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teraction graphs, classification and regression trees (CART), 
and logic regression analyses. All five methods supported a 
gene-gene interaction between  XRCC1- 399/ XRCC3- 241 (p = 
0.001) (adjusted OR for  XRCC1- 399 GG,  XRCC3- 241 TT vs. wild-
type 2.0 (95% CI 1.4–3.0)). Three methods predicted an inter-
action between  XRCC1- 399/ XPD- 751 (p = 0.008) (adjusted OR 
for  XRCC1- 399 GA or AA,  XRCC3- 241 AA vs. wild-type 1.4 (95% 
CI 1.1–2.0)).  Conclusions:  These results support the hypoth-
esis that common polymorphisms in DNA repair genes mod-
ify bladder cancer risk and highlight the value of using mul-
tiple complementary analytic approaches to identify 
multi-factor interactions. 

 

Copyright © 2007 S. Karger AG, Basel 

 Introduction 

 Bladder cancer is the fourth most common malignan-
cy in men in Western countries and the eighth most com-
mon in women  [1] . The majority of this disease is attrib-
uted to cigarette smoking; bladder cancer risk is up to 
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 Abstract 

  Objectives:  A number of common non-synonymous single 
nucleotide polymorphisms (SNPs) in DNA repair genes have 
been reported to modify bladder cancer risk. These include: 
 APE1- Asn148Gln,  XRCC1- Arg399Gln and  XRCC1- Arg194Trp in 
the BER pathway,  XPD- Gln751Lys in the NER pathway and 
 XRCC3- Thr241Met in the DSB repair pathway.  Methods:  To 
examine the independent and interacting effects of these 
SNPs in a large study group, we analyzed these genotypes in 
1,029 cases and 1,281 controls enrolled in two case-control 
studies of incident bladder cancer, one conducted in New 
Hampshire, USA and the other in Turin, Italy.  Results:  The 
odds ratio among current smokers with the variant  XRCC3-
 241 (TT) genotype was 1.7 (95% CI 1.0–2.7) compared to wild-
type. We evaluated gene-environment and gene-gene in-
teractions using four analytic approaches: logistic regression, 
Multifactor Dimensionality Reduction (MDR), hierarchical in-
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four-fold higher among cigarette smokers compared with 
non-smokers  [1] . Case-control studies provide evidence 
of a familial predisposition to bladder cancer  [2–4]  indi-
cating that some susceptibility factors may be heritable. 
DNA repair polymorphisms are heritable factors that in-
crease susceptibility to DNA damage resulting from ex-
posure to bladder carcinogens [reviewed in  5 ].

  While many epidemiological studies have detected 
differences in bladder cancer susceptibility in relation to 
DNA repair gene polymorphisms, results are often con-
flicting  [6–14] . We recently observed an increased risk of 
bladder cancer with the  XRCC3- 241 polymorphism in an 
Italian population (e.g. in current smokers (TT vs. CC: 
OR, 2.65; 95% CI, 1.21–5.80)  [15] . Also some studies raise 
the possibility of gene-gene interactions between poly-
morphisms, i.e., between  XRCC1- 194 and  XRCC3- 241, 
 XRCC1- 194 and  XPD -751 for bladder cancer  [13, 16]  and 
lung cancers  [17, 18] . Differential findings could be re-
lated to population admixture or to the presence of gene-
gene and gene-environment interactions that are not well 
understood due to small sample sizes and the challenges 
of testing for multiple genetic and environmental risk 
factors using traditional analytic tools.

  Traditionally sized case-control studies and analytic 
approaches are designed to provide adequate statistical 
power to detect simple associations. However, it is be-
coming increasingly evident that many common human 
diseases, including sporadic forms of cancer, cannot be 
attributed to a single gene or exposure factor  [19] . In con-
trast, these diseases have complex etiologies with non-ad-
ditive interactions  [20] . In recent years, molecular epide-
miologists have been frustrated by the inconsistency of 
many reported gene-disease associations within and be-
tween populations  [21] . For the current study, we have 
formed a large pool of cases and controls to evaluate blad-
der cancer susceptibility. We utilized both traditional an-
alytic approaches and newer computational algorithms 
that specifically evaluate gene-gene and gene-environ-
ment interactions.

  The current study comprises two epidemiologic stud-
ies of bladder cancer resulting in one of the largest studies 
of DNA repair polymorphisms and bladder cancer risk to 
date, with a sample size of 1,053 cases and 1,281 controls. 
In this study, we chose to examine DNA repair genes with 
polymorphisms that have previously been examined in 
relation to bladder cancer  (XRCC1 ,  XRCC3 ,  XPD ,  APE1) . 
Utilizing the power of both novel and traditional ana-
lytic approaches we were able to confirm previously ob-
served associations between DNA repair gene polymor-
phisms and bladder cancer. Furthermore, this combina-

tion of techniques allowed us to evaluate and identify 
effect modification by gene-gene and gene-environment 
interactions.

