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Abstract Due to its convenience, the blood is commonly

used in epigenomic studies, but its heterogeneous nature leads

to interpretation difficulties, given the now widely recognized

potential for confounding by cell composition effects. Many

recent publications have reported significant associations

between DNA methylation and a variety of health condi-

tions or exposures. In this review, we summarize many of

these recent publications, highlighting the findings in the

context of potential cell composition effects, particularly

findings that are indicative of immune response or inflamma-

tion. While there is substantial evidence for confounding by

cell composition, there is nevertheless also evidence for differ-

ential DNA methylation suggestive of processes that are not

cell mediated. We conclude that important biological insights

still may be gained from studying DNA methylation in whole

blood, either by investigating the cell composition effects

themselves or processes that demonstrate associations even

after adjusting for cell composition effects.
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Introduction

DNA methylation, tightly associated with alterations in the

nucleosome DNA scaffold and coordinated chromatin

alterations, is partially responsible for coordination of

gene expression in individual cells [1–3]. Consequently, in

the last decade there has been an interest in studying associa-

tions between DNA methylation and a wide variety of pheno-

types. Because access to blood specimens is typically much

more convenient to obtain from human subjects, the bulk of

published studies have used whole blood (sometimes referred

to as peripheral blood). A wide variety of phenotypes and

health conditions have been studied: aging [4–8], cancer

[9–12], obesity [5, 13], cardiovascular disease [14], prenatal

exposures/perinatal outcomes [15, 16], environmental expo-

sures [17–24] (tobacco in particular [25, 26]), inflammatory

diseases [27, 28•], psychiatric conditions [21, 29–32], and

fertility [33].While many of these studies have used candidate

gene approaches with bisulfite-pyrosequencing, an increasing

number have conducted epigenome-wide association studies

(EWAS) using commercially available microarrays such as

the Infinium HumanMethylation450 BeadChip assay

(“450K,” produced by Illumina, Inc.), its predecessor, the

Infinium HumanMethylation27 BeadChip (“27K”), or an
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older Illumina product based on the company’s GoldenGate

product.

Of recent concern has been the extent to which variation in

DNA methylation is driven by cell composition effects rather

than truly intranuclear processes. Normal tissue development,

individual cellular differentiation, and cellular lineage deter-

mination are regulated by epigenetic mechanisms [2]. This

necessarily means that DNA methylation shows substantial

variation across tissue types [34, 35] as well as individual cell

types, demonstrated particularly clearly among the distinct

types of leukocytes [1, 36, 37, 38••, 39•, 40, 41]. Because

variation in DNA methylation measured in the blood will

necessarily reflect variation in constituent leukocytes, there

is a concern that phenotype associations with cell composition

will confound (or at least mediate) associations between DNA

methylation and phenotype. An additional consideration is

that endogenous and exogenous cellular stress can induce in-

flammatory signaling (arising, for example, in the endoplas-

mic reticulum of non-immune cells [42]); hence, changes in

DNA methylation of stromal or non-immune specific cells

affected by the malady of interest will almost certainly repre-

sent an important component of the immune response to the

perturbed state of interest.

In this article, we review many of the recent studies that

have examined associations with DNA methylation in the

blood, highlighting cell composition effects through evidence

of involvement in the immune or inflammatory responses and

effects for which mediation by cell type can reasonably be

ruled out. We then briefly discuss methods for mitigating the

potential for confounding and potentially assessing mediation

by cell composition.

