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REPORT

DNA Polymerase Epsilon Deficiency Causes
IMAGe Syndrome with Variable Immunodeficiency

Clare V. Logan,1,32 Jennie E. Murray,1,2,32,* David A. Parry,1 Andrea Robertson,1 Roberto Bellelli,3
�Zygimant _e Tarnauskait _e,1 Rachel Challis,1,2 Louise Cleal,1,2 Valerie Borel,3 Adeline Fluteau,1

Javier Santoyo-Lopez,4 SGP Consortium, Tim Aitman,5 Inês Barroso,6 Donald Basel,7 Louise S. Bicknell,8

Himanshu Goel,9,10 Hao Hu,11 Chad Huff,11 Michele Hutchison,12 Caroline Joyce,13 Rachel Knox,14

Amy E. Lacroix,15 Sylvie Langlois,16 Shawn McCandless,17 Julie McCarrier,7 Kay A. Metcalfe,18

Rose Morrissey,19 Nuala Murphy,20 Irène Netchine,21 Susan M. O’Connell,20 Ann Haskins Olney,15

Nandina Paria,22 Jill A. Rosenfeld,23 Mark Sherlock,24 Erin Syverson,7 Perrin C. White,25

Carol Wise,22,25,26,27 Yao Yu,11 Margaret Zacharin,28 Indraneel Banerjee,29 Martin Reijns,1

Michael B. Bober,30 Robert K. Semple,14,31 Simon J. Boulton,3 Jonathan J. Rios,22,25,26,27

and Andrew P. Jackson1,*

During genome replication, polymerase epsilon (Pol ε) acts as the major leading-strand DNA polymerase. Here we report the identifica-

tion of biallelic mutations in POLE, encoding the Pol ε catalytic subunit POLE1, in 15 individuals from 12 families. Phenotypically, these

individuals had clinical features closely resembling IMAGe syndrome (intrauterine growth restriction [IUGR], metaphyseal dysplasia,

adrenal hypoplasia congenita, and genitourinary anomalies in males), a disorder previously associated with gain-of-function mutations

in CDKN1C. POLE1-deficient individuals also exhibited distinctive facial features and variable immune dysfunction with evidence of

lymphocyte deficiency. All subjects shared the same intronic variant (c.1686þ32C>G) as part of a common haplotype, in combination

with different loss-of-function variants in trans. The intronic variant alters splicing, and together the biallelic mutations lead to cellular

deficiency of Pol ε and delayed S-phase progression. In summary, we establish POLE as a second gene in which mutations cause IMAGe

syndrome. These findings add to a growing list of disorders due to mutations in DNA replication genes that manifest growth restriction

alongside adrenal dysfunction and/or immunodeficiency, consolidating these as replisome phenotypes and highlighting a need for

future studies to understand the tissue-specific development roles of the encoded proteins.

DNA replication is a fundamental cellular process necessary

to ensure the faithful transmission of genetic information.

In eukaryotes, threehighly conservedDNApolymerases, po-

lymerase epsilon, delta, and alpha, act in concert at the repli-

cation fork. Polymerase epsilon (Pol ε) is the major enzyme

responsible for the synthesis of the leading strand1 and is

consequently an essential gene.2 POLE encodes the catalytic

subunitofPol ε (POLE1), and somatic andgermlinemissense

mutations affecting theproofreadingdomainofPOLE1have

been associated with colon and endometrial cancer.3–6

Microcephalic primordial dwarfism comprises a group

of prenatal-onset extreme growth disorders characterized

by intrauterine growth retardation, short stature, and

microcephaly. Genes involved in cell cycle progression,

including multiple components of the replication

licensing machinery, have been identified as monogenic

causes of this disorder.7–11 As the molecular basis for

many affected individuals remains to be determined, we

performed whole-genome sequencing studies to identify

further genes and facilitate more comprehensive diagnosis.
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Whole-genome sequencing (WGS) of 48 individuals

with microcephalic primordial dwarfism identified hetero-

zygous POLE (GenBank: NM_006231.3) loss-of-function

(LoF) variants in three subjects (P1, P3, P4; Table 1).

