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DNA-nanoparticle superlattices formed from

anisotropic building blocks

Matthew R. Jones1,2, Robert J. Macfarlane2,3, Byeongdu Lee4, Jian Zhang2,3, Kaylie L. Young2,3,

Andrew J. Senesi2,3 and Chad A. Mirkin1,2,3*

Directional bonding interactions in solid-state atomic lattices
dictate the unique symmetries of atomic crystals, resulting
in a diverse and complex assortment of three-dimensional
structures that exhibit a wide variety of material properties.
Methods to create analogous nanoparticle superlattices are
beginning to be realized1–5, but the concept of anisotropy is still
largely underdeveloped in most particle assembly schemes6.
Some examples provide interestingmethods to take advantage
of anisotropic effects7–11, but most are able to make only small
clusters or lattices that are limited in crystallinity and es-
pecially in lattice parameter programmability12–17. Anisotropic
nanoparticles can be used to impart directional bonding in-
teractions on the nanoscale6,18, both through face-selective
functionalization of the particle with recognition elements to
introduce the concept of valency19–21, and through anisotropic
interactions resulting from particle shape13,22. In this work,
we examine the concept of inherent shape-directed crystal-
lization in the context of DNA-mediated nanoparticle as-
sembly. Importantly, we show how the anisotropy of these
particles can be used to synthesize one-, two- and three-
dimensional structures that cannot be made through the as-
sembly of spherical particles.

Particle assembly is a rapidly developing field of research,
because the properties of superlattices can be as different from their
individual components as the physical properties of nanoparticles
are from bulk materials6,14,18. Shape is an important parameter that
affects the properties of a particle, and therefore the incorporation
of anisotropic nanostructures into colloidal crystals should lead
to materials with as yet undiscovered collective phenomena6.
Maximum utility of these structures requires that a technique
be developed to rationally integrate particles with non-spherical
shapes into ordered assemblies. The use of DNA as a ligand for
the three-dimensional (3D) crystallization of nanoparticles into
colloidal superlattices has many advantages over other assembly
techniques1–4. In particular, the synthetically programmable length
and recognition properties of DNAhave enabled researchers to gen-
erate well-defined superlattices from spherical nanoparticles that
vary in size (5–80 nm; ref. 23). Moreover, the technique provides
nanometre-scale precision in programming the resulting lattice
parameters. By replacing the spherical cores that associate through
isotropic hybridization interactions with anisotropic nanostruc-
tures, we hypothesized that directional bonding interactions could
be facilitated by virtue of different particle shapes (Fig. 1a).

Dense DNA functionalization of anisotropic nanostruc-
tures (previously demonstrated only for a single anisotropic
nanostructure21) was achieved through a combination of particle
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purification, overgrowth or appropriate surfactant mixtures. These
procedures allow one to prepare monodisperse (<10%), pure
(>95%) solutions of DNA-functionalized triangular nanoprisms24,
nanorods25, rhombic dodecahedra26 and octahedra26 (see Supple-
mentary Information for details of the synthesis and function-
alization procedures, Fig. 1b). Nanoparticle assembly occurred
through the hybridization of DNA linkers (containing 23, 64, 105,
146 and 187 nucleobases) to the oligonucleotides anchored to the
particles (Fig. 1d). On binding to the nanoparticle, these linkers
present multiple ‘sticky ends’ at a programmable distance from the
nanoparticle surface, creating, in essence, a controllably sized ‘DNA
shell’ that directs the crystallization process23. Cooperative melting
transitions (where ‘melting’ refers to the dehybridization of DNA
bases linking particles) have been measured for crystals formed in
solution for each of these particle shapes, indicating a dense surface
coverage of oligonucleotides27, which is essential for the assembly
and subsequent crystallization process23 (Fig. 1c).

Small-angle X-ray scattering (SAXS) was used to interrogate the
colloidal crystal structures synthesized from anisotropic particles.
SAXS represents a powerful characterization tool for this new
class of solution-phase-assembled nanostructures, and can give the
symmetries, lattice constants, particle orientation and domain size
of a 3D ordered structure without requiring drying of the sample
(see Table 1), which significantly affects the resulting lattices23.
Modelling of nanoparticle superlattices has been carried out to
corroborate these results by comparing modelled SAXS patterns to
those obtained experimentally. Additionally, transmission electron
micrographs of several ordered nanoparticle crystals, embedded in
a resin, support the conclusions drawn from the SAXS data and have
been included in the Supplementary Information.

The first systems examined were assemblies created from pri-
marily 1D structures (nanorods), where a ‘1D’ particle is defined as
having a length significantly greater than its width or depth. As has
been previously shownwith spherical particles, themost stable crys-
tal structure for a given system is typically the one with the largest
number of DNA linker interactions3; one would therefore predict
that these rods would preferentially assemble with their long axes
parallel to each other, tomaximize the hybridization events between
DNA sticky ends. It is important to note that there is a difference
between the processes of particle ‘crystallization’ and particle ‘as-
sembly’. In this context, particle crystallization refers to positioning
particles in an ordered formation that has translational symmetry,
whereas assembly refers to the process of DNA-hybridization-
induced association, regardless of the structure of the aggregate. It
has previously been demonstrated that the process of particle as-
sembly occurs on a significantly faster timescale than the process of
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Figure 1 |Directional bonding interactions can be imparted to monodisperse, DNA-functionalized gold nanostructures through the introduction of

shape anisotropy. a, The curved surfaces of spherical particles (left) cannot support the same number of idealized oligonucleotide interactions without

DNA deformation as the flat, faceted surfaces of anisotropic nanostructures (middle). This feature allows for the shape of a nanostructure to more strongly

dictate the structural details of the assembled superlattice it composes (right). b, Transmission electron microscopy images of (from left to right) rods,

triangular prisms, rhombic dodecahedra and octahedra. The scale bars represent 50 nm. c, Extinction monitored at surface plasmon resonance maximum

(from left to right: rods—800nm, prisms—1,200 nm, rhombic dodecahedra—618 nm, octahedra—550nm) as a function of temperature for

DNA-functionalized anisotropic nanostructures assembled with linker oligonucleotides. The sharp melting transitions are indicative of a dense surface

coverage of DNA. d, Schematic of the oligonucleotides used to assemble anisotropic nanostructures. Thiolated DNA strands (grey) anchored to the

particle’s surface were hybridized to linker DNA (black), which contained modular blocks of a repeated 40-base-pair sequence (labelled ‘n’, where n refers

to the number of 40-base segments) and a short self-complementary (GCGC) recognition sequence (red) that induced particle assembly.

particle crystallization28. Therefore, in all cases presented here, one
can visually observe the initial formation of large, disordered aggre-
gates and differentiate the subsequent ordering events using SAXS.

Gold nanorods were assembled using DNA linkers of varying
lengths; on annealing, the resulting superlattices possessed long-
range hexagonal symmetry (Fig. 2a,b, Table 1). Most crystals
exhibited scattering peaks corresponding only to 2D ordering
(Supplementary Figs S5, S6, S21). However, extended thermal
annealing of some samples resulted in ordering between 2D sheets,
with the resulting peaks indexing to a P63/mmc, hexagonal-close-
packed, lattice. As nanorods were observed to order into 2D sheets
in most samples studied, one can conclude that the particles favour
interactions perpendicular to their long axis, demonstrating that
the ‘1D’ shape is directing their crystallization into primarily a

2D lattice, and these 2D lattices can subsequently reorganize into
an ordered 3D structure. This was further probed through in situ
monitoring of the crystallization process (Supplementary Fig. S22),
wherein peaks corresponding to 2D order appear and begin to
sharpen (indicating growth in crystal domain size) significantly
before any peaks corresponding to 3D order appear.

The assembly of triangular nanoprisms was then investigated as
an example of a ‘2D’ nanostructure, wherein the length andwidth of
a prism are an order ofmagnitude greater than its depth. Onewould
expect the most dominant crystallization force to be face-to-face
interactions between the predominantly 2D nanoprisms. Scattering
patterns from superstructures of assembled prisms indicate a
lamellar (or columnar) 1D arrangement of particles stacked in a
face-to-face configuration (Fig. 2c,d). This is consistent with the
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Table 1 | Summary of crystallization parameters for DNA-functionalized anisotropic nanoparticle superlattices.