  Materials and Methods 

 Study Groups 
 New Hampshire Study 
 We identified all cases of bladder cancer diagnosed among 

New Hampshire residents, ages 25 to 74 years, from July 1, 1994 
to June 30, 1998 from the State Cancer Registry. Detailed methods 
have been described previously  [22] . Briefly, we interviewed a to-
tal of n = 857 bladder cancer cases, which was 85% of the cases 
confirmed to be eligible for the study. Controls less than 65 years 
of age were selected using population lists obtained from the New 
Hampshire Department of Transportation. Controls 65 year of 
age and older were chosen from data files provided by the Centers 
for Medicare & Medicaid Services (CMS) of New Hampshire. The 
method of control selection used in our study has been success-
fully employed in other case-control studies conducted in the re-
gion (e.g. Karagas et al.). For efficiency, we shared a control group 
with a study of non-melanoma skin cancer covering an overlap-
ping diagnostic period of July 1, 1993 to June 30, 1995  [22] . We 
selected additional controls for bladder cancer cases diagnosed 
from July 1, 1995 to June 30, 1997 that were frequency matched to 
these cases on age (25–34, 35–44, 45–54, 55–64, 65–69, 70–74 
years) and gender. Most ( 1 95%) of the subjects in this study are of 
Caucasian origin; and thus our analyses were not appreciably al-
tered by restricting to Caucasians. We interviewed a total n = 
1,191 controls (the total shared control group and additional con-
trols), which was 70% of the controls confirmed to be eligible for 
the study.

  Italian Study 
 We did a hospital-based case-control investigation at two urol-

ogy departments of S. Giovanni Battista hospital in Turin. The 
case group comprised unrelated Caucasian men ages 34 to 76 
years, residents of the Turin metropolitan area with newly diag-
nosed, histologically confirmed bladder cancer treated from 1994 
to 2003. Controls of a comparable age were recruited daily in ran-
dom fashion (a) from patients treated at the same urology depart-
ment, and (b) from patients treated at the medical and surgical 
departments. In Italy, we interviewed a total of 412 cases and 393 
controls which was 90% of the cases and 85% of the controls that 
were eligible for the study.

  Personal Interview 
 Informed consent was obtained from each participant and all 

procedures and study materials were approved by the institution’s 
committee for the protection of human subjects. Both studies in-
volved a personal interview covering sociodemographic informa-
tion (including level of education), lifestyle factors such as use of 
tobacco (including frequency, duration and intensity of smoking) 
and medical history. Smoking habits were defined as current (plus 
ex-smokers since  ! 1 year), former (who ceased smoking since at 
least 1 year), and never smokers. Both studies collected a blood or 
cheek cell sample.
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  Genotyping 
 We used a variety of genotyping techniques, choosing the 

most efficient approaches (i.e., reliable and cost-effective) for any 
given SNP and applying newer technologies during the course of 
the study. Genotyping for non-synonymous SNPs XRCC3-241 
C/T, APE1-148 T/G, XPD-312 G/A and XPD-751 A/C, XRCC1-194 
C/T was performed by Qiagen Genomics using their SNP mass-
tagging system. For XRCC1-399 G/A, XPD-751, XRCC3-241 some 
genotyping was performed by PCR-RFLP as described previously 
 [23] . Primer Extension/Denaturing High-Performance Liquid 
Chromatography was used for genotyping XRCC1-194 in the first 
288 subjects.  The 5 �  Nuclease Assay (TaqMan) assay with fluoro-
genic minor groove binder probes was used to genotype seven 
polymorphisms (XPD-751, XRCC1-194, XRCC1-399, and XRCC3-
241) in the recent phases of the studies. For quality control pur-
poses, laboratory personnel were blinded to case-control status. 
These assays achieved greater than 95% accuracy as assessed us-
ing negative and positive quality controls (including every 10th 
sample as a masked duplicate).  In Italy, methodologic validation 
included a comparison between PCR-RFLP, denaturing high per-
formance liquid chromatography and TaqMan assay on a subset. 
Concordance was in the range between 99 and 100% for all the 
comparisons; discordant genotypes were excluded from the anal-
ysis. Ultimately, data were available for the two studies on  APE1-
 148 (n = 1,165 controls, n = 911 cases),  XRCC1- 399 (n = 1,253 con-
trols, n = 990 cases),  XRCC1- 194 (n = 1,203 controls, n = 978 cas-
es),  XRCC3- 241 (n = 1,275 controls, n = 1,046 cases),  XPD- 751 
 (n = 1,215 controls, n = 1,009 cases). Thus, genotype data were 
complete on over 89% of the subjects. Hardy-Weinberg Equilib-
rium was evaluated among controls using a chi-square test. The 
patterns of missing data did not differ significantly by age, gender 
or smoking status (data not shown).

  Pooled Statistical Analysis of NH and Italian Data 
 The goal of the statistical analysis was to assess the relation-

ship between DNA repair gene SNPs, smoking, and bladder can-
cer susceptibility. To assess the independent main effects of each 
SNP, we conducted logistic regression analyses for individuals 
with one or two variant alleles in comparison to those homozy-
gous wild type for each individual SNP. Assessment of gene-gene 
and gene-environment interactions was carried out using both 
logistic regression and multifactor dimensionality reduction 
(MDR).

