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DNA Relatedness among Pseudomonas Strains Isolated from Natural

Mineral Waters and Proposal of Pseudomonas veronii sp. nov.

MALIKA ELOMARI,! LOIC COROLER,! BART HOSTE,>» MONIQUE GILLIS,?
DANIEL IZARD,' ano HENRI LECLERC'*

Laboratoire de Bactériologie-Hygiéne, Faculté de Médecine Henri Warembourg, 59045 Lille Cedex, France," and
Laboratorium voor Microbiologie, Universiteit Ghent, B-9000 Ghent, Belgium*

The taxonomic position of eight strains isolated from mineral water and previously grouped in the authentic
pseudomonads on the basis of a phenotypic analysis (cluster Ib of M. Elomari, L. Coroler, D. Izard, and H.
Leclerc [J. Appl. Bacteriol. 78:71-81, 1995]) has been further studied by DNA-DNA hybridizations. Using the
S1 nuclease method at 60°C and labeled reference DNA from a representative strain, CFML 92-134, we showed
that members of cluster Ib constituted a homogeneous group with a relative binding ratio of greater than 80%
and changes in melting temperature of less than 1°C. With a total of 67 strains representing known or partially
characterized species of the genus Pseudomonas, only 4 to 47% DNA hybridization and changes in melting
temperature of between 8 and 20°C were found, the highest hybridization values being measured with members
of the saprophytic fluorescent psendomonads. Since cluster Ib could also be clearly differentiated from
members of the latter group and from other phenotypic clusters containing isolates from mineral water, we
designated the Ib strains members of a new Pseudomonas species for which the name Pseudomonas veronii sp.
nov. has been proposed. Members of this species grew on a-aminobutyrate, sucrose, butyrate, isobutyrate,
erythritol, L-tryptophan, and trigonelline as sole sources of carbon and energy. The average G+C content of
the DNA of the eight strains of P. veronii was 61.5 £ 0.5 mol%. The type strain is CFML 92-134" (CIP 104663"),

with a G+C content of 61 mol%. The clinical significance of P. veronii is unknown.

Pseudomonadaceae is a very large and important family of
gram-negative bacteria including the genera Pseudomonas,
Xanthomonas, Zoogloea, and Frateuria (32, 34). The genus
Pseudomonas is particularly interesting, because Pseudomonas
strains are important not only medically, as opportunistic
pathogens that cause disease in animals and humans (33), but
also environmentally and agriculturally, since many species are
phytopathogens (18). It has been recognized that the members
of this taxon as described by Palleroni et al. (38) are phyloge-
netically too heterogeneous to be considered a single genus. At
least five groups have been recognized on the basis of DNA-
rRNA hybridizations, and some of these groups are as distantly
related to each other as they are to Escherichia coli (32).
Pseudomonas TRNA group I (32) is part of rRNA superfamily
IT (11) or the gamma subclass of the Proteobacteria (40, 46),
where it constitutes a separate rRNA complex (11-13, 41, 51).
This group represents the authentic pseudomonads containing
the type species Pseudomonas aeruginosa (32). Consequently,
the members of the other four rRNA groups belonging in the
beta and gamma subclasses have been classified in other ap-
propriate existing genera or in newly created genera such as
Stenotrophomonas (36), Comamonas (13, 48), Acidovorax (52),
Hydrogenophaga (50), Sphingomonas (55), Burkholderia (53),
Ralstonia (54), Telluria (5), and the recently proposed genus
Brevundimonas (44).

The genus Pseudomonas sensu stricto includes saprophytic
and phytopathogenic fluorescent pseudomonads, nonpig-
mented denitrifying strains of the P. stutzeri group (37), and
nonpigmented strains that constitute the P. alcaligenes group
(39). The saprophytic species of fluorescent pseudomonads are
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characterized by the production of water-soluble pigments
(pyoverdins) and can be distinguished from the phytopatho-
genic species by their positive arginine dihydrolase reaction,
their more rapid growth in most media, and their ability to
utilize certain substrates. The complexity of the fluorescent
saprophytes other than P. aeruginosa (considered a homoge-
neous species [32]) has been well illustrated by extensive stud-
ies (2, 7, 23, 29, 30, 35, 47). In total, 81 biovars were recognized
by Jessen (23). This number was reduced to seven P. fluore-
scens biovars and two biovars of P. putida by Stanier et al. (47).
Champion et al. (7) defined the relationships among strains of
fluorescent pseudomonads by their phenotypic properties,
DNA-DNA hybridization, and quantitative microcomplement
fixation studies. Five biovars in P. fluorescens are now recog-
nized by Palleroni (32), since two biovars previously recognized

