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Abstract
Background: PARP inhibition is a promising therapeutic strategy for the treatment of men with metastatic castration-resistant prostate 
cancer whose tumors harbor homologous recombination DNA repair gene alterations. However, questions remain for many practicing clini-
cians about which patients are ideally suited for PARP inhibitor treatment. This report details our institutional experience using PARP inhib-
itor therapy in patients whose tumors harbored specific DNA repair gene alterations. Patients and Methods: We performed a retrospective 
chart review to identify patients at Oregon Health & Science University who were treated with PARP inhibition. We identified 8 patients 
and determined the impact of the specific DNA repair gene alterations on tumor response and time on treatment with PARP inhibition.  
Results: A number of DNA repair gene alterations were identified. Three patients had pathogenic BRCA2 mutations and one had a BRCA2 
mutation of uncertain significance. Conversely, the 4 other patients’ tumors harbored alterations in other DNA repair genes, none of which 
were clearly pathogenic. A statistically significant difference in benefit was seen between patients whose tumors harbored BRCA2 gene 
alterations and those whose tumors did not, as measured by >50% decline in prostate-specific antigen levels (100% vs 0%; P=.03) and dura-
tion on therapy (31.4 vs 6.4 weeks; P=.03). Conclusions: Our results demonstrate that not all DNA repair alterations are equally predictive of 
PARP inhibitor response. Importantly, all responding patients had tumors harboring BRCA2 DNA repair alterations, including one without 
a known pathogenic mutation. Conversely, among the 4 nonresponders, several DNA repair alterations in genes other than BRCA2 were 
identified that were not clearly pathogenic. This demonstrates the need to carefully examine the functional relevance of the DNA repair 
alterations identified, especially in genes other than BRCA2, when considering patients for PARP inhibitor treatment.
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Background
Prostate cancer is the most common cancer and sec-
ond leading cause of cancer-related death in men in 
the United States.1 Despite progress in recent years 
with 5 new drugs approved for the treatment of met-
astatic castration-resistant prostate cancer (CRPC), 
this lethal form of the disease remains incurable.2

We now know that CRPC is heterogeneous 
with distinct molecular subsets.3 One subset is de-
fined by recurrent mutations in DNA repair genes 
whose loss of function (LoF) may lead to sensitivity 
to platinum chemotherapy or PARP inhibitors—a 
concept known as synthetic lethality, best studied in 
the context of BRCA gene alterations.3–7 Subsequent 
preclinical studies identified several additional DNA 
repair genes whose LoF is associated with PARP in-
hibitor sensitivity.8 Several groups have completed 
clinical trials with PARP inhibitors that have shown 
clinical benefit in CRPC.9–11 However, it is unclear 
to many practicing clinicians which patients with 
which specific defects in DNA repair genes should 
be recommended for PARP inhibitor treatment.

In this case series, we describe our institutional 
experience using single-agent PARP inhibitor ther-
apy to treat patients with CRPC with DNA repair 
gene alterations. Specifically, we examined how tu-
mor response and time on PARP inhibitor treatment 
differ depending on the gene mutations identified.

Patients and Methods
Patients and Treatment
Oregon Health & Science University (OHSU) Insti-
tutional Review Board approval was obtained to ret-
rospectively identify patients found to have a DNA 
repair gene alteration that would suggest sensitivity 
to PARP inhibitors in germline testing or testing of 
a metastatic CRPC sample. Patients who underwent 
biopsy had previously consented to participate on 
the West Coast Prostate Cancer Dream Team biopsy 
protocol. PARP inhibitor drug prescribing, follow-up 
management, dose modifications for toxicity, and dis-
continuation of therapy for clinical or radiographic 
progression was at the provider’s discretion.

Outcomes and Assessment
Several metrics of antitumor activity were exam-
ined, including maximal decline in prostate-specific 
antigen (PSA) level while on therapy, radiographic 

response while on therapy, and duration of treatment 
measured from the start date of PARP inhibitor to 
the date of its discontinuation.

