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Abstract

DNAmethylation in plants is traditionally partitioned into CG, CHG and CHH contexts (with

H any nucleotide but G). By investigating DNAmethylation patterns in trinucleotide contexts

in four angiosperm species, we show that such a representation hides spatial and functional

partitioning of different methylation pathways and is incomplete. CGmethylation (mCG) is

largely context-independent whereas, at CHGmotifs, there is under-representation of

mCCG in pericentric regions of A. thaliana and tomato and throughout the chromosomes of

maize and rice. In A. thaliana the biased representation of mCCG in heterochromatin is

related to specificities of H3K9 methyltransferase SUVH family members. At CHHmotifs

there is an over-representation of different variant forms of mCHH that, similarly to mCCG

hypomethylation, is partitioned into the pericentric regions of the two dicots but dispersed in

the monocot chromosomes. The over-represented mCHHmotifs in A. thaliana associate

with specific types of transposon including both class I and II elements. At mCHH the con-

textual bias is due to the involvement of various chromomethyltransferases whereas the

context-independent CHHmethylation in A. thaliana and tomato is mediated by the RNA-

directed DNAmethylation process that is most active in the gene-rich euchromatin. This

analysis therefore reveals that the sequence context of the methylome of plant genomes is

informative about the mechanisms associated with maintenance of methylation and the

overlying chromatin structure.

Author Summary

Dense cytosine DNAmethylation (mC) in eukaryotes is associated with closed chromatin

and gene silencing. In plants it is well known that the sequence context of the mC (either

mCG, mCHG or mCHH) provides a clue as to which of several mechanisms is involved

but now, based on detailed analyses of the DNAmethylome in wild type and mutants of

four plant species, we reveal that there is additional information in the mC sequence con-

text. Low mCCG and over-representation of mCAA and mCTA or mCAT in A. thaliana

and tomato differentiates regions of the chromosomes near the centromere where methyl-

ation is dominated by chromomethyltransferases from the chromosome arms in which

mCHH is context-independent and predominantly RNA-directed. Rice and maize have
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similar sequence context-dependent DNAmethylation but the corresponding chromo-

some domains are not spatially separate as in the dicots. The discovery of the subcompo-

nents of plant methylomes based on sequence context will allow greater resolution in past

and future analyses of plant methylomes.

Introduction

Methylation of cytosine residues plays important roles in gene regulation and transposon con-

trol in nuclear genomes of plants and animals. In both plant and animal genomes the methyla-

tion is highest on symmetric CG dinucleotides but also exists in CH contexts in which H is any

base other than G [1–3]. This non-CG methylation is best characterised in plants where it is

normally classified as CHG and CHH contexts [1, 4]. Corresponding to these patterns of DNA

methylation in Arabidopsis thaliana the maintenance DNAmethyltransferases MET1 and

Chromomethyltransferase 3 (CMT3) are responsible for the symmetric CG and CHG contexts,

respectively [4]. The CMT2 methyltransferase and the small RNA-guided Domains Rear-

ranged Methylase (DRM)1/2 act at the non-symmetric CHH cytosines [5, 6].

There are, however, at least four lines of evidence for additional complexity in the nuclear

genome methylome beyond the CG, CHG and CHH components. First, the original whole-

genome methylation profiles at base resolution in A. thaliana highlighted the possible influ-

ence of the local sequence context beyond CG, CHG or CHH on the extent of DNAmethyla-

tion [7, 8]. Second, in Physcomitrella patens and A. thaliana, methylation of the CCG

trinucleotide context depends on both MET1 and CMT3 orthologs whereas CAG and CTG

methylation only requires CMT3 [9]. Third there is an effect of chromatin so that heterochro-

matic CHHmethylation is dependent on CMT2 whereas euchromatic motifs are methylated

by small RNA-guided DRM1/2 [5, 10, 11]. The fourth evidence is from humans in which

mCH is enriched for various nucleotide motifs depending on the tissue type [3].

To explore these potential methylome complexities we undertook a comprehensive reanaly-

sis of methylation in trinucleotide contexts in A. thaliana, maize (Zea mays) and rice (Oryza

sativa). We also analysed the genome-wide methylation in RdDMmutants of tomato (Sola-

num lycopersicum) that we generated by gene editing. We reveal that, at CHGmotifs, the

methylome is depleted for CCG relative to CAG or CTG throughout the chromosomes of

maize and rice and in the pericentric heterochromatin of A. thaliana and S. lycopersicum

where these marks are densest. In the CHHmethylome there are also differences between the

arms and pericentromere. The euchromatin component is maintained predominantly by the