  Logistic Regression Analysis 
 We computed the odds ratios for the joint effects of gene pairs 

using individuals who are homozygous wild type at both loci as 
the referent group and evaluated interactions between bladder 
cancer risk factors (gender, smoking variables (e.g., never, former, 
current)), and genotype by including interaction terms in a logis-
tic regression model. Statistical significance of the interactions as 
assessed using likelihood ratio tests comparing the models with 
and without interaction terms. Analyses were adjusted for age 
(less than or greater than 50), gender, smoking status (never, for-
mer, current), and study location. Additionally, we conducted an 
analysis restricted to men. To fully account for any study hetero-
geneity in other risk factors, we also conducted our logistic regres-
sion analysis with both the study-specific intercept and beta coef-
ficients for age, gender, and smoking status (i.e., by the inclusion 
of interaction terms for each of these covariates with study loca-

tion). These computations were done in S-Plus 6.2 (Insightful 
Inc., Seattle, Wash., USA).

  Identification of Gene-Gene Interactions 
 We selected four other approaches to complement logistic re-

gression for the analysis of gene-gene interactions: Multifactor 
Dimensionality Reduction (MDR), hierarchical interaction 
graphs, Classification and Regression Trees (CART), and Logic 
Regression. The genotype data were initially assessed using a 
 hierarchical interaction graph that included both independent 
dominant and recessive effects for each gene. Based on this hier-
archical interaction graph, a single model (either dominant or re-
cessive) was chosen for each gene based on the combination of 
models that together explained the largest proportion of bladder 
cancer risk and was used in the analysis by all four approaches 
(dominant:  APE1- 148 entropy 0.01,  XRCC1- 399 entropy 0.04, 
 XRCC1- 194 entropy 0.02,  XPD- 751 entropy 0, recessive:  XRCC3-
 241 entropy 0.09, interactions:  XRCC1- 399/ XPD- 751 entropy 0.15, 
 XRCC1- 399/ XRCC3- 241 entropy 0.26,  APE1- 148/ XRCC3- 241 en-
tropy 0.12,  XRCC1- 399/ XRCC1- 194 entropy 0.08). Since the MDR 
and interaction entropy analysis tools do not permit missing val-
ues, missing values were imputed 10 independent times using 
PROC MI in SAS 9.1.3 and analyses were performed using each of 
the 10 datasets (SAS Institute, Cary, N.C., USA). The results re-
ported were consistent across all 10 datasets and the same gene 
combinations were selected when the analysis was performed 
with the missing values deleted.

   Multifactor Dimensionality Reduction.  The nonparametric 
MDR approach is described in detail elsewhere  [24–27]  and re-
viewed by Moore  [28] . MDR is a data reduction (i.e. constructive 
induction) approach that seeks to identify combinations of mul-
tilocus genotypes and discrete environmental factors that are as-
sociated with either high risk or low risk of disease. Thus, MDR 
defines a single variable that incorporates information from sev-
eral loci and/or environmental factors that can be divided into 
high risk and low risk combinations. This new variable can be 
evaluated for its ability to classify and predict outcome risk status 
using cross-validation and permutation testing. With n-fold 
cross-validation, the data are divided into n equal size pieces. An 
MDR model is fit using (n – 1)/n of the data (i.e. the training set) 
and then evaluated for its generalizability on the remaining 1/n 
of the data (i.e. the testing set). The fitness, or value of an MDR 
model is assessed by estimating accuracy in the training set and 
the testing set. Accuracy is a function of the percentage of true 
positives (TP), true negatives (TN), false positives (FP), and false 
negatives (FN) and is defined as (TP + TN)/(TP + TN + FP + FN). 
This process is repeated for all n pieces of the data and the n test-
ing accuracies are averaged to provide an estimate of predictive 
ability or generalizability.

  We also estimated the degree to which the same best model is 
discovered across n divisions of the data. This is referred to as the 
cross-validation consistency or CVC  [24, 29] . A CVC of n in n-fold 
cross-validation is optimal. Here, we selected the best MDR mod-
el as the one with the lowest average prediction error. An error 
rate of 50% is expected under the null hypothesis. Statistical sig-
nificance is determined using permutation testing. Here, the 
case-control labels are randomized 1,000 times and the entire 
MDR model fitting procedure repeated on each randomized da-
taset to determine the expected distribution of testing accuracies 
under the null hypothesis. It is the combination of cross-valida-
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tion and permutation   testing that reduces the chances of making 
a type I error due to multiple testing  [30, 31] . In this study, we used 
10-fold cross-validation and 1,000-fold permutation testing. 
MDR results were considered statistically significant at the 0.05 
level. The MDR software is open-source and freely available from 
http://www.epistasis.org.

   Hierarchical Interaction Graphs.  Hierarchical interaction 
graphs are another tool that helps to interpret and visualize the 
independent effects and interactive relationships between poten-
tial risk factors  [16] . Jakulin and Bratko (2003) have provided a 
metric for determining the gain in information about a class vari-
able (e.g. ability to predict case-control status) from the combina-
tion of two variables together compared with the amount of in-
formation provided by each of the variables independently  [32, 
33] . This measure of information gain allows us to gauge the ben-
efit of considering two (or more) attributes as one unit. Informa-
tion gain is defined in terms of Shannon entropy [ 34 ].

