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Abstract

Background: DNA methylation is an essential epigenetic mechanism involved in gene regulation and disease, but

little is known about the mechanisms underlying inter-individual variation in methylation profiles. Here we

measured methylation levels at 22,290 CpG dinucleotides in lymphoblastoid cell lines from 77 HapMap Yoruba

individuals, for which genome-wide gene expression and genotype data were also available.

Results: Association analyses of methylation levels with more than three million common single nucleotide

polymorphisms (SNPs) identified 180 CpG-sites in 173 genes that were associated with nearby SNPs (putatively in

cis, usually within 5 kb) at a false discovery rate of 10%. The most intriguing trans signal was obtained for SNP

rs10876043 in the disco-interacting protein 2 homolog B gene (DIP2B, previously postulated to play a role in DNA

methylation), that had a genome-wide significant association with the first principal component of patterns of

methylation; however, we found only modest signal of trans-acting associations overall. As expected, we found

significant negative correlations between promoter methylation and gene expression levels measured by RNA-

sequencing across genes. Finally, there was a significant overlap of SNPs that were associated with both

methylation and gene expression levels.

Conclusions: Our results demonstrate a strong genetic component to inter-individual variation in DNA

methylation profiles. Furthermore, there was an enrichment of SNPs that affect both methylation and gene

expression, providing evidence for shared mechanisms in a fraction of genes.

Background

DNA methylation plays an important regulatory role in

eukaryotic genomes. Alterations in methylation can

affect transcription and phenotypic variation [1], but the

source of variation in DNA methylation itself remains

poorly understood. Substantial evidence of inter-

individual variation in DNA methylation exists with age

[2,3], tissue [4,5], and species [6]. In mammals, DNA

methylation is mediated by DNA methyltransferases

(DNMTs) that are responsible for de novo methylation

and maintenance of methylation patterns during replica-

tion. Genes involved in the synthesis of methylation and

in DNA demethylation can also affect methylation varia-

tion. For example, mutations in DNMT3L [7] and

MTHFR [8] associate with global DNA hypo-methyla-

tion in human blood. These changes occur at a genome-

wide level and are distinct from genetic variants that

impact DNA methylation variability in targeted genomic

regions, for example, genetic polymorphisms associated

with differential methylation in the H19/IGF2 locus [9].

Recent evidence suggests a dependence of DNA

methylation on local sequence content [10-12]. A strong

genetic effect is supported by studies of methylation pat-

terns in families [13] and in twins [14], but stochastic

and environmental factors are also likely to play an

important role [2,14]. Recent work indicates that genetic

variation may have a substantial impact on local methy-

lation patterns [5,15-18], but neither the extent to which

methylation is affected by genetic variation, nor the

mechanisms are yet clear. Furthermore, the degree to

which variation in DNA methylation underlies variation

in gene expression across individuals remains unknown.
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DNA methylation has long been considered a key reg-

ulator of gene expression. The genetic basis of gene

expression has been investigated across tissues [19] and

populations [20]. Both lines of evidence suggest genetic

variants associated with gene expression variation are

located predominantly near transcription start sites.

However, not much is known about the precise mechan-

isms by which genetic variants modify gene-expression.

Combining genetic, epigenetic, and gene expression data

can inform the underlying relationship between these

processes, but such studies are rare on a genome-wide

scale. Two recent studies have examined the link

between DNA methylation and expression in human

brain samples [5,18]. Both studies identified substantial

numbers of quantitative trait loci underlying each type

of phenotype, but few examples of individual loci driving

variation in both methylation and expression.

To better understand the role of genetic variation in

controlling DNA methylation variation, and its resulting

effects on gene expression variation, we studied DNA

promoter methylation across the genome in 77 human

lymphoblastoid cell lines (LCLs) from the HapMap col-

lection. These cell lines represent a unique resource as

they have been densely genotyped by the HapMap Pro-

ject [21], and are now being genome-sequenced by the

1,000 Genomes Project. In addition, these cell lines have

been studied by numerous groups studying variation in

gene expression using microarrays [20,22] and RNA

sequencing [23,24], as well as smaller studies of varia-

tion in chromatin accessibility and PolII binding [25,26].

Finally, one of the HapMap cell lines is now being

intensely studied by the ENCODE Project [27]. This

convergence of diverse types of genome-wide data from

the same cell lines should ultimately enable a clearer

understanding of the mechanisms by which genetic var-

iation impacts gene regulation.

Results

Characteristics of DNA promoter methylation patterns

To study inter-individual variation in methylation profiles

we measured methylation levels across the genome in 77

lymphoblastoid cell lines (LCLs) derived from unrelated

individuals from the HapMap Yoruba (YRI) collection.