RNA-directed DNAmethylation (RdDM) pathway and it is not affected by variations in the

sequence motifs adjacent to the C. In the heterochromatin, in contrast, the CHHmethylation

is densest at CAA and CTA in A. thaliana and maize, at CAA and CAT in tomato, and at CTA

in rice. This differential CHH subcontext methylation is caused by chromomethyltransferases

including CMT2 in A. thaliana and ZMET2 and ZMET5 in maize. We also provide evidence

that different members of the SUVHH3K9 methyltransferase family impact the differential

methylation of CCG compared to CAG and CTG. Based on these findings we propose that

analyses of plant DNAmethylomes are more informative if they account for subcategories of

the mCHG and mCHHmotifs. CCG should be considered separately of other CHG contexts

and CHH should be subdivided into CAA/CTA and different subcontexts depending on the

species.
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Results

The effect of sequence context on chromosome-wide DNAmethylation

The DNAmethylation levels in A. thaliana, tomato, maize and rice (Fig 1 and S1, S2, S3 and

S4 Figs) varied greatly between species and chromosomal regions in CG, CHG and CHH con-

texts, as previously documented [7, 8, 10, 12]. In A. thaliana, there is a relatively small hetero-

chromatic region around the centromere with highly methylated CG. In tomato the

chromosomes have short gene-rich arms with 60% mCG and large gene-poor pericentric het-

erochromatin where CG methylation reaches 85%. Maize chromosomes do not have the same

spatial partitioning as their longer and transposon-rich chromosomes appeared uniformly het-

erochromatic at this scale. Rice is intermediate with a pericentromeric hypermethylated CG

region that was more localised than in maize but less so than in A. thaliana.

The nucleotide 3’ of CG motifs correlated with small differences in the level of CG methyla-

tion in some species (Fig 1). In tomato and A. thaliana, CGT methylation was lower than for

the other subcontexts and in rice CGA and CGT were generally more methylated than CGG

and CGC. In maize, CG methylation was mostly independent of the subcontext. These differ-

ences in CG subcontexts were most obvious over genes and transposons (S5 Fig). In A. thali-

ana, CGA methylation was lower than CGC and CGG only in the body of transposons.

However in all cases the variations in CG subcontext methylation were much smaller than the

context effects described below at CHG and CHH.

Fig 1. DNAmethylation in trinucleotide contexts on chromosome 1 ofA. thaliana (Col-0) [13], tomato (S. lycopersicum cv. M82), maize (Z.
maysB73) [14], and rice (O. sativa indica) [15] leaves. All chromosomes of these plant species are shown in S1–S4 Figs.

doi:10.1371/journal.pgen.1006526.g001
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As with CGmethylation the levels of CHGmethylation varied between the heterochroma-

tin and euchromatin (Fig 1) but, unlike CG methylation, there was a large effect of sequence

context. In all four plant species CCGmethylation was 20-50% lower than CAG/CTG, at least

in heterochromatin. In A. thaliana and tomato the subcontexts were indistinguishable in the

chromosome arms (euchromatin), whereas the CCGmethylation remained lower throughout

the chromosome in maize and rice.

The CHH context encompasses nine trinucleotide subcontexts. In all species studied here

there were major differences between these subcontexts but to a varying extent (Fig 1). A. thali-

ana CHHmethylation was low in the arms (2%) without marked differences between subcon-

texts (Fig 1 and S1 Fig). In the pericentric region, however, methylation of CAA and CTA

subcontexts attained 35–40%, whereas CCC and CCTmethylation remained below 8% (Fig 1

and S1 Fig). These differences could not be attributed to variations in bisulfite conversion rate

because the unmethylated chloroplast showed no such effects (S1 Table). Tomato CHHmeth-

ylation also differed in the euchromatin and heterochromatin: all sequence contexts had inter-

mediate methylation levels in the euchromatin that were higher (8%) than in A. thaliana. In

the heterochromatin they were highest (14%) at CAA and CAT and lowest (1–2%) at CCA and

CCC (Fig 1 and S2 Fig). In maize the CAA and CTA contexts were the most highly methylated

(5–6% versus 2% for other contexts, Fig 1 and S3 Fig and there was no clear CHH differentia-

tion of the pericentric region and the chromosome arms. In rice the methylation at the CTA

subcontext (but not CAA) was generally highest (5–6%, Fig 1 and S4 Fig). Non-CG methyla-

tion in humans is also influenced by context in a tissue-specific manner, as previously

described (S6 Fig, [3]). Contrary to plants, however, there are no chromomethyltransferases in

human and CHGmethylation is not higher than CHHmethylation [4].

To rule out mapping artifacts as the cause of the differential CHG and CHH subcontext

methylation we verified that there was no anomaly in sequence coverage along the A. thaliana

chromosomes and that the profiles were similar if perfect alignment of the sequence data with

the genome was required (S7 Fig). We could also rule out that enrichment of CAA and CTA

motifs in methylated heterochromatic regions (e.g. transposable elements) could have influ-

enced the profiles (S8 Fig). Finally we eliminated the possibility that specific demethylation of

certain CHG and CHH contexts could account for the sequence context effects, based on the

similar distribution of context methylation in the A. thaliana wild type and the triple DNA

demethylase mutant rdd (ros1/dml2/dml3) (S9 Fig). Our conclusion, therefore, is that the dif-

ferential CHG and CHH subcontext methylation is affected by properties of the DNAmethyla-

tion machinery.