Germline and Somatic Mutation Testing
All subjects included in this case series had under-
gone germline testing and/or somatic mutational 
testing for DNA gene repair alterations prior to 
treatment with a PARP inhibitor. Four patients un-
derwent germline testing (patients 1–4). Samples 
were obtained via buccal wash or peripheral blood 
mononuclear cell testing. Material was then sent ei-
ther to the commercial Myriad Genetic Laboratories 
or the OHSU clinical laboratory for testing. Seven 
patients underwent somatic testing, performed in 
accordance with standard operating procedures (pa-
tients 1–3, 5–8).12 Of these patients, 1 had tumor 
testing for BRCA2 alone (patient 1), 1 had circulat-
ing tumor DNA (ctDNA) testing for BRCA2 alone 
(patient 3), and 5 had tumor testing and genotyping 
with the Knight Diagnostic Laboratories’ GeneTrails 
Comprehensive Solid Tumor Panel of 124 genes (pa-
tients 2, 5–8) (supplemental eTable 1, available with 
this article at JNCCN.org). Retrospectively, we used 
the PolyPhen algorithm to make functional predic-
tions about the missense mutations identified in pa-
tients treated with PARP inhibitors in this series.13 

Results
Patients Examined
Between June 2014 and June 2017, 8 patients with 
CRPC in OHSU clinics were treated with PARP 
inhibitors based on mutations in DNA repair 
genes. Baseline characteristics are summarized in  
Table 1. Follow-up data were collected through Oc-
tober, 2017. Patient 1 was treated with talazoparib 
and patients 2 through 7 were treated with olapa-
rib. Prior to PARP inhibitor therapy, all patients 
had experienced disease progression on at least one 
regimen previously approved for the treatment of 
CRPC. None of these patients previously received 
platinum-based chemotherapy.

Defects in DNA Damage-Repair Genes
Figure 1 shows the alterations in DNA damage repair 
genes identified. Specific mutations are detailed in 
supplemental eTable 2. Copy number loss and stop-
gain mutations were identified in several patients. 

http://www.jnccn.org/content/16/8/933/suppl/DC1
http://www.jnccn.org/content/16/8/933/suppl/DC1
http://www.jnccn.org/content/16/8/933/suppl/DC1
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In patients 1 and 3, this resulted in biallelic LoF in 
BRCA2. Patient 4 had a known germline monoal-
lelic stop-gain mutation in BRCA2 but unknown 
status of the other allele.

A number of missense mutations in DNA dam-
age-repair genes were also identified. Of note, none 
of these variants had previously been documented 
as pathogenic alleles. Patient 2’s tumor had BRCA2 
and FANCA mutations that were both of unknown 
significance. Patient 5’s tumor harbored a FANCC 
mutation of unknown significance. Patient 6 had 
ATM copy number loss and an ATM mutation of 
unknown significance. Patient 7 had missense muta-
tions in FAM175A, MLH3, and FANCA, all of un-

known clinical significance. Patient 8 had a missense 
mutation in MDC1 of unknown significance.

Antitumor Activity
PSA results were examined following PARP inhibi-
tor treatment. PSA responses (>50% decline) were 
observed in 4 of 8 patients, all of whom had muta-
tions in BRCA2. PSA level declines in these patients 
ranged from 64% to 100%. Two of the responders 
had known biallelic LoF in BRCA2 (patients 1 and 
3). One responder had a known LoF in one allele of 
BRCA2 but unknown status in the other allele (pa-
tient 4). The last responder (patient 2) had a germ-
line missense mutation in BRCA2 and a somatic 
missense mutation in FANCA, both of unknown 
clinical significance (Figure 2). There was a signifi-
cant difference in response in patients with BRCA2 
gene alterations versus those with alterations in 
other DNA repair genes (Fisher exact test, 2-sided 
P=.03); however, it is worth noting that patient 2 
also carried a FANCA missense mutation that could 
also be responsible for driving the response to PARP 
inhibition. Of the 4 patients who had PSA respons-
es, 3 underwent serial radiographic imaging and all 3 
had radiographic responses by CT. The other subject 
(patient 4) had a 100% decline in PSA level with a 
nadir of 0, and thus did not undergo radiologic imag-
ing due to the complete PSA response.

