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Abstract

Background: DNA epigenetic modifications, such as methylation, are important regulators of tissue differentiation,

contributing to processes of both development and cancer. Profiling the tissue-specific DNA methylome patterns

will provide novel insights into normal and pathogenic mechanisms, as well as help in future epigenetic therapies.

In this study, 17 somatic tissues from four autopsied humans were subjected to functional genome analysis using

the Illumina Infinium HumanMethylation450 BeadChip, covering 486 428 CpG sites.

Results: Only 2% of the CpGs analyzed are hypermethylated in all 17 tissue specimens; these permanently methylated

CpG sites are located predominantly in gene-body regions. In contrast, 15% of the CpGs are hypomethylated in all

specimens and are primarily located in regions proximal to transcription start sites. A vast number of tissue-specific

differentially methylated regions are identified and considered likely mediators of tissue-specific gene regulatory mechanisms

since the hypomethylated regions are closely related to known functions of the corresponding tissue. Finally, a clear inverse

correlation is observed between promoter methylation within CpG islands and gene expression data obtained from publicly

available databases.

Conclusions: This genome-wide methylation profiling study identified tissue-specific differentially methylated regions in 17

human somatic tissues. Many of the genes corresponding to these differentially methylated regions contribute to tissue-

specific functions. Future studies may use these data as a reference to identify markers of perturbed differentiation and

disease-related pathogenic mechanisms.

Background
DNA methylation is the most extensively studied epigenetic

modification of mammalian DNA [1]. DNA methylation of

cytosine residues mainly occurs in CpG sequences and has

been characterized as an important regulatory mechanism

of genome function, having been implicated as a crucial me-

diator of embryonic development, transcription, chromo-

somal stability, imprinting, and X-chromosome inactivation

[2]. The DNA methylation profile itself is not static and sub-

ject to dynamic changes induced by age-related factors [3],

environmental factors [4], nutritional factors, and patho-

genic factors, such as viruses [5,6].

Many previous studies have investigated the DNA methy-

lation profiles of various human tissues and conditions.

These studies have mainly relied on high-throughput DNA

detection methods and sequencing technologies, such as

the HumanMethylation450 BeadChip [7], HumanMethyla-

tion27 BeadChip [8] and GoldenGate Methylation Cancer

Panel I [9-11] arrays (Illumina Inc., San Diego, CA, USA),

or microarrays in combination with methylated DNA en-

richment by immunoprecipitation [12]. Some previous

studies have concentrated on CpG islands in promoter re-

gions and characterized for their role in changes to the

gene’s expression [8,10], but increasingly more studies are

identifying tissue-specific differentially methylated regions

(tDMRs) in the gene body regions [12,13]. Although all the

previous studies have enabled a broader view of the

genome-wide DNA methylation patterns, there still remain

questions to be answered, for example, how the tDMRs are
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being established and what are the functions of gene-body

tDMRs. Determining the human tDMR profile will not only

provide important insights into the normal processes of

tissue-specific differentiation but may identify markers of

pathogenic processes, such as cancer.

In this study, we analyzed the tissue-specific DNA

methylome using a panel of 17 somatic tissues obtained

from four autopsied individuals. The expanded Illumina

Infinium HumanMethylation450 BeadChip was used to

interrogate 486 428 CpG sites in the human genome;

this advanced platform boasts unbiased coverage of gene

and CpG island (CGI) regions reaching up to 99% and

96%, respectively, as well as CpG island shores (2 kb re-

gions upstream and downstream of the CpG islands)

and shelves (2 kb regions upstream and downstream of

the CpG island shores) to reveal a genome-wide methy-

lation profile [14].

Our aim was to describe the general patterns of glo-

bally conserved and tissue-specific DNA methylation

with functional consequences in gene regulation. Using

the high-density microarray allowed nearby CpG sites

with similar patterns to be grouped together so as to

identify broader regions of tDMRs and improve the stat-

istical power of the analysis. Our results reveal tissue-

specific methylation patterns beyond the well-studied

promoter areas, identifying tDMRs in gene body areas

and showing these regions to be more likely related to

tissue-specific functions. Collectively, these data repre-

sent novel insight into the regulatory role of tissue-

specific DNA methylation.

Results and discussion
Methylome profiling across 17 somatic tissues

Tissue-specific DNA methylation patterns were studied

in the following 17 somatic tissues: abdominal and sub-

cutaneous adipose tissue, bone, joint cartilage, yellow

and red bone marrow, coronary and splenic artery, ab-

dominal and thoracic aorta, gastric mucosa, lymph node,

tonsils, bladder, gall bladder, medulla oblongata, and

ischiatic nerve. Samples of each of these postmortem

specimens were obtained from four individuals upon

autopsy, except in the case of one individual (Identifica-

tion No. BM419/4) for whom the yellow bone marrow

and joint cartilage tissues were not available. The causes

of death included: intracerebral hemorrhage (BM419/4; fe-

male, 60 years old), heart attack with acute cardiac insuffi-

ciency (KA522; male, 53 years old), heart attack (KT538;

male, 40 years old), and intracerebral hemorrhage (SJ600-

5; male, 54 years old).