For these samples we also had publicly available geno-

types [21], as well as estimates of gene expression levels

from RNA-sequencing in 69 of the 77 samples [24].

Methylation profiling was performed in duplicate using

the Illumina HumanMethylation27 DNA Analysis Bead-

Chip assay, which is based on genotyping of bisulfite-

converted genomic DNA at individual CpG-sites to

provide a quantitative measure of DNA methylation. The

Illumina array includes probes that target 27,578 CpG-

sites. However, we limited analyses to probes that

mapped uniquely to the genome and did not contain

known sequence variation, leaving us with a data set of

22,290 CpG-sites in the promoter regions of 13,236

genes (see Methods). Following hybridization, methyla-

tion levels were estimated as the ratio of intensity signal

obtained from the methylated allele over the sum of

methylated and unmethylated allele intensity signals.

Methylation levels were quantile-normalized [28] across

two replicates. We tested for correlations with potential

confounding variables that could affect methylation levels

in LCLs [29], such as LCL cell growth rate, copy numbers

of Epstein-Barr virus, and other measures of biological

variation (see Additional file 1) that were available for 60

of the individuals in our study [30]; these did not signifi-

cantly explain variation in the methylation levels in our

sample (Figure S1 in Additional file 1). However, we

observed an influence of HapMap Phase (samples from

Phase 1/2 vs 3) on the distribution of the first principal

component loadings in the autosomal data, suggesting

that the first methylation principal component may in

part capture technical variation potentially related to

LCL culture. In the downstream association mapping

analyses, we applied a correction using principal compo-

nent analysis regressing the first three principal compo-

nents to account for unmeasured confounders and

increase power to detect quantitative trait loci.

Global patterns of methylation

Distinct patterns of methylation were observed for CpG-

sites located on the autosomes, X-chromosome, and in

the vicinity of imprinted genes (Figure 1a). The majority

(71.4%) of autosomal CpG-sites were primarily

unmethylated (observed fraction of methylation <0.3),

15.6% were hemi-methylated (fraction of methylation

was between 0.3 and 0.7), and 13% were methylated. As

expected, these patterns were consistent with previously

observed lower levels of methylation near promoters

relative to genome-wide levels [4,31]. We did not find

evidence for sex-specific autosomal methylation pat-

terns, consistent with a previous report [4]. In contrast,

CpG-sites on the X-chromosome exhibited highly signif-

icant sex-specific differences (Figure S2) with hemi-

methylated patterns in females that were consistent with

X-chromosome inactivation. A similar hemi-methylation

peak was observed for CpG-sites located near the tran-

scription start sites (TSSs) of known autosomal

imprinted genes in the entire sample.

We observed a previously reported [4] drop in methyla-

tion levels for CpG-sites located within 1 kb of TSSs

(Figure 1b). Promoter methylation levels have been

reported to vary with respect to CpG islands [32]. We

found that although distance to the CpG island (CGI)

border [33] (including CpG shores [34]) did not signifi-

cantly affect methylation levels, CpG-sites located in

CGIs were under-methylated and less variable (Wilcoxon
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rank-sum test P < 2.2 × 10-16) compared to sites outside

of CGIs (Figure 1, Figure S3 in Additional file 1).

Methylation is often found to be correlated across

genomic regions at the scale of 1-2 kb [4,35]. We investi-

gated whether the correlation between autosomal methy-

lation levels (co-methylation) depended on the distance

between CpG-sites. We observed that methylation levels

at probes located in close proximity (up to 2 kb apart)

were highly correlated (Figure 1c), indicating that varia-

tion in methylation levels between individuals is corre-

lated within cell type. Figure 1c also shows that pairs of

CpG-sites that were both within a CGI showed greater
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Figure 1 Distribution of methylation patterns across the genome. (a) Methylation patterns for CpG-sites on autosomes, X-chromosome, and

in the vicinity of imprinted genes. Methylation values are plotted for 77 individuals at 21,289 autosomal CpG-sites (left), for 43 females at 997 CpG-

sites on the X-chromosome (middle), and for 77 individuals at 153 CpG-sites in 33 imprinted genes (right). (b) Methylation levels with respect to

the TSS (negative distances are upstream from the TSS), where the line represents running median levels in sliding windows of 300 bp. (c)

Correlations in methylation levels for all pair-wise CpG-sites (black), and for CpG-sites where both probes are in the same CGI (red), or where at least

one probe is outside of CGIs (blue). Lines indicate smoothed spline fits of the mean rank pairwise correlation between CpG-sites in 100 bp

windows, weighted by the number of probe pairs. (d) Methylation levels inside and outside of annotation categories, including CpG Islands (CGIs)

for probes within 100 bp of the TSS, and histone modifications and transcription factor (TF) binding sites for all probes (see Additional file 1).
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evidence for co-methylation than pairs of CpG sites for

which at least one was outside the CGI, controlling for

distance, implying differential regulation of DNA methy-

lation for CpGs inside and outside of CGIs [32].