Table 1. Baseline Patient Characteristics 
Characteristic

Age, y

Median                 68.5

Range                  52–73

Total Gleason score 

6 1 (12.5%)

7 0 (0%)

8 2 (25.0%)

9 3 (37.5%)

10 0 (0%)

Unavailable 2 (25.0%)

ECOG performance status score

0 3 (37.5%)

1 3 (37.5%)

2 2 (25.0%)

3–4 0 (0%)

PSA, ng/mL 

Median                 28.25

Range                   5.76–700.29

Regimens for CRPC received prior to PARP inhibitor therapy, n

1 1 (12.5%)

3 3 (37.5%)

≥4 4 (50.0%)

Life-extending therapies for metastatic CRPC received prior to  
PARP inhibitor therapy, n

Enzalutamide 7 (87.5%)

Abiraterone acetate 4 (50.0%)

Docetaxel 3 (37.5%)

Radium-223 1 (12.5%)

Sipuleucel-T 1 (12.5%)

Abbreviations: CRPC, castration-resistant prostate cancer; PSA, 
prostate-specific antigen.

Patient Number

Legend:

Stop gain mutation

Missense mutation
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Figure 1. Genomic aberrations identified in the 8 patients found to 
have either germline and/or somatic alterations in DNA repair genes. 
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Median duration on treatment was 31.4 weeks 
(range, 20.9–78.3 weeks) for the 4 patients with 
BRCA2 alterations compared with 6.4 weeks (range, 
2.4–13.0 weeks) in the 4 patients with non-BRCA2 
DNA repair gene alterations (Wilcoxon rank sum 
test, P=.03) (Figure 3). At the time of writing, 1 pa-
tient (patient 4 who has a germline BRCA2 muta-
tion) is still on PARP inhibitor therapy with a contin-
ued complete PSA response; 3 patients experienced 
disease progression and are still alive, and 4 others ex-
perienced disease progression and are now deceased.

Discussion 
In this case series, we report our experience with single-
agent PARP inhibitor therapy in patients with meta-
static CRPC with DNA repair defects. In the largest 
series to date with PARP inhibitor therapy and somat-
ic or germline mutational testing (TOPARP-A), 10 of 
16 responders had biallelic mutations in homologous 
recombination DNA repair genes.11 Similarly, in our 
series, 2 of the 4 responders (patients 1 and 3) had 
confirmed biallelic LoF alterations in the homologous 
recombination DNA repair gene BRCA2. A third pa-
tient (patient 4) had known LoF in BRCA2 of one al-
lele but unknown status of the other allele (Figure 1).

Interestingly, 1 of these 4 patients (patient 2) ap-
peared to respond without biallelic loss in a DNA 
repair gene in the tumor specimen examined. This 
patient was started on therapy because of 2 separate 
monoallelic missense mutations. Subsequent analy-
ses demonstrated that his FANCA p.E938Q muta-

tion was rated as probably damaging by PolyPhen, 
and that his germline BRCA2 p.L2217V mutation 
was rated as possibly damaging by PolyPhen. Thus, we 
cannot conclude for certain which of these alterations 
was most critical for response.13 Response to PARP in-
hibition with only monoallelic LoF in a DNA repair 
gene has previously been noted in the TOPARP-A 
cohort.11 However, given the limited sample sizes of 
both this case series and the TOPARP-A cohort, data 
remain insufficient to guide PARP inhibitor therapy 
in patients whose tumors only harbor one LoF event 
in a DNA repair gene.11 There are also other explana-
tions for this subject’s response, including epigenetic 
mechanisms (ie, DNA methylation) leading to LoF 
of the second allele of FANCA or BRCA2; biallelic 
inactivation of other DNA repair genes not tested in 
this panel (supplemental eTable 1); or biallelic loss of 
BRCA2, FANCA, or other DNA repair genes in other 
tumor lesions not biopsied within this same patient.

Of the 4 patients who did not experience a 
response, several different DNA repair gene al-
terations were present in their tumors, including 
a number of monoallelic mutations in patients 5 
(FANCC), 7 (FANCA, ERCC5, FAM175A, MLH), 
and 8 (CHEK1, FANCA, MDC1) (Figure 1, supple-
mental eTable 2). The lack of response seen in these 
3 patients without clearly pathogenic biallelic LoF 
mutations is consistent with what was observed in 
TOPARP-A.11 One outlier was patient 6, whose tu-
mor biopsy harbored both an ATM copy number loss 
and an ATM p.R2459C missense mutation that was 
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Figure 3. Swimmer’s plot depicting time on PARP inhibitor treatment 
in weeks for 8 patients treated with PARP inhibitor therapy. Patients 
with known biallelic loss of function (LoF) DNA repair mutations are 
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