Genomic DNA was extracted from each tissue, treated

with sodium bisulfite, and subjected to analysis via the

Illumina Infinium HumanMethylation450 BeadChip. The

methylation levels of CpGs were described as beta values

(0 to 1) representing the calculated level of methylation

(0% to 100%). We had two technical and two biological

replicates processed by chip technique. The Pearson cor-

relation coefficients (PCCs) were >0.99 for all the repli-

cates, confirming a good level of reproducibility for the

chip process and indicating that the observed differential

methylation between the studied tissues represented true

biological differences.

Several of the observed DNA methylation differences

were selected for verification by conventional Sanger

dideoxy sequencing. More specifically, the detected CpG

methylation levels of 17 genes encompassing 36 CpGs,

including 0% (n = 1) and 100% (n = 2) methylated sites,

and of 14 genes with tDMRs, were confirmed by bisulfite

sequencing. The BeadChip data strongly correlated with

the Sanger sequencing data (mean PCC: 0.93, PCC

range: 0.78 to 0.98; Additional file 1). Methylation levels

of CpGs adjacent to those present on the BeadChip were

also strongly correlated with the Sanger sequencing data

(mean PCC 0.95, PCC range: 0.72 to 1.00). Most of the

CpGs detected were clustered together, but some CpGs

with similar methylation levels and corresponding to a

known gene or regulatory region were located >200 bp

apart (data not shown). Thus, uniform CpG methylation

may involve longer distances for tissue-specific regula-

tory mechanisms.

Comparative analysis of the DNA methylation patterns

between tissues was carried out to determine a general

relatedness profile. The methylation patterns were found

to be well conserved between the 17 various tissues that

were studied (Figure 1). The lowest correlations were

found for red bone marrow versus thoracic and splenic

artery, versus bladder, and versus medulla oblongata and

ischiatic nerve (PCC: 0.93). The highest correlations

were found among functionally similar tissues, such as

the different arteries and aortas, red and yellow bone

marrow, and bone and joint cartilage (PCC: ≥0.99). Hier-

archical clustering of the methylation profiles of the 17

studied tissues showed that most of the similar tissues

(for example, aortas and arteries) co-clustered (Figure 2);

the strong correlations indicated between similar tissues

suggested the presence of tissue-specific methylation

profiles.

Genome-wide DNA methylation patterns

Investigation of the global distribution of CpGs in somatic

tissues according to the methylation status revealed that a

large portion of the detected CpGs are either unmethy-

lated (0%) or fully methylated (100%) (Additional file 2).

Considering the collected data for all 17 tissues indicated

that only 2.2% of all the CpGs (10,707 CpGs representing

4,416 genes) were hypermethylated in all of the samples

(beta values >0.9). These invariably methylated CpGs were

mostly located in gene bodies, in the 3’-untranslated re-

gions (UTRs) (66.8%, 7,150 CpGs; Figure 3) or in non-
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CGIs (77.4%, 8,287 CpGs; Figure 4A) (Fisher’s exact test,

P <2.2 × 10-16). Thus, DNA methylation appears to be more

prominent in the areas where CpG density is low and tran-

scription is not usually initiated.

On the other hand, 14.9% of CpGs (72,444 CpGs

representing 12,604 genes) were hypomethylated in all

of the samples (beta values <0.1). These invariably hypo-

methylated CpGs were mostly located in gene promoter

areas (73.2%, 53,057 CpGs), including the sequence re-

gion from -200 to -1,500 nt upstream of the transcrip-

tion start site (TSS1500), the region from -200 nt

upstream to the TSS itself (TSS200), and the region

from the 5’-UTR through the first exon (Figure 3). In

addition, the hypomethylated CpGs were found in CGI

regions (73.0%, 52,862 CpGs; Figure 4A) (Fisher’s exact

test, P <2.2 × 10-16). These findings are consistent with the

general consensus that gene promoter areas and CGI re-

gions of actively transcribed genes are largely unmethy-

lated so as to be accessible to transcription factors.

Gene ontology (GO) analysis with the Database for

Annotation, Visualization and Integrated Discovery (DA-

VID [15]) revealed that many of the genes showing

hypermethylation of their CGI-promoter regions had

functions related to the reproductive system; in contrast,

many of the genes showing hypomethylation of their

CGI-promoter regions had functions associated with

housekeeping processes, including RNA processing and

cell cycle. When our data of hypomethylated CGI-

promoter regions were compared to the housekeeping

genes identified by expression profiling in a previous

study by Chang et al. [16], we found a 93.0% consensus.

