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Involves Differentiated Neurons
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Jaenisch5, Peter W. Laird4, Schahram Akbarian3*

1Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America,
2 Program in Neurobiology, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United
States of America, 3Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America,
4Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United
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The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and

pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation

status at 50 loci, encompassing primarily 59 CpG islands of genes related to CNS growth and development, in temporal

neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts—

defined by chronic neurodegeneration (Alzheimer’s) or lack thereof (schizophrenia)—were included. A robust and progressive

rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2,
PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by

a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited

to 2/50 loci in the Alzheimer’s cohort, which appeared to reflect an acceleration of the age-related change in normal brain.

Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons

during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci.

Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons

residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral

cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by

an age-related increase.

Citation: Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, et al (2007) DNA Methylation in the Human Cerebral Cortex Is Dynamically
Regulated throughout the Life Span and Involves Differentiated Neurons. PLoS ONE 2(9): e895. doi:10.1371/journal.pone.0000895

INTRODUCTION
Epigenetic modification of chromatin, including DNA methylation

at the sites of CpG dinucleotides, is a key regulator of gene

expression, growth and differentiation in virtually all tissues,

including brain [1,2,3,4]. Dysregulated DNA methylation, or

methyl-CpG-dependent chromatin remodeling, is thought to

underlie ICF syndrome (Immunodeficiency, Centromere instability

and Facial anomalies), Rett’s disorder and other mental retarda-

tion syndromes [5,6]. Furthermore, changes in methylation status

at selected genomic loci may affect social cognition [7], learning

and memory [8] and stress-related behaviors [9] and is believed to

contribute to dysregulated gene expression in a range of adult-

onset neuropsychiatric disorders, including autism, schizophrenia,

depression and Alzheimer’s disease [10,11,12,13,14]. Finally, there

is strong evidence that aberrant methylation of tumor suppressor

genes contributes to the molecular pathology of a subset of

astrogliomas and other types of brain cancers [15,16].

However, despite its clinical importance, the regulation of DNA

cytosine methylation, particularly in the human brain, remains

poorly understood. To date, there are no comprehensive studies

which have monitored methylation at multiple loci during the

course of brain development and aging, or in chronic psychiatric

disease. Furthermore, all previous studies of DNA methylation in

human or animal brain utilized tissue homogenates comprised of

a highly heterogeneous mixture of neurons and glia [8,9,12,17], or

examined DNA methylation in subfractions of chromatin defined

by site-specific histone modifications [18] and therefore it remains

to be determined whether or not DNA methylation is dynamically

regulated in terminally differentiated neurons.

Given this background, the present study was undertaken to

provide a first insight into the dynamics of DNA methylation in

the human cerebral cortex. Altogether, we examined 50 loci,

mostly CpG islands within the 59 end of genes, during the course

of development, maturation and aging. Additionally, we assessed

the methylation status for these same loci in Alzheimer’s disease

and schizophrenia; the former condition is characterized by

chronic neurodegeneration and the latter by widespread tran-

scriptional and metabolic perturbations [19,20,21] in the absence

of large scale loss of neurons. While disease-associated alterations

were limited to 2/50 sequences in the Alzheimer’s cohort of the

present study, the majority of genomic loci, including genes
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implicated in neural development and CNS tumors, showed

a striking age-associated increase in methylated CpGs. Further-

more, we show that DNA methylation is dynamically regulated in

differentiated neurons during the transition from childhood to

advanced age. Collectively, our results suggest that DNA

methylation in the human cerebral cortex, including its neuronal

constituents, is dynamically regulated across the full lifespan and

potentially affects a substantial portion of the genome.