SUVH5/6 rather than SUVH4 regulate CCGmethylation in A. thaliana

As determined by Yaari et al. [9], themet1mutation in A. thaliana caused the specific loss of

CCGmethylation, across the chromosome (Fig 2A). This previous analysis did not show, how-

ever, that CCGmethylation is lower than CAG/CTGmethylation, or that this subcontext effect

is more pronounced in the heterochromatin.

The lower CCGmethylation was not due to fewer sites being methylated, but instead to the

methylated sites having lower levels of methylation (Fig 2B). Efficient maintenance of CHG

methylation would normally result in any particular site being consistently either methylated

or unmethylated. In agreement with this idea the CAG and CTG sites indeed exhibited a

bimodal distribution of methylation at individual sites in both the pericentric heterochromatin

and euchromatin of the Arabidopsis chromosomes (Fig 2B). CCGmethylation, however, had a

different pattern with most sites presenting low to intermediate levels of mC (Fig 2B). This

suggested that CCGmethylation is qualitatively different from CAG/CTG methylation.
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Fig 2. DNAmethylation in trinucleotide contexts inA. thalianamutants. (A) CHGmethylation along chromosome 1.
(B) Distribution of per-site methylation levels in CHG subcontexts in the pericentric heterochromatin (13–16Mb) and arms
(0–10 and 20–30 Mb) of chromosome 1. (C) CHHmethylation along chromosome 1. (D) Average CHHmethylation along
transposable elements. (E) Average methylation over two transposon families: LINE/L1 and RathE1. Other transposon
families are shown in S12 Fig. TSS, transcriptional start site; TTS, transcription termination site.

doi:10.1371/journal.pgen.1006526.g002
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The chromomethyltransferases did not influence this subcontext-specific pattern. In the

cmt3mutant the pericentric region lost 80–90% of its methylation in all three CHG subcon-

texts whereas the cmt2mutation caused a global 25% decrease in CHGmethylation in all sub-

contexts (Fig 2A and S10 Fig). A cmt2/3 double mutant (Fig 2A) had an even more drastic loss

of CHGmethylation than cmt3 but, consistent with the single mutants, it was not a subcon-

text-specific effect.

We reasoned that the lower CCGmethylation could instead be due to a differential recruit-

ment of CMT3 at CCG/CGG versus CAG/CTG duplexes. In that scenario we predicted that

SUVH4, SUVH5 and SUVH6 may be involved because they influence H3K9 dimethylation in

a positive feedback loop with CHG and CHHmethylation [4, 10, 13, 16–18].

Consistent with that idea the suvh4mutation disproportionately affected CAG/CTG rather

than CCGmethylation in the pericentric heterochromatin (Fig 2A and S10 Fig), while all sub-

contexts remained at near-wild-type levels in the suvh5 and suvh6mutants. Based on this find-

ing we propose that SUVH5 and SUVH6, but not SUVH4, are redundantly able to bind

mCGG after replication and thus maintain H3K9 dimethylation of nucleosomes in proximity

with CGG/CCG sites leading to recruitment of CMT3 and CCGmethylation. SUVH4, in con-

trast, would recruit CMT3 and thereby mediate mC maintenance at CAG/CTG sites. This

hypothesis is supported by the distribution of methylation at individual cytosines in the suvh4

mutant, where CAG and CTGmethylation lost the bimodal profile and resembled CCGmeth-

ylation (Fig 2B). To explain that the suvh4mutation also impacted CCGmethylation (but to a

lesser extent, Fig 2A and 2B and S10 Fig), we propose that at nucleosomes in proximity with

both CAG/CTG and CCG sites, H3K9 dimethylation via SUVH4 binding of CAG/CTG would

enhance CMT3 recruitment to the nearby CCG sites.

CMT2 and RdDM at CHH contexts in A. thaliana and tomato

The differential methylation of CHH subcontexts was most pronounced in the pericentric

regions in A. thaliana, and was due to both higher methylation levels at individual CAA/CTA

sites and an increased proportion of sites being targeted for methylation, relative to the other

contexts (S11 Fig). We hypothesised that these sites would be affected by the CMT2 pathway,

specific to heterochromatin [5, 10], rather than RdDM that is euchromatic [6]. To test this

model we analysed published data for A. thaliana and maize mutants [13, 14] and new data

from tomato RdDMmutants that we generated by gene-editing. Mutation of CMT2, leaving

only RdDM to methylate CHH, should eliminate the different context effects whereas they

would remain in RdDMmutants.