Twin Studies

Several twin studies have examined DNA methylation in

the blood. Kaminsky et al. (2009) applied a 12K CpG

island microarray to assay whole blood DNA enriched

for unmethylated cytosines using the methylation sensitive

restriction enzyme HpaII [43]. The study compared 19

monozygotic (MZ) twin pairs and 20 dizygotic (DZ) twin

pairs, matched for age, sex, and blood cell count (total,

neutrophil fraction, and lymphocyte fraction) and found

small but marginally significant differences in intraclass

correlation coefficient (ICC) between the matched MZ

and DZ twin pairs, suggesting that DNA methylation

was slightly more concordant in MZ pairs than in DZ

pairs, and thus the existence of very weak but possibly

important genetic effects unexplained by proportions of major

blood cell types. Boks et al. (2009) used the GoldenGate plat-

form to analyze peripheral blood from 23 MZ twin pairs, 23

DZ twin pairs, and 96 controls matched for age and gender

[6]. The study found age-related DNA methylation at loci

suggestive of potential cell composition effects (due to their

involvement in immune or inflammatory processes): IL6,

CARD15, PDGFRA, and NFKB1. However, the study also

found other loci potentially independent of cell composition

effects: ACVR1 and ELK. Li et al. (2013) used the 27K array

to analyze peripheral blood in 22 MZ twin pairs [44], identi-

fying 92 CpGs that significantly varied between twins within

a pair and speculating that the differences were driven princi-

pally by immune function.

Associations With Genetic Variants and mRNA

Expression

One detailed study used blood to investigate epigenetic asso-

ciations with single nucleotide polymorphisms (SNPs) and

with mRNA expression. Van Eijk et al. (2012) used the 27K

platform to study whole blood from 72 male adults and 76

female adults, with a mean age of 52, focusing in particular on

associations with SNPs and gene expression [45]. The authors

used structural equation models to determine causal direction-

ality, finding that the most common three-way association was

the traditional model wherein genetic variants regulate DNA

methylation, which in turn regulates expression. They also

found that expression modules, defined as “clusters of expres-

sion probes,” differed substantially from DNA methylation

modules [45]. The authors also used Gene Ontology (GO),

an informative tool that describes gene products with associ-

ated biological functions and cellular processes, in order to

analyze the multiple modules in various GO terms.

Interestingly, expression modules were enriched for GO terms

suggestive of immune processes but numerous others as well

(e.g., those involving transcription and translation). In con-

trast, compared with expression modules, fewer methylation

modules showed enrichment for GO terms, with 5 of 12

enriched GO terms suggestive of immune response.

Aging

Several studies have investigated epigenetic associations with

aging. In a candidate gene study, Alexeeff et al. (2013)

pyrosequenced selected genomic targets in whole blood from

789 elderly participants of the Normative Aging Study [46].

Significant associations were found for loci mapped to INFG,

IL6, TLR2, and iNOS(NOS2), suggestive of immune/

inflammatory processes. The authors also found associations

with Alu and LINE1 repetitive elements. Similarly,

Madrigano et al. (2012) pyrosequenced selected genomic tar-

gets in whole blood from 784 elderly participants of the

Normative Aging Study [7], finding strongly significant age

associations with loci mapped to ICAM, IL6, INFG, iNOS

(NOS2), and TLR2, suggestive of immune/inflammatory
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processes, but also found associations with loci mapped to

genes that were not reflective of immune response: CROT,

F3, GCR (NR3C1), and OGG. Note that F3 is involved in

clotting and hemostasis and, thus, potentially reflective of sig-

naling processes within the blood. Using the 450K array,

Harris et al. (2012) examined mononuclear cells (MCs) from

55 children with Crohn’s disease [27], finding a single differ-

entially methylated locus mapped to TEPP. The authors report

that TEPP (testis, prostate, and placenta-expressed protein) is

poorly expressed in whole blood, though they interpret the

small but significant differences as questionable and potential-

ly explained by differences in immune subsets. Alisch et al.

(2012) applied the 27K assay to peripheral blood from 398

boys aged 3–17 years, confirming results via 450K in a second

pediatric population (78 participants aged 1–16 years) as well

as set of 1158 adult subjects [4]. The study reported enrich-

ment for GO terms reflective of both developmental processes

and immune function. Finally, Almen et al. (2014) examined

age and obesity interactions using the 27K array to assay the

blood from 46 adults [5]. Because interaction drove the au-

thors’ filtering criteria, the loci demonstrating differential

methylation were mapped principally to genes involved in

metabolic function.