We also found that the DNA methylation pattern of a

single gene varies between gene regions; for example,

compared to the gene body, the TSS1500, TSS200, 5’-

UTR, and first exon showed lower average methylation

(Figure 3). These data agree with those from previous

studies and in line with the notion that promoter areas of

housekeeping genes would be accessible to support active

transcription [17].

Comparison of DNA methylation in CGI and non-island

regions

It is well recognized that DNA methylation patterns can

differ significantly across the different regions of CGIs,

with methylation levels increasing at the boundaries. In

our study, the highest levels of methylation were found
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Figure 1 Correlation of methylation intensities between tissues. The mean methylation levels of each CpG site within different specimens of

the same tissue were compared and the PCC was calculated. The correlation matrix of different tissues is shown; the tissues appear to show a

similar trend, for which the highest correlations occur between functionally similar tissues.
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in the CGI shelves and shores (Figure 4A). These results

are in agreement with those of previous studies [17,18],

in which the majority of CGIs were shown to be

unmethylated. Also, in our study, the CGI methylation

patterns were found to be largely consistent within inter-

genic regions and in genes (Figure 4B and 4C). It is pos-

sible that maintaining an unmethylated state in a CGI

may serve to protect against mutation by spontaneous

deamination of methylated cytosines [19].

Comparison of CGI methylation patterns across differ-

ent parts of individual genes revealed that the promoter

areas (TSS1500, TSS200, and 5’-UTR) and the first exon

were almost exclusively unmethylated; however, variable

CGI methylation levels were found in the gene body and

3’-UTR (Figure 5A). This pattern has been observed by

other studies, as well [12,18]. In contrast, the CpGs

found in non-CGI regions were found to be mostly

methylated, and showed little variation across the differ-

ent parts of the individual genes (Figure 5B). Compara-

tive analysis of the methylation patterns in CGI shores

and shelves in different gene regions revealed that the

CGI and CGI shore regions are generally similar, but the

CpGs in the shelves are nearly fully methylated (data not

shown).

Tissue-specific differentially methylated regions

Next, the regions with distinctive methylation patterns in

certain tissues were analyzed in detail. We applied an algo-

rithm to identify statistically significant differential methy-

lation existing between two sets of samples in three or

more consecutive CpG probes. This new method is based

on fitting ANOVA models in moving windows of different

lengths, encompassing up to 50 probes. The optimal re-

gion boundaries were selected according to the minimum

description length (MDL) principle. As a result, every re-

gion consists of probes that have similar methylation pat-

terns. As HumanMethylation450 BeadChip is focused

more on the genes and promoter areas, this robust ap-

proach finds more likely regions with a higher CpG probe

density.

We used this method to detect tDMRs between one

tissue of interest and all other tissues under study. For

this analysis, the data from some of the tissues used in

this study were combined to correct for the high level of
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Figure 2 Hierarchical clustering of the 17 tissues studied. Hierarchical clustering analysis was performed using the hclust command in R. All

of the samples were merged according to their corresponding tissues, which resulted in a matrix of the mean beta values for all of the CpG sites

detected in the 17 total tissues. The clustering tree was generated using the complete method. The tree shows strong correlation between

similar tissue types.
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functional similarity that existed between them; specific-

ally, abdominal and subcutaneous adipose tissues were

processed together, as were the thoracic and abdominal

aorta, coronary and splenic artery, joint cartilage and

bone, and red and yellow bone marrow.

The numbers of different tDMR CpG blocks were found

to vary greatly between tissues with different functions

(Table 1). The highest number of hypermethylated tDMRs

was found in tonsils, followed by medulla oblongata and

aortas (abdominal and thoracic). The lowest number of

hypermethylated tDMRs was found in lymph nodes. For

hypomethylated tDMRs, large numbers were found in bone

marrow (red and yellow), aortas (abdominal and thoracic),

and ischiatic nerve, while the lowest number was found in

the lymph nodes. Of the total 14,441 tDMRs identified

(Additional file 3), 11,242 (77.8%) mapped to genes. Among

those, 41.7% (4,688) were in gene promoter areas with only

36.5% in CGIs (Fisher’s exact test, P <2.2 × 10-16), and more

than one-half (58.3%, 6,554) in gene body regions with

44.1% in CGIs (Fisher’s exact test, P <2.2 × 10-16). The fact

that over a half of tDMRs were located in gene bodies and

not in promoter areas is intriguing because methylation

within a gene body may indicate the presence of alterna-

tive promoters [20]. Among the intergenic tDMRs, 45.8%

co-localized with CGIs (Fisher’s exact test, P = 0.0003),

intergenic regions might act as regulators, being either en-

hancers or silencers and contributing with these mecha-

nisms into maintenance of tissue-specific gene expression.