RESULTS

Four types of age-related DNA methylation profiles

in the human cerebral cortex
Using a real-time PCR-based technique called MethyLight

[22,23], we analyzed DNA methylation at 50 loci, most of them

representing promoter CpG islands of genes expressed in the

cerebral cortex; a portion of these genes is also implicated in

cancer biology (Table S1 and Table S2). Most of the cancer-

related genes included in this study show aberrant methylation in

various types of neoplasia, including CNS tumors (Table S1), and

hence we were interested to monitor potential methylation

changes within these genes during the course of normal brain

development and aging. Other genes included in this study play

a role in the molecular pathology of some cases diagnosed with

schizophrenia and other psychiatric illness (e.g., BDNF, DRD2,

GABRA2, GAD1, HOXA1, NTF3) or are linked to chronic

neurodegeneration (LDLR, PSEN1, S100A2). We screened alto-

gether 125 pre- and postnatal, child and adult samples of rostro-

lateral temporal cortex, yielding 7,500 quantitative measurements

(Fig. 1). Two of the CpG islands (AR and FAM127A) are from X-

linked genes, which become methylated only on the inactive X-

chromosome in females, and were included as internal controls to

validate the DNA methylation measurements (Fig. 1). For 124

(out of 125) samples, AR and FAM127A methylation levels were in

agreement with the gender information provided by the brain

bank, and for the remaining one case, the discrepancy was

resolved upon re-review of the chart on file with the bank.

Therefore, all of the female postmortem samples, but none of the

males, showed substantial DNA methylation of both of these X-

linked genes, as expected.

Unsupervised hierarchical clustering of the remaining 48 gene

loci, excluding the X-linked genes, revealed a strong age

association (Fig. 1). All prenatal samples were contained in

a single cluster, shown at the top of Fig. 1 (blue cluster). The

subjects over 40 years of age were divided into two other major

clusters with either moderate amounts (red cluster at bottom) or

high density of CpG island methylation (black cluster in middle).

The majority of loci showed a statistically significant increase of

DNA methylation associated with age, adjusted for diagnosis, but

the chronology of these age-associated changes varied remarkably

among different loci. Altogether, four different types of age-related

methylation changes were discernible: (1) Eight of the 50 gene loci

showed a linear increase of DNA methylation with age, as

exemplified by HOXA1 (Fig. 2 and Figure S1). (2) Half of the

genomic loci showed a statistically significant biphasic age

distribution (Figure S1). Among these, 18 genes revealed a sharp

shift in slope at some time-point within the first decade of life,

mostly in the newborn period, as indicated by PAX8 (Fig. 2 and

Figure S1). (3) One locus (MGMT) showed a highly unusual, non-

linear stochastic accumulation of hypermethylation starting at

about age 50 (Fig. 2 and Figure S1). The stochastic nature of this

hypermethylation event is of particular interest, since variation in

MGMT CpG island hypermethylation in gliomas is associated with

clinical response to alkylating agents [24]. Interestingly, the

incidence of malignant gliomas peaks around age 40–50 [25,26],

which is the same age period when MGMT hypermethylation

emerged in the samples of the present study. (4) Finally, in striking

contrast to the age-related progressive increase in DNA methyl-

ation at single copy genes (described above under type 1,2,3), ALU

and other repetitive elements either showed a significant decrease in

DNA methylation during the first decade of life, followed by

relatively little change during subsequent maturation and aging

(1/5 repetitive sequences) (Fig. 2), or showed relatively little

change across the lifespan (4/5 repetitive sequences) (Figure S1).

For the majority of loci showing an age-related increase in DNA

methylation, the effect was extremely robust (p,0.0001) (Fig. 2

and Figure S1).