  Measures of entropy are particularly useful for building inter-
action graphs that facilitate the interpretation of the relationship 
between variables. Interaction graphs are comprised of a node for 
each variable with pairwise connections between them. The per-
centage of entropy removed (i.e. information gain) by each vari-
able is visualized for each node. The percentage of entropy re-
moved for each pairwise Cartesian product of variables is visual-
ized for each connection. Thus, the independent main effects of 
each SNP, for example, can be quickly compared to the interac-
tion effect. Additive and non-additive interactions can be quickly 
assessed and used to interpret MDR models that consist of distri-
butions of cases and controls for each genotype combination. A 
positive entropy (plotted in green) indicates interaction while a 
negative entropy (plotted in red) indicates redundancy. Interac-
tion entropy analysis was performed using the Orange software 
package  [35] .

   Classification and Regression Tree Analysis.  Classification and 
regression tree (CART) analysis was also utilized to model gene-
gene interactions. CART creates a decision tree that depicts how 
well each genotype or environmental factor variable predicts class 
(e.g. bladder cancer case-control status)  [36] . Splitting rules are 
used to stratify data into subsets of individuals, which are repre-
sented in the CART decision tree as nodes. The CART model se-
lects the variable used to split each branch and the split point.  Each 
‘child node’ is selected considering only a subset of the population 
within a ‘parent node’ to explain class, thus, the results are condi-
tioned on the first splitting variable. CART was implemented us-
ing DTREG software with the Gini index to set the splitting crite-
rion and the terminal node size at 10. It is unlikely that the CART 
approach will detect true epistasis – a combination of factors that 
have no main effect, but strong interactions in combination  [37] .

   Logic Regression.  Logic regression attempts to define the inter-
actions between predictors to explain differences in response [see 
 38  for details]. Comparisons have shown that both CART and 
logic regression can provide complementary information in SNP 
analyses  [39] . The algorithm constructs predictors from binary 
SNP data that are Boolean (logical) combinations of the original 
genotype data  [39] . Logic expressions are depicted as trees with 
AND/OR operators at each branch point. White numbers on 
black background indicate the complement. Trees are pruned, re-
arranged and the optimal tree(s) are selected using a simulated 
annealing algorithm and permutation testing followed by cross-
validation  [39] . Logic regression analysis was performed in R.

  False Positive Report Probability (FPRP) 
 Evidence of associations between polymorphisms and com-

plex diseases are greatly affected by the risk to be false positives. 
To estimate the false positive report probability (FPRP) of positive 
results we used a Bayesian method proposed by Wacholder et al. 
 [40] . To compute the FPRP, we used the odds ratios from MDR 
models in which we considered the given classification of high 
risk and low risk genotype combinations with the estimated sta-
tistical power to detect an OR of 1.2, 2 and 3 and an  �  level equal 
to the observed  p  value. Considering the lack of information on 
the interactions between genes and environmental variables, in 
our study we have considered a wide range of prior probabilities, 
but lower than those previously published, i.e., from 0.00001 to 
0.10  [15, 40–42] . Given the many comparisons, we preferred to be 
conservative by using a cut-point of 0.2 for FPRP.

  Results 

 The overall case group had a higher percentage of men 
than the control group, and a larger fraction were current 
or former smokers ( table 1 ). The frequency of the minor 
allele in the controls by study (NH/Italy) was  APE1- 148 
0.47/0.42,  XRCC1-399  0.36/0.37,  XRCC1- 194 0.07/0.08, 
 XRCC3- 241 0.38/0.38,  XPD -751 0.36/0.42 ( table 2 ). While 
we observed slight differences in frequency for the  XPD -
751 and  APE1- 148 polymorphisms between the two stud-
ies, the frequency of the other polymorphisms was simi-
lar. Hardy-Weinberg Equilibrium using a chi-square test 
among controls had resultant p values:  APE1- 148 p = 
0.69,  XRCC1-399  p = 0.01,  XRCC1- 194 p = 0.09,  XRCC3-
 241  p = 0.34,  XPD -751 p = 0.08. Deviations from the ex-
pected genotype frequency distribution for  XRCC1  have 
been observed previously in other study populations  
[43, 44] . 

  Results of our logistic regression analysis of the single 
genotype effects for the pooled dataset are shown in  ta-
ble 2 , overall and then stratified by smoking status. There 
was no significant heterogeneity between studies ( ta-
ble 2 ). Importantly, none of the coefficients of logistic re-
gression with study-specific slopes differed more than 
10% from the model with age, gender, smoking status and 
study location. Therefore, our final analysis was based on 
the more parsimonious models.

  The base excision repair (BER) pathway polymor-
phism  APE1- 148 was un-related to bladder cancer risk 
overall ( table 2 ) or in either study (NH 1.0 (95% CI 0.7–
1.3), Italy 0.9 (95% CI 0.5–1.7)). The odds ratio for  XRCC1-
 399 variants was slightly below one ( table 2 , NH 0.9 (95% 
CI 0.6–1.2), Italy 0.8 (95% CI 0.5–1.3)). XRCC1-194 vari-
ants were rare, with an overall OR slightly below 1 ( ta-
ble 2 , strata were too small to compute risks for NH and 
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Table 1. Selected characteristics of bladder cancer cases and controls by study

New Hampshire, n (%) Italy, n (%) Overall, n (%)

controls
n = 899

cases
n = 700

controls
n = 382

cases
n = 353

controls
n = 1281

cases
n = 1053

adjustedd

OR (95%CI)