These results are in line with those of previous studies,

which have shown that tDMRs exist across a range of CpG

densities, while tDMRs in promoter areas are largely lo-

cated in non-CGI regions [7,11,12,18].

In order to study which regions are the most variable

between tissues, we compared the proportion of vari-

ance explained by the tissues between different gene re-

gions and between CpG islands, shores, and shelves.

Additional file 4A and B show the distributions of the R

squared statistic, respectively. We can see that in gene

body, 3’-UTR and the sites that are not related to genes,

exist larger differences between the tissues. But in the

gene promoter areas the methylation patterns of tissues

are much more similar. This is supported also from the

results above, that large number of tDMRs were found

within gene body regions. Also, in CpG islands different

tissues are more similar than in shores, shelves, and

non-island sites.

To characterize the function of genes related to the

detected tDMRs, we again performed GO analysis using

the DAVID database. We have used a custom back-

ground in the GO enrichment analysis, which contains
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all the genes that were found as tDMRs. This should

take in account the distribution of CpG probes on

microarray. As shown in Table 2, those genes showing

hypomethylation in certain tissues are frequently associ-

ated with a tissue-specific function. For example, the

hypomethylated genes detected in arteries (including

COL18A1, EPAS1, ENPEP, ANGPT2, and APOLD1) are

characterized as mediators of blood vessel development

and morphogenesis, while those detected in tonsils (in-

cluding LAX1, TNFSF14, LCK, and RHOH) are involved

in immune response and leukocyte activation.

In agreement with previous results, none of the genes

showing hypermethylation in specific tissues were associ-

ated with tissue-specific biological processes (Additional

file 5) [8]. Thus, our results, along with those from earlier

studies, strongly support the hypothesis that hypomethyla-

tion, and not hypermethylation of genes, is more likely to

be associated with the tissue-specific functions.

Inter-individual methylation variation

We analyzed the rate of inter-individual variation in

order to understand whether individuals or tissues are

explaining most of the variability between samples. We

compared the proportion of variance of the beta values ex-

plained by the individuals and the proportion of variance ex-

plained by the tissues. Figure 6 shows the distribution of the

R squared statistic obtained for each CpG site. On average,

we can see that individuals explain only 6.4% of the variance

whereas tissues explain 51.2%, showing that although the

variance between individuals exist, it is really insignificant.

The hierarchical clustering (Additional file 6) of all the

samples studied is also showing that the similarity be-

tween different tissues was higher than between individ-

uals, as tissues are mostly clustering together. As the

number of individuals under investigation was relatively

small (n = 4; one woman and three men) and also the

majority of the phenotypic data was lacking, we did not

find relevant to analyse the inter-individual methylation

variation in detail. Furthermore, it is explaining only

subset of variance between samples.

Relation between gene expression and global DNA

methylation

To further investigate the role of DNA methylation in regu-

lation of gene expression, we compared the detected

methylation patterns with publicly available gene expression

data (Gene Expression Omnibus (GEO) and ArrayExpress

databases). Only tissues with gene expression data obtained

using a single platform (Human Genome U133A arrays;

Affymetrix, Santa Clara, CA, USA) were selected to de-

crease the impact of potential confounding factors. As a re-

sult, correlations of gene expression levels were carried out

for eight of the 17 tissues used in the original analysis:

aorta, bladder, bone, bone marrow, coronary artery, lymph

node, medulla oblongata, and tonsils (Additional file 7).

The method by which the global methylation data

were correlated with the gene expression data relied on

averaging beta values across the comprehensive gene

panel. The PCCs were calculated for 10,120 genes across

the eight tissues (Table 3) and revealed a slight bias to-

wards negatively-correlated genes’ expression (5,710 vs.

positively-correlated: 4,410 genes). In addition, nearly

twice as many genes showed a strong inverse correlation

(1,713 genes, PCCs: <-0.5) than those showing a strong

positive correlation (1,090 genes, PCCs: >0.5) (Fisher’s

exact test, P <2.2 × 10-16).

When analyzing the correlation of global methylation data

with different gene regions, the number of negatively-

correlated genes in CGI-promoter areas (56.7%) was found

to be roughly the same as that in gene bodies (52.7%).

Slightly more genes showed a strong inverse correlation

than those showing a strong positive correlation, both for

Table 1 tDMR data summary

Tissue Hypermethylated
blocks

Hypermethylated blocks
with gene annotation

Hypomethylated
blocks

Hypomethylated blocks
with gene annotation

Adipose (subcutaneous, abdominal) 84 65 376 301

Artery (coronary, splenic) 380 280 283 219

Bone, joint cartilage 129 73 168 104

Bone marrow (red, yellow) 175 150 1,300 1,028

Gastric mucosa 74 54 26 22

Lymph node 56 42 5 3

Tonsils 4,983 3,893 1,072 924

Bladder 379 274 752 566

Gall bladder 65 47 93 66

Aorta (thoracic, abdominal) 628 453 1120 888

Medulla oblongata 651 495 349 278

Ischiatic nerve 203 156 1,090 861
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methylation located within the promoter area and the gene

body (11.5% and 10.6% in promoter-CGI; 16.1% and 12.1%

in gene body, respectively) (Fisher’s exact test, P= 0.005).