These LoF variants were significantly enriched in our

cohort compared to a control WGS dataset (GnomAD,12

p ¼ 5.1 3 10�5, Fisher’s exact test, Table S1). As these var-

iants were present in the unaffected parents, the

WGS data were further evaluated and a second rare in-

tronic variant in POLE identified, c.1686þ32C>G (dbSNP:

rs762985435). This was present in trans with the LoF mu-

tation in all three probands (Table 1). Targeted sequencing

of POLE and interrogation of existing whole-exome

sequencing (WES) data in additional cases of primordial

dwarfism identified five additional subjects compound

heterozygous for LoF alleles and the c.1686þ32C>G

variant (P5–P9, Table 1). Notably, a clinical diagnosis of

IMAGe syndrome (GeneReviews in Web Resources)

(MIM: 614732) had been considered in individuals P1

and P3, with adrenal failure also reported in P5, P6, and

P7. We therefore investigated cases of IMAGe syndrome

drawn from other cohorts without an existing molecular

diagnosis (i.e., CDKN1C mutation negative). These

included three previously published IMAGe-affected case

subjects.13,14 Analysis of their WGS data identified addi-

tional POLE LoF variants inherited in trans with the in-

tronic variant in individuals P11–P15 (Table 1). The

c.1686þ32C>G variant was part of a common haplotype

in all individuals where WES/WGS performed, extending

over 921 kbp (Figure S2, chr12:132341818–133263107,

GRCh38). In P10 a missense variant (c.3019G>C) encod-

ing a p.Ala1007Pro substitution was found, at a residue

conserved to yeast (Figure S1) within the polymerase

domain of the protein (Figure 1). All variants identified

were sufficiently rare (MAF < 0.000112) and, where DNA

available, segregation in families was consistent with an

autosomal recessively inherited disorder (Table 1).

Phenotypically, affected individuals had severe growth

failure of prenatal onset (Figure 2, Table S2). IUGR was pre-

sent in all case subjects (birth weight was �3.0 5 0.8 SD)

with significant short stature evident postnatally (height

�8.1 5 2.4 SD). While head circumference was also signif-

icantly reduced (OFC �5.4 5 1.5 SD), this was less severe,

resulting in a relative macrocephaly. Those affected had a

common facial appearance with micrognathia, crowded

dentition, long thin nose, short wide neck, and small,

low-set, posteriorly rotated ears (Figure 2). 12 individuals

had adrenal insufficiency and all affected males had geni-

tourinary abnormalities including bilateral cryptorchidism

and/or hypospadias, with the majority of case subjects ful-

filling clinical criteria for IMAGe syndrome (GeneReviews

in Web Resources; Table 2, Table S3, Supplemental Note).

Table 1. Biallelic POLE Mutations (GenBank: NM_006231.3)

ID Fam Sex

Allele 1 Allele 2

Mat
Allele

Pat
Allele

Country
of Origin

Nucleotide
Change

Amino Acid
Consequence MAF

Nucleotide
Change

Amino Acid
Consequence MAF

P1 1 M c.2091dupC p.Phe699Valfs*11 0 c.1686þ32C>G p.Asn563Valfs*16 0.000071 1 2 UK

P2 1 F c.2091dupC p.Phe699Valfs*11 0 c.1686þ32C>G p.Asn563Valfs*16 0.000071 1 2 UK

P3 2 M c.62þ1G>A Essential Splice
Site Intron 1

0 c.1686þ32C>G p.Asn563Valfs*16 0.000071 2 1 Ireland

P4 3 F c.5940G>A p.Trp1980* 0.000016 c.1686þ32C>G p.Asn563Valfs*16 0.000071 2 1 Australia