While it was beyond the scope of this study to assess the

relationship between the observed age-related methylation pattern

and corresponding changes in gene expression for all loci, we

hypothesized that genes showing a linear and robustly progressive

increase in methylation throughout the lifespan (‘‘type 1’’ genes,

see above and Fig. 2) would show a decline in mRNA levels at

advanced age. To examine this, we profiled temporal cortex

mRNA levels by qRT-PCR for 4 of the ‘‘type 1’’ genes listed in

Fig. 2 (SYK, NEUROD2, GABRA2, GAD1) in a cohort of six child

brains (range: 1.3–11.5 years) and 11 adults (range: 32–87 years),

carefully matched for RNA quality (see Methods) and normalized

to 18S rRNA levels (data not shown). Indeed, all four genes

showed an inverse correlation between mRNA levels and age, to

a moderate degree (R2=0.29–0.42 for SYK, NEUROD2, GAD1

and GABRA2). In contrast, mRNA levels of B2M and GUSB, two

housekeeping genes commonly used to assess RNA quality in

human postmortem specimens [27], and of MGMT–a gene with

a highly unusual age-related methylation profile (Fig. 2)–did not

show a correlation with age (R2=0.02 forMGMT, and,0.002 for

B2M and GUSB). Therefore, the age-related decline in mRNA

levels observed for a subset of the ‘‘type 1’’ genes is not explained

by generalized RNA deficit or decay in the older specimens. We

conclude that the progressive, age-related increases in DNA

methylation at the 59 sequences of these genes could contribute to

the observed age-related decline in corresponding mRNA levels.

Disease-associated alterations
Taking a false discovery rate into account, Alzheimer’s cases

showed a statistically significant difference in DNA methylation for

SORBS3 and S100A2. In both cases, the Alzheimer patients tend to

show an acceleration of the age-associated changes in DNA

methylation (Fig. 3). SORBS3 (also known as vinexin, SCAM-1 or

SH3D4), which encodes a cell adhesion molecule expressed in

neurons and glia [28], becomes progressively more likely to be

methylated with age, and is methylated to a greater degree in

Alzheimer patients (median PMR=38.5, N=18) than in all other

cases (schizophrenia, controls) older than 60 years (median

PMR=16.9, N= 39, P=0.00081). S100A2, a member of the

S100 family of calcium binding proteins, displays a complex

chronology, with a rapid prenatal increase, followed by an

infrequent stochastic decrease in DNA methylation later in life,

particularly among Alzheimer patients (median PMR=12.9,

N= 18) versus all other subjects older than 60 years (median

PMR=20.5, N= 39, P=0.00197). The age- and disease-associ-

ated loss of S100A2 DNA methylation in Alzheimer’s disease is

consistent with the observation of S100A2 protein in corpora

amylacea, or polyglucosan bodies, which accumulate in aging

human brains [29]. Therefore, the significant DNA methylation

changes in Alzheimer’s disease, including the decrease of S100A2

and increase in SORBS3 CpG methylation, appear to represent

accelerations of the normal, age-associated DNA methylation

DNA Methylation in Human Brain
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Figure 1. DNA methylation changes at 50 loci in temporal neocortex across the lifespan. Two dimensional hierarchical cluster analysis using
Manhattan distance and average linkage (N= 48 regions, 125 subjects). DNA (rostro-lateral temporal neocortex) was extracted and analyzed by
MethyLight for the genes indicted as described (see Methods). Each gene is grouped into quartiles (Dark Light Blue = 1 low, Dark Blue = 2 medium-
low, Red= 3 medium high, Black = 4 high extent of methylation). The larger the number of samples with no detectable methylation, the fewer the
number of observations coded dark blue and red. Gender (Blue squares =Male, Pink circles = Female), Age (White circles = Prenatal (PRE); Gray
circles = 0–40 years old; Black circles = older than 40 years), and Diagnosis (Green circles = controls; Blue triangles = Schizophrenia cases; Red
squares =Alzheimer’s cases) are indicated with symbols explained below each variable. AR and FAM127A are two additional X-linked genes with DNA
methylation occurring on the inactive X-chromosome in females, and are dichotomized at a PMR value of 20, as indicated. PMR=Percent of
Methylated Reference [23,55]. Three major sample clusters are indicated on the right hand side in blue (consisting mostly of prenatal and young adult
samples), black, consisting mostly of subjects over 40 years old with high density CpG island methylation, and red, mostly subjects over 40 years old
with lower density CpG island methylation.
doi:10.1371/journal.pone.0000895.g001
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changes in these genes. Notably, previous in vitro studies provided

evidence that DNA methylation is involved in transcriptional

regulation of PSEN1 [10] an Alzheimer’s disease-associated gene

and regulator of amyloid precursor protein and Notch signaling

pathways [30]. However, PSEN1 showed only very low levels of

methylation in our samples, and we did not find age- or disease-

associated changes (Table S3, part a). This lack of consistent

change in PSEN1 methylation in diseased or aging tissue,

however, may not be surprising given that this gene exhibits

significant variability in interindividual methylation, according to

a study in male germ cells [31].