Cancer

Cancer biomarker studies have been well represented among

investigations of DNA methylation in the blood. In a candi-

date gene study, Cassinotti et al. (2012) analyzed whole blood

from 30 colorectal cancer (CRC) patients, 30 patients with

adenomatous polyps, and 30 controls [9]. Samples were

digested with the restriction enzymeHin6I, and PCRwas used

to measure DNA methylation at loci mapped to 56 genes.

Of six gene promoters selected as members of a biomarker

panel for differentiating CRC patients from controls, one

(PAX5) was reflective of immune response, while the

others reflected cell cycle, tumor suppressor, or oncogene

activity [CYCD2(CCND2), HIC1, RASSF1A, RB1, and

SRBC(PRKCD8P)]. Of three genes selected for a biomarker

panel to differentiate controls from patients with adenomatous

polyps (HIC1, MDG1, RASSF1A), none were strongly sug-

gestive of immune response. Flanagan et al. (2009) used a

custom tiling array covering 17 candidate genes to analyze

peripheral blood from 14 bilateral breast cancer patients and

14 matched controls, validating results via pyrosequencing in

190 cases and 190 controls [10]. The authors found that meth-

ylation differences were driven primarily by intragenic repet-

itive elements, one element associated strongly with lower

ATM mRNA levels, thus reflecting a signal independent of

cell composition effects. Using 27K, Teschendorff et al.

(2009) analyzed peripheral blood from 148 healthy individ-

uals and 113 age-matched pre-treatment ovarian cancer cases,

developing a biomarker to distinguish cases from controls

[12]. Results were highly suggestive of immune response

(which the authors link to aging processes), but also develop-

mental pathways potentially independent of cell composition

effects. Similarly, using 27K, Marsit et al. (2011) analyzed the

blood from 112 bladder cancer patients and 118 controls,

finding that differentially methylated loci were enriched

for pathways suggestive of immune response or develop-

mental pathways [11].

Fertility

The epigenetics of infertility has also been studied using

blood. Friemel et al. (2014) applied the 450K array to periph-

eral blood from 30 infertile males aged 27–42 years (median

age 35.5) and 10 fertile males aged 21–52 years old (median

age 39.5) [33]. They found differential methylation for PIWI

L1 and PIWIL2, both genes important in spermatogenesis and

the former of which may regulate hematopoietic stem cells.

Significant loci were enriched for the MHC class II GO term

and HLA genes, reflective of immune activity.

Pregnancy and Birth

Many groups have used blood to study epigenetic processes

involved in various outcomes related to pregnancy, birth, and

early childhood. Martino et al. (2011) conducted a longitudi-

nal study using MC samples from seven females, collecting

cord blood at birth and following up with blood samples

through 5 years [47]; all samples were arrayed via the 27K

array. Loci showing significant longitudinal change were

enriched for cell surface receptor and signal transduction

terms reflective of changes in immune response. While the

authors applied FACS to MCs to determine fractions of major

cell types (CD4+ T cells, CD8+ T cells, B cells, and mono-

cytes), analyzed the resultant cell fractions for longitudinal

changes, and demonstrated change over time, the authors did

not include the fractions as potential confounders in analysis

of DNA methylation. Relton et al. (2012) applied the

GoldenGate assay to blood from 178 birth cohort subjects to

investigate associations with body composition measures at

9 years of age [48]. The most robust association was found

for CpGs mapped to ALPL, which is principally involved

with bone density/skeletal growth. Other genes to which sig-

nificant CpGs were mapped include CASP10, CDKN1C,

EPHA1, HLA-DOB, IRF5, MMP9, MPL, and NID1, two of

which implicate immune function (HLA-DOB and IRF5) and

one involved in hemostasis (MPL). Liu et al. (2014) studied

308 African-American mother-infant pairs assaying cord

blood via 27K [49] Loci showing significant associations with

maternal pre-conception BMI were enriched for several
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infection and inflammation pathways, but also tumorigenesis