Nanoparticle

dimensions (nm)

Lattice

parameters (nm)

Average crystal

domain sizes (nm)

Average no. unit

cells/crystal

Rods 14 (w) x 55 (l) 34.3, 55.8, 77.9, 97.9, 110 1,270±310 330±210

19 (w) x 52 (l) 34.3, 57.7, 77.6, 93.9, 113 1,180±650 220± 120

Triangular 60 (e) x 7 (w) 26.2, 48.3, 71.8, 94.3, 113 750±230 14±4

prisms 95 (e) x 7 (w) 23.6, 48.6, 72.1, 94.9, 114 980±400 18±6

140 (e) x 7 (w) 24.4, 48.9, 72.3, 93.3, 114 1,040±510 19±6

Rhombic 39 (e), 64 (d) 181, 201 2,550±990 1,160±810

dodecahedra 50 (e), 81 (d) 198, 220 1,780±490 420± 120

Octahedra 59 (e), 83 (d) 110, 118 (bcc); 135, 159 (fcc) 1,510± 170 910±470

Nanoparticle dimensions were obtained from transmission electron microscopy images and lattice parameters, domain size and unit cells per crystal were obtained from SAXS data (w—width, l—length,

e—edge length, d—diameter). Calculations can be found in the Supplementary Information.
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Figure 2 | SAXS characterization of anisotropic nanoparticle colloidal crystals. a, Schematic of a hexagonal 2D layer (additional layers omitted for clarity)

in assemblies of gold nanorods. b, Experimental (blue) and simulated (red) SAXS patterns for gold nanorods (55 nm length, 14 nm diameter) assembled

into a hexagonal-close-packed lattice with lattice constants of a= 76.0nm and c= 176.5 nm. c, Schematic of the primarily 1D lamellar assemblies of gold

triangular nanoprisms. d, Experimental (blue) and simulated (red) SAXS patterns for nanoprisms (95 nm edge length, 7 nm thickness) assembled into a

columnar arrangement with a lattice spacing of 72.1 nm. e, Schematic of the 3D fcc assemblies of gold rhombic dodecahedra. The lines denote the fcc unit

cell, not interparticle interactions. f, Experimental (blue) and simulated (red) SAXS patterns for rhombic dodecahedra (64 nm diameter) assembled into an

fcc arrangement with a lattice constant of 201.4 nm.

previous observation (see above) that particles associate in amanner
that maximizes hybridization interactions. Unlike the primarily
2D hexagonally packed nanorods, no long-range DNA-mediated
ordering was observed between 1D stacks of prisms. Some crystals
that underwent significant thermal annealing exhibited short-range
order between nanoprism superlattices (Supplementary Fig. S23),
but these scattering patterns could not be attributed to a well-
defined 3D lattice. This lack of 3D ordering can be explained
by the inherent thinness of the prisms (7 nm) and the relative
rigidity of double-stranded DNA (persistence length of ∼50 nm;
ref. 29), resulting in very low DNA density along the side of
a column. As the long axis of a 1D stack of prisms contains
a relatively diffuse coating of DNA sticky ends, we project that
hierarchical crystallization of these columns is not favourable

enough to produce 3D structures in the timescales monitored
herein (see Supplementary Information formore detail).

A high degree of precision over the placement of prisms in
1D chains can be seen qualitatively by the large number of
diffraction peaks present in the scattering pattern. Quantification
of the rise per base pair (particle face-to-face distance divided
by number of DNA bases) for three different particle sizes (edge
lengths= 60,95,140 nm) and three different linker lengths (DNA
lengths = 40.5,63.5,86.5 nm) yields a value of 0.281± 0.002 nm.
This is a remarkable level of precision and programmability over
the placement of nanomaterials along one dimension that would
be difficult, if not impossible, to replicate by any lithographic or
other directed-assembly method, illustrating one of the primary
advantages of theDNA-directed crystallizationmethodology.

NATUREMATERIALS | VOL 9 | NOVEMBER 2010 | www.nature.com/naturematerials 915

© 2010 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nmat2870
http://www.nature.com/naturematerials


LETTERS NATUREMATERIALS DOI: 10.1038/NMAT2870

a

b c d

0.01 0.02 0.03 0.04 0.01 0.005 0.010 0.015 0.020 0.0250.02 0.03 0.040.05 0.06

q (1/A) q (1/A) q (1/A)

S
(q

)

S
(q

)

S
(q

)

Figure 3 |Nanoparticle colloidal crystals undergo phase transformations as a function of DNA length. a, Schematic of disordered, bcc and fcc phases of

crystallized octahedral nanoparticles, which are stable at short, intermediate and long DNA lengths, respectively. b, Experimental (blue) SAXS

characterization of gold octahedra (59 nm edge length) assembled with short DNA (∼15 nm) resulting in an interparticle distance of 76.8 nm. Simulated

SAXS patterns for bcc (red) and fcc (grey) crystals with lattice parameters that would be expected given the length of the linking DNA strands

demonstrate that the particles do not correlate with either lattice. Calculations and further explanation can be found in the Supplementary Information.

c, Experimental (blue) and simulated (red) SAXS patterns for octahedra assembled with DNA linkers of an intermediate length (∼45 nm) resulting in

face-to-face orientational ordering within a bcc crystal with a lattice parameter of 118.4 nm. d, Experimental (blue) and simulated (grey) SAXS patterns for

octahedra assembled with long DNA (∼90nm) resulting in no orientational ordering within an fcc crystal with a lattice parameter of 194.7 nm.

In accordance with the previous definitions of particle
dimensionality (see above), a ‘3D’ object would have no physical
dimension significantly larger or smaller than the other two. The
rhombic dodecahedron is an ideal particle to investigate the role
of shape in 3D nanoparticle crystallization, as it naturally forms
a face-centred-cubic (fcc) lattice with 100% packing efficiency,
contrasted with previous fcc lattices of spherical particles3,23, which
exhibit a packing density of only ∼74%. Unlike spheres, which
interact in an isotropic fashion along a curved surface, maximum
DNA interactions for the rhombic dodecahedron system would
be obtained only when the particles associate face-to-face and are
ordered in an fcc lattice with both positional and orientational
order. Comparing the crystallization of rhombic dodecahedra to
similarly sized spheres would give a good indication of how shape
anisotropy affects positional and rotational order and crystal quality
in the resulting colloidal superlattices.

The SAXS data confirm that the rhombic dodecahedra crystallize
into fcc lattices and retain the lattice parameter programmability
imparted by variations in DNA linker length (Fig. 2e,f, Supple-
mentary Figs S10 and S11). Importantly, the lattices exhibit a
significantly larger number of scattering peaks than fcc crystals
consisting of similarly sized spherical particles23, indicating greater
positional order with respect to an ideal fcc lattice. Relative inten-
sities of diffraction peaks correlate with modelled SAXS patterns
for lattices wherein the rhombic dodecahedra retain orientational
order (Supplementary Information, Figs S24–S29). This ordering
occurs even when the hydrodynamic size of the ‘DNA shell’ is
significantly larger than that of the particle, confirming that the
rhombic dodecahedron shape does indeed have a strong influence
on colloidal crystal formation. From these data, one can conclude

that the incorporation of shape anisotropy provides significant
benefit to packing precision over the assembly of isotropic spheres.

It is important to note that the DNA linkers directing the
crystallization process are not completely rigid. With increasing
DNA length, one would expect the increasing flexibility of the
DNA strands to change the sphericity of the DNA shell. Rhombic
dodecahedra crystallized in fcc lattices retain their orientational
order, indicating that the shape of their DNA shell is similar over
all DNA lengths examined. Octahedra are another interesting class
of particle worth probing in this manner. Experimentally and
theoretically, octahedra pack most densely in lattices that do not
maximize commensurate face-to-face interactions30–32. Therefore,
octahedral nanoparticles allow one to test the hypothesis that DNA-
driven particle assembly and crystallization favours the structure
that maximizes hybridization events and, in the case of anisotropic
nanostructures, face-to-face interactions.