The methylation of PAX8, a gene encoding a paired box-

containing transcription factor important for CNS and thyroid

development [32], was higher in schizophrenics than in controls

(P = 0.0025) (Table S3, part b), but this was not considered

statistically significant after adjusting for multiple comparisons by

controlling the false discovery rate (set at 0.05) [33]. We conclude

that schizophrenia is not accompanied by consistent DNA

methylation changes at the 50 gene loci included in this study.

The de novo DNA methyltransferase, DNMT3a, is

expressed in developing and aging cerebral cortex
The DNA methylation data described above strongly suggest that

DNA methylation events in the cerebral cortex are ongoing across

a wide age range, extending beyond the developmental period and

continuing into old age. If this hypothesis is correct, then one

would expect expression of the de novo DNA methyltransferase

enzymes, DNMT3a and/or DNMT3b [34,35], at all ages. In

mouse cerebral cortex, Dnmt3a expression remains detectable in

adults, albeit at lower levels than observed during earlier periods of

postnatal development; in contrast, Dnmt3b is found in murine

Figure 2. Four developmental profiles for cortical DNA methylation. (A) Associations of log-transformed PMR values (ln(PMR+1); y-axis) with age (x-
axis) for several representative genes. Trends are studied using linear regression. HOXA1 shows a linear association. MGMT-M2B shows a non-linear
shift, with the P-value referring to a T-test of the difference in mean methylation value for subjects under or over 50 years of age. For the biphasic
linear trends of PAX8 and the ALU sequence ALU-M1B (Table S2) , the P-values refer to a test of change of slope. Green dots = controls, blue
triangles = schizophrenia and red squares =Alzheimer’s subjects. (B) Schematic summary of the four different types (1–4, see text for details) of
developmental methylation profiles in human temporal cortex across the lifespan (x-axis, B = birth), as illustrated by the representative examples in
(A). (C) Listings and proportion of gene loci (total = 48; excluding AR and FAM127A which showed gender-specific methylation) that show significant
age-dependent methylation changes: colors refer to the scheme in (B). Gray sector refers to the subset of loci without a significant age effect. N = 125
subjects. All p-values are adjusted for diagnosis; *** p,0.0001, ** p,0.001, * p,0.05.
doi:10.1371/journal.pone.0000895.g002
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CNS only during a narrow period of prenatal development [36].

To find out when DNMT3a protein is expressed in the human

cerebral cortex, we employed immunoblotting on cortical

homogenates from fetal, child and adult samples. We observed,

across all ages, an immunoreactive band of approximately

120 kDa, corresponding to full-length form of DNMT3a [37,38]

(Fig. 4A). Immunolabeling of intact nuclei from child and adult

cortex revealed that the bulk of the DNMT3a-like immunoreac-

tivity is derived from neuronal nuclei (Fig. 4B–E). Expression of

DNMT3a in neurons was confirmed by in situ hybridization

studies with full length DNMT3a cRNA (Fig. 4F–H); a subset of

neurons, including some with pyramidal neuron-like morphology

(Fig. 4G) residing in layers III and V of the adult cortex expressed

DNMT3a mRNA. We conclude that DNMT3a in human

cerebral cortex is expressed primarily in neurons, which is in

agreement with similar findings in mice [36] and, furthermore, is

expressed across the lifespan from the 2nd trimester of pregnancy

through old age.

Age-related DNA methylation changes in nuclei of

differentiated neurons
Notably, studies in rat and mouse identified a number of stimuli or

