.

Table 2. Correlation between methylation levels and environment-of-origin variables (Hancock et al., 2011)

Environmental variable Growing temp.

CG CHG CHH

r rho p-value r rho p-value r rho p-value

Latitude 10 0.69 0.52 7.8E-11 −0.24 −0.19 2.7E-02 0.10 0.14 1.1E-01

16 0.62 0.47 3.2E-07 −0.21 −0.20 4.2E-02 0.04 −0.11 2.5E-01

Longitude 10 0.59 0.54 1.2E-11 −0.14 −0.09 3.1E-01 0.23 0.28 7.5E-04

16 0.55 0.53 4.4E-09 −0.12 −0.03 7.4E-01 0.14 0.15 1.2E-01

Temperature seasonality 10 0.68 0.49 1.6E-09 −0.27 −0.24 4.8E-03 0.09 0.09 2.8E-01

16 0.62 0.42 1.1E-05 −0.23 −0.26 6.6E-03 0.04 −0.12 2.1E-01

Max. temp. (warmest month) 10 −0.14 0.06 4.6E-01 −0.07 −0.13 1.3E-01 0.14 0.20 2.0E-02

16 −0.03 0.10 2.9E-01 −0.10 −0.20 3.8E-02 0.05 0.03 7.3E-01

Min. temp. (coldest month) 10 −0.70 −0.56 9.1E-13 0.27 0.21 1.2E-02 −0.07 −0.06 4.7E-01

16 −0.63 −0.48 2.7E-07 0.24 0.24 1.4E-02 0.00 0.19 5.6E-02

Precipitation (wettest month) 10 0.45 0.52 1.2E-10 −0.25 −0.27 1.2E-03 −0.20 −0.12 1.7E-01

16 0.29 0.43 4.0E-06 −0.26 −0.24 1.2E-02 −0.22 −0.19 5.8E-02

Precipitation (driest month) 10 0.31 0.40 1.5E-06 −0.33 −0.29 6.5E-04 −0.24 −0.21 1.6E-02

16 0.21 0.32 7.4E-04 −0.26 −0.24 1.4E-02 −0.15 −0.18 6.0E-02

Precipitation seasonality 10 0.42 0.44 7.1E-08 −0.07 −0.16 5.4E-02 0.05 0.01 9.0E-01

16 0.36 0.37 1.2E-04 −0.13 −0.16 1.1E-01 0.01 −0.01 9.1E-01

PAR (spring) 10 0.04 0.22 8.9E-03 0.20 0.18 3.7E-02 0.24 0.23 7.3E-03

16 0.03 0.18 6.6E-02 0.27 0.21 3.5E-02 0.38 0.35 2.8E-04

Length of growing season 10 −0.59 −0.57 5.5E-13 0.24 0.23 7.3E-03 −0.16 −0.18 3.3E-02

16 −0.58 −0.54 4.0E-09 0.23 0.21 3.0E-02 −0.04 0.01 8.9E-01

No. consecutive cold days 10 0.60 0.53 4.0E-11 −0.19 −0.13 1.2E-01 0.17 0.28 1.1E-03

16 0.57 0.53 4.2E-09 −0.17 −0.09 3.7E-01 0.10 0.08 4.1E-01

No. consecutive frost-free days 10 −0.59 −0.49 1.2E-09 0.29 0.27 1.5E-03 0.02 0.03 7.1E-01

16 −0.51 −0.39 4.9E-05 0.30 0.30 1.6E-03 0.07 0.13 1.9E-01

Relative humidity (spring) 10 0.62 0.47 5.6E-09 −0.23 −0.18 3.9E-02 0.09 0.06 4.5E-01

16 0.53 0.37 1.2E-04 −0.20 −0.26 7.6E-03 0.04 −0.08 4.3E-01

Daylength (spring) 10 0.69 0.50 7.2E-10 −0.27 −0.21 1.4E-02 0.08 0.05 5.7E-01

16 0.63 0.41 1.5E-05 −0.23 −0.29 2.7E-03 0.04 −0.17 8.7E-02

Aridity 10 0.53 0.49 8.4E-10 −0.35 −0.31 1.9E-04 −0.18 −0.21 1.3E-02

16 0.43 0.42 8.4E-06 −0.28 −0.24 1.3E-02 −0.13 −0.20 3.8E-02

r = Pearson’s correlation, rho = Spearman’s rank correlation, p-value = significance of rho.

PAR = photosynthetically active radiation.

DOI: 10.7554/eLife.05255.013
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In conclusion, genes with GBM are generally up-regulated and more heavily methylated

in northern accessions, and the change appears to be due to trans-acting polymorphisms

that have been subject to directional selection. The candidate regions show an overrepresen-

tation of genes involved in transcriptional processes. We also found that CHH methylation of

TEs is temperature sensitive, and identified a major trans-acting controller, CMT2. Taken

together, these observations suggest that local adaptation in A. thaliana involves genome-wide

changes in fundamental mechanisms of gene regulation, perhaps as a form of temperature

compensation.