P5 4 M c.4728þ1G>T Essential Splice
Site Intron 36

0 c.1686þ32C>G p.Asn563Valfs*16 0.000071 2 1 USA

P6 5 F c.3264_3275þ13del Essential Splice
Site Intron 26

0.000016 c.1686þ32C>G p.Asn563Valfs*16 0.000071 1 2 Canada

P7 6 M c.1A>T p.? 0.000081 c.1686þ32C>G p.Asn563Valfs*16 0.000071 n/a n/a USA

P8 7 M c.1A>T p.? 0.000081 c.1686þ32C>G p.Asn563Valfs*16 0.000071 2 1 Ireland

P9 7 F c.1A>T p.? 0.000081 c.1686þ32C>G p.Asn563Valfs*16 0.000071 2 1 Ireland

P10 8 F c.3019G>C p.Ala1007Pro 0.000009 c.1686þ32C>G p.Asn563Valfs*16 0.000071 1 2 Ireland

P11 9 F c.5265delG Ile1756Serfs*5 0 c.1686þ32C>G p.Asn563Valfs*16 0.000071 2 1 Australia

P12 9 M c.5265delG Ile1756Serfs*5 0 c.1686þ32C>G p.Asn563Valfs*16 0.000071 2 1 Australia

P13 10 F c.2049C>G p.Tyr683* 0.000028 c.1686þ32C>G p.Asn563Valfs*16 0.000071 1 2 Australia

P14 11 M c.6518_6519delCT p.Ser2173Phefs*130 0.000089 c.1686þ32C>G p.Asn563Valfs*16 0.000071 2 1 USA

P15 12 M c.801þ2T>C Essential Splice
Site Intron 8

– c.1686þ32C>G p.Asn563Valfs*16 0.000071 1 2 USA

Abbreviations: ID, individual number; Fam, family number; Mat, maternal; Pat, paternal; n/a, not available. All subjects harbored a loss-of-function mutation in
combination with an intronic variant on the alternate allele identified as part of a shared haplotype and found to alter splicing in RNA studies. MAF indicates minor
allele frequency in European (non-Finnish) population observed in gnomAD. None of the variants were present in any Non-European population in gnomAD.
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Osteopenia and developmental dysplasia of the hip (DDH)

were frequently observed and café-au-lait patches were

notably present in a third of individuals.

A single homozygous intronic variant (c.4444þ3A>G)

in POLE has previously been reported to be associated

with immunodeficiency, lymphopenia, and short stature

(facial dysmorphism, immunodeficiency, livedo, and short

stature, aka FILS syndrome [MIM: 615139]).15,16 Five

affected individuals identified in this study also had

increased susceptibility to respiratory tract infections,

with lymphocyte subset deficiencies and/or IgM hypogam-

maglobinemia identified in P1, P3, P4, P8, P9, P14, and P15

(Table 2, Table S4). Deficiency of natural killer cells was

present in P1, P3, and P8. P1 had the most profound im-

munodeficiency, developing CMV pneumonitis and then

subsequently developed EBV haemophagocytic lympho-

histiocytosis, requiring an allogeneic bone marrow trans-

plant. Notably, this subject’s sister (P2), who had the

same compound heterozygous POLE mutations, died at

22 months from HSV infection. Therefore, our findings

establish that the phenotype spectrum of biallelic POLE

mutations extends from IMAGe syndrome to include

immunodeficiency, in line with the phenotype and

pathogenicity of the previously reported c.4444þ3A>G

mutation.15,16

To establish whether the c.1686þ32C>T variant affected

the POLE transcript, RNA studies were performed on pri-

mary fibroblast lines derived from two subjects (P1, P3).