Sex
Female 329 (36.6) 168 (24.0) – – 329 (25.7) 168 (16.0) Refa

Male 570 (63.4) 532 (76.0) 382 (100) 353 (100) 952 (74.3) 885 (84.1) 1.6 (1.2–2.0)
Reference age

<55 194 (21.6) 134 (19.1) 151 (40.1) 50 (14.5) 345 (27.0) 184 (17.6) Ref b

55–70 482 (53.6) 379 (54.1) 190 (50.4) 214 (62.2) 672 (52.7) 593 (56.8) 1.7 (1.4–2.2)
>70 223 (24.8) 187 (26.7) 36 (9.6) 80 (23.3) 259 (20.3) 267 (25.6) 2.2 (1.7–2.9)

Smoking status
Never 297 (33.0) 127 (18.2) 116 (30.4) 32 (9.1) 413 (32.2) 159 (15.1) Refc

Former 456 (50.7) 348 (49.8) 132 (34.6) 115 (32.6) 588 (45.9) 463 (44.0) 1.8 (1.4–2.2)
Current 146 (16.2) 224 (32.0) 134 (35.1) 206 (58.4) 280 (21.9) 430 (40.9) 4.0 (3.1–5.1)
<1 Pack/day 44 (4.9) 42 (6.0) 58 (15.2) 110 (31.2) 102 (8.0) 152 (14.4) 4.0 (2.9–5.6)
≥1 Pack/day 97 (10.8) 179 (25.6) 67 17.5) 85 (24.1) 164 (12.8) 264 (25.1) 4.3 (3.2–5.6)
Missing 5 (0.6) 3 (0.4) 9 (2.4) 11 (3.1) 14 (1.1) 14 (1.3) –

Data are missing on reference age (5 controls, 9 cases), smoking status (1 case).
a Adjusted for age, smoking status (never, former, current). b Adjusted for smoking status, gender. c Adjusted for age, gender. d Ad-

justed for study.

Table 2. Odds ratios (95%CI) for bladder cancer in relation to DNA repair gene polymorphisms overall and by smoking status

Minor allele
freq. in controls
NH/Italy

Overall
controls
n (%)

Overall
cases
n (%)

Overall
adjusteda

OR (95% CI)

X2 for
heterogeneity
(p value)

Never
smokerb

Former
smokerb

Current
smokerb

BER Pathway
APE1-148 0.47/0.42

TT 333 (28.5) 259 (28.4) Ref Ref Ref Ref
TG 586 (50.3) 461 (50.6) 1.0 (0.8–1.2) 1.2 (0.8–2.0) 1.1 (0.8–1.4) 0.7 (0.5–1.1)
GG 246 (21.2) 191 (21.0) 0.9 (0.7–1.2) 0.03 (0.9) 1.1 (0.6–2.0) 1.0 (0.7–1.4) 0.8 (0.5–1.3)

XRCC1-399 0.36/0.37
GG 533 (42.5) 412 (41.6) Ref Ref Ref Ref
GA 536 (42.8) 456 (46.1) 1.1 (0.9–1.4) 1.1 (0.8–1.7) 1.1 (0.8–1.4) 1.2 (0.8–1.6)
AA 184 (14.7) 122 (12.3) 0.9 (0.7–1.1) 0.03 (0.9) 1.0 (0.6–1.8) 0.9 (0.6–1.3) 0.7 (0.4–1.2)

XRCC1-194 0.07/0.08
CC 1,041 (86.5) 857 (87.6) Ref Ref Ref Ref
CT 152 (12.6) 115 (11.8) 0.9 (0.7–1.2) 1.2 (0.7–2.2) 0.8 (0.6–1.2) 0.8 (0.5–1.3)
TT 10 (0.8) 6 (0.6) 0.8 (0.3–2.4) 0.05 (0.8) 0.8 (0.1–7.0) 0.7 (0.1–3.9) 1.1 (0.2–6.7)

DSB Pathway
XRCC3-241 0.38/0.38

CC 482 (37.8) 397 (38.0) Ref Ref Ref Ref
CT 617 (48.4) 477 (45.6) 1.0 (0.8–1.2) 0.9 (0.6–1.4) 0.8 (0.6–1.1) 1.2 (0.9–1.7)
TT 176 (13.8) 172 (16.4) 1.2 (0.9–1.5) 2.0 (0.2) 1.2 (0.7–2.2) 0.9 (0.6–1.3) 1.7 (1.0–2.7)

NER Pathway
XPD-751 0.36/0.42

AA 450 (37.0) 371 (36.8) Ref Ref Ref Ref
AC 602 (49.6) 483 (47.9) 1.0 (0.8–1.2) 0.9 (0.6–1.4) 1.1 (0.8–1.4) 0.8 (0.6–1.2)
CC 163 (13.4) 155 (15.4) 1.1 ( 0.9–1.5) 0.17 (0.7) 1.2 (0.6–2.1) 1.1 (0.8–1.7) 1.1 (0.7–1.8)