DNA methylation correlates with transcription and

histone modifications

Methylation has long been implicated in the regulation

of gene expression. To examine the role of methylation

in gene expression variation, we compared methylation

levels to estimates of gene expression based on RNA-

sequencing (Figure 2a). Within individuals, we found a

significant negative correlation between methylation and

gene expression levels (Figure S4 in Additional file 1)

across 11,657 genes (mean rank correlation r = -0.454).

We divided the genes into quartiles from high to low

gene expression and observed that the drop in methyla-

tion levels near to the TSS (Figure 1b) was only seen in
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Figure 2 DNA methylation is negatively correlated with gene expression. (a) Methylation levels are low in the top quartile of highly

expressed genes (left), and high in the bottom quartile of lowly expressed genes (right), looking across 12,670 autosomal genes. (b) Methylation

levels with respect to the TSS in sets of genes categorized by gene expression levels, from highest (red) to lowest (blue), using the quartiles of

gene expression with respect to gene expression means, where fitted lines represent running median levels (see Figure 1b).

Bell et al. Genome Biology 2011, 12:R10

http://genomebiology.com/2011/12/1/R10

Page 4 of 13



highly expressed genes (Figure 2b). We also asked

whether variation in methylation levels across indivi-

duals correlates with variation in gene expression levels.

Comparisons at the gene level across 69 individuals

indicated a modest but significant excess of negatively

correlated genes (permutation P < 0.0001).

DNA methylation is thought to interact with histone

modifications during the regulation of gene-expression

[36,37]. We compared methylation levels in our sample

with histone modification ChIP-seq data from the

ENCODE project in one of the CEPH HapMap LCLs

(GM12878). We found strong negative correlations

between DNA methylation levels and the presence of

histone marks that target active genes (Figure 1d;

Figures S3 and S5 in Additional file 1). For example,

DNA methylation was low in H3K27ac peaks, which are

indicative of enhancers [38], have previously been posi-

tively correlated with transcription levels [39] and nega-

tively correlated with DNA methylation levels [31].

Similarly, the transcription marks H3K4me3 and

H3K9ac were both negatively correlated with DNA

methylation levels. We also observed lower methylation

levels in transcription factor binding sites predicted by

the CENTIPEDE algorithm, using cell-type specific data

including DNase1 sequencing reads [40], consistent with

the expectation that the absence of methylation is

important for transcription factor binding.

Genome-wide association of DNA methylation with SNP

genotypes

We next assessed whether genetic variation contributes

to inter-individual variation in DNA methylation levels.

We first tested whether any SNPs were associated with

overall patterns of DNA methylation, as measured by

principal component analysis (see Methods). The most

interesting signal was obtained for SNP rs10876043,

which had a genome-wide significant association with

variation in the first principal component of methylation

(P = 4.5 × 10-9), and which also showed a modest asso-

ciation with average genome-wide methylation levels

(P = 4.0 × 10-5) (Table S1 in Additional file 1). This SNP

lies within the intron of the gene DIP2B, which contains

a DMAP1-binding domain, and has been previously pro-

posed to play a role in DNA methylation [41].

Associations in trans

After assessing the possibility that SNPs can have genome-

wide effects on overall methylation patterns, we next trans-

formed the methylation data by regressing out the first

three principal components (see Methods), as we have pre-

viously found that this procedure can greatly reduce noise

in the data and improve quantitative trait locus (QTL)

mapping [24] (see also [42,43]). At a genome-wide false

discovery rate (FDR) of 10% (P = 2.1 × 10-10) methylation

levels at 37 CpG-sites showed evidence for association with

SNP genotypes (Table S2 in Additional file 1). The majority

of these CpG-sites (27 of 37) were putative cis association

signals, that is, the most significant SNP was within 50 kb

of the measured CpG site (Figure S6 in Additional file 1).