When DNA methylation and gene expression values

are similar among a set of various tissues, correlation

analysis may be insufficient. To correct for this possibil-

ity in our dataset, the methylation and gene expression

data were plotted onto a single figure so that the integ-

rity of the correlation between CGI-promoter and gene

body areas could be further assessed (Figure 7). In the

CGI-promoter areas, high levels of methylation were

found to be associated with lower gene expression and

low levels of methylation were associated with higher,

and varying, levels of gene expression. However, the

same relationship was not observed for the data related

to gene bodies; the fully methylated and unmethylated

genes showed a similar varying trend in their gene ex-

pression levels.

Our analysis of highly methylated promoters suggested

a possible link between the promoter methylation and

suppressed gene expression. Similar to our findings, pre-

vious studies have reported that genes with unmethy-

lated promoters show variable levels of transcription

activity [12,18]. Our analysis of methylation in gene

Table 2 GO analysis with hypomethylated tDMRs

Tissue GO term Genes (n) P value

Adipose tissue (abdominal, subcutaneous) Lipid homeostasis 5 0.0096

White fat cell differentiation 3 0.0172

Fat cell differentiation 4 0.0532

Artery (coronary, splenic) Blood vessel morphogenesis 12 3.24E-04

Angiogenesis 10 4.25E-04

Blood vessel development 13 4.60E-04

Aorta (thoracic, abdominal) Cardiac muscle tissue development 11 5.91E-04

Muscle organ development 24 8.21E-04

Striated muscle tissue development 16 9.72E-04

Bone, joint cartilage Chondrocyte differentiation 3 0.0067

Cartilage development 4 0.0253

Skeletal system development 7 0.0553

Bone marrow (red, yellow) Cell activation 41 5.07E-07

Leukocyte activation 33 7.98E-06

Immune response 62 1.97E-05

Lymph node -

Tonsils Immune response 59 7.00E-06

Regulation of T cell activation 17 4.38E-05

Defense response 50 7.22E-05

Gastric mucosa Regulation of pH 2 0.0530

Monovalent inorganic cation homeostasis 2 0.0677

Bladder Muscle contraction 14 0.0034

Excretion 7 0.0266

Secretion 17 0.0379

Gall bladder Negative regulation of granulocyte differentiation 2 0.0417

Negative regulation of immune system process 3 0.0496

Regulation of granulocyte differentiation 2 0.0519

Medulla oblongata Homophilic cell adhesion 15 8.78E-06

Cell-cell adhesion 18 5.00E-04

Cell adhesion 25 0.0151

Ischiatic nerve Filopodium assembly 5 0.0023

Regulation of action potential in neuron 10 0.0036

Negative regulation of neurogenesis 7 0.0074
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bodies revealed no clear relationship with mRNA expres-

sion levels, although previous studies have reported either

positive correlation with gene expression [12,21] or bell-

shaped correlation patterns [22]. Many genes harbor several

alternative TSSs, which are located throughout the

gene body and yield different splice isoforms. Methy-

lation of such yet unrecognized sites might confound

a correlation analysis of gene body methylation and

gene expression.

Gene expression and methylation in tDMRs

The correlation analysis of tissue-specific methylation with

gene expression was carried out by averaging all of the

CpG beta values within the tDMRs. Collectively, there were

more negative than positive correlation coefficients (63.2%,

2,288 vs. 36.8%, 1,332; Table 4), as expected. In addition,

strongly negative PCCs prevailed over the strongly positive

PCCs (20.7%, 749 vs. 10.3%, 372, respectively) (Fisher’s

exact test, P <2.2 × 10-16).

Our finding of relatively more negative correlations in

the gene bodies (60.9%, 1,148) was slightly unexpected, be-

cause gene body methylation is not usually related to low

expression. However, our finding of a high number of in-

versely correlated CpG sites in CGI-promoter regions

(78.5%, 489) and finding that genes with highly methylated

promoter areas were not highly expressed suggest that

methylation in the promoter area corresponds to gene ex-

pression changes (Additional file 8).

Conclusions
In this study, we analyzed the genome-wide DNA methyla-

tion profiles of human somatic tissues. Although the num-

ber of analyzed individuals was limited, the analysis was

sufficient to provide DNA methylation distribution patterns

across different genomic regions that were largely in agree-

ment with patterns previously observed by similar studies.

Moreover, our results and their validation by external data-

sets revealed a clear correlation between DNA methylation

in the gene promoter areas and the gene expression. Mean-

while, our analysis of methylation in gene bodies did not re-

veal positive [12,21] or bell-shaped [22] correlation patterns

with mRNA expression levels, as it is suggested before.