Materials and methods

Raw data generation

Plant growth
A diverse set of 150 Swedish accessions were sown on soil and stratified for 3 days at 4˚C in the dark.

They were then transferred to environmentally controlled growth chambers set at 10˚C or 16˚C under

long day conditions (04:00–20:00) and individual seedlings were transplanted to single pots after 1

week. When plants attained the 9-true-leaf stage of development, whole rosettes were collected

between 15:00 and 16:00 hr and flash frozen in liquid nitrogen.

Figure 6. Latitudinal difference in gene body methylation (GBM) and gene expression. (A) Global CG methylation

levels at 10˚C for 151 accessions are strongly correlated with minimum temperature at the location of origin. Results

for 16˚C are similar. (B) Genes with GBM are more highly expressed at 10˚C in northern (blue) than in southern (red)

accessions (wilcoxon rank sum test p = 2.1e-03), whereas genes without GBM show little difference (p = 1.9e-02). At

16˚C the difference for genes with GBM is more significant (p = 6.4e-05), whereas the difference for genes without

GBM is insignificant (p = 0.49).

DOI: 10.7554/eLife.05255.014

The following figure supplements are available for figure 6:

Figure supplement 1. Correlation between CG methylation levels and the minimum temperature at location of

origin.

DOI: 10.7554/eLife.05255.015

Figure supplement 2. Filtering of GBM variation data.

DOI: 10.7554/eLife.05255.016

Figure supplement 3. Distribution of methylation levels at individual CG dinucleotides within GBM genes.

DOI: 10.7554/eLife.05255.017

Figure supplement 4. Distribution of variation in methylation levels between the north and the south for individual

CG dinucleotides within GBM genes.

DOI: 10.7554/eLife.05255.018

Figure supplement 5. Accessions with higher average GBM tend to have higher average expression (of genes with

GBM, normalized by genes without GBM; r = 0.131, p = 0.0386).

DOI: 10.7554/eLife.05255.019

Figure supplement 6. Genes with GBM show less expression variation between temperatures.

DOI: 10.7554/eLife.05255.020

Dubin et al. eLife 2015;4:e05255. DOI: 10.7554/eLife.05255 11 of 23

Research article Genomics and evolutionary biology | Plant biology

http://dx.doi.org/10.7554/eLife.05255.014
http://dx.doi.org/10.7554/eLife.05255.015
http://dx.doi.org/10.7554/eLife.05255.016
http://dx.doi.org/10.7554/eLife.05255.017
http://dx.doi.org/10.7554/eLife.05255.018
http://dx.doi.org/10.7554/eLife.05255.019
http://dx.doi.org/10.7554/eLife.05255.020
http://dx.doi.org/10.7554/eLife.05255


In addition, a cross between the T550 and Brösarp-11-135 accessions was created and F2 seed

obtained. 113 individual F2 lines were grown in the same manner as the accessions.

RNA-seq library preparation
For each accession, three plants were pooled and total RNA was extracted by TRIzol (Invitrogen,

Carlsbad, California, 15596-018), DNase treated and mRNA purified with oligo dT Dynabeads

(Life Technologies, Carlsbad, California). RNA was then fragmented using Ambion Fragmenta-

tion buffer (Life Technologies) and first and second strand cDNA synthesis was carried out using

Invitrogen kit 18064-071. The ends of sheared fragments were repaired using Epicentre

(Madison, Wisconsion) kit ER81050. After A-tailing using exo-Klenow fragment (New England

Biolabs, Ipswich, Massachusetts, NEB M0212L), barcoded adaptors were ligated with Epicentre

Fast-Link DNA Ligation Kit (Epicentre LK6201H). Adaptor-ligated DNA was resolved on 1.5% low

melt agarose gels for 1 hr at 100 V. DNA in the range of 200–250 bp was excised from the gel

and purified with the Zymoclean Gel DNA recovery kit (Zymo Research). The libraries were

amplified by PCR for 15 cycles with Illumina PCR primers 1.1 and 1.2 with Phusion polymerase

(NEB F-530L).

Single-end 32 bp sequencing was performed at the University of Southern California Epigenome

Center on an Illumina (San Diego, California) GAIIx instrument using fourfold multiplexing.

MethylC-seq library preparation
For each accession two individual plants were pooled and total DNA was extracted using CTAB and

phenol-chloroform. Approximately two micrograms of genomic DNA was used for MethylC-seq

library construction and sequencing (92 bp paired-end) by BGI.

Figure 7. The genetic basis of GBM. (A) Variance component analysis of GBM. (B) Significant associations (Bonferroni-corrected 0.05-level) from a GWAS

of GBM for individual genes. (C) Correlation between non-reference allele at associated SNPs and GBM.

DOI: 10.7554/eLife.05255.021

Dubin et al. eLife 2015;4:e05255. DOI: 10.7554/eLife.05255 12 of 23

Research article Genomics and evolutionary biology | Plant biology

http://dx.doi.org/10.7554/eLife.05255.021
http://dx.doi.org/10.7554/eLife.05255


Sequence analysis

Genome sequences
Illumina sequencing data from 180 published Swedish genomes (Long et al., 2013) were combined

with sequencing data from another 79 (1001genomes.org), which had been processed using the

same pipeline to yield polymorphism data for a total of 259 accessions (including those used

for MethylC-seq and RNA-seq here). Linkage disequilibrium calculated using the R package

LDHeatmap (version 0.9.1; Shin et al., 2006).