environmental conditions that alter expression of selected mRNAs

in immature, or mature brain, in conjunction with–often bi-

directional–changes in CpG methylation of the corresponding

promoters [8,9,39,40]. The conclusion drawn by these studies,

either explicitly or implicitly, is that neuronal gene expression is

subject to epigenetic regulation. However, most CNS tissues,

including cerebral cortex, are comprised of a highly heterogeneous

mixture of various dividing and postmitotic cell populations, which

are likely to show important differences in the methyl-CpG

patterning of their genomes. This uncertainty regarding the

cellular specificity of any DNA methylation signal obtained from

brain homogenates places limitations on the interpretation of the

age-related changes in methylation as described above. Nonethe-

less, the presence of DNMT3a in cortical neurons across a wide

age range (Fig 4), in conjunction with the robust, age-related

methylation changes at .50% of the gene loci (Fig. 1, 2), strongly

suggests an ongoing modification of the neuronal DNA long after

the exit from the cell cycle, which in primate cerebral cortex

occurs during fetal mid-development [41]. To find out whether

DNA methylation is dynamically regulated in postmitotic neurons

and to rule out the potential confound of changes in glia numbers

during the course of development [42,43], we isolated nuclei of

differentiated neurons from child and adolescent (1–16 years) and

aged (.60 years) cortex using NeuN immunolabeling in conjunc-

tion with fluorescence-activated cell sorting (FACS) (Fig. 5A,B).

Then, the methylation levels for 10 gene loci were analyzed in the

neuronal DNA by MethyLight PCR. When compared to child

and adolescent specimens, DNA from aged neuronal nuclei

showed a significant increase in methylation at 3/10 loci (HOXA1,

PGR, SYK), and a significant decrease in 1/10 loci (S100A2)

(Fig. 5C). Therefore, during the transition from childhood to old

age, differentiated cortical neurons undergo bidirectional changes

in DNA methylation.

DISCUSSION
The present study examined DNA methylation changes for 50

genomic loci during the course of development, maturation and

aging of the human cerebral cortex. The majority of loci showed

significant age effects: eight loci showed a progressive increase in

methylation that continued across the entire lifespan and another

18 loci were defined by a sharp rise within the first months or years

after birth. We present direct evidence that, for a subset of loci,

genomic DNA from differentiated cortical neurons undergoes

methylation changes during the course of maturation and aging.

In addition, one locus, MGMT, showed a stochastic accumulation

in methylation starting around age 50, with potential implications

for the tumor biology of astrogliomas, as discussed above. While

DNA methylation changes related to development or aging were

extremely robust in the present study, disease-associated changes,

on the other hand, were surprisingly limited. Schizophrenia,

a chronic psychiatric disease condition associated with psychosis

and widespread cortical dysfunction in the absence of large-scale

loss of neurons [44,45,46], was not associated with significant

methylation changes in the present study. On the other hand,

cases diagnosed with Alzheimer’s disease, which is defined by

a neurodegenerative process in cerebral cortex and other brain

regions, showed significant methylation changes in 2/50 loci. One

locus (S100A2), which is methylated in neurons (Fig. 5C) was

significantly less methylated in the DNA from Alzheimer cases

compared to age-matched controls (Fig. 3), possibly due to large-

Figure 3. Acceleration of age-associated DNA methylation changes in
Alzheimer’s disease. Scatter plots showing age-associated methylation
changes for SORBS3 and S100A2 across all ages. N = 125 subjects,
including Alzheimer subjects (red squares), schizophrenics (blue
triangles) and controls (green dots). P-values refer to T-tests for
comparison of Alzheimer subjects versus all other subjects older than
60 years. One outlier (ID 2763, 104 years old, Table S4) was omitted
from the age-associated analyses.
doi:10.1371/journal.pone.0000895.g003
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scale loss of neurons associated with that disease. In addition,

methylation of another locus (SORBS3) was higher in the

Alzheimer samples than in controls. Thus, the DNA methylation

alterations in both genes appear to reflect an enhancement, or

acceleration, of the age-associated changes that we observed in

normal brain (Fig. 3).

It is noteworthy that the overwhelming majority of loci analyzed

in the present study demonstrated age-related increases in DNA

methylation in cerebral cortex (26/50 loci), and only one gene–

S100A2–showed a change in the opposite direction; this decrease

was even more pronounced in the Alzheimer’s cohort. Likewise, in

DNA samples derived selectively from differentiated neurons of

controls, only S100A2 showed an age-related loss of methylation,

while significant increases were found for 3/10 genes (Fig. 5C).