FIG. 1. Electron micrograph of a cell of P. veronii CFML 92-134T showing
the single polar flagellum. Magnification, X20,000.
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TABLE 1. G+C content of eight P. veronii strains and levels of DNA-DNA hybridization with members of clusters I1a and V

Labeled DNA from strain:

Fhenotypic Strain® Origin of CFML 92-1347 CFML 921117 e
) mineral water
subcluster” RBR AT, AT, (mol%)
(%) o RBR (%) R

Ib CFML 92-134T A1 100 23 61
CFML 92-140 A2 98 38 61
CFML 92-123 B(3)1 96 53 61
CFML 92-136 A1 93 45 62
CFML 92-143 A1 90 51 61
CFML 92-124 B(4)1 89 0 45 61
CFML 92-138 A(3)1 87 0.5 56 61
CFML 92-133 A2 80 1 47 61

ITal® CFML 92-1117 D@3)3 31 100
CFML 92-108 D(2)3 39 94
CFML 92-113 D4)3 56 93
CFML 92-112 D@2)2 35 92
CFML 92-103 D#1 47 92 0
CFML 92-104 D)1 36 87 0
CFML 92-102 D@31 43 84 2

a2 CFML 92-116 B(1)2 20 32
CFML 92-126 B(2)2 33 31
CFML 92-120 B(1)1 32 29
CFML 92-125 B(3)2 42 28
CFML 92-115 Cc(2)1 29 27
CFML 92-119 B()3 37 25
CFML 92-122 C2)1 24 21

\'% CFML 92-101 D(2)1 41 33
CFML 92-114 C(2)1 39 43
CFML 92-142 A@)1 38 40
CFML 92-144 A(2)3 38 31
CFML 92-131 A1 33 15
CFML 92-107 D@3)3 32 48

“1Ia could be divided into two subclusters, Ilal and I1a2, on genomic grounds.

5 CFML, Collection de la Faculté de Médecine, Lille, France.

¢ All strains were isolated from four French natural mineral waters sources, called A, B, C, and D (Contrexeville [Pavillon spring], Volvic [Clairvic spring], Vittel
[Grande source], and Evian, [Cachat spring], respectively) at the point of emergence (1), in the pipeline (2), before bottling (3), and after bottling (4). For each brand,

samples were examined once a year, at time 1, 2, or 3.
¢ RBR, relative binding ratio.
¢ The subcluster ITal is described as P. rhodesiae sp. nov. (8).

appeared so distinct that they were separated under their orig-
inal species names, P. chlororaphis and P. aureofaciens (35).
Both species were later unified in P. chlororaphis (24). Pal-
leroni (32) recognized two biovars in P. putida. Barrett et al.
(2) described two new biovars: biovar VI of P. fluorescens and
biovar C of P. putida. All these studies emphasized the extreme
heterogeneity of fluorescent saprophytic members of the genus
Pseudomonas.

Nevertheless, pseudomonad identification at the species
level continues to be a difficult task, especially for environmen-
tal isolates from aquatic ecosystems where pseudomonads are
in the majority. Natural mineral waters can be characterized by
their bacterial flora and their chemical and physical composi-
tion, which are considered indicators of natural and original
qualities of the water (1, 43). These bacteria, initially present in
very small numbers (less than 10 CFU/ml), multiply normally
to reach, within a few days, levels of 10° to 10° CFU/ml,
depending on intrinsic and extrinsic conditions (4, 6). The
main factors determining the growth of bacteria in bottled
water are the mineral composition of this water, the nature and
level of the organic matter, the dissolved oxygen concentration,
and the temperature of storage. These factors have been stud-

ied by several workers (4, 6, 15, 16, 25, 28, 42, 43). Nutrient
concentrations, although low, are sufficient to permit the slow
growth of some bacteria initially present in the spring (31, 49).
Studies of the bacterial flora of mineral waters have shown that
these bacteria are exclusively heterotrophic, oxidative, and
gram negative. Our group has also demonstrated that approx-
imately 80% of strains isolated from natural mineral waters
were not identifiable and that the majority of strains which
could be identified were fluorescent members of the genus
Pseudomonas (20, 21).