and apoptosis pathways. Morales et al. (2014) applied the

GoldenGate assay to cord blood samples from 258 birth co-

hort subjects, studying associations with pre-pregnancy BMI

and gestational weight gain [50]. Among the 44 loci most

significantly associated with weight gain were several im-

mune and inflammation related genes (IL16, IL1B, IL8,

NFKB1). NFKB1 in particular was selected as one of four

genes the authors report as functionally relevant (others being

MMP7, KCNK4, and TRPM5). Non et al. (2014) assayed

cord blood via 450K, comparing 13 mothers with non-

medicated depression or anxiety, 22 mothers taking SSRIs,

and 23 controls [30]. GO terms enriched for loci differing

between controls and non-medicated mothers with depression

or anxiety consisted mostly of terms related to transcription

and translation of DNA, although methylation differences

were small; the authors found no loci associated with SSRI

use. White et al. (2013) assayed blood via 27K to compare 14

pregnant women having preeclampsia to 14 normotensive

controls [15]. None of the 19 top hits were suggestive of

immune or inflammatory processes, although none were sig-

nificant after adjusting for multiple comparisons. Sanders et al.

(2013) studied cadmium exposure among 17 mothers with

blood assayed using the methylated CpG island recovery assay

(MIRA) [22]. Enriched GO terms were not only reflective of

cell cycle and cancer pathways but also OF immune response.

Environmental Exposures

In addition to the cadmium study mentioned above, numerous

publications report epigenetic associations in the blood with

environmental exposures. Bind et al. (2012) studied 704 el-

derly male subjects (mean age 73.2) by pyrosequencing can-

didate genes in the blood and examining associations with

traffic-related pollutants [18]. They found significant interac-

tions of DNA methylation and air pollution on C-reactive

protein and fibrinogen for loci mapped to TLR2 (suggestive

of immune effects) as well as for loci mapped to F3 (related to

hemostasis) and for Alu and LINE-1 repeats. Madrigano et al.

(2012) pyrosequenced 1377 blood samples for loci mapped to

iNOS (NOS2) and GCR/NR3C1 [21]. Acknowledging a po-

tential cell composition effect, the authors found associations

with black carbon and PM2.5 for NOS2 (reflective of immune

effects) but not for GCR. Kile et al. (2013) pyrosequenced

NOS2 and repetitive elements in the blood from 38 welders,

finding PM2.5 associations with NOS2 but not with repeats

[19]. Alegria-Torres et al. (2013) pyrosequenced several genes

in the blood from 39 male brick manufacturers, finding associ-

ations with polycyclic aromatic hydrocarbons (measured in

urine) and DNA methylation of loci mapped to IL12, TNFA,

p53, and Alu repeats [17]; note that IL12 and TNFA reflect

immune response. Tarantini et al. (2013) pyrosequenced several

targets in the blood from 63 steel workers, studying association

between DNA methylation and particulate matter assumed to

be rich in metals [23]. They found associations not only be-

tween PM10 and DNA methylation at loci mapped to NOS3

(reflective of immune response) but also between zinc exposure

and methylation at loci mapped to EDN1 (not reflective of

immune response).

Several studies have, in particular, investigated associa-

tions with exposures to tobacco smoke. Using the 27K array,

Breitling et al. (2011) studied associations between DNA

methylation and smoking in the blood from 177 subject

[25]. Associations were found for loci mapped to F2RL3

(reflective of hemostasis) and replicated in 316 independent

samples. Via 450K, Zellinger et al. (2013) studied smoking

associations using the blood from 1793 subjects [26]. They

found associations at loci mapped to AHRR (related to detox-

ification and not to immune response) and replicated the as-

sociation in 479 independent samples. Somewhat related to

smoking, Qiu et al. (2012) studied chronic obstructive pulmo-

nary disease (COPD), using 27K to study the blood from two

family-based cohorts (n=1085, n=369), investigating associ-

ations between DNA methylation and COPD [51]. They re-

port associations for loci mapped to SERPINA1 (related to

hemostasis) and FUT7. Neither gene is reflective of immune

response or inflammation, although they report that 349 sig-

nificant loci were enriched for GO terms reflective of these

processes, as well as others (wound healing and coagulation

cascades as well as response to stress and external stimuli).