Data are missing for APE1-148 (n = 258); XRCC1-194 (n = 153); XRCC3-241 (n = 13); XPD-751 (n = 110); XRCC-399 (n = 91).
X2 for study location heterogeneity, p value.
a Adjusted for study, age, gender, smoking status (never, former, current). b Adjusted for age, gender, study.
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Italy separately). In the double strand break (DSB) repair 
pathway, individuals variant for  XRCC3- 241 had a slight-
ly elevated risk of bladder cancer overall ( table 2 ), (NH 1.1 
(95% CI 0.8–1.5), Italy 1.7 (95% CI 1.0–2.7)) that was high-
est among  XRCC3- 241 variant homozygous current 
smokers ( table 2 ). Likewise, we did not observe a clear as-
sociation with the nucleotide excision repair (NER) path-
way polymorphism  XPD- 751 ( table 2 , NH 1.2 (95% CI 
0.9–1.7), Italy 1.1 (95% CI 0.7–1.9)). We did not detect any 
statistically significant interactions between smoking 
and any of the genotypes. Further, odds ratios did not dif-
fer markedly by gender, and the odds ratios for analyses 
restricted to males were similar to those performed on 
the entire cohort (data not shown).

  To evaluate the large number of possible combinations 
of genotypes, we used MDR, hierarchical interaction 
graphs, CART and logic regression approaches. We then 
used traditional logistic regression to evaluate the inter-
actions between genotypes that were predicted by at least 
three of these four methods (MDR, hierarchical interac-
tion graphs, CART, logic regression) ( table 4 ). The inter-
action predicted by all four methods was reaffirmed by 
logistic regression (increased risk with  XRCC1- 399 GG/
 XRCC3  TT vs.  XRCC1- 399 GG/ XRCC3  CC, adjusted OR 
1.9 (95% CI 1.3–2.9) p = 0.001).

  In addition to assessing the concordance between the 
models, we also examined the complementary informa-
tion provided by each analytic method to detect gene-
gene interactions. MDR interaction modeling ( table 3 ) 
identified,  XPD-751 ,  XRCC1- 399,  XRCC3- 241 as the com-
bination of SNPs that most accurately predicts bladder 
cancer status (average prediction error 45%, CVC 8/10, 
permutation test p = 0.003).  Table 3  also indicates that the 
single most important predictor of bladder cancer risk is 
smoking status (average prediction error 44%, CVC 10/10, 
permutation test  p  = 0.001). Likewise, the strongest two 
way interaction shown in the hierarchical interaction 
graph ( fig. 1 A, green arrows) was between  XRCC3- 241  
 and  XRCC1- 399. This interaction remains strong when 
smoking is included in the model ( fig. 1 B).  XRCC3  was 
the most important single gene in the models ( fig. 1 A, B). 
Likewise, the classification tree shown in  figure 2  select-
ed  XRCC3  for the initial binary split ( fig. 2 A SNPs only, 
 fig. 2 B SNPs in current smokers). In  figure 2 A, within the 
 XRCC3- CC/CT group, daughter nodes predict increased 
risk among individuals who are  XRCC1- 399 GA/AA and 
 XRCC1- 194 CC ( figure 2 , nodes 32,35). From the  XRCC3-
 TT branch,  XRCC1- 399 GA/AA (node 4) or a combina-
tion of  XRCC1- 399 GG and  APE1- TG/GG is associated 
with increased risk (nodes 5, 20). As observed previously, 

the initial split was on smoking status (current smokers 
vs. former/never smokers). Focusing on current smokers 
( fig. 2 B), the model with the least misclassification (0%) 
includes  XRCC3- TT,  XRCC1- 399 GG, and  XRCC1-194  
CT/TT. We also examined gene-gene interactions in this 
dataset using logic regression ( fig. 3 ). The optimal model 
predicted two independent sets of interactions: between 
 XRCC1  399 and  XPD  751 (tree 1), and between  XRCC3  
and either one of the two  XRCC1  SNPs – 194 or 399 
(tree 2).

  Three methods (MDR, hierarchical interaction graph, 
logic regression) predicted an interaction between 
 XRCC1- 399 and  XPD- 751 ( table 4 ). Relative to individu-
als with  XRCC1- 399 GG and  XPD- 751 AA genotypes, 
those with at least a variant allele for either  XRCC1- 399 
or  XPD- 751 had increased bladder cancer risk (e.g. 
 XRCC1- 399   GA,  XPD- 751 AA OR 1.5 (95%CI 1.1–2.1)). 
The interaction  p  value for heterozygotes/variants com-
pared with wild-type was statistically significant (p = 
0.008) from logistic regression analysis.

  We further evaluated potential gene-environment in-
teractions by stratifying our logistic regression analysis 
of the genotype combinations that were selected in our 
initial screen by smoking status ( table 4 ). Bladder cancer 
risk was particularly elevated in the current smokers with 
 XRCC1- 399 GG/ XRCC3  TT genotypes versus  XRCC1-
 399 GG/ XRCC3  CC (adjusted OR 4.8 (95% CI 1.9–12.1)). 
When age, gender and smoking history were added to the 
initial predictive models with all genotypes, the four an-
alytic methods consistently selected smoking status, fol-
lowed by male gender and age above 50 years as most 
highly predictive for bladder cancer risk (data not shown). 
The strongest four-factor MDR model without smoking, 
included the polymorphisms  XPD- 751,  XRCC1- 399, 
 XRCC3- 241, and  APE1-148  (average prediction error 
46.54%, cross-validation consistency 10/10). The best 
gene-only model was the two locus with  XRCC1- 399 GA, 
and  XRCC3- 241 TT as the high risk genotype combina-
tion (average prediction error 47%, cross-validation con-
sistency 9/10).