RNA-seq data processing

Read mapping
After demultiplexing, 36 bp RNA-Seq reads were trimmed from barcodes (4 nt) and mapped to

the TAIR10 reference genome including known variation with the PALMapper aligner (Jean et al.,

2010) using a variant-aware alignment strategy. Two different sources of variants were used:

(1) single nucleotide variants (SNV) and structural variants (SV) from genome sequencing (2.1) and

(2) SNVs and SVs called in an initial alignment round of the RNA-Seq reads to the TAIR10 reference

genome with PALMapper (relevant parameters: -M 4 -G 4 -E 6 -I 25000 -NI 1 -S). For both sources

of variants we applied stringent filter criteria to reduce false calls: (1) genome variants had to

appear in at least 40 strains with a minor allele count of at least 5 strains, (2) RNA-Seq variants had

to be confirmed by at least 2 alignments within the same strain and had to have less than factor

2 many non-confirming alignments within the same strain. Variants from both sources were

integrated into one file that was used for a second, variant-aware alignment round with

Figure 8. Frequency and distribution of GBM associated SNPs. (A) Correlation between non-reference allele at

associated SNPs and latitude. (B) Non-reference allele frequency distribution for cis and trans SNPs compared to

random SNPs. (C) Accessions carrying the non-reference alleles are limited to northern Sweden (accessions with the

non-reference allele at 8 or more of the 15 loci blue, remaining accessions are red).

DOI: 10.7554/eLife.05255.022

The following figure supplement is available for figure 8:

Figure supplement 1. Linkage disequilibrium between the 15 highly associated trans-SNPs.

DOI: 10.7554/eLife.05255.023
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PALMapper (relevant parameters: -M 2 -G 0 -E 2 -I 5000 -NI 0 -S). In variant-aware alignment

mode, PALMapper builds an implicit representation of the reference genome that reflects all

possible variant combinations that exist for a genomic region. The output is automatically projected

to the TAIR10 coordinate system. To account for reads ambiguously mapping to multiple locations

in the genome, we used a custom python script (Supplementary file 3) to remove all reads that

showed at least one mapping additional to the best hit with the same edit distance. Additional hits

were only counted as ambiguous, if they differed at least 3 nt in start and stop coordinates to the

best hit. On average, 5.7 M reads were mapped per sample after removal of ambiguous reads. Low

complexity libraries with less than 30% of mappable reads or samples with less than 800,000

mappable reads (6 in total) where excluded from further analysis.

Sample validation
To correct for possible sample or data mix-ups, SNP were called from the RNA-seq alignments using

a custom python script and compared to independently collected SNPs from the Arabidopsis 250K

SNP array (Supplementary materials; Kim et al., 2007). Samples not matching the expected genotype

were reassigned to the correct genotype where possible or otherwise excluded from further analysis.

Filter for gene expression quantification
We quantified gene expression by counting the number of reads that were longer than 24 bp and that

mapped to genes on all non-chloroplast and non-mitochondrial chromosomes. To obtain a stable

quantification, we only used those reads that were uniquely mapped into the exonic regions of genes.

Furthermore, we required that the reads did not map completely into regions where two genes

overlap in order to avoid mixing quantifications of different genes. In the later text we will refer to this

estimate as the raw expression estimate.

We also quantified the gene expression when additionally accounting for SV, alternative splicing

and repetitive sequences that can all bias gene expression quantification. This estimate will be

referred to as sv-corrected expression. For this quantification we additionally filtered for reads that

start in an insertion or deletions and their two neighboring bases, that mapped into regions that are

not contained in all transcripts of a gene and reads which were mapped completely into regions which

are repetitive based on a 50 bp window.

Table 3. 15 SNPs associated with gene body methylation (GBM) at 5 or more genes

Chr Position

Associated with GBM

at how many genes?

Non-reference

allele count

SNP-latitude

correlation

Overlap with sweep

(Long et al., 2013)

Overlap with min.

temp. Assoc. SNPs

(Hancock et al., 2011)

1 912291 8 42 0.73 none 1_914088_0.21

1 4405103 5 66 0.64 none none

1 7614101 5 48 0.66 none none

1 19755967 5 88 0.75 none 1_19757140_0.24

2 6998631 6 55 0.87 2_6931030 none

2 7655016 6 81 0.61 2_7613651 none

2 7660469 9 55 0.78 2_7613651 2_7662427_0.30

2 7666059 5 69 0.72 2_7613651 2_7665507_0.25

2 7680882 5 82 0.63 2_7613651 none

2 7915712 6 51 0.83 none 2_7913782_0.23

2 9382495 5 73 0.71 none 2_9383856_0.34

2 9653878 9 48 0.80 none none

3 419309 8 66 0.68 none none

4 519982 8 66 0.70 none none

4 13290034 5 74 0.74 none none

DOI: 10.7554/eLife.05255.024
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Quantification per ecotype and
environment
After filtering (see ‘Filter for gene expression

quantification’), there were 499 RNA-Seq

libraries left for analysis. Next, we merged

libraries per ecotype and environment, yield-

ing 323 unique merged RNA-Seq libraries for a

unique ecotype and environment (160 in 10˚C,

163 in 16˚C).