The A. thaliana data support the hypothesis because the cmt2mutant had reduced but simi-

lar methylation of all CHH subcontexts in the pericentromere and over transposons (Fig 2C

and 2D), whereas mutation in the major subunit of Pol V (nrpe1) in the RdDM pathway left

the differential CHH context methylation intact, with elevated CAA and CTAmethylation

(Fig 2C and 2D and S10 Fig). Closer inspection revealed that the context-independent RdDM

affected CHHmethylation on the edges of transposons (Fig 2D) where small RNAs accumu-

late [5]. Furthermore the methylation profiles of two transposon families [19] demonstrated

that LINE non-LTR retrotransposons on average exhibit a CMT2-dependent, RdDM-indepen-

dent methylation profile with elevated CAA and CTAmethylation, whereas RathE1 retrotran-

sposons are methylated in an unbiased RdDM-dependent, CMT2-independent fashion (Fig

2E), extending previous results [5]. Whether transposon methylation was CMT2-dependent,

RdDM-dependent, or a mixture of both did not depend on the class (I or II) of the transposon

family (S12 Fig): it is more likely to be influenced by the distribution of these elements in het-

ero- and eu-chromatic regions.
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To evaluate the contribution of RdDM to the CHHmethylation profile in tomato we gener-

ated mutants of the major subunits of Pol IV and Pol V by CRISPR-Cas gene editing. SlNRPD1

and SlNRPE1 are single-copy genes and orthologs of A. thaliana AtNRPD1 and AtNRPE1,

respectively encoding the major subunits of Pol IV and Pol V. We targeted these genes with

pairs of sgRNAs expressed with Cas9 in stable transformants and, among the regenerated

plants, several carried a mutation on at least one allele. There were however differences

between target genes: while 8 out of 12 plants transformed with constructs targeting SlNRPD1

carried putative null mutations on both alleles, only 2 out of 11 SlNRPE1-targeted plants had

both alleles edited. One of these plants died rapidly after transfer to soil, while the other had

epinasty, purple pigmentation of old leaves, abnormal flowers, and rare and small fruit despite

bearing a likely hypomorphic allele (Fig 3A and 3B). These observations suggested that null

mutations of SlNRPE1 are lethal. All the slnrpd1mutants exhibited the same abnormal leaves,

flowers and sterility (Fig 3B). The exact correspondence between phenotype and genotype

argued against any significant effect from off-target mutations and we selected two slnrpd1

null mutants and the viable slnrpe1 hypomorph for further characterization.

Consistent with the functions of their A. thaliana orthologs, mutations of SlNRPD1 led to a

dramatic reduction in 24-nt small RNAs (Fig 4A), whereas the sRNA population profile of

slnrpe1 was similar to wild-type. Correspondingly there was down-regulation of 72% of the

23–24-nt loci with sufficient counts for differential analysis in slnrpd1 and 13% in slnrpe1 (Fig

4B). Upregulation was a minor component in both mutant datasets accounting for 0.07% of

loci in slnrpd1 and 0.35% in slnrpe1. These tomato data confirm that, as in A. thaliana [20, 21],

Pol IV is required for the biogenesis of most 23–24-nt siRNAs and Pol V only at a small subset

of these loci.

The genome-wide DNAmethylation pattern in tomato indicated that, as in A. thaliana,

there was a clear partition of the RdDMmachinery between chromosome arms and pericentric

heterochromatin. The slnrpd1 and slnrpe1mutants had a dramatic loss in all mCHH subcon-

texts in the chromosome arms (where overall mCHH was down from 11% to 3%) but methyla-

tion remained at near wild type levels in the pericentric heterochromatin (Fig 5). These

mutants also showed a mild decrease in CHGmethylation in the arms (S13 Fig). The high

level of residual CHHmethylation in the pericentromere of these mutants indicates that

tomato, like A. thaliana, has a CMT2-like pathway but that, rather than CAA/CTA, the pre-

ferred target sites are CAA and CAT. The other subcontext preferences for the putative

CMT2-like methyltransferases in tomato are more continuous than those in A. thaliana and

maize, with the presence of another C being disfavored.

CMT2-like function of maize ZMET2 and ZMET5

Maize does not have an AtCMT2 ortholog [5, 14, 22, 23] but there was preferential CHH

methylation of CAA and CTA, as in A. thaliana. However the chromomethyltransferases

encoded by Zmet2 and Zmet5methylate cytosines in the CHH context as well as CHG [14], so

we hypothesised that they mediate the differential subcontext methylation in these contexts.