In a previous numerical taxonomy study (17), we provided
evidence for the existence of three new phenotypic clusters (Ib,
IIa, and V) among strains isolated from natural mineral wa-
ters; phenotypically they are related to the fluorescent species
of the genus Pseudomonas. Clusters Ib and Ila included only
natural mineral water strains. Cluster V contained 13 mineral
water strains and three culture collection strains of P. fluore-
scens biovar IIL In this report we propose a new species, P.
veronii sp. nov., for the organisms of cluster Ib on the basis of
DNA-DNA hybridization and thermal stability of the DNA-
DNA h¥brids. The type strain is P. veronii CFML 92-134 (CIP
104663").
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TABLE 2. Levels of DNA-DNA hybridization between labeled
DNA of P. veronii CFML 92-134" and various strains of

Pseudomonas species of section I and V (33)

Source of unlabeled DNA“ Binding (%)” AT, (°C)

P. aeruginosa ATCC 101457 35 20
P. aeruginosa ATCC 27853 16 ND¢
P. aeruginosa ATCC 15692 8 ND
P. fluorescens biovar I ATCC 135257 37 16
P. fluorescens biovar I ATCC 17563 39 ND
P. fluorescens biovar I ATCC 17397 18 ND
P. fluorescens biovar II ATCC 17816 47 9
P. fluorescens biovar 11 DSMZ 50106 42 ND
P. fluorescens biovar II ATCC 17815 41 ND
P. fluorescens biovar Il ATCC 17482 40 ND
P. fluorescens biovar III ATCC 17559 33 ND
P. fluorescens biovar III ATCC 17400 31 ND
P. fluorescens biovar 111 ATCC 17571 14 ND
P. fluorescens biovar IV DSMZ 50415 30 ND
P. fluorescens biovar IV ATCC 12983 19 ND
P. fluorescens biovar V ATCC 14150 44 12
P. fluorescens biovar V ATCC 17518 40 ND
P. fluorescens biovar V ATCC 15916 38 8
P. fluorescens biovar V ATCC 17386 26 ND
P. fluorescens biovar V DSMZ 50148 24 ND
P. fluorescens biovar V ATCC 17573 19 ND
P. marginalis ATCC 108447 36 11
P. marginalis DSMZ 50275 44 17
P. marginalis DSMZ 50276 35 ND
P. chlororaphis DSMZ 50083 37 ND
P. chlororaphis ATCC 9447 37 ND
P. chlororaphis ATCC 17414 28 ND
P. aureofaciens CCEB 5187 34 18
P. aureofaciens ATCC 17415 37 ND
P. putida biovar A ATCC 12633" 22 17
P. putida biovar A CFML 90-57 25 ND
P. putida biovar A CFML 90-46 21 ND
P. putida biovar A CFML 90-40 21 ND
P. putida biovar A DSMZ 50208 20 ND
P. putida biovar A CFML 90-39 20 ND
P. putida biovar A CFML 90-47 18 ND
P. putida biovar A CFML 90-52 15 ND
P. putida biovar A CFML 90-139 9 ND
P. putida biovar A CFML 90-42 9 ND
P. putida biovar A CFML 90-49 7 ND
P. putida biovar B ATCC 17484 32