SAXS data demonstrate that the octahedra crystallize into a
disordered lattice, a body-centred-cubic (bcc) lattice and an fcc
lattice, with short, intermediate and long DNA lengths, respectively
(Fig. 3a).With short DNA, only short-range order is observed—the
corresponding scattering pattern does not index with either a bcc
or fcc lattice, the two structures observed for longer DNA lengths
(Fig. 3b). Although several possible lattices have been proposed for
the dense packing of octahedra without DNA (refs 30–32), with
short, inflexible DNA, none of these would produce a stable struc-
ture, according to the hypothesis, because they all exhibit severely
limited face-to-face overlap (see Supplementary Information). At
a DNA length of ∼45 nm, however, the scattering peaks index
to a bcc lattice; the intensities of these peaks are best fitted by a
model that includes face-to-face orientational ordering between
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octahedra (Fig. 3c). As the DNA is more flexible, the shape of the
DNA shell may appear more like a truncated octahedron, which
is able to maximize face-to-face interactions in a bcc arrangement
(see Supplementary Information). At a DNA length of∼90 nm, the
scattering pattern indexes to an fcc lattice, indicative of a particle
that is more similar to a sphere than a well-defined octahedron
(Fig. 3d). In this case, the intensities of the peaks indicate no orien-
tational alignment of particles, as would be expected of a DNA shell
that is approximately spherical. These data indicate that, at all DNA
lengths, shape has a significant impact on the most stable structure,
but, depending on DNA flexibility, the particle and the DNA have
differing levels of importance in determining the anisotropy of the
interactions between DNA-functionalized particles. Therefore, the
interplay between the two components of this bionanoconjugate
crystallization methodology provides a means to control the phase
behaviour of a colloidal superlattice constructed from a given set of
anisotropic nanostructure building blocks.

We have demonstrated that particle shape has a strong influence
on the crystallization parameters ofDNA-functionalized nanoparti-
cles, affecting superlattice dimensionality, crystallographic symme-
try and phase behaviour. Furthermore, the use of DNA as a pro-
grammable linker imparts the ability to tune the lattice parameters
of the resulting crystals while retaining the shape directing effects
of the nanoparticles within the limits of DNA flexibility. Moreover,
this work is consistent with the conclusion that nanoparticle super-
lattices that can maximize interparticle DNA hybridization events
will be the most stable structures. Such crystals may find use in
applications that take advantage of the ability to tune the unique
physical properties of these structures, such as plasmonic-based
circuitry or waveguides, photonic bandgap materials and energy
harvesting or storage materials, all of which exhibit unique emer-
gent properties that are dependent on interparticle distance and
crystal symmetry. In particular, the precision with which we can
position particles is difficult to replicate using other assembly or
lithographic techniques, indicating that this methodology provides
a powerful means to realize these types of designer materials.
Furthermore, we project that these results will enable fundamental
insights into shape-directed hybridization effects and the influence
of nanostructure valency on crystallographic parameters.

Received 6 May 2010; accepted 31 August 2010; published online

3 October 2010
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Materials and Methods 

Anisotropic Nanostructure DNA Functionalization 

 Although each particle functionalization presented unique individual challenges, all 

procedures are generally based on a previously demonstrated ligand replacement reaction 

between cetyltrimethylammonium bromide (CTAB) and thiolated oligonucleotides
1
. Briefly, 

CTAB (0.05 M) stabilized anisotropic particles were spun down twice and resuspended in 

nanopure (18.2 MΩ-cm) water. Thiolated oligonucleotides (see Table S1 for sequences) that had 

been oxidized with 0.1 M dithiothreitol (DTT) and purified with a desalting column were then 

immediately added to the colloidal solution (3 OD260 of DNA per mL of nanoparticle colloid). 

Surface reorganization effects or irreversible particle aggregation were only observed if more 

than 20-30 minutes were allowed between the final resuspension in water and the addition of 

thiolated DNA. After allowing 1-3 hours for thiolated DNAs to react with the gold surface, 

particle suspensions were brought to 0.01% sodium dodecyl sulfate (SDS) and 0.01 M sodium 

phosphate and allowed to sit for 30 min to 1 hour. Following literature precedent
2
, the colloidal 

particle solutions were then slowly treated with NaCl to allow for electrostatic screening between 

neighboring DNA strands and denser surface coverage of oligonucleotides. Specifically, 

solutions were brought to 0.05 M, 0.1 M, 0.2 M, 0.3 M, 0.4 M, and 0.5 M NaCl sequentially with 

approximately 30 min between each salt addition. After reaching the final salt concentration, 

particles were allowed to sit overnight to achieve maximum DNA loading. In order to remove 

unreacted oligonucleotides from solution, particle suspensions were centrifuged, the supernatant 

was removed, and the pellet was resuspended in 0.01% SDS three times. The final resuspension 

typically occurred in 50 – 100ul to allow for a concentrated solution of particles. Sodium 

phosphate and NaCl were added to bring the final suspension to 0.01 M and 0.5 M sodium 

phosphate and NaCl, respectively. For all cases studied, as long as anisotropic particles could be 

stably prepared or transferred to 0.05 M CTAB, oligonucleotide functionalization following the 

above procedure resulted in a dense surface coverage of oligonucleotides and well ordered 

assemblies mediated through the addition of DNA linkers (see below for details of the synthesis 

and functionalization of each nanostructure).  
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Gold Nanorod Synthesis, Overgrowth, and Functionalization 

 Gold nanorods were synthesized using the silver-assisted growth procedure developed by 

El-Sayed and coworkers
3
. We observed that nanorods made in this way could not be 

functionalized with oligonucleotides as evidenced by either particle aggregation during the 

salting step or a lack of cooperative melting behavior, which indicates low DNA density on a 

nanoparticle’s surface
4
. We hypothesized that the difficulty in conjugating thiolated DNA to the 

particle was due to a thin layer of silver present on the nanorod surface preventing Au-S bond 

formation. This feature has been proposed as part of the mechanism for the silver-assisted 

nanorod growth
5
. In order to overcome this, an additional overgrowth procedure was used to 

deposit a thin layer of gold on the nanorod, which allowed for facile DNA functionalization.   

As-synthesized nanorods were spun down (10 min, 13400 rcf) once and resuspended in 

water, followed by a second centrifugation to concentrate the particles with resuspension in 0.01 

M CTAB. Nanorod concentrations were quantified using optical extinction spectra and the 

absorbance value at the longitudinal surface plasmon resonance (LSPR) maximum. An 

extinction coefficient of 1.1 x 10
9
 M

-1
cm

-1
 was used for rods with aspect ratio ~4 and an 

extinction coefficient of 9.1 x 10
8
 M

-1
cm

-1
 was used for rods with aspect ratio ~3.  A 900 pM 

solution of nanorods was then prepared in 0.01 M CTAB and sequentially brought to 1 mM 

ascorbic acid and 0.005 mM HAuCl4. After allowing 30 min to 1 hour for the overgrowth to 

occur, the solution was then brought to 0.05 M CTAB and functionalized with DNA according to 

the previously outlined procedure (vide supra). The overgrown nanorods showed minimal 

change in their optical properties and their dimensions (Figure S1) but showed a significant 

improvement in their ability to be functionalized with oligonucleotides (Figure S2).  

 

 

 

Figure S1. Optimization of nanorod overgrowth. a, Extinction spectra recorded 

from gold nanorods before (black) and after (red) overgrowth procedure. b-c, TEM 

images before (b) and after (c) overgrowth procedure. Nanorod dimensions in b are 54 

nm ± 10% length, 14 nm ± 12% width. Nanorod dimensions in c are 55 nm ± 7% 

length, 14 nm ± 10% width.  
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Figure S2. Confirmation of DNA functionalization of gold nanorods. a-b, Extinction monitored at particle 

surface plasmon resonance (800 nm) as a function of temperature for nanorods treated with thiolated DNA and 

assembled with linker oligonucleotides according to the included procedure. a, As-synthesized gold nanorods. b, 

Nanorods that had been treated with the overgrowth procedure. The sharp melting transition in b (and lack of a 

similar transition in a) indicates dense surface coverage of DNA was achieved only after nanorod overgrowth. 
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Triangular Nanoprism Synthesis, Functionalization, and Purification 

 Triangular nanoprisms were synthesized according to Millstone et al.
6
. Whereas DNA 

functionalization of triangular nanoprisms has already been demonstrated
1
, a typical synthesis 

includes a significant population of impurity spherical particles. In order to probe only the shape 

directing effects of the nanoprism, these spherical particles needed to be removed. The as-

synthesized solution containing both spheres and prisms at 0.05 M CTAB was functionalized 

with DNA according to the previously outlined procedure (vide supra). After the final step of the 

DNA functionalization procedure, addition of an oligonucleotide linker with a 
5’

TGCA
3’

 “sticky 

end” resulted in particle aggregation. These aggregates were heated to 55 °C to dissociate all the 

particles, then both the sphere (530 nm) and prism (900 nm) absorbances were monitored on 

slow cooling of the solution. Annealing the mixed sphere-prism solutions at a temperature at 

which prisms reaggregated but spheres remained in solution allowed for selective precipitation of 

the prisms and subsequent purification by removal of the primarily sphere-containing 

supernatant. Purified prism samples were washed (6 min, 16100 rcf) three times in a 0.01% SDS 

solution to remove the 
5’

TGCA
3’

 linkers before being concentrated and assembled using linker 

oligonucleotides.      