  False Positive Report Probability (FPRP) 
  Table 5  reports the FPRP values calculated using the 

statistical power to detect an OR of 1.2, 2.0 and 3.0 with 
an  �  level equal to the observed p value. Results show a 
good reliability on a 3-loci gene-only model ( XRCC1- 399-
GG +  XRCC3- 241-TT +  APE1- 148-TG/GG vs. the re-
maining ‘low-risk’ genotypes) in the overall population 
with very low prior probabilities (0.0001) for OR = 2 or 3. 
Among all the two-loci significant models, the compari-
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Table 3. Multifactor dimensionality reduction (MDR) interaction model

Number
of factors

Model Low risk High risk Cross
validation
consistency

Avg.
prediction
error (%)

p value
permutation
test

1 Smoking Never smoker, Former smoker Current smoker 10/10 43.63 0.001

2 APE1-148
Smoking

Never smoker except APE1-148 TG,
Former smoker

Current smoker,
Never smoker, APE1-148 TG

4/10 45.16 0.003

3 XPD-751
XRCC1-399
Smoking

Never smoker except for XPD-751 AC, XRCC1-
399 GA; XPD-751 CC, XRCC1-399 GG
Former smoker except for XPD-751 AA, XRCC1-
399 GA; XPD-751 CC, XRCC1-399 GG/GA

Current smoker except for  XPD-751
AC, XRCC1-399 AA; 

10/10 46.43 0.05

4* XPD-751
XRCC1-399
XRCC3-241
Smoking

Former smoker, XRCC1-399 AA
Never smoker, XRCC3-241 TT, XRCC1-399 AA 
Never smoker except XPD-751 AA, XRCC1-399 
GA, XRCC3-241 CT

Current smoker except XRCC3-241 
CT, XPD-751 AA, XRCC1-399 GG,
or Former smoker XRCC3-241 TT,
XPD-751 AC/CC

8/10 45.28 0.003

5 XPD-751
XRCC1-399
XRCC3-241 
APE1-148
Smoking

XPD_751 AC; Former smoker, APE1-148 TG, 
XRCC3-241 CT, XRCC1-399 GA, XPD_751 AC 
Never smoker, APE1-148 TG, XRCC3-241 CC,
XRCC1-399 GG, XPD_751 AC

Current smoker; APE1-148 TG
 Never smoker, XPD_751 AC,
XRCC1-399 GA, XRCC3-241 CC,
APE1-148 TG

10/10 46.22 0.01

* Denotes the genetic model with the highest cross-validation consistency and accuracy.

Table 4. Interactions between genotypes by logistic regression by smoking status

Controls Cases Overall
OR (95%CI)a

Never
smokerb

Former
smokerb

Current
smokerb

Interactions predicted by all methods (MDR, hierarchical interaction graph, CART, logic regression)
XRCC-399 XRCC3-241

GG CC 201 153 Ref Ref Ref Ref
GA TT 84 73 1.2 (0.8–1.7) 1.2 (0.5–2.9) 1.0 (0.6–1.8) 1.4 (0.7–2.7)
GG TT 56 75 1.9 (1.3–2.9) 1.5 (0.6–3.7) 1.3 (0.7–2.4) 4.8 (1.9–12.1)
GA CT 250 207 1.2 (0.9–1.6) 1.0 (0.5–1.9) 0.9 (0.6–1.3) 2.0 (1.2–3.4)
GG CC or CT 476 336 Ref Ref Ref Ref
GA or AA CC or CT 598 484 1.2 (1.0–1.5) 1.9 (0.8–4.3) 1.1 (0.9–1.5) 1.3 (0.9–1.9)
GG TT 56 75 2.0 (1.4–3.0) 1.2 (0.8–1.8) 1.5 (0.9–2.6) 4.3 (1.8–10)
GA or AA TT 119 91 1.1 (0.8–1.5) 1.3 (0.7–2.7) 0.9 (0.5–1.4) 1.3 (0.8–2.3)

p valuec 0.001 0.4 0.06 0.006

Interactions predicted by 3 methods (MDR, hierarchical interaction graph, logic regression)
XRCC1-399 XPD-751

GG AA 200 133 Ref Ref Ref Ref
GG AC 232 204 1.4 (1.0–1.9) 1.7 (0.8–3.4) 1.6 (1.0–2.4) 1.1 (0.6–1.8)
GA AA 177 171 1.5 (1.1–2.1) 1.9 (0.9–4.1) 1.5 (1.0–2.4) 1.4 (0.8–2.6)
GA AC 274 198 1.1 (0.8–1.5) 1.3 (0.6–2.6) 1.1 (0.7–1.6) 1.1 (0.7–1.9)
GA CC 61 64 1.6 (1.1–2.5) 1.3 (0.5–3.8) 1.9 (1.0–3.5) 1.6 (0.7–3.4)
GG AA 200 133 Ref Ref Ref Ref
GA or AA AA 243 218 1.4 (1.1–2.0) 1.9 (1.0–3.9) 1.4 (0.9–2.1) 1.4 (0.8–2.4)
GG AC or CC 304 266 1.3 (1.0–1.8) 1.7 (0.9–3.3) 1.4 (0.9–2.1) 1.1 (0.7–1.8)
GA or AA AC or CC 445 333 1.2 (0.9–1.5) 0.9 (0.5–1.7) 0.9 (0.6–1.4) 1.8 (1.9–3.4)