The methylome data alone was sufficient for correctly dis-

tinguishing, through hierarchical clustering, between all the

17 tissues studied, collectively demonstrating that tissues are

characterized by distinctive methylation patterns that reflect

their tissue-specific functions. We were also able to show that

the variance explained by tissues is much higher than the

variance explained by individuals. As a result of differentially

methylated tissue-specific regions analysis, we identified a

large number of tDMRs, which were enriched for genes that

are closely related to the functions of particular tissue type.

Moreover, hypomethylation, and not hypermethylation, was

more likely to be associated with the tissue-specific functions.

Our study also provoked the question, of how tDMRs

mechanistically contribute to the tissue-specific functions,

especially for the numerous methylation regions that were

found in gene body areas. In addition, the observation that
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Figure 6 Variance explained by the tissues and individuals. Figure is showing the distribution of the R squared statistic obtained for each CpG site. It

is clearly visible, that variance explained by the individuals is insignificant - on average individuals explain only 6.4% of the variance whereas tissues explain 51.2%.

Lokk et al. Genome Biology 2014, 15:r54 Page 9 of 14

http://genomebiology.com/2014/15/4/r54



the methylation in the gene body areas had also high nega-

tive correlation with gene expression suggested that gene

body tDMRs might be important in establishing the

tissue-specific transcription. Still, it remains unclear, how-

ever, how the gene body tDMRs may function as regula-

tors of gene expression, and this question should be

addressed in the future epigenetic studies.

To our knowledge, this study comprehends methyla-

tion data of tissue types that have not been studied yet.

The data are publicly available to the research commu-

nity, as well as the annotated UCSC tracks.

Materials and methods
Ethics statement

The Research Ethics Committee of the University of

Tartu approved the collection of tissue samples for re-

search (permission no 221/M-18). Written informed

consent was obtained from next-of-kin to postmortem

individuals in order to collect the tissue panel during the

autopsy. The research was carried out according to the

World Medical Association Declaration of Helsinki.

Sample collection and DNA preparation

The 17 postmortem human somatic tissues used in this

study were collected at the time of autopsy. All specimens

were subjected to autolysis for 4 to 8 h and then snap-

frozen at -80°C until use in analysis. DNA was extracted

from 25 mg samples of the tissue specimens using the

NucleoSpin® Tissue kit (Macherey-Nagel GmbH, Düren,

Germany). The DNA yield and purity were determined

spectrophotometrically (NanoDrop® ND1000; Thermo Fisher

Scientific Inc., Waltham, MA, USA) and by gel electrophor-

esis, respectively. Bisulfite modification of the genomic DNA

samples (600 ng each) was carried out with the EZ DNA

Methylation™ kit (Zymo Research, Orange, CA, USA) ac-

cording to the manufacturer’s protocol.

Controls for unmethylated and methylated DNA were

represented, respectively, by whole-genome amplified DNA

from subcutaneous adipose tissue (using the GenomiPhi

DNA amplification kit; GE Healthcare, Piscataway, NJ,

USA) and the universal methylated human DNA standard

(Zymo Research). The bisulfite treatment of the control

samples was carried out as described above.

Methylation analysis with illumina infinium

HumanMethylation450 BeadChip

DNA methylation analysis of the total 72 tissue samples

and controls was performed with the Illumina Infinium

HumanMethylation450 BeadChip according to the man-

ufacturer’s standard protocols. This BeadChip contains

Table 3 Gene expression and methylation correlation

Gene region Neg PCCsa Pos PCCsb PCCs < -0.5c PCCs >0.5d Totale

Global 5,710 4,410 1,713 1,090 10,120

56.42% 43.58% 16.93% 10.77%

Promoter + CGI 3,048 2,325 618 567 5,373

56.73% 43.27% 11.50% 10.55%

TSS1500 4,175 4,581 958 1,064 8,756

47.68% 52.32% 10.94% 12.15%

TSS200 4,157 3,199 979 747 7,356

56.51% 43.49% 13.31% 10.15%

5’UTR 1,500 1,604 382 442 3,104

48.32% 51.68% 12.31% 14.24%

1st exon 1,330 1,409 272 357 2,739

48.56% 51.44% 9.93% 13.03%

Body 5,156 4,620 1,573 1,185 9,776

52.74% 47.26% 16.09% 12.12%

3’UTR 3,302 3,494 903 854 6,796

48.59% 51.41% 13.29% 12.57%

Shores 4,534 3,365 1,362 792 7,899

57.40% 42.60% 17.24% 10.03%

Shelves 2,342 2,201 718 576 4,543

51.55% 48.45% 15.80% 12.68%

aNegative Pearson Correlation coefficients (PCCs).
bPositive PCCs.
cStrong negative PCCs, smaller than -0.5.
dStrong positive PCCs, larger than 0.5.
eTotal number of tDMRs in named category.
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more than 485,000 methylation sites, covering 99% of

RefSeq genes with an average of 17 CpGs per gene dis-

tributed across the promoter, 5′-UTR, first exon, gene

body, and 3′-UTR regions [14]. In addition, the Bead-

Chip covers 96% of CGI with an average of five CpG

sites each, as well as the corresponding shores and

shelves. Furthermore, it includes CpGs outside of CGIs,

CGIs outside of coding regions, and micro-RNA pro-

moter regions.