Consistent with this hypothesis both of the corresponding mutants had reduced mCHH along

chromosome 1 that was most marked at CAA and CTA, in addition to lower CHGmethyla-

tion than wild type (Fig 6A and S14 Fig). The zmet2mutation had a larger effect than zmet5 at

both CHG and CHH (Fig 6A and S14 Fig) and a particularly strong reduction at CCG and

CTA. As in A. thaliana [13], there was some interdependence of CMT-dependent CHHmeth-

ylation and RdDM: CAA and CTAmethylation was reduced in similar ratios to other CHH

contexts in the zmet7 (homolog to AtDRM2) andmop1 (ortholog to AtRDR2) RdDMmutants,

and conversely the other CHH subcontexts (RdDM targets) had reduced methylation in

DNAMethylation Signatures of the Plant Chromomethyltransferases
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Fig 3. Genotype (A) and phenotype (B) of tomato slnrpd1 and slnrpe1mutants used in this study. The
sequences of the sgRNAs (sg1 and sg2) guiding CRISPR-mediated gene editing are indicated in red. Protein
domains predicted by HMMER are depicted: domains 1–5 correspond to RNA polymerase Rpb1 domains
1–5; DUF, domain of unknown function.

doi:10.1371/journal.pgen.1006526.g003

DNAMethylation Signatures of the Plant Chromomethyltransferases

PLOSGenetics | DOI:10.1371/journal.pgen.1006526 December 20, 2016 8 / 17



zmet2/5mutants (Fig 6A and S14 Fig). This interdependence was similarly apparent at the

gene-flanking CHH islands characteristic of maize [11], previously thought to be RdDM-

dependent but also exhibiting a strong decrease in methylation in the zmet2 and zmet5

mutants (Fig 6B). The current maize transposon annotation is incomplete and does not allow

a family-specific analysis of methylation patterns.

Discussion

The conventional classification of DNA methylation in plant genomes in terms of CG, CHG

and CHH sequence contexts reflects the action of various DNAmethyltransferases associated

with establishment and maintenance of epigenetic marks [4]. From this present analysis,

Fig 4. Conserved functions of tomato SlNRPD1 and SlNRPE1 in 24-nt sRNA biogenesis. (A) Size profile of small RNA populations in wt, slnrpd1
and slnrpe1 (two wt and slnrpd1 replicates, one slnrpe1 sample). (B) MA-plot of 23–24-nt and 20–22-nt sRNA loci in wt versus slnrpd1 and slnrpe1.
Loci whose sRNA accumulation differed significantly (adjusted p-value < 0.05) between the wild-type and mutant line are plotted in red.

doi:10.1371/journal.pgen.1006526.g004

Fig 5. Decreased CHHmethylation in the chromosome arms of tomato RdDMmutants.Chromosome 1 is shown.

doi:10.1371/journal.pgen.1006526.g005
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however, we reveal that sequence subcontext in the DNAmethylome is additionally informa-

tive about the partition of euchromatin and heterochromatin and the involvement of the DNA

methyltransferases and H3K9 methyltransferases in these chromosomal domains. The parti-

tion of chromatin into pericentric (and possibly other types of) heterochromatin and euchro-

matic domains was most clearly evident in the dicot species A. thaliana and tomato (Fig 1). It

is well known that the heterochromatin is the more methylated domain but we now show that

at CHGmotifs it has a lower ratio of mCCG/(mCAG or mCTG) than in the euchromatin (Figs

1 and 2) and that at CHHmotifs there is a higher ratio of (mCAA-mCTA)/(other mCHH) (A.

thaliana) or (mCAA-mCAT)/(other mCHH) (tomato) (Figs 1, 2 and 3).

Methylation at CCG in A. thaliana requires both MET1 and CMT3 (Fig 2) as in Physcomi-

trella patens [9], whereas other CHG contexts only require CMT3. In maize it is likely that

ZMET2/5 and the MET1 orthologs are required for CCGmethylation while CAG and CTG

would require ZMET2/5 only. Yaari et al. proposed an explanatory model where CMT3 is

unable to methylate the CGGmotif (solely a substrate of MET1) on the strand opposite to

CCG, and requires hemimethylation (mCGG) to methylate CCG [9]. However this hypothesis

contradicts the molecular data on CMT3, which demonstrated that CMT3 efficiently methyl-

ates unmethylated substrates [24]. As an alternative we propose that MET1-mediated mCGG

and CmCG recruits SUVH5/6, but not SUVH4, which would catalyse dimethylation of H3K9

and subsequent recruitment of CMT3 to methylate the first cytosine of CCG (S15 Fig). This

model implies that the interaction between H3K9me2 and CHGmethylation is very local, i.e.

CHGmethylation is controlled at the single-nucleosome level (or by the two adjacent nucleo-

somes only), which is consistent with the 167-bp periodicity of CHGmethylation in the Arabi-

dopsis genome [7].