P. putida biovar B ATCC 17430 28

P. putida biovar B CCUG 1317 25

P. lundensis CCM 5737 18

P. lundensis CCUG 18758 19

P. syringae ATCC 193107 27

P. savastanoi CFBP 1670 31

P. savastanoi CFBP 2088 39

P. savastanoi CFBP 1838 36

P. viridiflava ATCC 132237 37

P. cichorii DSMZ 50259* 16

P. agarici ATCC 259417 14

P. asplenii ATCC 238357 21

P. caricapapayae NCPPB 18737 9

Continued
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TABLE 2—Continued

Source of unlabeled DNA“ Binding (%)” AT, (°C)
P. tolaasii NCPPB 21927 35
P. tolaasii NCPPB 1616 43
P. stutzeri ATCC 175887 7
P. stutzeri ATCC 17591 8
P. stutzeri ATCC 17587 7
P. stutzeri ATCC 17686 6
P. mendocina ATCC 254117 4
P. mendocina ATCC 25412 14
P. alcaligenes ATCC 149097 11
P. pseudoalcaligenes ATCC 174407 5
P. pseudoalcaligenes ATCC 12815 6
P. fragi ATCC 49737 14
P. fragi ATCC 27362 18

“ Abbreviations and locations of culture collections: ATCC, American Type
Culture Collection, Rockville, Md.; CCEB, Culture Collection of Entomogenous
Bacteria, Institute of Entomology, Czechoslovakia Academy of Sciences, Prague
6, Czech Republic; CCM, Czechoslovak Collection of Microorganisms, J. E.
Purkyné University, Brno, Czech Republic; CCUG, Culture Collection, Univer-
sity of Goteborg, Goteborg, Sweden; CFML, see Table 1; DSMZ, Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH, D-38124 Braun-
schweig, Germany; NCIB, National Collection of Industrial Bacteria, Torry Re-
search Station, Aberdeen AB9 8DG, Scotland; NCPPB, National Collection of
Plant Pathogenic Bacteria, Plant Pathology Laboratory, Harpeaden, England;
and PDDCC, Culture Collection of Plant Diseases Division, New Zealand De-
partment of Scientific and Industrial Research, Auckland, New Zealand.

b Level of relative binding with labeled DNA from strain CFML 92-1347 at
60°C.

¢ ND, not determined.

MATERIALS AND METHODS

Bacterial strains. Ninety-five strains previously listed in detail (17) were in-
cluded in this study. These organisms comprised 28 wild strains isolated from
four French natural mineral water sources (A, B, C, and D) (Contrexeville
[Pavillon spring], Volvic [Clairvic spring], Vittel [Grande source], and Evian
[Cachat spring], respectively) at different sites (see Table 1) and identified as
fluorescent pseudomonads) according to the criteria of Palleroni (32), and 67
(type and collection) strains included for control purposes (see Table 2). They
represent 13 Pseudomonas species (P. aeruginosa, P. fluorescens biovars I to V, P.
marginalis, P. chlororaphis, P. aureofaciens, P. putida biovars A and B, P. syringae,
P. viridiflava, P. cichorii, P. stutzeri, P. mendocina, P. alcaligenes, and P. pseudoal-
caligenes) belonging to section I of the genus Pseudomonas as described by
Palleroni (32); the psychrotrophic species of importance to food microbiology, P.
fragi and P. lundensis (29, 30); the fluorescent organisms isolated from plants and
mushrooms of Palleroni’s section V (34), P. agarici, P. asplenii, P. caricapapayae,
and P. tolaasii; and P. savastanoi, a recently described species among the patho-
var strains of P. syringae (18).

Flagellation study. The flagellation of the bacteria was investigated with an
electron microscope by performing a negative-staining technique (22) on fixed
organisms. The bacteria were suspended in 0.5% (wt/vol) formaldehyde (neutral)
and mixed with an equal volume of 2% (wt/vol) potassium phosphotungstate as
described previously (22). The stained bacteria were examined with a Japan
Electronic Optical Laboratory type 100 CX transmission electron microscope.

DNA preparation and DNA-DNA hybridization. Strains were grown on Muel-
ler-Hinton medium plates. Chromosomal DNA was extracted, purified, and
sheared as described previously (3, 26). Native DNA was labeled in vitro with
[*H]cytosine by nick translation (19). The procedure used for the hybridization
experiments (the S1 nuclease-trichloroacetic acid method) has been previously
described (9, 19).

Thermal stability of reassociated DNAs. The temperature at which 50% of
reassociated DNA became hydrolyzable by the S1 enzyme (melting temperature
[7,,.]) was determined by using the method of Crosa et al. (9). The AT, was the
difference between the T,,, of the heteroduplex and T, of the homoduplex.