Validation of BeadChip methylation data by Sanger

sequencing

Seventeen genes representing 36 CpG sites (including

three unmethylated and fully methylated sites, and 14

genes with tDMRs) were selected for analysis. Primers

for PCR amplification of the bisulfite-treated DNA

were designed using MethPrimer [23] and are listed in

Additional file 9. The 20 μL reaction mixes contained

80 mM Tris-HCl (pH 9.4 to 9.5), 20 mM (NH4)2SO4,

0.02% Tween-20 PCR buffer, 3 mM MgCl2, 1X Betaine,

0.25 mM dNTP mix, 2 U Smart-Taq Hot DNA polymer-

ase (Naxo, Tartu, Estonia), 50 pmol forward primer, 50

pmol reverse primer, and 20 ng bisulfite-treated genomic

DNA. The PCR cycling conditions were: 15 min at 95°C

for enzyme activation, followed by 17 cycles of 30 s at

95°C, 45 s at 62°C, and 120 s at 72°C, with a final -0.5°C/

cycle step-down gradient over 21 cycles of 30 s at 95°C,

30 s at 52°C, and 120 s at 72°C. The sequencing results were

analyzed with Mutation Surveyor software (Softgenetics,

State College, PA, USA) and the R statistical computing

software [24].

Data normalizing and preprocessing

The raw data were subject to quality control and

normalization using the standard protocols suggested for

the bioconductor R package minfi [25]. All probes con-

taining single nucleotide polymorphisms (n = 65) and

CpG sites from the X (n = 11 232) and Y (n = 416) chro-

mosomes were removed from the analysis, in order to

eliminate the effect of sex-specific methylation.

GO analysis

GO analysis was carried out for the differentially hypo-

methylated and hypermethylated regions between tissues

using DAVID [15,26]). The gene sets that showed hyper-

or hypomethylation were searched against a default

population background (Homo sapiens) and results were

matched with GO biological processes (GOTERM BP-

FAT). The gene sets obtained from tDMR analysis for

each specific tissue were searched against a custom

background, which contained all the genes found by

tDMR analysis.

Correlation analysis of DNA methylation with gene

expression

Gene expression data were obtained from the GEO [27]

and ArrayExpress [28] databases. Eight tissues with data

from the Affymetrix Human Genome U133A Array (HG-

0.0 0.2 0.4 0.6 0.8 1.0

4
6

8
1
0

1
2

1
4

A. Gene promoter+CGI

value 

G
e
n
e
 e

x
p
re

s
s
io

n

0.0 0.2 0.4 0.6 0.8 1.0

4
6

8
1
0

1
2

1
4

B. Gene body

value 
G

e
n
e
 e

x
p
re

s
s
io

n

Figure 7 DNA methylation and gene expression correlation in CGI-promoter regions and the gene body. (A) Correlation analysis of CGI-

promoter methylation and gene expression show that genes with low expression have high methylation. (B) Gene body methylation and gene

expression are not correlated. (A, B) The x-axis shows DNA methylation beta values, and the y-axis shows gene expression values. The different

tissues studied are represented by the following symbols: aortas (•), coronary artery (●), bladder ( ), bone ( ), bone marrows ( ), lymph node ( ),

medulla oblongata (+), and tonsils (×).
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U133A) were selected for analysis; the accession numbers

of the datasets used are listed in Additional file 7. For cor-

relating the global DNA methylation data with gene ex-

pression values, the DNA methylation values were

averaged across the gene. Gene expression data were nor-

malized and preprocessed according to the robust multi-

array average algorithm [29]. All statistical analyses were

performed by R statistical computing software.

Algorithm for identifying tDMRs

An MDL-based method that is similar to the one pro-

posed for finding haplotype blocks was used to identify

differentially methylated regions [30]. In principle, we fit

the same statistical model by moving windows of 1 to 50

probes in width and calculate the description length stat-

istic. Intuitively, when the same model fits well to several

consecutive probes, then one model for all these probes

is less costly, in terms of description length, than several

separate models. Based on the model fit and its descrip-

tion length, the probes were segmented into regions

that, in total, give the MDL.