Fig 6. Maize DNAmethylation in CMT and RdDMmutants. (A) CHG and CHH subcontext methylation along chromosome 1. (B) Average CHH
subcontext methylation over genes. CHH islands [11] are clearly visible upstream of the transcriptional start site (TSS) and downstream of the
transcription termination site (TTS), and depend both on RdDM and CMTmethylation.

doi:10.1371/journal.pgen.1006526.g006

DNAMethylation Signatures of the Plant Chromomethyltransferases

PLOSGenetics | DOI:10.1371/journal.pgen.1006526 December 20, 2016 10 / 17



A lower efficiency of the SUVH5/6-CMT3 feedback loop relative to the SUVH4-CMT3

loop would thus account for the lower methylation of CCG compared to CAG/CTG. Although

trinucleotide contexts have not been taken into account, existing data on SUVH4/5/6 are con-

sistent with our hypothesis: SUVH4 binds mCHG and mCHHmuch more strongly than

mCG [25, 26], SUVH5 binds mCG/mCHG/mCHH with similar affinities [27], and SUVH6

prefers mCHG and mCHH to mCG but has not been tested on mCGG [25]. These differences

in binding affinities may contribute to the locus-specificity that SUVH4, SUVH5 and SUVH6

exhibit [18]. Notably, the role of SUVH5/6 to the exclusion of SUVH4 in the regulation of A.

thaliana rDNA loci [28] may be due to the high density of CCG/CGG duplexes in the 5’ exter-

nal transcribed sequence (5’ ETS) of the 45S rDNA repeat.

The CHHmethylation biases are influenced by various chromomethyltransferases. In A.

thaliana (Fig 2) CMT2 preferentially methylates CAA and CTA. In tomato, there are three

members of the CMT family [29, 30] but their activities have yet to be defined. Based on multi-

ple independent CMT losses in eudicots and monocots, a recent analysis proposes that the dif-

ferent CMT clades (CMT�, encompassing CMT1 and CMT3, and CMT2) may have

overlapping functions [31]. In agreement with this, in maize with no CMT2 ortholog, it is

likely that ZMET2 and ZMET5 from the CMT� clade share roles that are separated in the A.

thaliana CMT2 and CMT3. A similar situation may apply in rice in which there are three as

yet uncharacterised CMT genes [32].

The subcontext differences in CHHmethylation may be due to intrinsic affinities of the

CMT proteins, to the affinities of factors that mediate CMT recruitment as was the case for

CMT3 and SUVH4/5/6, or to a combination of both mechanisms. It is likely that at least cer-

tain members of the SUVH family of H3K9 methyltransferases have an affinity for methylated

CTA/CAA motifs in A. thaliana, which would establish a positive feedback loop with

CMT2-dependent DNAmethylation similar to the well established feedback loop between

H3K9 methylation by SUVH4/KYP and DNAmethylation in CHG contexts by CMT3 [24].

Furthermore, differential subcontext methylation may be informative to methylation readers:

recognition of heterochromatic, CMT2-controlled mCAA/mCTA is likely to trigger different

responses than binding to RdDM-controlled mCTT sites in a more open chromatin environ-

ment. It is possible that the CMTs evolved these affinities in part to control CG sites that

would mutate via deamination of methylcytosine: mCG deamination would create a CAN site

on the opposite strand, while deamination of mCAG or mCTG would give rise to CTA and

CAA sites. This might be a way of maintaining methylation-dependent silencing of loci despite

their tendency to lose cytosines.

Contrasting with the motif biases and heterochromatic substrates of chromomethyltrans-

ferases, RdDM is mostly active in chromosome arms and does not have obvious sequence con-

text bias. This sequence-independence likely reflects the fact that the DRM2 DNA

methyltransferase is guided by RNA as opposed to the protein-DNA interactions of the main-

tenance DNAmethyltransferases.

It is striking that growth and development of tomato is greatly affected by perturbations

of DNA methylation, in this case the RdDM pathway, as in rice and maize [14, 33]. By con-

trast, in A. thaliana, various methylation mutants including nrpd1 and nrpe1 are fully viable

and exhibit near normal development [34, 35]. It is likely that differential effects of RdDM

mutations between species are connected to transposons and their epigenetic influence on

the expression of adjacent genes. RdDM would have a relatively small effect on genes adja-

cent to elements like LINE/L1 (Fig 2E) at which methylation persists in a CMT2-dependent

manner whereas, at elements like RathE1 that are subject to RdDM, the effect would be

much greater. Until now it was necessary to use mutants to identify genes that are likely to be

affected by RdDM but now, in the light of our analysis, it will be possible to screen
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methylomes for genes likely to be affected by RdDM, where CHH methylation is indepen-

dent of sequence context.

Our comprehensive analysis of methylation in trinucleotide contexts in A. thaliana, tomato,

maize and rice has revealed additional complexity in the plant methylomes but it could just be

a first step. Although analysis of trinucleotides does capture the largest differences while keep-

ing the number of combinations manageable, extending to surrounding nucleotides may

refine our understanding of methyltransferase and methyl-binding proteins affinities. In prin-

ciple, there could be GC maintenance methylases in addition to the well-characterised

enzymes with CG substrates. There could also be methyltransferases acting at any symmetric

C(H)nG or G(H)nC patterns (in which n� 1) provided that the enzyme, either as a monomer

or multimer, could span the cytosines on the two DNA strands of these motifs. Extended anal-

yses of existing and future methylome datasets will be informative about these possibilities.