DNA base composition. The G+C contents of DNAs were calculated from
T,.s (27) by the equation of De Ley (10).
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TABLE 3. Features differentiating between P. veronii, Pseudomonas
rhodesiae, and saprophytic, fluorescent species and biovars of
Pseudomonas section I (38)

Characteristic

P. veronii sp. nov.

P. rhodesiae sp. nov.

P. fluorescens biovar 1
P. fluorescens biovar 11
P. fluorescens biovar I11
P. fluorescens biovar IV
P. fluorescens biovar V
P. chlororaphis

P. aureofaciens

P. putida biovar A

P. putida biovar B

Pyocyanin production
Lipase production
Denitrification
Growth at 4°C
Growth at 41°C
Lecithinase production  —
Gelatin liquefaction

I+ L2

+ +
+ 00+ +
I+ + O

I+ +
(eI
I+ 19

+ 1+ 1 + + + | P aeruginosa

L+ 0+
++ 1+ 400
++ 1 ++00
+O 1O O
+ o+

+O 0+ +00
|

o}

Assimilation of;
p-Ribose, mannitol
p-Xylose
L-Arabinose
L-Rhamnose
Glucose, Gluconate
D-Mannose
p-Galactose
p-Fructose
Sucrose
Trehalose
2-Ketogluconate
Mucate
Propionate
Butyrate
Isobutyrate
Valerate
Isovalerate
Caproate
Malonate
Adipate
Sebacate
Pimelate, suberate
Azelate
p-Malate
p-Tartrate
L-Tartrate
m-Tartrate
Glycolate
Glycerate
Aconitate
Erythritol
Sorbitol
Inositol
Adonitol
p-Mandelate - =
L-Mandelate
Benzoate - -
o-Hydroxybenzoate
m-Hydroxybenzoate
p-Hydroxybenzoate
Phenylacetate
a-Aminobutyrate
p-Tryptophan
Creatine
Glycine -
p-Alanine
L-Serine
L-Leucine
L-Isoleucine, L-valine
L-Lysine

4
+

)
|

P+ + 4+ +++++ 0+ + +
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P+ 4+ 4+ 1+ + +

IO+ U0+++++++++ 1 + |
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]
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|

I+ ++0++++++ 1 +0+

| + 00000+ ++++U0+++0+0T+
I 9+ 0000+++00+00+000U0
I+ 0+ + 1 ++++++00+ + 1

Il ++++00++0000++01 + 1 +

IO+ ++0++00 1
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TO++ 1 ++++0+0+++++ 1 +++
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TABLE 3—Continued

Characteristic

P. rhodesiae sp. nov.

Continued

L-Ornithine
L-Citrulline
L-Histidine
L-Phenylalanine
L-Tryptophan
L-Kynurenine
Ethanolamine
Benzylamine
Histamine
Tryptamine
Butylamine
Amylamine
Sarcosine
Acetamide
Trigonelline

I+ + 1 O | P fluorescens biovar IV
| + + O + | P. putida biovar A

I+ + 1

+
| OO0 Q0T O | P fluorescens biovar I1

I+ 1 + + O OO | P veronii sp. nov.
I

IO 1 + 0O+ T+ O+ | P fluorescens biovar 1

I+ | O+ 0T+ O+ | P aeruginosa
IO 1 O+ + T+ O T | P chlororaphis

(=i
I ++0 1 O + 4 + 4+ + O+ | P aureofaciens

oo o
U1 OO0 1 O00UO00 00 + O T| P fluorescens biovar 111

U1 900 1 U000 OU0 0TI | P fluorescens biovar V

Oo+Q0+0000C 1
+O++++++O0++++0+

+ 0+

+
b+ O
I+

D

o

“ Symbols: +, 90% or more of strains are positive; —, 90% or more of strains
are negative; D, 11 to 89% of strains are positive.

RESULTS

Biochemical, physiological, and flagellation characteristics.
The phenotypic data of strains belonging to cluster Ib have
been described previously (17) and have been compared with
those of P. rhodesiae (8) and other nonpathogenic members of
section I of pseudomonads (38) (see Table 3). A single polar
flagellum on strain CFML 92-134T was observed by transmis-
sion electron microscopy (Fig. 1).