RT-PCR using primers spanning POLE intron 15 demon-

strated the presence of a larger PCR product (Figure 3),

which capillary sequencing established to be due to

retention of part of intron 15 within POLE transcripts

(Figure S3). A minigene assay was then performed to assess

splicing of this genomic segment and to directly confirm

the contribution of the c.1686þ32C>G variant. This

demonstrated that the c.1686þ32C>G variant markedly

impaired splicing of the usual exon 15 splice donor site,

leading to preferential use of a downstream alternate splice

donor site in intron 15, although some canonical splicing

also occurred (Figure 3). The inclusion of 47 bp of intronic

POLE

POLE1

p.?

IMAGe

p.Phe699Valfs*11

p.Tyr683* p.Ala1007Pro

p.Trp1980*p.Asn563Valfs*16

p.Leu424Valp.Asp368Val

p.Asn363Lys
Cancer predisposition

p.Pro436Ser

p.Tyr458Phe

p.Ile1756Serfs*5
p.Ser2173Phefs*130

228611535312660

c.1A>T

c.62+1G>A

c.2091dupCc.801+2T>C

c.2049C>G c.5940G>Ac.4728+1G>Tc.3019G>C

c.3264_3275+13del c.5265delG c.6518_6519delCTc.1686+32C>G

Exo Pol
471

Figure 1. Mutations Causing POLE-Asso-
ciated IMAGe Syndrome Are Distinct
from Mutations Conferring a Non-syn-
dromic Susceptibility to Cancer
Schematic of the POLE gene, which en-
codes POLE1, the catalytic subunit of
DNA polymerase epsilon. Domains: Pol,
polymerase; Exo, exonuclease. Mutations
identified in POLE subjects indicated
above gene and protein (green). Recurrent
intronic mutation underlined. For com-
parison, heterozygous germline missense
mutations located in the exonuclease
domain predisposing to colorectal can-
cer and other malignancies highlighted
below (red).
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Figure 2. Individuals with Biallelic POLE Mutations Have Severely Impaired Pre- and Post-natal Growth and a Recognizable Facial
Gestalt
(A) Photographs of POLE-deficient subjects demonstrating facial similarities. Written consent obtained from all families for
photography.
(B and C) Severe pre-natal onset growth restriction occurs in POLE-deficient individuals.
(B) Adult POLE-deficient subject next to a control individual of average stature.
(C) Growth is severely impaired pre- and postnatally. Z-scores (standard deviations from population mean for age and sex) for birth
weight and postnatal height and head circumference (OFC). Dashed lines 95% confidence interval for general population. Circles,
individual subject data points; red bars, mean values.

1040 The American Journal of Human Genetics 103, 1038–1044, December 6, 2018



DNA in the variant transcript results in a frameshift, which

would lead to premature termination (p.Asn563Valfs*16).

While this transcript might be targeted for nonsense-medi-

ated decay, any translated protein would also be non-func-

tional given that this frameshift occurs at the start of the

polymerase catalytic domain. Combined with a LoF muta-

tion on the second allele, substantial reduction in POLE1

was therefore anticipated. Subsequent immunoblotting

of total protein extracts from of primary fibroblasts from

affected subjects confirmed that POLE1 levels were indeed

markedly depleted (Figure 3; 5% 5 3% for P1 and 11% 5

4% P3, relative to the mean of both control subjects and

normalized to vinculin loading control; mean 5 SD for n

¼ 2 independent experiments), with chromatin fraction-

ation experiments demonstrating reduction of POLE1 in

both soluble and chromatin-bound fractions (Figure S4).

Taken together with the consistent clinical phenotype

across case subjects, we concluded that the identified

POLE variants were pathogenic, resulting in a phenotype

spectrum substantially overlapping IMAGe syndrome.

In keeping with an essential requirement for POLE in

eukaryotes,2 the ‘‘leaky’’ c.1686þ32C>G splice mutation

permitted residual expression of functional POLE1 in all

case subjects. This mutation in trans with truncating muta-

tions would then be expected to lead to marked but partial

loss of function. As POLE encodes POLE1, the catalytic sub-

unit of the major leading-strand DNA polymerase Pol ε,

reduced chromatin levels of POLE1 would therefore be ex-

pected to impact on the availability of Pol εDNApolymerase

activity during its canonical function in DNA replication.