Estimation of library size and
abundance estimates
We followed the low level normalization pro-

posed by Anders and Huber (2010), jointly

applied to the set of expression estimates

across ecotypes and environmental back-

grounds. First, we estimated effective library

sizes as the median expression estimates

across all genes. Based on this, we derived

correction factors to adjust individual libraries

for differences in size.

RKPM values
Library-size adjusted raw counts were used

to obtain standard read counts per million

expression estimates for each gene.

MethylC-seq data processing

Read mapping
Reads were aligned as previously described (Dinh et al., 2012) to a modified pseudo-reference

chromosome in which SNPs were inserted into the TAIR10 reference genome using NextGenMap

(version 0.4.3; Sedlazeck et al., 2013) allowing up to 10% mismatch between the reads (-i 0.90) and

the reference sequence and discarding reads that map equally well to more than one genomic

location or have less than 45 nucleotides mapping without error to the reference sequence (-R 45).

Average coverage was 12.6 X.

To correct for sample or data mix-ups, the raw data was also aligned to the first chromosome of the

Columbia-0 TAIR reference genome as described above and SNP calling performed using the BISsnp

package (Liu et al., 2012). The polymorphism data were then compared to data from genome

sequencing (1001genomes.org). Accessions that did not have the highest similarity to the expected

genotype were excluded from further analysis.

DNA methylation analysis
Methylation was estimated individually for each cytosine using a python script provided with the

BSMAP software package (Xi and Li, 2009). Conversion efficiency was estimated from the

fraction of methylated cytosines in chloroplasts using the R software package (www.r-project.

org, version 2.15.2). After eliminating one outlier, the samples had conversion efficiencies

ranging from 99.25%–99.80% (mean = 99.59%). Genome wide average methylation levels

were calculated separately for the CG, CHG and CHH contexts. The average variance between

11 biological replicates was 2.2%, 3.2% and 7.3% for CG, CHG and CHH methylation

respectively, while for identical genotypes grown at different temperatures (111 pairs) CG,

CHG and CHH methylation variance was 2.7%, 4.6% and 15.9% respectively. The variance in

genome wide methylation levels for the 152 accessions grown at 10˚C was respectively 7.6%,

Table 4. Genes in the plant chromatin database

that are within 100 kb of one of the 15 SNPs

associated with GBM at 5 or more genes

ChromDB Locus

ARID3 AT2G17410

ARP3 AT1G13180

CHB4 AT1G21700

CHR9 AT1G03750

CHR35 AT2G16390

CONS3 AT3G02380

DNG12 AT1G21710

FLCP39 AT3G02310

FLCP16 AT2G22630

FLCP9 AT2G22540

GTI1 AT2G22720

HMGB4 AT2G17560

JMJ27 AT4G00990

NFA1 AT4G26110

SDG23 AT2G22740

SDG37 AT2G17900

YDG2 AT2G18000

HON3 AT2G18050

DOI: 10.7554/eLife.05255.025
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Table 5. Genes within 100 kb of the 15 SNPs associated with GBM at 5 or more genes whose

expression is also correlated with the SNP

SNP Locus Desciption p-value

1_19755967 AT1G53030 Encodes a copper chaperone 4.72E-07

1_19755967 AT1G52880 NO APICAL MERISTEM (NAM)
Transcription factor with a NAC
domain

5.47E-07

1_19755967 AT1G52990 Thioredoxin family protein 2.36E-05

1_19755967 AT1G52780 Protein of unknown function (DUF2921) 1.46E-04

1_4405103 AT1G12750 RHOMBOID-like protein 6 (RBL6);
FUNCTIONS IN: serine-type
endopeptidase activity

3.74E-08

1_4405103 AT1G12790 RuvA domain 2-like 2.76E-05

1_4405103 AT1G12730 GPI transamidase subunit 2.81E-05

1_4405103 AT1G13080 CYTOCHROME P450 FAMILY 71
SUBFAMILY B POLYPEPTIDE 2
(CYP71B2)

1.65E-04

1_7614101 AT1G21790 TRAM LAG1 and CLN8 (TLC) lipid-
sensing domain containing protein

1.10E-05

1_7614101 AT1G21900 Encodes an ER-localized p24 protein 8.81E-05

1_7614101 AT1G21760 F-BOX PROTEIN 7 (FBP7) putative
translation regulator in temperature
stress response

8.54E-04

1_912291 AT1G03660 Ankyrin-repeat containing protein 1.26E-10

1_912291 AT1G03770 RING1B protein with similarity to
polycomb repressive core complex1
(PRC1)