We observed a modest enrichment of distal associations

(putative trans associations) that was primarily due to sig-

nals in 10 CpG-sites (Figure S7 in Additional file 1). We

then examined distal association at SNPs that had pre-

viously been implicated in methylation (Table S3 in

Additional file 1) and found a significant proximal associa-

tion between SNP rs8075575, which is 150 kb from gene

ZBTB4 that binds methylated DNA, and methylation at

probe cg24181591 in gene EIF5A that encodes a translation

initiation factor. Three previously reported [5] significant

distal associations were also observed for SNP rs7225527

(38 kb from gene RHBDL3) and methylation at probe

cg17704839 in gene UBL5 that encodes ubiquitin-like pro-

tein, and for SNPs rs2638971 (106 kb from gene DDX11)

and rs17804971 (49 kb from gene DDX12) and methylation

at probe cg18906795 in gene RANBP6, which may function

in nuclear protein import as a nuclear transport receptor.

Associations were also seen at SNPs located 165 kb from

the gene encoding methyl-binding protein MBD2, 22 kb

from the methyltransferase gene DNMT1, 192 kb from the

methyltransferase gene DNMT3B, and at three SNPs with

previous evidence for association but to different regions

[16] (Figure S8 in Additional file 1). Overall however, we

obtained relatively weak evidence for associations in trans

and weak to moderate enrichment of trans association sig-

nals at more relaxed significance thresholds in candidate

regions of interest.

Associations in cis

Since the majority of the genome-wide association sig-

nals were proximal to the corresponding CpG-sites, we

next focused on association testing for SNPs within

50 kb of each CpG-site (Figure 3). At a genome-wide

FDR of 10% (P = 2.0 × 10-5) there were 180 CpG-sites

with cis methylation quantitative trait loci (meQTLs).

The strongest association signal (P = 8.0 × 10-18) was

obtained at SNP rs2187102 with probe cg27519424 in

gene HLCS, which is thought to be involved in gene-

regulation by mediating histone biotinylation [44]. The

proportion of variance explained by meQTLs for nor-

malized methylation data ranged between 22% and 63%.

If mechanisms affecting DNA methylation generally act

over distances of up to approximately 2 kb (Figure 1c),

then SNPs impacting methylation should be detected as

meQTLs at multiple nearby CpG-sites. We observed

that SNPs associated with methylation were also

enriched for association with additional CpG-sites

within 2 kb of the best-associated CpG-site with the

most-significant P-value (Figure 3b), suggesting that a

single genetic variant often affects methylation at

numerous nearby CpG-sites.

Bell et al. Genome Biology 2011, 12:R10

http://genomebiology.com/2011/12/1/R10

Page 5 of 13



Genetic variation has previously been associated with

methylation at specific imprinted regions [1]. The 180

CpG-sites with meQTLs in our data were nearest to the

TSSs of 173 genes, of which two-MEST and CPA4, were

known to be imprinted genes. Previous observations

suggested that eQTL and imprinting effects can be sex-

specific [45], raising the possibility that some of the

meQTLs may act in a sex-dependent manner. However,

we did not find compelling genome-wide significant sex-

specific cis meQTL effects (see Additional file 1). Of the

180 associations of CpG-sites with proximal meQTLs, 27

were previously reported in human brain samples [5].

Little is known about the biological mechanisms that

may underlie meQTL effects. To this end we applied a

Bayesian hierarchical model [22] to test for enrichment

of meQTLs in transcription factor binding sites, in his-

tone modification categories, and in the vicinity of the

associated probes. We found that SNPs located nearest

to the probe, and specifically in the 5 kb immediately

surrounding the probe, were significantly enriched for

meQTLs (Figure 3c). Transcription factor binding sites,

including CTCF-binding sites, showed a modest but

non-significant enrichment for meQTLs (Figure S9 in

Additional file 1).

Methylation QTLs are enriched for expression QTLs

Finally, we examined the overlap in regulatory variation

that affects both methylation and gene expression levels

using RNA-sequencing data [24]. We hypothesized that

since DNA methylation can regulate gene expression,

then variants that affect methylation should often have

consequent effects on gene expression. The first way

that we looked at this was to take the set of 180 SNPs

that are meQTLs at FDR <10% (taking only the most

significant SNP for each meQTL). We then tested each

of these SNPs for association with expression levels of

nearby genes (Figure 4a, red points). There is a clear

enrichment of association with expression levels com-

pared to the null hypothesis (black line) and compared

to sets of control SNPs that are matched in terms of

allele frequency and distance-to-probe distributions

(black dots).