DNA-DNA hybridization. The DNA-DNA hybridization val-
ues between strain CFML 92-134T and seven other strains of
cluster Ib are given in Table 1. The relative binding ratio within
this cluster was greater than 80% at 60°C (Table 1). The AT,,
values were less than 1°C. Results of DNA-DNA hybridiza-
tions with members of two other phenotypic clusters previously
described by Elomari et al. (17) are also given in Table 1. The
first cluster (IIa), which contained 14 wild strains isolated from
natural mineral waters, could be divided into two subclusters,
IIal and I1a2, on genomic grounds. The subcluster Ial formed
a homogeneous genomic group for which P. rhodesiae sp. nov.
(8) was proposed. The second phenotypic cluster, V, contained
13 mineral water strains and three culture collection strains
(ATCC 17559, ATCC 17571, and ATCC 17400) of P. fluore-
scens biovar III. The levels of DNA hybridization of the rep-
resentative strain of cluster Ib CFML 92-134" and all strains of
cluster I1a and nine representative strains of cluster V varied
between 31 and 56% for subcluster IIal (Table 1), 20 to 42%
for subcluster ITa2, and 33 to 41% with cluster V (Tables 1 and
2). Hybridization values between strain CFML 92-134T and a
great number of strains belonging or related to species of
section I of the genus Pseudomonas (32), the related species P.
lundensis, P. fragi, P. savastanoi, and fluorescent members of
Pseudomonas section V (32) were 47% or lower, with AT, s
between 8 and 20°C (Tabie 2). The highest hybridization values
were obtained with the different biovars of P. fluorescens and
with representative strains of P. marginalis, P. chlororaphis, and
P. aureofaciens.
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TABLE 4. Variable characteristics among eight strains of P. veronii

Reaction Reaction
Characteristic of most of type
strains® strain
Conventional tests
Tributyrine esterase, malonate - -
Gelatinase -1 +
Mucate +(3) -
Urea - +
Elastase +(2) +
Utilization of:
N-Acetyl-glucosamine +(2) -
Trehalose, L-leucine, glutarate, L- + (1) +
histidine
Adipate C4) +
Glycolate + (3) +
Levulinate +(2) +
2-Ketoglutarate -3 -
L-Serine -2 +
L-Tyrosine +(1) -
L-Ornithine, L-citrulline -(2) -
DL-2-Amino-benzoate - -
Enzymatic tests
Esterase C,,, L-seryl-tyrosine + (3) +
arylamidase, glycyl-L-tryptophan
arylamidase
L-Tyrosine arylamidase -3 -
L-Pyrrolidone arylamidase C@4) -
L-Hydroxyproline arylamidase, y-glutamyl + (1) +
transferase, L-arginine arylamidase,
L-lysyl-L-lysine arylamidase, a-L-
aspartyl-L-arginine arylamidase, L-
phenylalanyl-L-prolyl-L-alanine
arylamidase
L-Histidine arylamidase, N-acetyl-glycyl-L- C4) +
lysine arylamidase, N-CBZ*-arginyl-4-
methoxy arylamidase, a-L-glutamate
arylamidase, L-isoleucine arylamidase
L-Aspartate arylamidase, S-benzyl- -2 -
cysteine arylamidase, L-alanyl-L-
phenylalanyl-L-prolyl-L-alanine
arylamidase
Glycyl-proline arylamidase, L-tryptophane +(2) +
arylamidase, glycyl-L-arginine
arylamidase, L-prolyl-L-arginine
arylamidase
L-Threonine arylamidase -3) +
a-L-Glutamyl-L-histidine arylamidase - (1) +
L-Histidyl-L-serine arylamidase -(2) +

“ The number in parentheses is the number of strains deviating from the most
common resuit. C, 50% of strains are positive.
b CBZ, carboxybenzoxy.

DNA base composition. The G+C contents of the eight
strains studied (cluster Ib) were between 61 and 62 mol%
(Table 1).

DISCUSSION

Forty-six strains isolated from mineral water and phenotyp-
ically identified as fluorescent pseudomonads were grouped in
three phenotypic clusters named Ib, Ila, and V (17). The phe-
notypic cluster Ib is the most similar to cluster Ia, containing P.
fluorescens biovar 111 and P. marginalis, emphasizing that clus-
ter Ib is indeed a member of the authentic pseudomonads. This
is confirmed by the hybridization results with up to 47% DNA-
DNA hybridization with P. fluorescens biovar II strains (Table

INT. J. SYST. BACTERIOL.