Collectively, these findings support the notion that DNA

methylation levels progressively increase in the cerebral cortex

at many genomic loci during the course of maturation and

aging. On the other hand, according to the findings presented

here, DNA de-methylation events appear to play a less prominent

role. Therefore, it remains to be clarified whether or not there is

active de-methylation in brain, and if DNA repair-related

mechanisms are involved similar to those recently reported for

dividing cells and Xenopus oocytes [47]. Additionally, further

studies will be required in order to determine whether or not DNA

methylation/demethylation in human brain is subject to more

acute alterations—on the scale of hours or days—as has been

previously demonstrated in cell cultures and animal models

[39,40,48].

It is important to realize that our study had several limitations,

including the focus on one area of the cerebral cortex, i.e. the

neocortex of the anterior and lateral temporal lobe. Therefore,

additional studies will be necessary to confirm that the develop-

mental DNA methylation changes as observed in this study are

a generalized feature operating throughout all areas of the human

cerebral cortex. Furthermore, we monitored DNA methylation

changes at a limited number of genomic sequences, hence it will be

necessary to confirm the findings reported here on a more

comprehensive, genome-wide scale. Such studies will be necessary

in order to find out (i) whether or not the developmental DNA

methylation changes reported here represent a more generalized,

age-dependent drift towards increased methylaton levels and (ii)

whether or not schizophrenia or Alzheimer’s disease are associated

with DNA methylation changes affecting wide-spread portions of

the genome. Finally, while our study presents some of the first and

direct evidence for methylation changes in the DNA of terminally

differentiated neurons, our analyses was limited to samples

obtained from children and adults, because isolation of neuronal

nuclei from fetal specimens via FACS was not feasible for technical

reasons. Hence, it remains to be determined whether or not

neurons, or various types of glia and other non-neuronal cells,

contribute to the observed sharp rise in DNA methylation during

the perinatal and early childhood period that was observed at 18/

50 loci in this study. These highly dynamic methylation increases

postnatally could either be related to the relatively high levels of

neuronal DNMT3a methyl-transferase in the immature brain [36]

or , alternatively, result from developmental shifts in cell

Figure 4. Developmental and cellular expression pattern of DNMT3a in the cerebral cortex. (A) Representative immunoblotting of temporal cortex
homogenates with anti-DNMT3a antibody (top) and b-actin as loading control (bottom). Left, fetal samples (gw=gestational week); right, child and
adult brains (yrs = years) and, as positive control, murine embryonic carcinoma, ‘‘P19’’ cells. Notice expression of DNMT3a—indicated by a ,120 kDa
band—across all ages. (B, C) Digitized images of temporal cortex nuclei from 1 year old infant, processed for DNMT3a (red) and NeuN (green)
immunoreactivity and counterstained with DAPI. Notice numerous neuronal nuclei expressing both markers, including representative example
marked by arrowhead. Occasional non-neuronal DNMT3a+ nucleus is marked by arrow. (D,E) show weak background staining and formalin fixation-
related autofluorescence in negative controls processed without primary antibodies. (F–H) Images from layers III, IV and V of parallel sections from
adult temporal cortex, stained for Nissl (F) or hybridized with digoxigenin-labeled DNMT3a antisense (G) or sense riboprobe (H). Notice in (G) robust
expression of DNMT3a mRNA in a subset of layer III and V neurons. Images in B–E taken at with 206 objective. Bar (F–H) in H=100 mm.
doi:10.1371/journal.pone.0000895.g004
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composition of the postnatal cortex, including a rise in the number

of oligodendrocytes and other glia-related changes [49]. In light of

these findings, it is tempting to speculate that certain nurturing,

feeding and other ‘‘environmental’’ conditions could potentially

result in sustained DNA methylation and gene expression changes

affecting many parts of the genome. Indeed, emerging evidence

from animal models is in support of this hypothesis [9,50]. Based

on the results of the present study, we predict that approximately

one half of genes encoded in the genome will show age-related

DNA methylation changes in the human brain, many of which will

directly, or indirectly, affect neuronal gene expression and thus

cognition and behavior.