5.76E-07

1_912291 AT1G03940 HXXXD-type acyl-transferase family
protein

1.18E-06

1_912291 AT1G03610 Protein of unknown function (DUF789) 6.91E-06

1_912291 AT1G03580 Pseudogene with weak similarity to
ubiquitin-specific protease 12

1.29E-05

1_912291 AT1G03830 Guanylate-binding family protein 3.50E-05

2_6998631 AT2G16340 Unknown protein 1.35E-08

2_6998631 AT2G16210 Transcriptional factor B3 family
protein

1.69E-04

2_7666059 AT2G17630 Pyridoxal phosphate (PLP)-dependent
transferases superfamily protein

2.47E-18

2_7660469 AT2G17620 Cyclin B2;1 (CYCB2;1) 9.68E-07

2_7655016 AT2G17740 Cysteine/Histidine-rich C1 domain family
protein

1.22E-04

2_7655016 AT2G17420 NADPH-DEPENDENT THIOREDOXIN
REDUCTASE 2 (NTR2)

9.96E-04

2_7666059 AT2G17430 MILDEW RESISTANCE LOCUS O 7
(MLO7)

7.56E-04

2_7915712 AT2G18100 Protein of unknown function (DUF726) 1.73E-06

2_7915712 AT2G17980 ATSLY member of SLY1 Gene Family 1.33E-05

2_7915712 AT2G18400 Ribosomal protein L6 family protein 1.26E-04

2_7915712 AT2G18150 Haem peroxidase 8.05E-04

2_7915712 AT2G18050 HISTONE H1-3 (HIS1-3) 9.47E-04

2_9382495 AT2G22260 HOMOLOG OF E. COLI ALKB (ALKBH2)
enzyme involved in DNA methylation
damage repair

1.21E-08

Table 5. Continued on next page
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Table 5. Continued

SNP Locus Desciption p-value

2_9382495 AT2G21850 Cysteine/Histidine-rich C1 domain family
protein

5.38E-06

2_9382495 AT2G22240 MYO-INOSITOL-1-PHOSPHATE
SYNTHASE 1 (MIPS1)

8.71E-05

2_9382495 AT2G21940 SHIKIMATE KINASE 1 (ATSK1) localized
to the chloroplast

1.80E-04

2_9653878 AT2G22660 Protein of unknown function (duplicated
DUF1399)

2.22E-14

2_9653878 AT2G22900 Galactosyl transferase GMA12/MNN10
family protein

5.08E-09

2_9653878 AT2G22830 Squalene epoxidase 2 (SQE2) 3.91E-06

2_9653878 AT2G22640 BRICK1 (BRK1) 6.17E-05

2_9653878 AT2G22540 SHORT VEGETATIVE PHASE (SVP)
Floral repressor involved in
thermosensory pathway

2.46E-04

2_9653878 AT2G22570 NICOTINAMIDASE 1 (NIC1) 2.67E-04

2_9653878 AT2G22770 NAI1 Transcription factor 7.71E-04

3_419309 AT3G02220 Protein of unknown function (DUF2039) 2.06E-16

3_419309 AT3G02230 REVERSIBLY GLYCOSYLATED
POLYPEPTIDE 1 (RGP1)

4.58E-14

3_419309 AT3G02300 Regulator of chromosome condensation
(RCC1) family protein

1.25E-10

3_419309 AT3G02120 Hydroxyproline-rich glycoprotein family
protein

1.81E-09

3_419309 AT3G01980 Short-chain dehydrogenase/reductase
(SDR)

3.91E-09

3_419309 AT3G02370 Unknown protein 4.53E-08

3_419309 AT3G02020 ASPARTATE KINASE 3 (AK3) 4.18E-07

3_419309 AT3G02160 Bromodomain transcription factor 2.60E-06

3_419309 AT3G02390 Unknown chloroplast protein 5.60E-06

3_419309 AT3G02050 K+ UPTAKE TRANSPORTER 3 (KUP3) 1.28E-05

3_419309 AT3G02125 Unknown chloroplast protein 2.12E-05

3_419309 AT3G02200 Proteasome component (PCI) domain
protein

1.16E-04

3_419309 AT3G02180 SPIRAL1-LIKE3 Regulates cortical
microtubule organization

4.56E-04

3_419309 AT3G02250 O-fucosyltransferase family protein 5.31E-04

3_419309 AT3G02110 Serine carboxypeptidase-like 25 (scpl25) 6.18E-04

4_13290034 AT4G26255 Non-coding RNA of unknown function 1.67E-13

4_13290034 AT4G26450 WPP DOMAIN INTERACTING PROTEIN
1 (WIP1)

1.13E-04

4_13290034 AT4G26230 Ribosomal protein L31e family protein 1.74E-04

4_13290034 AT4G26160 ATYPICAL CYS HIS RICH THIOREDOXIN
1 (ACHT1)

5.72E-04

4_519982 AT4G01090 Protein of unknown function (DUF3133) 1.23E-06

4_519982 AT4G01230 Reticulon family protein 2.33E-05

4_519982 AT4G01410 Late embryogenesis abundant (LEA)
hydroxyproline-rich glycoprotein family

5.44E-05

4_519982 AT4G01330 Serine/threonine-protein kinase 2.22E-04

4_519982 AT4G01200 Calcium-dependent lipid-binding (CaLB
domain) family protein

3.93E-04

Table 5. Continued on next page
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9.2% and 13.2% for CG, CHG and CHH methylation, while for the 121 accessions grown at 16˚C

genome wide CG, CHG and CHH methylation varied 8.5%, 9.5% and 14.3% respectively.