2). Other subclusters of cluster I (17) contain members of P.
fluorescens biovars 1, II, and V. Moreover, the gene for the
OprlI lipoprotein (14) that is typical for members of pseudo-
monads of rRNA group I could also be amplified as a unique
fragment in strains of group Ib. These results clearly show that
group Ib indeed belongs to the genus Pseudomonas sensu
stricto (12). In order to further unravel the finer taxonomic
position of the group Ib within this genus, we performed DNA-
DNA hybridizations within this cluster containing eight strains
and with the type and representative strains of other related
groups or species (Tables 1 and 2). The results obtained in this
study demonstrate that cluster Ib constitutes a separate DNA
hybridization group (80 to 100% hybridization) with only low
levels of DNA hybridization with other species belonging to
the saprophytic fluorescent pseudomonads (7 to 47%) and
with possible related Pseudormonas species, including the newly
proposed species P. rhodesiae (8). The latter species, created as
part (IIal) of the members of cluster Ila, also contains solely
isolates from mineral waters. The DNA-DNA hybridizations
obtained between strain CFML 92-1347 and all strains of clus-
ter Ila were feeble (Table 1). The levels of DNA relatedness
between the representative Ib strain CFML 92-134T and six
new isolates and P. fluorescens biovar I1I strains (ATCC 17559,
ATCC 17571, and ATCC 17400) from cluster V were low
(Tables 1 and 2). The AT, s of hybrids formed between strain
CFML 92-134" and the seven other strains of cluster Ib were
less than 1°C. The AT,,s obtained for hybrids between strain
CFML 92-1347 and reference strains of other possible related
species of the genus Pseudomonas were high (8 to 20°C). At
present, the definition of a genomic species (45) includes the
requirements that within a species, strains should have DNA
hybridization of 70% or more, with a AT,, of 5°C or less, and
that the results of other techniques (including phenotypical
analysis) should decide if a genomic species deserves the status
of a species. Various phenotypic characteristics, such as leci-
thinase production, growth at 4 or 41°C, and assimilation of
D-xylose, erythritol, sorbitol, inositol, benzoate, L-kynurenine,
trigonelline, isovalerate, L-arabinose, and isobutyrate (Table
3), were found to differentiate the Ib group members from P.
rhodesiae (8) and from the other Pseudomonas species and
groups. Details concerning D responses in Table 3 are given in
Table 4. Consequently, we conclude from the results of this
study and from previous work that group Ib deserves a sepa-
rate species status, for which we propose the name P. veronii.

Description of P. veronii sp. nov. P. veronii (ve.ro’ni.i. M.L.
masc. gen. n. veronii, of Véron, in honor of Prof. M. M. Véron,
an eminent French microbiologist, for his contribution to tax-
onomy and medical microbiology).

The cells are gram negative; oxidase, catalase, and arginine
dihydrolase positive; and motile by means of a single polar
flagellum (Fig. 1). They produce a fluorescent pigment on King
B medium. Growth occurs between 4 and 36°C but not at 41°C.
The species denitrifies. Poly-B-hydroxybutyrate is not accumu-
lated. Colonies on nutrient agar are smooth, circular, and non-
pigmented. They are nonhemolytic on blood agar. The pheno-
typic characteristics have been given previously (17). All these
strains grow on a-aminobutyrate, D-xylose, L-arabinose,
D-mannose, D-galactose, sucrose, butyrate, isobutyrate, eryth-
ritol, sorbitol, inositol, D-alanine, L-tryptophan, and trigonel-
line as the sole source of carbon and energy, but none is able
to utilize isovalerate, sebacate, azelate, L-mandelate, benzoate,
L-kynurenine, histamine, or acetamide.

The G+C content of the DNA is 61 to 62 mol%. All strains
have been isolated from natural mineral waters. No clinical
significance is known; the type strain is CFML 92-134T and has
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been df;posited at the Collection Institut Pasteur (CIP) as CIP
104663°. The G+C content of the type strain is 61 mol%.
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