Consistent with this, time-course FACS analysis demon-

strated delayed cell-cycle progression of BrdU-labeled pri-

mary fibroblasts from P1 and P3, indicative of impaired

S-phase progression (Figure 3). While no viable model of

POLE1 deficiency exists, a Pole4�/� mouse has been gener-

ated, which is similarly deficient for the Pol ε holoen-

zyme.17 This mouse also has significant prenatal onset

growth failure, reduced brain size, and markedly reduced

lymphocyte levels. Analysis of embryonic fibroblasts derived

from this mouse alongside POLE primary human fibroblasts

(derived from P1 and P3 in this study) established that in

both cases Pol ε deficiency leads to reduced levels of chro-

matin-loaded Pol ε complexes, resulting in replication stress

arising from reducednumbers of active replication origins.17

Table 2. Individuals with Biallelic Mutations in POLE Were Clinically Diagnosed with Primordial Dwarfism and Features of IMAGe
Syndrome

ID Fam Sex Age I MþSI A Ge �I Other Features

P1 1 M 18 Y Y Y Y Y scoliosis, osteopenia, small patella,
seizures, gastrostomy, eczema

P2 1 F 1 Y Y Y – Y –

P3 2 M 7 Y Y Y Y Y midline accessory incisor, osteopenia,
infant eczema

P4 3 F 50 Y Y N – Y IgM paraproteinaemia

P5 4 M 12 Y NA Y Y Y hypopituitarism, T cell lymphoma,
gastrostomy, absent patella

P6 5 F 10 Y Y Y – Y bilat coxa valga, 11 ribs, 6 lumbar
vertebrae, scoliosis, gastrostomy,
infant eczema

P7 6 M 13 Y Y Y Y N hypopituitarism, atrial septal defect,
brachydactyly, gastrostomy

P8 7 M 3 Y Y N Y Y DDH, gastrostomy

P9 7 F 2 Y Y N – Y DDH, gastrostomy

P10 8 F 39 Y Y Y – N DDH, 11 ribs, clinodactyly,
osteopenia, café au lait patches

P11 9 F 0.2 Y NA Y – Y café au lait patch

P12 9 F 12 Y Y Y – N –

P13 10 M 22 Y Y Y Y N DDH, café au lait patch

P14 11 F 18 Y Y Y – Y gastrostomy, hypercalaemia in
infancy, café au lait patches,
DDH, kyphoscoliosis

P15 12 M 31 Y NA Y Y Y café au lait patches, seizures,
osteopenia, osteoporosis, nodular
sclerosis, Hodgkin’s lymphoma

Abbreviations: ID, individual number; Fam, family number; I, intrauterine growth restriction; MþSI, skeletal involvement: metaphyseal dysplasia or other skeletal
abnormalities reported in CDKN1C IMAGe-affected individuals (NA, not assessed); A, adrenal insufficiency; Ge, genitourinary abnormalities in males (– female,
genitourinary anomalies not applicable); �I, immunodeficiency, either increased susceptibility to infections or documented lymphopenia/hypogammaglobine-
mia; DDH, developmental dysplasia of the hip; Y, yes; N, no. See Tables S1–S4 for extended clinical data and morphometrics.
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IMAGe syndrome has previously been found to be

caused by dominant gain-of-function mutations in the im-

printed gene, CDKN1C.18,19 Here, we establish mutations

of POLE as an autosomal-recessive cause of the IMAGe

phenotype. These mutations contrast with heterozygous

germline and somatic cancer-predisposing mutations that

affect the exonuclease domain of POLE13–6 (Figure 1).