The Bioconductor package Repitools (version 0.6.0; Statham et al., 2010) was used to average

methylation over genomic features of interest (e.g., all genes, all transposons over 4 kB or a subset of

transposons of interest). Pairwise DMRs were called individually for each accession using the R

software package methylKit (version 0.5.6; Akalin et al., 2012) using a window size of 100 bp, an FDR

rate of 0.05 and a minimum fold change of 0.3. Overlap of DMRs with (TAIR10) genomic features such

as transposons and genes was calculated using the Bioconductor package ChIPpeakAnno (version

2.8.0; Zhu et al., 2010). For each accession, methylation data was smoothed independently for each

context using the Bioconductor package BSmooth (version 0.4.5; Hansen et al., 2012) using the

default settings. Average methylation was then calculated for (overlapping) 200 bp sliding windows

centered every 100 bp across the genome. Further analysis was limited to the 200,000 windows

showing the most variance among accessions.

Population genetic analysis

GWAS
Linear mixed models that correct for confounding by the genetic background using a kinship matrix

calculated from genetic data were used throughout (Kang et al., 2010; Segura et al., 2012).

To examine the effect of genotype on local CHH methylation variation, DMRs were defined by filtering

the 200 bp methylation windows to remove those containing missing data (no coverage) in one or more

accessions, then selecting the 105 remaining windows with the greatest variance in DNA methylation.

For GBM, genes were filtered to remove those that had more than 0.05 average CHG methylation or

less than 0.05 average CG methylation across the accessions (Figure 6—figure supplement 2).

Variance component analysis
To investigate the relative contributions of genetic and environmental effects to methylation

differences we used LIMIX (Lippert et al., 2014), which efficiently estimates variance components

using linear mixed models.

For each DMR, we considered a linear mixed model with a fixed effect for the environment and

random effects for the contributions from cis and trans genetic variants and variants from the CMT2

locus. Indicating with N and E respectively the number of samples and environments (E = 2), the NxE

multivariate phenotype Y can be written as

Y=1N;1μ
T
+UCMT2

+Ucis
+Utrans

+ψ;

where μ is a Ex1 vector of environment-specific mean values, and

UCMT2
∼MVN

�

0;CCMT2;RCMT2
�

;Ucis
∼MVN

�

0;Ccis;Rcis
�

;

Utrans
∼MVNð0;Ctrans;RtransÞ;ψ∼MVNð0;Σ; INÞ;

where MVN(0,C,R) denotes a matrix normal distribution with mean 0, column covariance matrix C and

row covariance matrix R. Rcis and Rtrans indicate the genetic relatedness matrices based on cis and trans

variants respectively, where all variants within 50 kb from the DMR were defined as cis-acting and all

others as trans–acting. Similarly, RCMT2 denotes the genetic relatedness matrix based on genotypes at

the CMT2 locus. The row covariance of the noise component IN corresponds to an N x N identity

matrix.

The covariance matrices CCMT2, Ccis, Ctrans and Σ describe phenotypic correlations across

environments due to these contributions, and were estimated from the data using maximum

Table 5. Continued

SNP Locus Desciption p-value

4_519982 AT4G01390 TRAF-like family protein 3.99E-04

4_519982 AT4G01040 Glycosyl hydrolase superfamily protein 5.66E-04

4_519982 AT4G01000 Ubiquitin-like superfamily protein 8.55E-04

DOI: 10.7554/eLife.05255.026
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likelihood. For each DMR, we considered up to 10 random restarts for the optimization and stopped

as soon as convergence was achieved. DMRs for which no convergence was achieved were discarded

from genome-wide summary statistics.

Once the model parameters have been estimated, the variance explained by environment can be

calculated from μ, while environment-persistent and environment-specific effects from a given random

effect can be estimated by decomposing the corresponding trait covariance into a shared and an

independent component (Lippert et al., 2014).

QTL mapping
MethylC-seq data for the 113 F2 individuals was mapped as described in section ‘Read mapping’ to the

Columbia-0 TAIR reference genome. SNP-calling was done directly from the methylC-seq data using

the BIS-SNP package (Liu et al., 2012). From these SNPs local haplotype was inferred for sequential 500

Mb windows which were then used to create a haplotype map using the R package R/qtl (Broman et al.,

2003). Mapping was done using Haley-Knot regression (Arends et al., 2010) with a 4 centimorgan

steps size. Genome wide significance was estimated by permutation testing (1000 permutations).