 

 

 

 

 

 

 

 



6 

SUPPLEMENTARY INFORMATION

Rhombic Dodecahedra and Octahedra Synthesis and Functionalization 

 Rhombic dodecahedra (RD) and octahedra were synthesized using the surfactant 

cetylpyridinium chloride (CPC) according to the procedure of Niu et al.
7
. We found that all 

attempts to directly replace CPC with thiolated oligonucleotides resulted in either particle 

aggregation or a lack of cooperative melting behavior. As a result, CPC-stabilized RDs and 

octahedra had to first be transferred to CTAB before successful DNA functionalization was 

observed. The as-synthesized RDs and octahedra were spun down twice (20 min, 1500 rcf) and 

resuspended in water to remove excess CPC surfactant. The resulting particle solution was then 

brought to 0.05 M CTAB using a concentrated CTAB solution (0.2 M). After allowing 

approximately 30 min for the particles to incubate in the CTAB solution, they could be 

centrifuged twice (20 min, 830 rcf) without aggregation and functionalized with thiolated 

oligonucleotides following the previously outlined protocol (vide supra) (Figure S3).  

 

 

 

 

 

 

 

 

Figure S3. Confirmation of DNA functionalization of rhombic dodecahedra and octahedra. a-b, Extinction 

monitored at surface plasmon resonance (618 nm) as a function of temperature for rhombic dodecahedra treated 

with thiolated DNA and assembled with linker oligonucleotides according to the included procedure. a, As-

synthesized rhombic dodecahedra spun down from a CPC solution. b, Rhombic dodecahedra transferred to and 

spun down from a CTAB solution. The sharp melting transition present only in b indicates that dense surface 

coverage of DNA is achieved only if particles are first transferred to CTAB before attempting DNA 

functionalization. 
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Transmission Electron Microscopy Characterization of Anisotropic Nanostructures 

 Typically, 10ul of a concentrated nanoparticle solution was drop cast onto a carbon 

coated copper grid and allowed to dry under vacuum. All images were obtained using a Hitachi 

8100 transmission electron microscope operating at 200kV in bright-field mode (Figure S4).  

 

 

 

 

 

 

 

 

 

Figure S4. Representative transmission electron microscopy images of each of the anisotropic gold 

nanostructures synthesized. a, Nanorods 55 nm length, 14 nm width. b, Nanorods 52 nm length, 19 nm width. 

c, Triangular nanoprisms 140 nm edge length, 7 nm width. d, Triangular nanoprisms 95 nm edge length, 7 nm 

width. e, Triangular nanoprisms 60 nm edge length, 7 nm width. f, Rhombic dodecahedra 50 nm edge length, 81 

nm diameter. g, Rhombic dodecahedra 39 nm edge length, 64 nm diameter. h, Octahedra 59 nm edge length, 83 

nm diameter. 



8 

SUPPLEMENTARY INFORMATION

Assembly and Crystallization of Anisotropic Nanostructures 

 Nanoparticle superlattices were achieved via combining the DNA-AuNP solutions with 

linking DNA strands—a detailed description of the exact procedure can be found in reference 8. 

The linkers were either purchased from Integrated DNA Technologies or synthesized on an 

Expedite 8909 Nucleotide Synthesis System (ABI) and all reagents, including 3' C3-thiol 

phosphoramidites, were obtained from Glen Research; all DNA sequences are shown in Table 

S1. Note that DNA linkers labeled as n=1-4 contain a repeating 40-base DNA sequence—prior 

to adding these linkers to the nanoparticle solutions, the linkers were duplexed to n equivalents 

of a 40-base strand complementary to this sequence. This ensured that the DNA linking the 

nanoparticles was primarily double stranded, which allows for predictability in DNA length and 

lattice parameters of the resulting crystals
9
. The duplexed linkers were added to the solutions of 

DNA-AuNPs in a 1:1 ratio with estimates for the number of DNA strands per particle
10

 and 

allowed to aggregate at room temperature. These solutions were then split and diluted with 0.5M 

NaCl to concentrations appropriate for either small angle X-ray scattering (SAXS) or melting 

temperature analyses. The melting temperature of each system was performed in a Cary 100 UV-

Vis, monitoring the change in absorbance at the nanoparticle’s predominant plasmon resonance. 

The solution not used for the melting temperature analysis was then annealed at a temperature 

~3-5 degrees below the melting temperature of the assembled particles for a period of 30 minutes 

to several hours, depending upon the sample. After annealing, the samples were transferred to 

2.0 mm quartz capillaries and SAXS analysis was performed.  

  

AuNP-Bound DNA 
5'
AAG AAT TTA TAA GCA GAA-A10-C3SH

3'
    

Linker DNAs             

n=0 
5'
TTC TGC TTA TAA ATT CTT-A-GCGC

3'
    

n=1 
5'
TTC TGC TTA TAA ATT CTT-A-(Block Sequence)1-GCGC

3'

n=2 
5'
TTC TGC TTA TAA ATT CTT-A-(Block Sequence)2-GCGC

3'

n=3 
5'
TTC TGC TTA TAA ATT CTT-A-(Block Sequence)3-GCGC

3'

n=4 
5'
TTC TGC TTA TAA ATT CTT-A-(Block Sequence)4-GCGC

3'

"Block" Sequence 
5'
TTT TTT TTT TTT ACT GAG CAG CAC TGA TTT TTT TTT TTT T-A

3'

Duplexer Strand 
5'
AAA AAA AAA AAA ATC AGT GCT GCT CAG TAA AAA AAA AAA A

3'

 

 

 

 

Table S1. DNA Sequences used to assemble crystals. The AuNP bound DNA was attached to the particle 

surface via gold-sulfur chemistry. Different DNA lengths were achieved via the use of DNA linkers that 

contained a variable number of "block sequences". Linkers n=1, 2, 3, and 4 were hybridized to n equivalents 

of the 40-base duplexer strand (which is complementary to the block sequence) prior to adding the linkers to 

the nanoparticle solutions. 
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Small Angle X-Ray Scattering Characterization of Anisotropic Nanoparticle Superlattices 

SAXS experiments were performed at the DuPont-Northwestern-Dow Collaborative 

Access Team (DND-CAT) beamline of the Advanced Photon Source (APS) at Argonne National 

Laboratory. Within the SAXS sample holder, temperature was controlled to within 0.1 °C during 

all analyses. X-rays of wavelength 1.24 Å (10 keV) were used to probe the sample, and the 

scattering angle was calibrated using silver behenate as a standard. Two sets of slits were used to 

define and collimate the X-ray beam and a pinhole was used to remove parasitic scattering. The 

X-ray beam cross-section measured 1.0x1.0 mm2, exposure times varied from 0.05 to 1.0 

seconds. The scattered radiation was detected with a CCD area detector. Dark current frames 

were subtracted from all data; scattering of the buffer, DNA, and capillary were negligible 

compared to the AuNP scattering in these data. 

 2-D SAXS patterns were then azimuthally averaged and relative scattering intensity was 

plotted as a function of scattering vector q: 

q=4πsinθ/λ 

where θ is the scattering angle and λ is the wavelength of X-ray radiation. Each scan was then 

divided by the particle’s form factor (the predicted scattering pattern for particles that are 

completely dissociated) and compared against modeled SAXS patterns for ideal nanoparticle 

superlattice structures. Calculations to obtain both form factor and ideal superlattice scattering 

plots are discussed later in this text.  