IMAGe and cancer mutations are likely to have differing

functional outcomes, respectively leading to deficient

DNA replication or to impaired proof-reading.20 Hence, a

similar cancer predisposition in POLE1-deficient individ-

uals or POLE heterozygous carriers cannot be assumed.

However, P5 developed a T cell lymphoma at age 11 and

P15 developed Hodgkin’s lymphoma at age 28. Given

also the increased lymphoma rates in Pole4�/� mice,17

POLE1 deficiency may therefore confer an increased risk

of lymphoma.

All CDKN1C IMAGe mutations cluster within its prolif-

erating cell nuclear antigen (PCNA) binding domain,18,19

targeting the PCNA binding PIP-box motif.21 As PCNA

loads with Pol ε at replication initiation (Figures 4 and

S5), the phenotypic overlap with POLE-associated IMAGe

syndrome suggests a mechanistic link. Supporting this

notion, biochemical studies of aXenopus homolog suggests

that CDKN ubiquitination and subsequent degradation

is mediated by PCNA/polymerase loading23,24 (Fig-

ure S5). Furthermore, single homozygous mutations in

MCM411,25 (MIM: 609981) and POLE226 have been associ-

ated with IUGR and short stature, alongside immunodefi-

ciency, respectively with and without adrenal failure.

Likewise, several families with GINS1 biallelic mutations

have been reported to be associated with pre/postnatal

growth restriction, chronic neutropenia, and NK cell defi-

ciency (MIM: 610608).10 Hence, the identification of a

cohort of individuals with POLE mutations that encom-

passes all these features consolidates this as a group of

replisome-associated disorders (Figure 4, Table S5). Replica-

tion stress and p53-mediated cell death17 likely explain the

immunodeficiency as well as global growth failure in

POLE1-deficient individuals. However, why impaired repli-

some function should have a particularly strong impact on

specific lymphoid lineages (T/B cells in POLE1/2-deficient

subjects and NK cells in MCM4/GINS1-deficient individ-

uals) or on adrenal cortical cells is unclear. Notably,

another distinct form of primordial dwarfism, Meier-Gor-

lin syndrome (defined by the triad of short stature, patella

hypoplasia, and microtia [MIM: 224690]) is also caused by

biallelic (or de novo) mutations in genes involved in replica-

tion licensing and initiation7–9,27,28 (Figure 4). Further

studies to understand the specific role(s) of the encoded

A B

C D E

Figure 3. Common Intronic Variant Identified Causes Aberrant Splicing and POLE-Deficient Cells Show Deficiency of Polymerase
Epsilon and Slowed S-phase Progression
(A) The c.1686þ32C>G mutation causes aberrant splicing of intron 15 in subject cells. RT-PCR of POLE transcripts from primary fibro-
blasts. Primers indicated by arrows in schematic. P1, P3, POLE-deficient subjects; C1, C2, control subjects.
(B) Minigene assay demonstrating that aberrant splicing is a direct consequence of the c.1686þ32C>G mutation. þve control, point
mutation in splice donor site, c.1686þ1G>A. 50 & 30 indicate artificial vector-associated exons.
(C) POLE1 levels are markedly reduced in subject fibroblasts. Immunoblot of total cell extracts. POLE1 antibody raised against AA1-176.
Vinculin, loading control. * non-specific band.
(D and E) Fibroblast cells from affected individuals exhibit delayed S phase progression. Schematic, experimental set-up.
(D) Representative FACS plots.
(E) Quantification of n ¼ 3 affected and n ¼ 3 control cell lines from representative experiment (of n ¼ 3 expts with nR 2 biological
replicates per group). Mid-S-phase mean (5SEM) BrdU-labeled cells, normalized to t ¼ 0 time point are plotted for each group. p value,
two-way ANOVA.
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replication proteins during development, along with the

cellular and biochemical basis for the relationship between

CDKN1C and Pol ε, will therefore be of interest.
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Ferraz-de-Souza, B., Délot, E.C., Rodriguez-Fernandez, I.A.,
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