DMR calling on DNA methylation mutants
Pairwise DMRs were called for T-DNA mutants vs the wild-type control using the R software package

methylKit (version 0.5.6; Akalin et al., 2012) using a window size of 100 bp, an FDR rate of 0.05 and

a minimum fold change of 0.3. Overlap between these DMRs and ‘temperature DMRs” calculated for

the accessions was calculated and significance testing (Fisher’s exact test) was calculated using R

software.

Qst-Fst test
Fst was computed using the Hudson estimate as suggested in Bhatia et al. (2013). We note that

our estimate of 0.187 is consistent with the recent estimate of Huber et al. (2014) (although the

samples only overlap in part). For Qst, we first estimated northern, southern, and overall additive

variance using the Hasemann-Elston regression, and a SNP-based identity-by-state matrix

(Chen, 2014), then calculated Qst as σ2B=ðσ
2
B + 2σ2wÞ, where σ

2
w is the weighted average of variance

within north and south populations, and σ
2
B is the variance between populations, obtained by

subtracting σ
2
w from the overall additive variance.
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Hellmann I, Nordborg M

2013 Massive genomic
variation and strong
selection in Arabidopsis
thaliana lines from
Sweden

http://plone.gmi.oeaw.
ac.at/downloads/
nordborg/data-release-
for-massive-genomic-
variation-and-strong-
selection-in-arabidopsis-
thaliana-lines-from-
sweden

Publicly available at
Gregor Mendel Institute
of Molecular Plant
Biology.

References
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE. 2012. methylKit:
a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biology 13:R87.
doi: 10.1186/gb-2012-13-10-r87.

Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology 11:R106.
doi: 10.1186/gb-2010-11-10-r106.

Arends D, Prins P, Jansen RC, Broman KW. 2010. R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:
2990–2992. doi: 10.1093/bioinformatics/btq565.

Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R,
Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N,
Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram
P, Borevitz JO, Bergelson J, Nordborg M. 2010. Genome-wide association study of 107 phenotypes in
Arabidopsis thaliana inbred lines. Nature 465:627–631. doi: 10.1038/nature08800.

Bhatia G, Patterson N, Sankararaman S, Price AL. 2013. Estimating and interpreting FST: the impact of rare
variants. Genome Research 23:1514–1521. doi: 10.1101/gr.154831.113.

Broman KW, Wu H, Sen S, Churchill GA. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:
889–890. doi: 10.1093/bioinformatics/btg112.

Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O. 2014. How a retrotransposon
exploits the plant’s heat stress response for its activation. PLOS Genetics 10:e1004115. doi: 10.1371/journal.
pgen.1004115.

Chen GB. 2014. Estimating heritability of complex traits from genome-wide association studies using IBS-based
Haseman-Elston regression. Frontiers in Genetics 5:107. doi: 10.3389/fgene.2014.00107.

Daxinger L, Kanno T, Bucher E, van der Winden J, Naumann U, Matzke AJ, Matzke M. 2009. A stepwise pathway
for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. The EMBO Journal 28:48–57.
doi: 10.1038/emboj.2008.260.

Dinh HQ, Dubin M, Sedlazeck FJ, Lettner N, Mittelsten Scheid O, von Haeseler A. 2012. Advanced methylome
analysis after bisulfite deep sequencing: an example in Arabidopsis. PLOS ONE 7:e41528. doi: 10.1371/journal.
pone.0041528.

Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, Waters AJ, Starr E, West PT, Tiffin P,
Myers CL, Vaughn MW, Springer NM. 2013. Epigenetic and genetic influences on DNA methylation variation in
maize populations. The Plant Cell 25:2783–2797. doi: 10.1105/tpc.113.114793.

Finnegan EJ, Genger RK, Peacock WJ, Dennis ES. 1998. DNA methylation in plants. Annual Review of Plant
Physiology and Plant Molecular Biology 49:223–247. doi: 10.1146/annurev.arplant.49.1.223.

Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, Bryois J, Giger T, Romano L,
Planchon A, Falconnet E, Bielser D, Gagnebin M, Padioleau I, Borel C, Letourneau A, Makrythanasis P, Guipponi
M, Gehrig C, Antonarakis SE, Dermitzakis ET. 2013. Passive and active DNA methylation and the interplay with
genetic variation in gene regulation. eLife 2:e00523. doi: 10.7554/eLife.00523.

Hagmann J, Becker C, Müller J, Stegle O, Meyer RC, Wang G, Schneeberger K, Fitz J, Altmann T, Bergelson J,
Borgwardt K, Weigel D. 2015. Century-scale methylome stability in a recently diverged Arabidopsis thaliana

Lineage. PLOS Genetics 11:e1004920. doi: 10.1371/journal.pgen.1004920.
Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J.
2011. Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86. doi: 10.1126/science.
1209244.

Hansen KD, Langmead B, Irizarry RA. 2012. BSmooth: from whole genome bisulfite sequencing reads to
differentially methylated regions. Genome Biology 13:R83. doi: 10.1186/gb-2012-13-10-r83.

Henikoff S, Comai L. 1998. A DNA methyltransferase homolog with a chromodomain exists in multiple
polymorphic forms in Arabidopsis. Genetics 149:307–318.