One example of a SNP, rs8133082, that is both a

meQTL and eQTL for the gene C21orf56 is illustrated

in Figure 5. When we regress out methylation, this com-

pletely removes the association of this SNP with gene

expression (Figure 5a, b, c, d). We validated the methy-

lation assay findings at C21orf56 by bisulfite sequencing

the methylation probe region in eight samples in our

study, four from each homozygote genotype class for

the SNP (Figure 5f). The two methylation probes at

C21orf56 both had cis meQTLs and overlapped the

likely promoter region as indicated by histone modifica-

tion data (Figure 5e), suggesting that genetic variation

may affect the chromatin structure in this region.

C21orf56 appears to modulate the response of human

LCLs to alkylating agents, and may act as a genomic

predictor for inter-individual differences in response to

DNA damaging agents [46].
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Figure 3 Cis methylation QTLs. (a) Quantile-quantile (QQ) plot

describing the enrichment of association signal in cis compared to

the permuted data (90% confidence band shaded). (b) The cis-

meQTL SNPs were enriched for association signal at additional CpG-

sites near to the CpG-site for which they are meQTLs. The 180 best-

associated SNPs were tested for association to probes that fell

within 2 kb (red), within 2 kb to 10 kb (purple), and within 10 kb to

50 kb (blue) of the original best-associated CpG-site. The majority

(96%) of probes within 2 kb (red) were in the same CGI as the best-

associated probe. (c) Spatial distribution of cis-meQTLs with respect

to the CpG-site as estimated by the hierarchical model.
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To examine further the overlap between eQTLs and

meQTLs, we re-analyzed the eQTL data by incorporat-

ing methylation as a gene-specific covariate. If variation

in methylation underlies variation in gene-expression,

we expect to observe a drop in the number of eQTLs in

the methylation-residual gene expression data. At an

FDR of 10% (P = 2.5 × 10-5) there were 484 original

eQTLs and 463 methylation-residual eQTLs, where 439

eQTLs overlapped, 45 eQTLs were present only in the

original data, and 24 new eQTLs were present only in

the methylation-residuals (Figure 4b). Interestingly, the

SNPs that were eQTLs for the 45 genes with reduced

signals in the methylation-residuals were enriched for

significant methylation associations (Figure S10 in

Additional file 1), suggesting that these are true underly-

ing meQTLs, where genetic variation affects methyla-

tion, which in turn regulates gene expression [5,18]. In

summary our results indicate a significant enrichment of

SNPs that affect both methylation and gene expression,

suggesting a shared mechanism (for example, that

increased DNA methylation might drive lower gene

expression). However the number of genes that show

such a signal is a modest fraction of the total number of

meQTLs.

Discussion

We report association between DNA methylation with

genetic and gene expression variation at a genome-wide

level. We have identified methylation QTLs genome-

wide, the majority of which act over very short

distances, namely less than 5 kb. Furthermore, methyla-

tion patterns generally covary within individuals over

distances of approximately 2 kb and in conjunction with

this, meQTLs frequently affect multiple neighboring

CpG sites. Our findings are consistent with previous

methylation associations [5,16,18], familial aggregation

[13,14], correlation with local sequence [10], allele-

specific methylation [15,17], and effects of histone modi-

fications [47]. Little is known about the biological

mechanisms that underlie meQTL effects, however, this

is one important route to identify how genetic variation

affects gene regulation.

We find an overall enrichment of significant associa-

tions of genetic variants with methylation CpG-sites,

which is consistent with the results from two recent

reports examining genome-wide methylation QTLs in

human brain samples [5,18]. Overall, the number of

genome-wide significant meQTLs varies across the three

studies, which is likely due to differences in sample

sizes, differences in multiple testing corrections and

definition of cis intervals, and the presence of large

tissue-specific differences in DNA methylation with

tissue-specific meQTLs. In general, power to detect

meQTLs will depend on many factors including sample

size, genome-wide coverage of genetic variation, gen-

ome-wide coverage of methylation variation, and the

effect size of the genetic variants associated with methy-

lation variation in the tissue of interest.

Additionally, our analyses are based on Epstein-Barr

virus transformed lymphoblastoid cell lines. The choice

of cell type will affect the observed genome-wide DNA

methylation patterns, and in particular, high-passage

LCLs may exhibit methylation alterations over time [29].