Materials and Methods

CRISPR-Cas gene editing in tomato

Mutants were obtained by stably transforming tomato plants expressing Cas9 and pairs of

sgRNAs. Pairs of sgRNAs were designed to be unique to the gene of interest, upstream of a

NGG Protospacer Adjacent Motif (PAM), in an exon towards the 5’ region of the predicted

transcript and separated by 200-300 nt. We used NCBI GNOMON33088049 as SlNRPD1 gene

model, and ITAG Solyc01g096390.2.1 as SlNRPE1 gene model. The sgRNAs were amplified

from plasmid pICH86966::AtU6p::sgRNA-PDS (Addgene plasmid 46966) with the custom

forward primers “sg fw” and the common reverse primer “sg rv” (sequences in S2 Table), and

placed under the AtU6p promoter by cut-ligation with the level 0 construct pICSL01009::

AtU6p and a level 1 destination vector pICH47751 (for the first sgRNA of the pair) or

pICH47761 (for the second) [36]. A second cut ligation of the obtained plasmid with

pICH47732::NOSp::NPTII-OCST, pICH47742::35S::Cas9-NOST, the pICH41780 linker and

the pAGM4723 level2 destination vector. The final plasmid was transformed into Solanum

lycopersicum cv. M82, and a similar plasmid without sgRNAs was transformed as control.

Sterile seeds were germinated on 1/2 strength Murashige-Skoog medium, 1X Nitsch &

Nitsch vitamins, 0.8% agar, 1.5% sucrose, pH 6. Cotyledons from 8-day-old plants were cut in

two and submerged in a solution of Agrobacterium in MS, 3% sucrose at OD600 = 1.5. The

explants were then quickly dried onWhatman paper and placed on a plate without selection

under low light (1X MS, 1X Nitsch & Nitsch vitamins, 0.6% agarose, 3% sucrose, 100 mg.l−1

myo-inositol, 0.5 mg.l−1 2,4-D, 0.1 mg.l−1 kinetin, pH 5.7). After 48 h the explants were trans-

ferred to a selection plate (1X MS, 1X Nitsch & Nitsch vitamins, 0.4% agargel, 2% sucrose, 100

mg.l−1myo-inositol, 2 mg.l−1 zeatin, 100 mg.l−1 kanamycin, 320 mg.l−1 timentin, pH 6), and

this was repeated every two weeks until regenerating shoots started to push the lid. The shoots

were then transferred to jars with selection media supplemented with 250 mg.l−1 cefotaxime.

After five weeks the shoots were transferred to rooting media (1/2 strength MS medium, 1X

Nitsch & Nitsch vitamins, 0.225% gelrite, 0.5% sucrose, 50 mg.l−1 kanamycin, 320 mg.l−1 time-

ntin, pH 6). Regenerants with well-developed roots were then transferred to peat bags and

grown under high humidity until they could be transferred to M3 compost and grown under

normal conditions. Regions targeted by sgRNAs were then amplified from genomic DNA,

cloned and Sanger sequenced.

MethylC-Seq

DNA was extracted from 100 mg of leaf tissue using the Puregene kit (QIAGEN). Bisulfite

library preparation was performed with a custom protocol similar to [37]. 1.2 μg DNA was
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sonicated on a Covaris E220 to a target size of 400 bp and purified on XP beads (Ampure, ratio

1.8X). DNA was end-repaired and A-tailed using T4 DNA polymerase and Klenow Fragment

(NEB) and purified again using XP beads (ratio 1.8X). Methylated Illumina Y-shaped adapters

for paired-end sequencing were ligated using Quick-Stick Ligase (Bioline). 450 ng of purified

(ratio 1.8X), adapter-ligated DNA was bisulfite-converted using the EZ DNAMethylation-

Gold Kit (Zymo Research) according to the manufacturer’s instructions. DNA was barcoded

using 12 cycles of PCR amplification with KAPA HiFi HotStart Uracil+Ready Mix (Kapabio-

systems) with PE1.0 and custom index primers (courtesy of the Sanger Institute). Pooled

libraries were sequenced to a depth of about 5X on a HiSeq 2500 125PE.

Sequences were trimmed and filtered with Trim Galore! (default parameters), then mapped

onto the respective genomes (TAIR10 for A. thaliana, Heinz SL2.50 for tomato, RefGen B73 v3

for maize, Oryza indica ASM465 v1.28 for rice) using Bismark v0.14.5 [38] with option -N 1
(and -X 1500 for paired-end data). Reads were deduplicated with bismark-deduplicate
and methylation calls were extracted using Bismark methylation_extractor (with

option −r2 2 for paired-end reads).