Psychiatry

Finally, several studies have investigated associations between

DNA methylation and psychiatric conditions. Using the 27K

array, Nishioka et al. (2012) compared 18 schizophrenics with

15 controls [29], finding 603 differentially methylated CpG

sites, many of these mapped to genes critical in neuronal dif-

ferentiation and related to other psychiatric disorders, as well

as genes functionally related to those previously found to be

differentially methylated in schizophrenic patients. Enriched

GO terms emphasized transcription factor binding and nucle-

otide binding, but neither immune response nor inflammation.

In a candidate gene study employing pyrosequencing,

Rusiecki et al. (2013) compared 75 post-traumatic stress dis-

order (PTSD) cases with 75 controls [31]; they found differ-

ences in loci mapped to IL18 (reflective of immune response)

and to H19. In another candidate gene study pyrosequencing

82 candidate genes, Zhang et al. (2013) studied childhood

adversity in alcohol-dependent patients, stratified by race

(African-American vs. European American), for a total of

518 cases and 369 controls [32]. Significant loci were mapped

to metabolic genes or those related to neurotransmission, but

the custom panel was heavily biased towards such genes.
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Table 1 Overview of various studies’ findings related to DNA methylation associations that may or may not indicate for cell composition effects

Source Topic of study Population Genes of interest (examples)

Studies that have found DNAmethylation associations that are reflective of immune response/inflammation (indicative of potential confounding by cell

composition)

Boks et al. (2009) [6] Twin studies 23 MZ twins, 23 DZ twins, 96 matched

controls

IL6, CARD15, PDGFRA, NFKB1

Li et al. (2013) [44] Twin studies 13 female MZ twins, 9 male MZ twins EFNB1, G6PD

Van Eijk et al. (2012) [45] Genetic variants/gene

expression

148 healthy adults of Dutch ancestry N/Aa

Alexeeff et al. (2013) [46] Aging 789 elderly participants of the Normative

Aging Study

INFG, IL6, TLR2, iNOS (NOS2)

Madrigano et al. (2012) [7] Aging 784 elderly participants of the Normative

Aging Study

ICAM, IL6, INFG, iNOS (NOS2),

TLR2

Harris et al. (2012) [27] Aging 55 children with Crohn’s disease TEPP

Alisch et al. (2012) [4] Aging 398 healthy males (3–17 years of age) from

Simons Simplex Collection

N/Ab

Teschendorff et al. (2009) [12] Cancer 148 healthy post-menopausal women,

113 age-matched pre-treatment ovarian

cancer cases

INS, IL-2, BRAF, MAPK1

Marsit et al. (2011) [11] Cancer 112 bladder cancer cases, 118 controls GATA1, IRF1, IRF7, NFAT

Friemel et al. (2014) [33] Fertility 30 infertile men with normal CFTR and

AZF tests, 10 fertile male controls

PIWIL1, PIWIL2, HLA-DRB1,

HLA-DQB1

Martino et al. (2011) [47] Pregnancy/birth 7 females (followed from birth to 5 years) CALCA, DNTT, CHRNE

Relton et al. (2012) [48] Pregnancy/birth 178 birth cohort subjects from Avon

Longitudinal Study of Parents and

Children

HLA-DOB, IRF5, MPL

Liu et al. (2014) [49] Pregnancy/birth 308 African-American mother-infant pairs WNT16, ERBB2, DOK2, PLAC1

Morales et al. (2014) [50] Pregnancy/birth 258 birth cohort subjects from Avon

Longitudinal Study of Parents and

Children

IL16, IL1B, IL8, NFKB1

Sanders et al. (2013) [22] Pregnancy/birth 17 mother-infant pairs (with maternal

cadmium exposure level of 0.2 μg/L)