Huber CD, Nordborg M, Hermisson J, Hellmann I. 2014. Keeping it local: evidence for positive selection in Swedish
Arabidopsis thaliana. Molecular Biology and Evolution 31:3026–3039. doi: 10.1093/molbev/msu247.

Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. 2011. An siRNA pathway prevents
transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119. doi: 10.1038/
nature09861.

Dubin et al. eLife 2015;4:e05255. DOI: 10.7554/eLife.05255 21 of 23

Research article Genomics and evolutionary biology | Plant biology

http://plone.gmi.oeaw.ac.at/downloads/nordborg/data-release-for-massive-genomic-variation-and-strong-selection-in-arabidopsis-thaliana-lines-from-sweden
http://plone.gmi.oeaw.ac.at/downloads/nordborg/data-release-for-massive-genomic-variation-and-strong-selection-in-arabidopsis-thaliana-lines-from-sweden
http://plone.gmi.oeaw.ac.at/downloads/nordborg/data-release-for-massive-genomic-variation-and-strong-selection-in-arabidopsis-thaliana-lines-from-sweden
http://plone.gmi.oeaw.ac.at/downloads/nordborg/data-release-for-massive-genomic-variation-and-strong-selection-in-arabidopsis-thaliana-lines-from-sweden
http://plone.gmi.oeaw.ac.at/downloads/nordborg/data-release-for-massive-genomic-variation-and-strong-selection-in-arabidopsis-thaliana-lines-from-sweden
http://plone.gmi.oeaw.ac.at/downloads/nordborg/data-release-for-massive-genomic-variation-and-strong-selection-in-arabidopsis-thaliana-lines-from-sweden
http://plone.gmi.oeaw.ac.at/downloads/nordborg/data-release-for-massive-genomic-variation-and-strong-selection-in-arabidopsis-thaliana-lines-from-sweden
http://plone.gmi.oeaw.ac.at/downloads/nordborg/data-release-for-massive-genomic-variation-and-strong-selection-in-arabidopsis-thaliana-lines-from-sweden
http://dx.doi.org/10.1186/gb-2012-13-10-r87
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1093/bioinformatics/btq565
http://dx.doi.org/10.1038/nature08800
http://dx.doi.org/10.1101/gr.154831.113
http://dx.doi.org/10.1093/bioinformatics/btg112
http://dx.doi.org/10.1371/journal.pgen.1004115
http://dx.doi.org/10.1371/journal.pgen.1004115
http://dx.doi.org/10.3389/fgene.2014.00107
http://dx.doi.org/10.1038/emboj.2008.260
http://dx.doi.org/10.1371/journal.pone.0041528
http://dx.doi.org/10.1371/journal.pone.0041528
http://dx.doi.org/10.1105/tpc.113.114793
http://dx.doi.org/10.1146/annurev.arplant.49.1.223
http://dx.doi.org/10.7554/eLife.00523
http://dx.doi.org/10.1371/journal.pgen.1004920
http://dx.doi.org/10.1126/science.1209244
http://dx.doi.org/10.1126/science.1209244
http://dx.doi.org/10.1186/gb-2012-13-10-r83
http://dx.doi.org/10.1093/molbev/msu247
http://dx.doi.org/10.1038/nature09861
http://dx.doi.org/10.1038/nature09861
http://dx.doi.org/10.7554/eLife.05255


Jean G, Kahles A, Sreedharan VT, De Bona F, Ratsch G. 2010. RNA-seq read alignments with PALMapper. Current
Protocols in Bioinformatics. Chapter 11, Unit 11 16. doi: 10.1002/0471250953.bi1106s32.

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. 2010. Variance component
model to account for sample structure in genome-wide association studies.Nature Genetics 42:348–354. doi: 10.
1038/ng.548.

Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M. 2007.
Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics 39:1151–1155. doi: 10.1038/
ng2115.

Kumar SV, Wigge PA. 2010. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis.
Cell 140:136–147. doi: 10.1016/j.cell.2009.11.006.

Leinonen T, McCairns RJ, O’Hara RB, Merila J. 2013. Q(ST)-F(ST) comparisons: evolutionary and ecological insights
from genomic heterogeneity. Nature Reviews Genetics 14:179–190. doi: 10.1038/nrg3395.

Li Q, Eichten SR, Hermanson PJ, Springer NM. 2014. Inheritance patterns and stability of DNA methylation
variation in maize near-isogenic lines. Genetics 196:667–676. doi: 10.1534/genetics.113.158980.

Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE. 2001. Requirement of
CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080. doi: 10.1126/science.
1059745.

Lippert C, Casale FP, Rakitsch B, Stegle O. 2014. LIMIX: genetic analysis of multiple traits. BioRxiv.
Liu Y, Siegmund KD, Laird PW, Berman BP. 2012. Bis-SNP: combined DNA methylation and SNP calling for
Bisulfite-seq data. Genome Biology 13:R61. doi: 10.1186/gb-2012-13-7-r61.

Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjálmsson BJ, Korte A, Nizhynska V,
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