Sun et al. [48], for example, investigated genome-wide
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Figure 4 The overlap between meQTLs and eQTLs. (a) QQ-plot

describing the eQTL association P-values in 180 cis-meQTL SNPs

(red) and in eight samples of SNPs that match the cis-meQTL SNPs

for minor allele frequency and distance-to-probe distributions

(black). (b) Association signals in 508 FDR 10% eQTLs before and

after regressing out gene-specific methylation. In black are 439

eQTLs that overlap across the two phenotypes, in red are 45 eQTLs

present before methylation regressions, and in blue are 24 eQTLs

present after regressing out methylation. The flat lines (green)

correspond to the FDR 10% eQTL threshold.
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differences in DNA methylation between LCLs and per-

ipheral blood cells (PBCs), and identified 3,723 autoso-

mal DNA methylation sites that had significantly

different methylation patterns across cell types. In that

respect, it is expected that a subset of our results reflect

LCL-specific events. We have tested potential

confounding variables that could affect methylation

levels specifically in LCLs [30], but do not observe sig-

nificant effects of these on overall DNA methylation

patterns in our data. However, variation in methylation

are slightly different in HapMap Phase 1/2 samples

compared to HapMap Phase 3 samples, suggesting that
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Figure 5 C21orf56 gene region. (a), (b), (c) Genotype at rs8133082 is associated with methylation (cg07747299) and gene expression at

C21orf56, plotted per individual colored according to genotype at rs8133082 (GG = black, GT = green, TT = red) for directly genotyped (circles) and

imputed (triangles) data. (d) Gene expression levels at C21orf56 after regressing out methylation. (e) Gene expression at C21orf56 (+/-2 kb) genomic

region on chromosome 21. Distance is measured on the reverse strand relative to C21orf56 TSS at 46,428,697 bp. Barplots show average gene

expression reads per million in the subsets of individuals from each of the three rs8133082-genotype classes. Middle panel shows histone-

modification peaks in the region from Encode LCL GM12878. Bottom panel shows the gene-structure of C21orf56, where exons are in bold and the

gene is expressed from the reverse strand. Green points indicate the location of four HapMap SNPs (rs8133205, rs6518275, rs8133082, and

rs8134519) associated at FDR of 10% with both methylation and gene expression, and Figure S11 in Additional file 1 shows association results for

this region with SNPs from the 1,000 Genomes Project. (f) Bisulphite-sequencing results for eight rs8133082-homozygote individuals (4 GG black,

4 TT red) validates the genome-wide methylation assay at cg07747299 and shows the extent of methylation in the surrounding 411 bp region.

Bell et al. Genome Biology 2011, 12:R10

http://genomebiology.com/2011/12/1/R10

Page 8 of 13



technical variation related to LCL culture may influence

DNA methylation. We took this into account when per-

forming all downstream methylation QTL analyses, and

our analyses of the uncorrected methylation patterns are

consistent with the results of previous studies in primary

cells [4,31,35].

We obtained interesting results from the trans analysis

highlighting several loci with potential long-range effects on

DNA methylation. Furthermore, an intriguing association

of a SNP within the intron of DIP2B, which contains a

DMAP1-binding domain, with the first principal compo-

nent of autosomal methylation patterns suggests novel gen-

ome-wide effects on methylation variability. However, we

do not observe a strong effect of polymorphisms in many of

the candidate methylation regulatory genes on overall pat-

terns of methylation or on specific probes. The sample size

used in the study limits our power to detect trans signals,

rendering these analyses more difficult to interpret. In gen-

eral, the moderate sample sizes used in all three genome-

wide methylation studies to date do not allow for the

detection of subtle effects of genetic variants on methylation

variation and correspondingly the majority of methylation

sites assayed across all studies remains unexplained by the

GWAS analyses. However, the findings indicate that genetic

regulation of methylation is as complex as expression or

phenotypic variation.

Relating genetic variation to both DNA methylation

and gene expression variation reveals complex patterns.

We observe significant overlap between meQTLs and

eQTLs for cis regulatory variants. These findings were

obtained when we both focus exclusively on meQTL

SNPs (Figure 4a) and when we compare the genome-

wide meQTL results for all SNPs classified as eQTLs in

the hierarchical model framework (Figure S9 in

Additional file 1). The observations indicate evidence for

shared regulatory mechanisms in a fraction of genes.

However, in the re-analyses of the eQTL data taking

into account DNA methylation, in only 10% of eQTLs

was the genetic effect of the SNP on expression affected

by controlling for methylation, suggesting that variation

in methylation accounts for only a small fraction of

variation in gene expression levels. There may be several

explanation for this. First, the coverage of the methyla-

tion array provides a relatively low resolution snapshot

of the genome-wide DNA methylation patterns. Second,

steady state gene expression levels (as measured by

RNA-sequencing) are controlled by many other factors

in addition to DNA methylation, such as transcription

factor binding, chromatin state including histone marks

and nucleosome positioning, and regulation by small

RNAs. Finally, our study sample size provides modest

power, both for eQTL and meQTL mapping. However,

compared to previous studies addressing this issue

[5,18], we find more convincing evidence for meQTL

and eQTL overlap. For example, Zhang et al. [18] found

ten cases where genetic variants associated with both

methylation and expression, but they only examined

gene expression data for fewer than 100 genes in these

comparisons in a subset of the sample, while Gibbs

et al. [5] found that approximately 5% of SNPs in their

study were significant as both meQTLs and eQTLs.