To identify the tDMRs of the studied tissues, the ana-

lysis of variance (ANOVA) model with an MDL frame-

work was used. For each segment, the model was fitted

to compare the tissue of interest against all other tissues

studied. The tDMRs were identified according to de-

tection by at least three probes and their retaining

statistical significance (P <0.05) after Bonferroni correc-

tion. To help identify regions of realistic length, the

search was conducted only in regions where the distance

between consecutive probes was less than 3 kb. It has

been shown that sequence-specific DNA methylation as

a regulatory mechanism works on regions larger than

1,000 base pairs [31]. Also, it has been suggested that

long-CGI promoters (>2,000 bp) are preferentially asso-

ciated with genes that are important in development and

tissue-specific gene expression [32]. Additional file 10

shows the correlation between methylation beta values

of consecutive probes and how it depends on the dis-

tance between these probes. The conservative choice of

a 3 kb cutoff was based on this distribution of correla-

tions, because for larger distances the average correl-

ation is only 0.18 whereas for shorter distances it is 0.42.

Meanwhile, these blocks are considered as one region

only if the methylation dynamics within the region are

similar enough (in terms of the MDL). Tissues with a

high functional similarity were processed together.

Data access

The data used in this study has been deposited in NCBI’s

Gene Expression Omnibus repository and are accessible

through GEO Series, accession number GSE50192. Also,

the raw data and some extra figures are available on the

website [33].

Table 4 Gene expression and methylation correlation in tDMRs

Gene region Neg PCCsa Pos PCCsb PCCs < -0.5c PCCs >0.5d Totale

Global 2,288 1,332 749 372 3,620

63.2% 36.8% 20.7% 10.3%

Promoter + CGI 489 134 76 37 623

78.5% 21.5% 12.2% 5.9%

5’UTR 264 279 57 77 543

48.6% 51.4% 10.5% 14.2%

1st exon 212 217 41 61 429

49.4% 50.6% 9.6% 14.2%

Body 1,148 737 377 224 1,885

60.9% 39.1% 20.0% 11.9%

3’UTR 190 209 51 62 399

47.6% 52.4% 12.8% 15.5%

Shores 1,275 745 423 202 2,020

63.1% 36.9% 20.9% 10.0%

Shelves 445 269 169 82 714

62.3% 37.7% 23.7% 11.5%

aNegative Pearson Correlation coefficients (PCCs).
bPositive PCCs.
cStrong negative PCCs, smaller than -0.5.
dStrong positive PCCs, larger than 0.5.
eTotal number of tDMRs in named category.
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Additional files

Additional file 1: Methylation validation using Sanger sequencing.

For validation of the methylation data from BeadChip, 17 genes were

chosen, including unmethylated sites (n = 1), fully methylated sites (n = 2),

and genes with tDMRs (n = 14) representing 36 CpG sites altogether. The

x-axis shows DNA methylation beta-values obtained from BeadChip, and

the y-axis shows beta values from Sanger sequencing.

Additional file 2: Global distribution of methylation. The plot

represents the methylation distribution of all specimens (70 samples)

analyzed, as well as the controls of unmethylated (0%, negative control)

and fully methylated (100%, positive control). The global distribution of

methylated CpGs shows that most are either unmethylated or fully

methylated in somatic tissues.

Additional file 3: Description of tDMRs found by the simple linear

model method of best fit according to MDL.

Additional file 4: Variance in tissues explained by gene regions and

CGI regions. (a) The figure is showing the distributions of the R squared

statistic, which describes the variance explained by different gene regions

and intergenic area. It is clear that gene body and intergenic areas are

more variable than gene promoter areas. (b) Distribution of R squared

statistic describes the variance explained by CpG island shores, shelves,

and non-island regions. Figure shows, that CpG islands are the least

variable among these groups.

Additional file 5: GO analysis of hypermethylated tDMRs in specific

tissue types.

Additional file 6: Hierarchical clustering of all the samples studied.

Hierarchical clustering of all the samples studied shows that the similarity

between different tissues was much higher than between individuals, as

tissues are mostly clustering together.

Additional file 7: Gene expression datasets used for correlation

analyses.

Additional file 8: Correlation analysis of tDMRs and gene expression

for methylations in the CGI-promoter and gene body regions. (a)

tDMR genes with low expression show high levels of methylation at

CGI-promoter. (b) Gene body methylation in tDMRs is not correlated with

gene expression. (a, b) The x-axis shows DNA methylation beta values,

and the y-axis shows gene expression values. The different tissues studied

are represented by the following symbols: aorta (•), coronary artery (●),

bladder ( ), bone and joint cartilage ( ), bone marrow ( ), lymph node

( ), medulla oblongata (+), and tonsils (×).

Additional file 9: PCR primers used in the methylation validation

analysis.

Additional file 10: Correlations between consecutive probes. Figure

shows the correlation between methylation beta values of consecutive

probes and how it depends on the distance between these probes.
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