 Interparticle spacing in these crystals was determined using the following equations: 

1. For a 2D HCP array of rods, the interparticle spacing is calculated as 

��� � � 2√3� �2���� 

where dAu is the distance between the centroid of two nearest neighbor particles and q0 is the 

position of the first order scattering peak. 

2. For a linear array of prisms, the interparticle spacing is calculated as 

��� � 2���  

3. For an FCC arrangement of rhombic dodecahedra, a BCC arrangement of octahedra, and an 

FCC arrangement of octahedra, the interparticle spacing is calculated as  

��� � √6���  
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 Crystal domain sizes were calculated using the Debye-Scherrer equation: 

�  

where t is the thickness of the crystal in a direction perpendicular to the scattering planes, λ is the 

wavelength of the X-rays, β is the radial full-width-half-maximum of the first-order scattering 

peak and θ is the scattering angle of the first-order scattering peak. The number of unit cells per 

crystal for the 3-D lattices was calculated assuming a spherical domain with a diameter equal to 

the crystal thickness t. The number of unit cells per crystal for the 2-D lattices was calculated 

assuming a circular domain with diameter equal to t. The average and standard deviation of these 

values listed in table 1 in the main text were calculated by averaging the crystal domain size for 

all assemblies that formed ordered crystals. 
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Small Angle X-ray Scattering Data for Anisotropic Nanoparticle Superlattices 

 
 

 

 

 

 

 

Figure S5. Small angle X-ray scattering patterns from crystallized nanorods (55 nm length, 14 nm 

width) with tunable interparticle distances. Here, “n” refers to the number of 40-base segments present in 

the linker oligonucleotides used to induce crystallization (See Figure 1d, Table S1) with greater values of n 

resulting in larger interparticle distances, noted by scattering peaks that are shifted to smaller values of q. All 

samples index to a 2D hexagonal lattice, see Table 1 for calculated lattice parameters. 

 

Figure S6. Small angle X-ray scattering patterns from crystallized nanorods (52 nm length, 19 nm 

width) with tunable interparticle distances. Here, “n” refers to the number of 40-base segments present in 

the linker oligonucleotides used to induce crystallization (See Figure 1d, Table S1) with greater values of n 

resulting in larger interparticle distances, noted by scattering peaks that are shifted to smaller values of q. All 

samples index to a 2D hexagonal lattice, see Table 1 for calculated lattice parameters. 
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Figure S7. Small angle X-ray scattering patterns from crystallized triangular nanoprisms (140 nm 

edge length, 7 nm width) with tunable interparticle distances. Here, “n” refers to the number of 40-base 

segments present in the linker oligonucleotides used to induce crystallization (See Figure 1d, Table S1) with 

greater values of n resulting in larger interparticle distances, noted by scattering peaks that are shifted to 

smaller values of q. All samples index to a 1D columnar lattice, see Table 1 for calculated lattice parameters. 

Figure S8. Small angle X-ray scattering patterns from crystallized triangular nanoprisms (95 nm edge 

length, 7 nm width) with tunable interparticle distances. Here, “n” refers to the number of 40-base 

segments present in the linker oligonucleotides used to induce crystallization (See Figure 1d, Table S1) with 

greater values of n resulting in larger interparticle distances, noted by scattering peaks that are shifted to 

smaller values of q. All samples index to a 1D columnar lattice, see Table 1 for calculated lattice parameters. 
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Figure S9. Small angle X-ray scattering patterns from crystallized triangular nanoprisms (60 nm edge 

length, 7 nm width) with tunable interparticle distances. Here, “n” refers to the number of 40-base 

segments present in the linker oligonucleotides used to induce crystallization (See Figure 1d, Table S1) with 

greater values of n resulting in larger interparticle distances, noted by scattering peaks that are shifted to 

smaller values of q. All samples index to a 1D columnar lattice, see Table 1 for calculated lattice parameters. 

Figure S10. Small angle X-ray scattering patterns from crystallized rhombic dodecahedra (81 nm 

diameter, 50 nm edge length) with tunable interparticle distances. Here, “n” refers to the number of 40-

base segments present in the linker oligonucleotides used to induce crystallization (See Figure 1d, Table S1) 

with greater values of n resulting in larger interparticle distances, noted by scattering peaks that are shifted to 

smaller values of q. Only the n=2 and n=3 samples formed well-ordered FCC lattices; the n=1 and n=4 

structures index to disordered assemblies with no long range order. See Table 1 for calculated lattice 

parameters. 
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Figure S11. Small angle X-ray scattering patterns from crystallized rhombic dodecahedra (64 nm 

diameter, 39 nm edge length) with tunable interparticle distances. Here, “n” refers to the number of 40-base 

segments present in the linker oligonucleotides used to induce crystallization (See Figure 1d, Table S1) with 

greater values of n resulting in larger interparticle distances, noted by scattering peaks that are shifted to smaller 

values of q. Only the n=2 and n=3 samples formed well-ordered FCC lattices; the n=1 and n=4 structures index 

to disordered assemblies with no long range order. See Table 1 for calculated lattice parameters. 

Figure S12. Small angle X-ray scattering patterns from crystallized octahedra (83 nm diameter, 59 nm 

edge length) with tunable interparticle distances. Here, “n” refers to the number of 40-base segments present 

in the linker oligonucleotides used to induce crystallization (See Figure 1d, Table S1) with greater values of n 

resulting in larger interparticle distances, noted by scattering peaks that are shifted to smaller values of q. The 

n=0 sample formed a disordered lattice, the n=1 and n=2 samples formed BCC lattices, the n=4 sample formed 

an FCC lattice, and the n=3 sample has both BCC and FCC domains. These lattices are discussed in greater 

detail later in the supplementary information. 
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Transmission Electron Microscopy Characterization of Anisotropic Nanoparticle 

Superlattices 

 Two separate sample preparation methods were used preserve the order of nanoparticle 

superlattices at the expense of significantly reduced lattice parameters. The first method, which 

was used to prepare samples of nanoprisms, involved drop-casting a solution of nanoprism 

superlattices onto a TEM grid and quickly wicking away excess solvent. As has been previously 

shown, removal of buffer from superlattice solutions results in significant reduction in lattice 

parameters
11

, but the nanoprisms still retain significant columnar ordering even after removal of 

solvent (Figure S14). Control experiments confirm that unassembled nanoprisms that are drop-

cast and quickly dried do not form ordered assemblies, but rather lay flat on the substrate and are 

typically found as solitary particles. This indicates that the TEM data corroborate the SAXS data, 

and that the organization of nanoprisms into 1-D stacks is preserved after drying of the sample. 

 The second method, utilized to prepare samples of nanorods (Figure S13), rhombic 

dodecahedra (Figure S15), and octahedra (Figure S16), involved embedding the samples in a 

resin which could be sectioned and imaged using standard biological TEM techniques. First, the 

solutions of nanoparticles were repeatedly washed with 0.5 M NaNO3 in order to remove all 

chloride anions from solution. This was followed by the addition of a solution of 1 M AgNO3; 

the transfer into a solution of NaNO3 prevented any precipitation of insoluble AgCl upon the 

addition of AgNO3. An aliquot of 0.1 M NaBH4 was then added to this solution, resulting in 

instantaneous precipitation of insoluble silver solid. The presence of these large Ag particles 

provided a handle for centrifugation, embedding, and general manipulation of the nanoparticle 

superlattices and was found to be necessary to achieve high quality images. The solution was 

then centrifuged and the buffer was replaced with ethanol resulting in collapse of the DNA
12

 

while maintaining the symmetry of the colloidal crystals.  

Once in ethanol, these samples were embedded in EMBed-812 resin (Electron 

Microscopy Sciences) following standard protocols provided by the manufacturer. The resin was 

polymerized at 60 °C for 16-20 hours to solidify, then cooled and sectioned with a diamond knife 

and an ultramicrotome. The resulting sections varied in thickness between ~60 and ~250 nm. 

TEM images were obtained on a Hitachi HD-2300 transmission electron microscope in Z-

contrast mode. These images were then compared with modeled lattices to verify that the 

particles had indeed retained their ordering, even though their lattice parameters had been 

significantly reduced.  
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Figure S13. Representative TEM images of ordered nanorod superlattices. a, Schematic 

illustration of the orientation of crystallized nanorods (55 nm length, 14 nm width) shown in 

part b. b, High magnification image of nanorods in a hexagonal arrangement. c, Low 

magnification image of ordered nanorod superlattices. In both images, sections are ~100 nm 

thick. Both images correspond to the sample represented in Figure 2b. 