Also, Gibbs et al. [5] find proportionally similar number

of QTLs for methylation and gene expression, while we

find more eQTLs. A potential explanation for the

greater overlap obtained in our data is that our study

examines one cell type in comparison to heterogeneous

cell-types in human brain tissue samples used in both

other studies [5,18].

Characterizing the genetic control of methylation and

its association to the regulation of gene expression is an

important area for research, critical to our understand-

ing of how complex living systems are regulated. Our

study has the potential to help disease mapping studies,

by informing the phenotypic consequences of this varia-

tion. Altogether, of the 173 genes with proximal

meQTLs in our study, eighteen genes were previously

reported to be differentially methylated in cancer, in

other diseases, or across multiple tissues (see Table S4

in Additional file 1). Furthermore, thirty of the meQTL

associations reported in our study were also observed in

human brain samples [5]. These findings provide a fra-

mework to help the interpretation of GWAS findings

and improve our understanding of the underlying

biology in multiple complex phenotypes.

Conclusions

Our results, together with recent findings of heritable

allele-specific chromatin modification [25,47] and tran-

scription factor binding [26,49] demonstrate a strong

genetic component to inter-individual variation in epige-

netic and chromatin signature, with likely downstream

transcriptional and phenotypic consequences. Impor-

tantly, we found an enrichment for SNPs that affect both

methylation and gene expression, implying a single causal

mechanism by which one SNP may affect both processes,

although such shared QTLs represent a minority of both

meQTLs and eQTLs. Our data also have implications for

the functional interpretation of mechanisms underlying

association of genetic variants with disease.

Materials and methods

Methylation data

DNA was extracted from lymphoblastoid cell lines from

77 individuals from the Yoruba (YRI) population from

the International HapMap project (60 HapMap Phase 1/

2 and 17 HapMap Phase 3 individuals). Lymphoblastoid

cell lines were previously established by Epstein-Barr

Virus transformation of peripheral blood mononuclear
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cells using phytohemagluttinin. We obtained the trans-

formed cell lines from the Coriell Cell Repositories.

Methylation data were obtained using the Illumina

HumanMethylation27 DNA Analysis BeadChip assay.

Methylation estimates were assayed using two technical

replicates per individual and methylation levels were quan-

tile normalized across replicates [28]. At each CpG-site the

methylation level is presented as b, which is the fraction of

signal obtained from the methylated beads over the sum

of methylated and unmethylated bead signals. We consid-

ered different approaches to normalizing values across

replicates, as well as using the log of the ratio of methy-

lated to unmethylated signal instead of b, and found the

results robust to normalization procedure, measure of

methylation, and across technical replicates (see Addi-

tional file 1). The methylation data are publicly available

[50] and have been submitted to the NCBI Gene Expres-

sion Omnibus [51] under accession no. [GSE26133].

We mapped the 27,578 Illumina probes to the human

genome sequence (hg18) using BLAT [52] and MAQ [53].

We selected 26,690 probes that unambiguously mapped to

single locations in the human genome at a sequence iden-

tity of 100%, discarding probes that mapped to multiple

locations with up to two mismatches. We excluded a

further 4,400 probes that contained sequence variants,

including 3,960 probes with SNPs (from the 1,000 gen-

omes project [54], July 2009 release, YRI population) and

440 probes which overlapped copy number variants [55].

This resulted in a final set of 22,290 probes (21,289 auto-

somal probes) that were used in all further analyses. The

22,290 probes were nearest to the TSSs of 13,236 Ensembl

genes, of which 12,901 genes had at least one methylation

CpG-site within 2 kb of the TSS.

Bisulfite sequencing was performed in the C21orf56

region for eight individuals. DNA was bisulfite-con-

verted using the EZ DNA Methylation-Gold Kit (Zymo

Research). PCR amplification was performed using pri-

mers designed around CpG-site cg07747299 from the

HumanMethylation27 array and the nearest CpG island

in the region (using Methyl Primer Express from

Applied Biosystems) for a total of 411 bp amplified in

the 5’ UTR of the C21orf56 gene. PCR products were

sequenced and cytosine peak heights compared to over-

all peak height were called using 4Peaks Software.