NCF4, MTF1, PRR13

Bind et al. (2012) [18] Environmental exposures 704 elderly men from Veterans

Administration Normative Aging Study

TLR2, ICAM-1, F3

Madrigano et al. (2012) [21] Environmental exposures 1377 blood samples from 699 elderly male

participants in the VA Normative Aging

Study

iNOS (NOS2), GCR/NR3C1

Kile et al. (2013) [20] Environmental exposures 38 boilermaker construction workers iNOS (NOS2)

Alegria-Torres et al. (2013) [17] Environmental exposures 39 male brick manufacturers IL12, TNFA

Tarantini et al. (2013) [23] Environmental exposures 63 steel workers NOS3

Rusiecki et al. (2013) [31] Psychiatry 75 post-traumatic stress disorder (PTSD)

cases, 75 controls

IL18, H19

Studies that have found no DNA methylation associations with immune response/inflammation (indicative of independence of cell composition effects

or potential for other biological bias)

Madrigano et al. (2012) [7] Aging 784 elderly participants of the Normative

Aging Study

CROT, F3, GCR (NR3C1), and

OGG

Almen et al. (2014) [5] Aging 24 obese and 22 lean female adults from

Latvian Genome Data Base

RNH1, ADCY1, BRUNOL6

Cassinotti et al. (2012) [9] Cancer 30 colorectal cancer (CRC) patients,

30 patients with adenomatous polyps,

30 controls

CYCD2(CCND2), HIC1, RASS

F1A, MDG1

Flanagan et al. (2009) [10] Cancer 14 bilateral breast cancer patients, 14

matched controls

ATM, PGR, CDH1

White et al. (2013) [15] Pregnancy/birth 14 pregnant women with preeclampsia,

14 matched normotensive controls

RIN2b, GABRA1, PCDHB7, and

BEX1

Tarantini et al. (2013) [23] Environmental exposures 63 steel workers EDN1

Zellinger et al. (2013) [26] Environmental exposures 1793 subjects from KORA F4 cohort AHRR

Qiu et al. (2012) [51] Environmental exposures 1085 subjects from the International COPD

Genetics Network (ICGN), 369 subjects

SERPINA1, FUT7
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Overview of Studies That Assay Blood

Without Adjusting for Cell Composition

Most of the studies reviewed above found associations near

genes that were reflective of immune response or inflamma-

tion (Table 1). In addition, many studies found associations

near genes that were involved in hemostasis/coagulation,

which are coordinated and closely regulated by immunologi-

cally active cells and related cytokines. Most of the studies

that report no associations with immune or inflammation pro-

cesses used panels that were heavily biased towards other

biological processes (e.g., the GoldenGate Cancer Panel mea-

sures methylation across CpG sites in promoter regions of

genes with known implications in cancer, and thus, it may

not provide an unbiased assessment of the epigenome). The

evident associations near genes reflective of immune response

or inflammation suggest the potential for phenotype associa-

tions with leukocyte cell composition. Consequently, it stands

to reason that the associations reported in many of the studies

reviewed above may be confounded by cell composition ef-

fects as well as, potentially, by localized expanded numbers of

cells with activated immune signaling pathways (Fig. 1). This

point has been made recently by several authors [52••, 53]; in

particular, Jaffe and Irizarry (2013) suggest that many of the

observed associations between DNA methylation and age

may be substantially confounded by cell composition effects

[52••] (Fig. 1a). On the other hand, a number of the studies

found associations near genes that were not obviously related

to immune function or inflammation, so there remains a great

potential for epigenetic signals that arise independently of cell

composition (Fig. 1c).