MATERIALS AND METHODS

Human brain tissue
Fresh frozen, postmortem brain tissue from fetuses, newborns and

children were obtained through the Brain and Tissue Banks for

Developmental Disorders, University of Maryland and University

of Miami (NICHD contract # NO1-HD-8-3284). Adult tissue

samples were obtained from three brain banks (i) the Center for

Neuroscience, University of California at Davis, CA, (ii) the

Harvard Brain Tissue Resource Center at McLean Hospital,

Belmont, MA, and (iii) the Massachusetts General Hospital,

Boston, MA. All brain banks provided tissue to us without personal

identifiers, and all collection and written consent procedures

(donors or family members) were approved by the institutional

review boards of the brain banks’ institution. Small blocks of

frozen, unfixed tissue were dissected from the developing cortical

plate (fetus) or cerebral cortex (children, adults) of the anterior

lateral temporal lobe.

Altogether, 17 fetal, 15 child and 93 adult specimens were

included in the present study. Among the adult samples, there

were 18 cases meeting CERAD criteria of definite Alzheimer’s

disease and 30 cases meeting DSM-IV based criteria for

schizophrenia (Table S4).

Methylation and mRNA analyses
From all specimens, DNA was extracted from the cortical plate

(fetus) or gray matter (children, adults) using a standard procedure,

with modifications [51] and analyzed by MethyLight PCR after

bisulfite conversion [22,23,52] (for primer sequences, see Table

S2). In addition, RNA was extracted from cortical gray matter of

child and adult samples with the RNeasy Lipid Tissue Mini Kit

(Qiagen, Valencia, CA) and treated with DNAse I. RNA quality

for all samples was assessed using high-resolution capillary

electrophoresis on the Agilent Bioanalyzer 2100 (Agilent Tech-

nologies, Palo Alto, CA). Samples with a RIN,4.0 were discarded

[27]. RNA was reverse-transcribed and amplified with TaqMan

One-Step RT-PCR Master Mix Reagent in 7500 Real Time PCR

System machine (Applied Biosystems, Foster City, CA, U.S.A.), in

conjunction with unlabeled primers and SYBR Green (GAD1) or

FAM-labeled primer sets purchased from Applied Biosystems (all

other genes). Quantifications were performed by positioning the

cycle threshold within the linear range of amplification curve.

Each value of mRNA was calculated with the equation

V= (1+E)Ct (E: amplification efficiency) and normalized to 18S

ribosomal RNA.

DNMT3a expression studies
For western blotting, 100 mg aliquots of cortical tissue were

homogenized in 16 Laemmli buffer for SDS-PAGE, then

processed for anti-DNMT3a immunoreactivity (rabbit polyclonal,

Abcam Inc., Cambridge, MA) at a final dilution of 1:250; or, for

loading control, mouse anti-b-actin (Sigma, St. Louis, MO), final

dilution 1:10,000.

To extract nuclei for DNMT3a-like immunolabeling, cortical

tissue was homogenized in 2mL 16RSB buffer (100 mM NaCl,

30mM MgCl2, 100 mM Tris-HCl, pH 7.5) with 1% NP-40,

Figure 5. Age-related DNA methylation changes in differentiated
neurons. (A) Examples of nuclei stained with anti-NeuN (green) and
counterstained with DAPI; arrowhead marks double-labeled cell. Notice
absence of detectable background and autofluorescence in these
samples that were processed without prior fixation (B) Representative
FACS of unfixed NeuN labeled material similar to the one shown in (A)
(top) and of negative control (bottom); blue dots mark sorted neuronal
nuclei (NeuN+). (C) Heatmap showing methylation levels of neuronal
DNA isolates for 10 different genes across the lifespan (range: 0.6–
97 years). Each gene is grouped into quartiles (blue= 1 low, green= 2
medium-low, yellow=3 medium high, red = 4 high extent of methyl-
ation). The larger the number of samples with no detectable
methylation, the fewer the number of observations coded green and
yellow. White space=no data. * = p,0.05 , Mann-Whitney U permuta-
tion based on comparison of immature/young (0.6–16 years) to old
(62+years) samples. Notice that neuronal DNA from advanced age
group shows significant increase in DNA methylation for 3/10 gene loci
(PGR, SYK, HOXA1), but decreased levels at S100A2 locus.
doi:10.1371/journal.pone.0000895.g005
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mixed with 8 mL 16 RSB, and centrifuged in a swing-bucket