Genome-wide cytosine reports were generated with Bismark coverage2cytosine [38]
and average methylation in trinucleotide context calculated in 500 kb (for A. thaliana) or 1 Mb

bins (non-weighted mC/(mC+C)). Average profiles over genes and transposons were calcu-

lated from the cytosine reports with segmentSeq v2.4.0 [39], using the TAIR10, ITAG2.4, AGP

v3.31, 9311-glean-gene gene annotations, and TAIR10, tomato LTR transposons [40], AGP

v3.31 (repeat regions larger than 1 kb), 9311-repeat-Repbase transposon annotations. Average

plots for the A. thaliana transposon families are based on the annotation by Buisine et al. [19].

sRNA-Seq

sRNAs were cloned from 10 μg total RNA using the Illumina TruSeq Small RNA cloning kit

and libraries were indexed during the PCR step (12 cycles) according to the manufacturer’s

protocol. Gel size-selected, pooled libraries were sequenced on a HiSeq 2000 50SE.

Sequences were trimmed and filtered with Trim Galore! (with the adapter parameter -a
TGGAATTCTCGGGTGCCAAGG)and reads were mapped without mismatches and clustered

on Heinz genome SL2.50 using the ShortStack software v2.1.0 [41]. sRNA counts on the

defined loci were analyzed with DESeq2 v1.8.1 [42]. Normalisation factors from the 20–

22-nt sRNAloci were used to normalise counts on 24-nt loci.

Accession numbers

We used A. thaliana bisulfite data (GSE39901) generated by Stroud et al. [13]; maize bisulfite

data (GSE39232) by Li et al. [14]; rice bisulfite data (GSE38480) by Chodavarapu et al. [15];

human bisulfite data (SRR901864 and SRR921754) from Lister et al. [43]. Bisulfite and small

RNA sequencing data for tomato are available under study accession SRP081115.

Supporting Information

S1 Fig. DNAmethylation in trinucleotide contexts for all A. thaliana (Col-0) chromo-

somes.

(TIF)

S2 Fig. DNAmethylation in trinucleotide contexts for all tomato (M82) chromosomes.

(TIF)

S3 Fig. DNAmethylation in trinucleotide contexts for all maize (B73) chromosomes.

(TIF)
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S4 Fig. DNAmethylation in trinucleotide contexts for all rice (indica) chromosomes.

(TIF)

S5 Fig. Average CG DNAmethylation over genes (A) and transposons (B) in trinucleotide

contexts for the four species under study.

(TIF)

S6 Fig. DNAmethylation in trinucleotide contexts in human (Homo sapiens) brain (middle

frontal gyrus) and ES cells. Chromosome 1 in 1 Mbp bins (libraries from [43]).

(TIF)

S7 Fig. DNAmethylation in trinucleotide contexts for A. thaliana Col-0 after perfect align-

ment of reads (with option --score_minL, 0, 0, no mismatch allowed).

(TIF)

S8 Fig. Trinucleotide motif distribution in A. thaliana. (A) Trinucleotide density along

chromosome 1. (B) Motif densities on chromosomes, genes and transposable elements.

(TIF)

S9 Fig. DNAmethylation in trinucleotide contexts along chromosome 1 for A. thaliana

Col-0 (wt) and the triple demethylase mutant ros1/dml2/dml3 (rdd).

(TIF)

S10 Fig. CHG and CHHmethylation in A. thalianamutants relative to wt. Ratio of mutant

over wt methylation rate along chromosome 1.

(TIF)

S11 Fig. Density of methylation ratio at individual CHH sites. Sites of chromosome 1 in A.

thaliana with sequencing depth of at least 8, in pericentric heterochromatin (13–16 Mb) and

chromosome arms (0–10 Mb and 20–30Mb).

(TIF)

S12 Fig. CHH subcontext methylation average over A. thaliana transposons superfamilies.

Annotation from [19].

(TIF)

S13 Fig. Decreased CHGmethylation in the chromosome arms of tomato RdDMmutants.

Chromosome 1 is shown.

(TIF)

S14 Fig. Maize DNAmethylation in CMT and RdDMmutants. CHG and CHH subcontext

methylation along chromosome 1, relative to wt methylation (B73).

(TIF)

S15 Fig. Model of methylation at CAG/CTG and CCG/CGG sites. (A) Current model of

CAG/CTG methylation. SUVH4/KYP is the main H3K9 histone methyltransferase, and

mCAG/mCTG is efficiently maintained after replication. (B) Proposed model of CCG/CGG

methylation, depending on MET1 and SUVH5/6. The lower efficiency of SUVH5/6 compared

to SUVH4 would account for the lower CCGmethylation level observed in heterochromatin,

compared to CAG/CTG methylation. Because CG methylation is efficiently maintained by

MET1 independently of H3K9me2, loss of mCCG after one replication may be rescued at a

later replication. Additionally, CCG sites in close proximity to SUVH4-bound mCAG/mCTG

may experience better-maintained methylation than isolated CCG sites thanks to increased
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CMT3 recruitment by SUVH4-mediated H3K9me2.

(TIF)

S1 Table. Bisulfite conversion rates as determined from the A. thaliana chloroplast.

(PDF)

S2 Table. Oligonucleotides used in this study.

(PDF)

S1 Dataset. Table of tomato sRNA loci and counts in wild-type and RdDMmutants.

(TXT)
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