Figure S14. Representative TEM images of ordered nanoprism superlattices. a, Schematic 

illustration of the orientation of crystallized nanoprisms (140 nm edge length) found in part b. 

b, High magnification image of nanoprisms in a columnar arrangement. c, Low magnification 

image of ordered nanoprism superlattices. Both images correspond to the system represented in 

Figure S7, n=1 linker. 
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Figure S15. Representative TEM images of ordered rhombic dodecahedra superlattices. 

a, Schematic illustration of the orientation of crystallized rhombic dodecahedra (64 nm 

diameter) found in part b. b, High magnification image of rhombic dodecahedra in an FCC 

arrangement. c, Low magnification image of ordered rhombic dodecahedra superlattices. In 

both TEM images, sections are ~180 nm thick. Both images correspond to the sample 

represented in Figure 2f. 

Figure S16. Representative TEM images of ordered octahedra superlattices. a, Schematic 

illustration of the orientation of crystallized octahedra (83 nm diameter) found in part b. b, 

High magnification image of octahedra in a BCC arrangement. c, Low magnification image of 

ordered octahedra superlattices. In part b sections are ~150 nm thick, and in part c sections are 

~250 nm thick. Both images correspond to the sample represented in Figure 3c. 
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Modeling and Simulation of SAXS Patterns of Anisotropic Nanoparticle Superlattices 

The x-ray scattering intensity of randomly oriented crystals is calculated as: 
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of a randomly oriented polyhedron, and q  is the modulus of the scattering vector q . The 

structure factor of a randomly oriented crystal )(qS is defined as: 
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The form factor amplitude of any arbitrary object is calculated as: 
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where the electron densities inside and outside the object are 1 and 0, respectively. 
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The form factor amplitudes of various polyhedra used in this work are derived as follows
13

: 

 

1. The form factor of a pyramid 
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2. The form factor of a cube 

where the edge length: 2R 
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3. The form factor of a cylinder 

where the radius: R, length: H
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4. The form factor of an octahedron 

where the edge length: 2R 
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5. The form factor of a rhombic dodecahedron (RD) 

where the edge length: √3R

 

Note: A rhombic dodecahedraon is composed of 6 pyramids with an edge length of 2R and 

height R and one cube with an edge length of 2R. A rhombic dodecahedron is constructed by 

aligning the base of each pyramid with the faces of the cube.  
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6. The form factor of a prism 

where the edge length: 2R, height: H 
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The form factor intensity of a randomly oriented polyhedron )(qP  is calculated as: 

∫ ∫ −=
π π

ϕθθθϕθϕθ
2

0 0

2 sin|)cos,sinsin,cossin(|)( ddqqqFqP  
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Experimental measqP )(  are obtained by raising the temperature of the DNA-NP solutions to a 

temperature at which the nanoparticles dissociate (typically > 55 °C). In the calculation of the 

structure factor, 1/ 2
hklq  is the Lorentz factor and c is a constant. calchklqP )(  is the calculated form 

factor intensity for a randomly oriented particle at hklqq =  for {hkl} reflections. )( hklRF q⋅  is the 

amplitude of the form factor for an oriented particle in a unit cell. M is the rotation matrix for a 

particle in a unit cell. In this work, Rodrigues' rotation formula is used. hklm  is the multiplicity of 

a {hkl}. ( iii zyx ,, ) is the fractional coordinate of i th of  particles in a unit cell. 
222 aqhklDe

σ−
 is the 

Debye-Waller factor or lattice disorder factor, where Dσ  and a  are the disorder parameter and 

the nearest neighbor distance, respectively. In this work, Dσ less than 0.01 is used. Peak shape is 

approximated with the Lorentz function, 
22 )2/()(
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L

qq σ
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, where Lσ  is the width of Lorentz 

function. In this work, Lσ =5·10
-3
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Example Form Factor Analysis of Selected Anisotropic Nanostructures 

The form factor for aspect ratio 4 nanorods used in this work: 

L = 500Å, R = 62.5 Å, and polydispersity 12% 

 

 

The form factor for triangular nanoprisms used in this work: 

E = 500Å, W = 58 Å, and polydispersity 5% 

 

Figure S17. Example of form factor fitting for nanorods. The red line is the 
experimentally obtained form factor, and the blue line represents the modeled form factor. 

Figure S18. Example of form factor fitting for triangular prisms. The red line is the 
experimentally obtained form factor, and the blue line represents the modeled form factor. 
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The form factor for rhombic dodecahedra used in this work: 

R = 210.3, polydispersity 6% 

 

 

The form factor for octahedra used in this work: 

R=327.87, polydispersity 6% 

 

 

Figure S19. Example of form factor fitting for rhombic dodecahedra. The red line is the 

experimentally obtained form factor, and the blue line represents the modeled form factor. 

Figure S20. Example of form factor fitting for octahedra. The red line is the 

experimentally obtained form factor, and the blue line represents the modeled form factor. 
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Supplementary Discussion 

Evidence of Primarily 2-D Ordering in Superlattices of Gold Nanorods 

 Whereas the scattering pattern and model presented in the text (Figure 2b) correspond to 

2-D sheets of hexagonally packed nanorods that have ordered into a 3-D HCP structure, the 

majority of SAXS patterns obtained from nanorod crystals consisted of only 2-D ordered sheets 

(Figure S5, S6). A modeled scattering pattern of a perfect 2-D hexagonal crystal shows excellent 

agreement with the experimental SAXS data obtained for most of the nanorod superlattices 

(Figure S21a). The peaks corresponding to 2-D hexagonal order also appear in the scattering 

pattern presented for the HCP structure (Figure S21b) with the peaks that are unaccounted for by 

the model for the 2-D lattice matching well with the additional peaks included in the modeled 3-

D structure (Figure 2b).   

 

 

 

 

 

 

Figure S21. Observation of predominantly 2-D ordering in superlattices of gold nanorods. a, A scattering 

pattern representative of the majority of crystallized nanorod samples (blue) (see Figure S5) with the ideal 

scattering pattern from a perfect crystal with only 2-D hexagonal order (red). The agreement between the 

experimental and modeled peaks, in conjunction with the absence of any additional scattering peaks, suggests 

very little ordering between 2-D sheets of nanorods. b, A scattering pattern from a nanorod sample that 

underwent extensive thermal annealing, which ultimately resulted in 3-D ordering (blue trace, same as in Figure 

2b), with  the ideal scattering pattern from a perfect crystal with only 2-D hexagonal order (red). The scattering 

patterns match well but several peaks that are present in the experimental data are not present in the modeled 

pattern; these peaks are represented in the 3-D HCP model presented in Figure 2b. 
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Evidence for the Transition from 2-D to 3-D Order in Nanorod Superlattices 

In situ monitoring of a sample of nanorods during the annealing process demonstrated 

that it is the 2-D hexagonal layers of nanorods that crystallize first, and that 3-D ordering is only 

observed after long-range 2-D ordering is already present in the sample. This is noted by the fact 

that peaks corresponding to 2-D ordering of the rods are present in all scans, albeit with only 

short-range order at room temperature (Figure S22). As the temperature increases and more 

thermal energy is provided to the system, reorganization occurs and the domain size of the 2-D 

sheets increases (as indicated by the narrower, more well-defined peaks). It is only after 

significant annealing that peaks corresponding to 3-D ordering between 2-D sheets are observed 

(arrows, 57 °C scans).  

 

 

 

 

Figure S22. Analysis of the crystallization process of nanorods. Temperature-resolved 

SAXS scans of nanorods (55 nm length, 14 nm width) with the n=2 linker, starting at low 

temperatures, then gradually increasing to just below the melting temperature of the sample 

(~57 °C), where the sample was held for several minutes and scanned again.  
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The Possibility of Orientational Ordering Between 1-D Columns of Nanoprisms  

 Although ordering between 2-D sheets of nanorods was observed, evidence for a similar, 

secondary assembly event for 1-D nanoprism superlattices was difficult to detect, even with 

significant thermal annealing. At elevated temperatures with extended annealing times, the 

presence of a weak, broad peak at low q values could be observed for some prism samples at a 

position consistent with hexagonal ordering between stacks of nanoprisms (Figure S23). 