Gene expression data

RNA-sequencing data were obtained for LCLs from 69

individuals in our study from [24]. The methylation and

RNA-sequencing data were obtained from the same cul-

tures of the LCLs. RNA-sequencing gene expression

values are presented as the number of GC-corrected reads

mapping to a gene in an individual, divided by the length

of the gene. In the methylation to gene expression com-

parisons we split genes into quantiles based on the mean

gene expression per gene. For the eQTL analyses, RNA-

sequencing data were corrected and normalized exactly as

in [24]. Of the 22,683 genes in the original study, 10,167

autosomal genes had both gene expression counts and

methylation CpG-sites within 2 kb of the TSS.

Genotype data

HapMap release 27 genotype data were obtained for

3.8 million autosomal SNPs in HapMap (combined

Phase 1/2 and 3). Missing genotypes were imputed by

BIMBAM [56] using the posterior mean genotype. Non-

polymorphic SNPs were excluded, reducing the set to

3,035,566 autosomal SNPs for association analyses.

Statistical analysis

Spearman rank correlations were used to assess co-

methylation between probes and to compare methyla-

tion and gene expression. We used 10,000 permutations

of the gene expression to methylation assignments to

assess the enrichment of negatively and positively corre-

lated genes in the 25% and 5% tails within genes. Wil-

coxon rank-sum tests were used to compare probe

means and variances for subsets of probes.

Association analyses

Genome-wide association was performed using the

methylation values at each CpG-site as phenotypes and

three million autosomal SNP genotypes. We used least

squares linear regression with a single-locus additive

effects model, where we estimated the effect of the

minor SNP allele on the increase in methylation levels.

Prior to the association analyses, we normalized the

methylation values at each CpG-site to N(0, 1) and

applied a correction using principal component analysis

regressing the first three principal components to

account for unmeasured confounders following similar

approaches to reduce expression heterogeneity in gene

expression experiments [24,42,43] (see Additional file 1).

Sex-specific analyses were performed using sex as a cov-

ariate and assessing the significance of the sex by addi-

tive-QTL interaction term.

We assessed the enrichment of association at SNPs

and probes that were previously reported to be asso-

ciated with methylation [7,8,15-18] and at SNPs within

200 kb of genes known to affect DNA methylation

(Table S3 in Additional file 1). We also compared

genetic variation to normalized variation in the principal

components loadings for the autosomal methylation

data (see Additional file 1). Results from the 180 cis

meQTLs are available online [50].

FDR calculation

We performed genome-wide permutations to assess the

significance of the genome-wide association results in
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the least-square linear regressions. We permuted the

methylation values for the 21,289 autosomal probes

(phenotypes), performed genome-wide association on

the 21,289 permuted and normalized phenotypes, and

repeated this procedure for 10 (cis-analyses) or 1 (trans-

analyses) replicates selecting the best signal per probe

per replicate. Results are presented at an FDR of 10%,

meaning that an estimated 10% of the meQTLs are

false positives. Results for additional FDR thresholds are

shown in Additional file 1. FDR was calculated as the

fraction of significant hits in the permuted versus the

observed data at a given P-value threshold. The associa-

tion analyses and FDR calculations were performed for

all autosomal principal components and CpG-sites in

the methylation data, and for all autosomal genes in the

RNA-sequencing data.

Hierarchical model

We fitted a Bayesian hierarchical model [22] to test

whether meQTLs were over-represented in transcription

factor binding sites, histone-modifications, and with

respect to distance to the probe. We extended the

model to fit the methylation data, where the reference

point was the location of the methylation probe. Each

annotation category that we examined was included in

the model while accounting for distance effects.

Genome annotations

Genome annotation data were obtained from UCSC

(hg18). Histone modification data were obtained from

ChIP-seq reads from the ENCODE project (Bernstein

lab) for GM12878 for seven histone marks. Histone

modification categories were based on estimated peaks

in the read-depth distribution (see Additional file 1).

Transcription factor binding site locations were esti-

mated using the algorithm CENTIPEDE [40,57]. For the

results presented here, CENTIPEDE started by identifying

all matches in the genome to a large number of transcrip-

tion factor binding motifs obtained from the TRANSFAC

and JASPAR databases. It then estimated which potential

binding sites are actually occupied by transcription factors

in LCLs, by incorporating input data from sequence con-

servation, location with respect to nearby genes, and cell-

specific experimental data, including DNaseI data. We

used 1,136,620 non-overlapping sites from 751 transcrip-

tion factor motif matches that overlapped 1,913 CpG-sites.

Additional material

Additional file 1: Supplementary material. Contains Supplementary

Methods and Results, Supplementary Figures 1-11, and Supplementary

Tables 1-4.
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