Strategies for Avoiding Confounding by Cell

Composition

Multiple strategies have emerged for avoiding confounding

by cell composition. The most direct method is to fractionate

leukocytes and either to study a single cell type or, alternative-

ly, to statistically adjust for directly measured cell counts or

proportions. For example, Lam et al. (2013) argue that it is

critical to account for granulocyte proportion in EWAS stud-

ies, either by removing them and arraying MCs, or minimally,

adjusting for them statistically [54]. Nestor et al. (2014) com-

pared eight seasonal allergic rhinitis (SAR) patients with eight

controls, arraying sorted CD4+ T cells using the 450K plat-

form. The results showed clear separation in methylation pro-

files, and along with gene expression profiles, emphasized

interleukin genes related to lymphocyte activation. However,

we note that Th1 and Th2 cells differ in production of INFG,

IL2, IL4, IL5, IL6, IL10, and the two cell types are differen-

tially methylated in the promoter of INFG [41]. In general,

lineage-specific DNA methylation regulates differentiation of

T cell subsets, with DMRs present in cell type-specific genes

(FOXP3, IL2RA, CTL4A, CD40LG, INFG) [40]. Thus, even

in isolated cell types, DNA methylation associations may be

confounded by subtle cell composition effects, including

those related to cellular memory and activation state.

In general, cell sorting is difficult and error-prone. Though

conventional complete blood cell (CBC) count methods are

routine and inexpensive, they can only differentiate major

leukocyte types (lymphocytes, monocytes, and neutrophils)

in freshly isolated blood (Fig. 2a). More subtle distinctions,

such as characterization of differences among Tregs, NK cells,

or dendritic cells, can be made using FACS analysis on whole

blood or blood cell fractions (Fig. 2b). However, FACS anal-

yses require extensive logistical support and fresh blood sam-

ples and are costly; hence, FACS is infrequently used in large

clinical or epidemiological studies. At the same time, activated

immune cells will exist in many disease states; for example,

activated NK cells, dendritic cells, monocytes, macrophages,

etc. are the hallmarks of inflammatory conditions. While their

numbers are likely to be small in the periphery, they will have

very different DNA methylation signatures at particular loci.

Consequently, if these cells are numerous enough, these dif-

ferences will be detected as very small differences in the beta

coefficients (mean methylation values).

One increasingly popular method of addressing cell com-

position effects is to adjust for them statistically. Liu et al.

(2013) demonstrated that DNA methylation associations with

rheumatoid arthritis are explained principally by cell compo-

sition effects [28•]. In this study, they imputed the proportions

Table 1 (continued)

Source Topic of study Population Genes of interest (examples)

from the Boston Early-Onset COPD

Study (EOCOPD)

Nishioka et al. (2012) [29] Psychiatry 18 cases with first-episode schizophrenia,

15 controls

HTR1E, COMTD1

Zhang et al. (2013) [32] Psychiatry 518 cases of alcohol dependence and 369

controls

ALDH1A1, CART, CHRNA5,

HTR1B

aThis study has determined five methylation modules associated with immune-related Gene Ontologies (GO)
bThis study has determined ten modules associated with immune-related Gene Ontologies (GO)
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of major cell types using a deconvolution algorithm whose

use is becoming increasingly popular [38••]; this algorithm

deploys information gained from a reference panel of sorted

cell types, which in principle could be expanded to include

profiles for rare leukocyte types, although the algorithm may

be limited by the sensitivity of the assay used to measure

DNA methylation (Fig. 2c). Another alternative is a new

reference-free deconvolution method [56]; although its use

seems promising, as evidenced by a recent study that used it

to find biomarkers for Wilms tumors [56], its robustness

remains to be confirmed.