However, the lack of additional, well-defined scattering peaks consistent with this formation 

makes a conclusive determination difficult, and points towards 3-D assemblies with at most only 

short range order.  

 

 

 

 

 A number of reasons exist for the inability of DNA-mediated hybridization to induce 

hierarchical 3-D assembly of nanoprisms: (1) DNA strands uniformly coat the surfaces of the 

nanoprisms
1
, indicating that the significantly smaller surface area along the edges of prisms 

contains fewer DNA strands that are able to participate in hybridization events relative to the 

large triangular faces. Nanoprisms with edge lengths of 140 nm, 95 nm, and 60 nm have a ratio 

of triangular face surface area to edge face surface area of 5.4, 3.7, and 2.3, respectively. (2) 

DNA strands on the edges of prisms can more easily bend away from an orientation 

perpendicular to the nanoprism face due to decreased steric crowding.  As we have previously 

shown
8
, an increased flexibility in DNA linker strands results in lower localized concentrations 

of the DNA sticky ends, due to the fact that the DNA strands can adopt a larger number of 

configurations. This lower effective concentration of the DNA sticky ends along the edges of the 

prisms ultimately results in weaker interparticle interactions, making prism edge-edge 

Figure S23. Evidence for weak association between 1D nanoprism superlattices. 

Scattering pattern for 60 nm edge length prisms crystallized with the n=1 linker. The 

small peak indicated by the arrow is at the expected position for weak ordering 

between columns of prisms in a hexagonal arrangement. The nanoprism form factor 

has not been removed from these scans to ensure the small peak is not an artifact of the 

subtraction process. 
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association less stable than face-face association
8
. (3) After assembling into 1-D superlattices, 

distances between nanoprisms range from ~25 to ~115 nm. Since nanoprisms are ~7 nm thick, 

the side of a column of assembled nanoprisms consists of small ~7 nm patches of DNA spaced 

by considerable distances. This means that, even in 1-D stacks of prisms, the DNA density 

perpendicular to the prism edges (along the length of a stack), is significantly lower than what is 

observed perpendicular to the faces of the prisms. It is possible for stacks to make weak 

associations with each other without registry of the prisms, which results in the relatively 

disordered 3-D assemblies of prism superlattices observed in Figure S23. However, a perfectly 

ordered 3-D lattice is unlikely to occur, as it is not significantly favorable over other, more 

disordered states.  

 While entropic effects have been shown to induce ordering between plate and rod-like 

objects as in nematic and discotic columnar liquid crystalline phases, this type of assembly 

requires nanoparticle concentrations significantly higher than what has been used in this work 

(crystallized nanoprisms are at most 200 nM). For example, Lekkerkerker and coworkers found 

nematic phases of plate-like nanostructures at concentrations above ~30 µM
14

, and Zhang et al. 

showed that ordering between columnar stacks of triangular nanoprisms occurs at concentrations 

of ~50 µM
15

. Therefore, although entropic effects may direct the formation of liquid crystalline 

phases of 1-D columns of nanoprisms at high concentrations, this study focuses on relatively 

dilute concentration regimes wherein DNA-mediated interactions are more relevant. 
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Origin of Oscillations in the Intensity of Diffraction Peaks from Assembled Triangular 

Nanoprisms 

 After form factor correction, nearly all columnar superlattices of triangular nanoprisms 

exhibit a distinct oscillation in the intensity of the scattering pattern (Figure 2d, S7, S8, S9). The 

oscillation in peak intensities can be attributed to the uniform thickness of the prism; this effect is 

commonly observed in SAXS investigations of lipid bilayers
16

. Importantly, this oscillation does 

not affect the positions of the scattering peaks which are used to determine lattice spacing and 

domain size.    
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Evidence for the Orientational Alignment of Rhombic Dodecahedra in FCC Superlattices 

 In order to probe the orientational alignment of rhombic dodecahedra within a 

superlattice, several probable cases were modeled and compared to the experimental scattering 

plot. The modeled data in which face-to-face association is maximized shows the best correlation 

to the experimental data (Figure S24, S25). 

Rotation around [0, 0, 1] with an angle = 0 
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Figure S24. Schematic illustration of rhombic dodecahedra in an FCC lattice with a rotation 

angle about [0, 0, 1] of 0. All rhombic dodecahedra are equivalent in this lattice, but are 

displayed with two different colors to aid in visualization of the 3D unit cell. 

Figure S25. Comparison of experimental and simulated scattering patterns to investigate rhombic dodecahedra 

orientational alignment. Experimental SAXS data for rhombic dodecahedra (blue) with simulated peaks for rhombic 

dodecahedra in an FCC arrangement with a rotation angle about [0, 0, 1] of 0 (black and red). The excellent agreement between 

the experiment and the simulation suggest rhombic dodecahedra adopt a preferential face-to-face orientation within the FCC unit 

cell. 
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Rotation around [0, 0, 1] with an angle = π /4 
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Figure S26. Schematic illustration of rhombic dodecahedra in an FCC lattice with a 

rotation angle about [0, 0, 1] of π/4. All rhombic dodecahedra are equivalent in this lattice, but 

are displayed with two different colors to aid in visualization of the 3D unit cell. 

Figure S27. Comparison of experimental and simulated scattering patterns to investigate rhombic dodecahedra 

orientational alignment. Experimental SAXS data for rhombic dodecahedra (blue) with simulated peaks for rhombic 

dodecahedra in an FCC arrangement with a rotation angle about [0, 0, 1] of π/4 (black and red). The lack of agreement between 

the experiment and the simulation (most notable at q values > 0.02) suggest rhombic dodecahedra do not adopt this orientation 

within the FCC unit cell. 
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Rotation around [0, 0, 1] with an angle = π /3 
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Figure S28. Schematic illustration of rhombic dodecahedra in an FCC lattice with a rotation 

angle about [0, 0, 1] of π/3. All rhombic dodecahedra are equivalent in this lattice, but are 

displayed with two different colors to aid in visualization of the 3D unit cell. 

Figure S29. Comparison of experimental and simulated scattering patterns to investigate rhombic dodecahedra 

orientational alignment. Experimental SAXS data for rhombic dodecahedra (blue) with simulated peaks for rhombic 

dodecahedra in an FCC arrangement with a rotation angle about [0, 0, 1] of π/3 (black and red). The lack of agreement between 

the experiment and the simulation suggest rhombic dodecahedra do not adopt this orientation within the FCC unit cell. 
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Analysis and Discussion of the Assembly of Octahedra with Short and Intermediate DNA 

Lengths 

 As has been previously stated
8,17

, the driving force for DNA-mediated nanoparticle 

crystallization is the maximization of DNA hybridization interactions between particles – this 

can be correlated with the maximum amount of face-to-face overlap between neighboring 

nanostructures. When considering octahedra, it is important to note that it is not possible to align 

the particles in an ordered lattice with completely commensurate face-to-face interactions. 

Therefore, in order to determine the 3D structure of octahedra assembled with short DNA strands 

(Figure 3b), different possible lattices were examined.  

First, the theoretical densest packing of octahedra
18

 is presented as follows: 

 

 

This structure has two types of face-to-face interactions: 

        Type A    Type B 
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Figure S30. Schematic illustration of the densest packing of octahedra. All octahedra 

are equivalent, however, different colors are used to aid visualization of the 3D lattice. 

Figure S31. Schematic illustration of two types of face-to-face interactions present in the densest packing 

of octahedra structure with an interparticle distance of 0 nm. Different colors are used to aid in visualization 

of the face-to-face interactions. Interactions of type A exhibit much greater face-to-face overlap between nearest 

neighbors, which results in a greater number of favorable hybridization interactions between DNA linking 

strands. 
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2 of 8 faces of the octahedra exhibit type A interactions with their nearest neighbors, while 6 of 8 

faces exhibit type B interactions. 

When assembling octahedra with DNA linkers, the face-to-face distance between 

particles is uniformly increased by the length of the DNA strands. In this case, type B 

interactions exhibit reduced face-to-face overlap with increasing lattice parameters, due to the 

geometry of the lattice
18

 (Figure S32). (The amount of face-to-face overlap of type A does not 

change with increasing particle distance.) This indicates that, when assembling octahedra with 

DNA, the theoretical densest packing of octahedra is not an optimal structure, as it has minimal 

face-to-face overlap between neighboring particles and therefore minimal DNA hybridization 

interactions.  