rotor at 10006g for 10 min at 4uC. Subsequently, the pellet was

dissolved in 4 mL 4% phosphate-buffered paraformaldehyde

(PFA) and incubated for 10 min at room temperature. This

homogenate was layered onto a 30% sucrose cushion, centrifuged,

and the resulting pellet dissolved in 0.1% Triton X-100/0.32M

sucrose/5 mM CaCl2/0.1 mM EDTA/10 mM Tris-HCl,

pH 8.0, mixed with 1 mL 1.8 M sucrose, and centrifuged at

15006g at 4uC for 10 min on a 1 mL 1.2 M sucrose cushion.

Nuclei pellets were dissolved in 16 PBS, and then dried on glass

slides and blocked with 16PBS/10% normal goat serum/0.2%

Triton X-100 for 1 hour. For double immunolabeling, primary

antibodies (anti-DNMT3a and anti-NeuN as a neuron-specific

marker [53,54]) were labeled with the Zenon Alexa Fluor 594

Rabbit IgG Labeling Kit or the Enhanced ZenonH (Alexa 488)

Mouse IgG Labeling Kit (Invitrogen, Carlsbad, CA) and applied

at 1:500 final dilution to the slides for 4 hrs. Following incubation,

slides were rinsed repeatedly, incubated in tyramide solution

according to the manufacturer’s instructions, washed, counter-

stained with DAPI and coverslipped.

To prepare for in situ hybridization histochemistry, tissue blocks

were allowed to thaw, then immersion-fixed with 4% phosphate-

buffered PFA for up to 4 days, and then cryoprotected in 30%

phosphate-buffered sucrose; 20 mm sections were cut on a cryostat,

mounted on glass slides, and stored at 280uC until use. Sense and

antisense digoxigenin (DIG)-labeled DNMT3a cRNA probes were

generated from full-length human DNMT3a cDNA (Genbank

BC043617) in the presence of DIG-11-UTP (Roche Applied

Science, Indianapolis, IN), according to the manufacturer’s

instructions. Templates were digested with DNase I and the

cRNA purified by LiCl precipitation. Sections were treated with

0.2 M HCl and then acetylated with 0.25% acetic anhydrate in

0.1 M triethanolamine, and prehybridized with hybridization

buffer (50% formamide, 26SSC, 10% dextran sulfate, 0.5 mg/ml

sperm DNA, 0.25 mg/ml yeast tRNA, 0.2 mg/ml BSA, 50 ug/ml

Heparin, 2.5 mM EDTA and 0.1% Tween-20) at 60uC for 1 hr.

Sections were then hybridized with DIG-labeled probes diluted

1:50 in hybridization buffer (50 ml/section) at 60uC overnight.

Sections were washed with 26SSC at R.T., 1XSSC at 37uC and

then treated with RNase A at the same temperature. After RNase

A digestion, sections were washed sequentially with 16SSC at

37uC, 16SSC: 50% formamide at 52uC, 0.16SSC at 52uC and

then developed with the DIG Nucleic Acid Detection kit (Roche

Applied Science, Indianapolis, IN), in conjunction with sheep anti-

digoxigenin-alkaline phosphate conjugated antibody (1:1000)

(Roche) and NBT/BCIP chromogen (1:50) (Roche) according to

the manufacturer’s instructions. Sections were mounted with

mounting medium (VetctaMountTM AQ, Vector Laboratories,

Burlingame, CA) and coverslipped with glass.

Flow cytometry
Intact nuclei were prepared from up to 3 gram of frozen-thawed

tissue as described above, with the exception of the fixation step,

and further purified by ultracentrifugation through a sucrose

cushion at 25,0006g for 2.5 hrs at 4uC. The pelleted nuclei were

dissolved in 1 mL 16PBS, centrifuged for 5 min at 14,0006g , and

the nuclei pellets stored at 280uC until further processed. Nuclei

were immunolabeled with anti-NeuN antibody (see above) and

sorted using a FACSVantage DiVa system (BD Biosciences), the

DNA extracted and processed by Methylight PCR as described

above.
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