Conclusions

Due to its convenience, the blood is commonly used in

epigenomic studies, but its heterogeneous nature leads to

interpretation difficulties. Many publications now report

significant associations between DNA methylation and a

variety of health conditions or exposures; typically, studies

that have used genome-wide platforms have found associ-

ations indicative of immune response or inflammation,

which almost certainly represent effects that are mediated

by cell composition. Nevertheless, since many of these

Fig. 1 Directed acyclic graphs (DAGs) of various scenarios in which cell

composition can play a role in confounding or mediating the methylation

associations, not being involved in the pathway or being involved in

reverse causality. a Cell composition acts as a confounder of the

association between DNA methylation and outcome of interest (i.e.,

certain disease). Varying amounts of different cell types may influence

the differential methylation patterns expressed and also have direct impact

(i.e., immune activation or inflammatory responses) related to disease. In

most of these studies with implications for immune-related associations,

cell composition effects have not been properly adjusted for and thus may

bias the methylation-associated results. Dotted green lines indicate the

need to adjust for cell composition effects. b Cell composition effects are

involved as mediators in the pathway associated with disease. Cell

composition can either influence or be influenced by DNA methylation

in its association with the outcome. c The association of DNA

methylation patterns with disease may not be influenced by cell

composition effects, but rather by other biological mechanisms. d

Diseased states may potentially influence DNA methylation patterns

and/or cell compositions in the blood and thus indicates potential

limitation of studies due to reverse causality

Curr Envir Health Rpt (2015) 2:145–154 151



studies also report associations with other processes that

are not easily explained as cell composition effects, the

blood is still a valuable tissue to assay. Indeed, important

biological insights may be gained from studying the cell

composition effects themselves, not to mention their po-

tential interactions with other processes.

Direct measurement of counts of various leukocyte cell

types would be the ideal method for conducting such analysis;

however, it is generally expensive and logistically difficult to

measure these counts in a large study population beyond the

standard CBC differential used clinically. Fortunately, there

are statistical methods available for generating approximate

cell proportions imputed from reference data; while these are

necessarily inferior to directly measured counts, they may

often represent an acceptable tradeoff between bias and

feasibility.

Clearly, DNAmethylation studies of blood tissue and of all

other tissues should include a detailed consideration of the

epigenomic features that are intrinsic to the cells that make

up the tissue. Our knowledge of the differentially methylated

loci in leukocyte subtypes, although far more extensive than

even a few years ago, is still incomplete. This fact means that

Fig. 2 Various strategies to control possible confounding by cell

composition. a Complete blood count tests can be performed to

determine the levels of white blood cells, red blood cells, and platelets.

b Flow cytometry staining and fluorescence-activated cell sorter (FACS)

may be performed to isolate specific immune cell types. Major limitations

of these methods are that they are labor intensive and often costly. c

Previously established statistical algorithms can be applied to control

for cell composition effects (c adapted with permission from: Koestler

et al.: Blood-based profiles of DNA methylation predict the underlying

distribution of cell types: a validation analysis. Epigenetics 8(8):816–26

(2013). doi: 10.4161/epi.25430) [55]. i By projecting the methylation

values from an experimental data set to a reference library of DNA

methylation signatures for major immune cell types (i.e., B cells, T

cells, granulocytes, monocytes, and NK cells), the estimates of specific

cell(s) proportions in the blood can be determined. ii The methylation

signatures for experimental samples are the weighted sum of the

methylation signatures from distinct white blood cell types, where the

weights are proportional to the specific cell-type frequencies in the

blood. Illustration of the blood cell mixture deconvolution approach

reproduced (and slighted altered) from [55]. The deconvolution

approach involves (i) constrained projection of DNA methylation

profiles from a target methylation data set (S1) onto a reference data set

(S0), which is compromised of the DNA methylation signatures for

isolated white blood cell types (shapes reflect different white blood cell

types). The result is an estimate of the underlying distribution of cell

proportions (circle, triangle, and hexagon) for each sample within S1
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many DNA methylation associations attributed to intrinsic

epigenetic processes are likely due to subtle effects on cell

type composition involving cells that have yet to be charac-

terized. Current human leukocyte libraries account for only

approximately seven subtypes, but numerous specific sub-

types may exist when one counts activation states of many

common types [57, 58]. Memory versus naïve T or B cells,

subsets of activated NK cells as well as different forms of

dendritic and myeloid cells have yet to be studied. Current

research is underway to characterize these types. As more data

sets become available to characterize the epigenomic variation

among different and less common functional subtypes of leu-

kocytes, there will be an interest in applying these reference

data in EWAS. However, success in such application will

require the use of technologies that are more sensitive than

the currently used microarray platforms, so we anticipate that

in the future digital sequencing technologies will play a more

prominent role in the conduct of such studies.
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