 

 

 

Other experimentally obtained lattices
19-20

 exhibit the same problem—minimal face-to-face 

overlap is achieved when the particles are aligned in these structures. Importantly, this problem 

is exacerbated when the lattice parameters increase. 

Based on previous calculations
8-9

 and comparisons with the DNA lengths for the 

assemblies studied in this work, we can estimate that the DNA length for the shortest 

interparticle distance (n=0) is approximately 15 nm. If we calculate the scattering pattern for 

octahedra assembled with 15nm DNA linkers into the lattice described above, the lattice 

parameters should be 122 nm and 68.5 nm for a and c, respectively (Figure S33, S34). 

Figure S32. Schematic illustration of two types of face-to-face interactions present in the 

densest packing of octahedra structure with particles separated by 15 nm DNA linkers. 

Different colors are used to aid in visualization of the face-to-face interactions. 
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While the simulation does present a limited degree of matching with the experimental 

data, there is little correlation for peak intensities at q values > 0.025 and in peak positions at q 

values > 0.03. Additionally, the breadth of the peaks indicates that, despite a small amount of 

correspondence with the predicted scattering pattern, there is no long range order (which would 

Figure S33. Schematic illustration of the densest packing of octahedra for short (15 nm) DNA 

lengths. 

Figure S34. Evidence of a disordered arrangement of octahedra with short DNA lengths. Experimental scattering pattern from 

octahedra with short DNA length (blue) with simulated scattering pattern from octahedra in a densest packed arrangement (black 

and red) with 15 face-to-face distance (Figure S33). The lack of agreement between the experiment and the simulation at large q 

values suggest octahedra do not adopt a dense packed arrangement for short DNA lengths. 
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manifest as sharp diffraction peaks, as can be seen in most other scattering patterns presented in 

this work).  

Secondly, we considered the possibility of octahedra packing into a BCC lattice with 

short DNA. This presented a logical choice, as longer DNA linkers crystallized octahedra into 

BCC lattices (Figure 3c, S12). We again assume that the face-to-face distance for nearest 

neighbor particles is 15nm. In this case, the lattice parameter should be 79.2 nm, and the amount 

of face-to-face overlap should be increased relative to the theoretically determined densest 

packing (vide supra), as each particle should have 8 interactions of type A instead of 2. However, 

the particle and lattice geometries prevent this from being a stable structure, as this lattice 

parameter would result in overlap between the particle tips (Figure S35).  

 

 

This indicates that this lattice is not possible unless the particle tips are significantly truncated. 

However, even assuming that the particle tips are truncated enough to allow such a structure, the 

modeled scattering pattern does not provide a good match to the experimental data (Figure S36).  

Figure S35. Schematic illustration of the BCC packing of octahedra for short (15 nm) DNA 

lengths showing overlap between particles. 
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Of the lattices presented above, the experimental data of octahedra assembled with short 

DNA match more closely to the densest packed structure than to the BCC packing. However, 

thermodynamically we would predict that the BCC lattice should be the preferred structure 

considering its larger degree of face-to-face interactions.  The interplay between these and other 

possible structures, combined with the relative rigidity of short DNA results in frustration of the 

assembled structure
8
, which in turn causes only short range order as demonstrated in the pair 

distribution function below:  

 

Figure S36. Evidence of a disordered arrangement of octahedra with short DNA lengths. Experimental scattering pattern from 

octahedra with short DNA length (blue) with simulated scattering pattern from octahedra in a BCC arrangement (black and red) 

with 15 face-to-face distance (Figure S35). The lack of agreement between the experiment and the simulation suggest octahedra do 

not adopt a BCC arrangement for short DNA lengths. 

Figure S37. Pair distribution function analysis of octahedra superlattice scattering patterns. Pair distribution functions for 

assembled octahedra with short (blue, n=0) and intermediate (red, n=1) DNA lengths.  
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From these curves, the nearest center-to-center distances for the two samples are 

obtained: 76.8 nm for the n=0 linker (blue) and 105 nm for the n=1 linker (red, presented as a 

comparison). The distance between the center of an octahedron and the center of one of its faces 

is 23.9 nm. This means that, if the particles were aligned in a commensurate face-to-face 

arrangement, the interparticle distance for the n=0 linker would be predicted to be ~63 nm — 

much lower than the interparticle distance calculated via the PDF. This indicates that the lattice 

does not exhibit significant ordering through commensurate face-to-face interactions. 

Additionally, the octahedra superlattice with short, n=0 DNA (blue curve) has much shorter 

range ordering than that with intermediate DNA (red curves) as seen from the fast damping of 

correlation peaks.  
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Evidence for the Orientational Alignment of Octahedra in BCC Superlattices 

In order to probe the orientational alignment of octahedra within a BCC superlattice, 

several probable orientations were modeled and compared to the experimental scattering data. 

The case in which face-to-face association is maximized shows the best correlation to the 

experimental data (Figure S38, S39). 

Rotation around [0, 0, 1] with an angle = π/4 
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Figure S38. Evidence of a BCC arrangement of octahedra. Schematic illustration of 

octahedra in a BCC lattice with a rotation angle about [0, 0, 1] of π/4 (left). Illustration of the 

face-to-face overlap between neighboring triangular faces of octahedra in this arrangement 

(right). 

Figure S39. Comparison of experimental and simulated scattering patterns to investigate octahedra orientational 

alignment. Experimental SAXS data for octahedra (blue) with simulated peaks for octahedra in a BCC arrangement with a 

rotation angle about [0, 0, 1] of π/4 (black and red). The excellent agreement between the experiment and the simulation suggest 

octahedra adopt a preferential face-to-face orientation within the BCC unit cell 
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Rotation around [0, 0, 1] with an angle = 0 

 

 

 

Figure S40. Schematic illustration of octahedra in a BCC lattice with a rotation 

angle about [0, 0, 1] of 0. 

Figure S41. Comparison of experimental and simulated scattering patterns to investigate octahedra orientational 

alignment. Experimental SAXS data for octahedra (blue) with simulated peaks for octahedra in a BCC arrangement with a 

rotation angle about [0, 0, 1] of 0 (black and red). The poor correlation between the experiment and the simulation relative to the 

π/4 rotation angle case suggests octahedra do not adopt this orientation within the BCC unit cell. 
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Rotation around [0, 0, 1] with an angle = π/3 

 

 

 

 

 

 

 

Figure S42. Schematic illustration of octahedra in a BCC lattice with a rotation 

angle about [0, 0, 1] of π/3. 

Figure S43. Comparison of experimental and simulated scattering patterns to investigate octahedra orientational 

alignment. Experimental SAXS data for octahedra (blue) with simulated peaks for octahedra in a BCC arrangement with a 

rotation angle about [0, 0, 1] of π/3 (black and red). The poor correlation between the experiment and the simulation relative to the 

π/4 rotation angle case suggests octahedra do not adopt this orientation within the BCC unit cell. 
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Evidence for a BCC to FCC Phase Transformation in Octahedra Superlattices 

 In addition to observing a BCC lattice of octahedra for intermediate DNA lengths (n = 1, 

2) and an FCC lattice of octahedra for long DNA (n = 4), we also observed a scattering pattern 

which indicates both BCC and FCC lattices are present for a DNA length in-between these two 

cases (n = 3). In this scattering plot, peaks are observed that index to both BCC and FCC 

ordering (Figure S44). We hypothesize that at this DNA length there are domains of each type of 

lattice within the sample, which provides further evidence of a nanoparticle superlattice phase 

transformation as a function of DNA length and nanostructure shape. 

 

 

 

 

 

 

Figure S44. Evidence of a phase transformation in assembled octahedra. Whereas octahedra crystallized 

with short DNA lengths (n=1,2) showed BCC ordering and octahedra crystallized with long DNA (n=4) showed 

FCC ordering (Figure 3c,d; Figure S12), an intermediate DNA length (n=3) demonstrated both BCC and FCC 

ordering. Experimental data (blue) exhibit peaks corresponding to both a BCC arrangement of octahedra with 

orientational order (red) and an FCC arrangement of octahedra without orientational order (grey). Arrows denote 

specific peaks which are unique to BCC (red) and FCC (grey) lattices.   
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