p valuec 0.008 0.5 0.6 0.4

a Adjusted for age, gender, smoking status (never, former, current) and study. b Adjusted for age, gender and study. c p value for 
gene-gene interaction using dominant/recessive model grouping.
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son  XRCC1- 399-GG +  XRCC3- 241-TT vs.  XRCC1- 399-
GG +  XRCC3- 241-CC/TT is still interesting at a prior 
probability of 0.01 (OR = 2 or 3), as well as for the 4 loci 
model involving  XPD, XRCC1, XRCC3  and  APE1  genes. 
On the other hand, other two-loci models ( XRCC1- 399-
GA +  XRCC3- 241-TT vs. ‘low-risk’ genotypes;  XRCC1-
 399-GG +  XRCC3- 241-TT vs.  XRCC1- 399-GG +  XRCC3-
 241-CC/TT) require higher prior probabilities (0.1 for 
OR = 2 or 3).

  Discussion 

 Our combined analysis of two completed case-control 
studies improved our statistical power for investigating 
the risk factors for bladder cancer. This malignancy, like 
many others, likely has a complex, and as yet uncertain 

genetic architecture. In the current study, we investigated 
the hypothesis that individuals with prevalent SNPs in 
DNA repair genes modify genetic susceptibility to blad-
der cancer using a multifaceted analytical approach that 
combines traditional statistical methods with newer 
computational algorithms to screen for gene-gene inter-
actions. Our study supports previous reports that the 
 XRCC3- 241 and the  XRCC1- 399 SNPs modify bladder 
cancer risk. The most consistently predicted gene-gene 
interactions were  XRCC1- 399/ XRCC3- 241 and  XRCC1-
 399/ XPD -751.

  Using this approach, we observed a slightly reduced 
risk of bladder cancer among  XRCC1- 399 variants that is 
consistent with our previous finding of a 40% reduction 
in risk of bladder cancer among those with at least one 
 XRCC1- 399 variant allele compared with those with one 
or two wild-type alleles in the New Hampshire study 
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  Fig. 1.  Hierarchical interaction graph of genotypes. The percent-
age of entropy removed (i.e. information gain) by each variable is 
visualized for each node (box). The percentage of entropy re-
moved for each pairwise Cartesian product of variables is visual-

ized for each connection. A positive entropy (plotted in green) 
indicates interaction while a negative entropy (plotted in red) in-
dicates redundancy.  a  Overall analysis of genotype.  b  Analysis of 
genotype and smoking status. 
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Node 2
xrcc3 = TT
n = 348
BLADSTAT = case
Misclassification = 50.57%

Node 4
x1_399 = GG
n = 131
BLADSTAT = case
Misclassification = 42.75%

Node 5
x1_399 = GA/AA
n = 217
BLADSTAT = control
Misclassification = 44.70%

Node 20
ape1 = TG/GG
n = 154
BLADSTAT = case
Misclassification = 51.30%

Node 21
ape1 = TT
n = 63
BLADSTAT = control
Misclassification = 34.92%

Node 1
(Entire group)
n = 2,334
BLADSTAT = control
Misclassification = 45.12%

Node 3
xrcc3 = CC/CT
n = 1,986
BLADSTAT = control
Misclassification = 44.36%

Node 32
x1_399 = GA/AA
n = 1,172
BLADSTAT = case
Misclassification = 53.58%

Node 33
x1_399 = GG
n = 814
BLADSTAT = control
Misclassification = 41.40%

Node 34
x1_194 = CC
n = 1,075
BLADSTAT = case
Misclassification = 52.74%

Node 35
x1_194 = CT/TT
n = 97
BLADSTAT = control
Misclassification = 37.11%a

b

Node 4
x1_399 = GG
n = 39
BLADSTAT = case
Misclassification = 17.95%

Node 6
x1_194 = CT/TT
n = 6
BLADSTAT = case
Misclassification = 0.00%

Node 7
x1_194 = CC
n = 33
BLADSTAT = case
Misclassification = 21.21%

Node 1
(Entire group)
n = 710
BLADSTAT = case
Misclassification = 39.44%

Node 2
xrcc3 = TT
n = 110
BLADSTAT = case
Misclassification = 31.82%

Node 5
x1_399 = GA/AA
n = 71
BLADSTAT = case
Misclassification = 39.44%

Node 8
xpd_751 = AC/CC
n = 47
BLADSTAT = case
Misclassification = 34.04%

Node 9
xpd_751 = AA
n = 24
BLADSTAT = control
Misclassification = 50.00%

Node 10
x1_399 = GA/AA
n = 344
BLADSTAT = case
Misclassification = 38.08%

Node 12
xpd_751 = AA
n = 112
BLADSTAT = case
Misclassification = 30.36%

Node 13
xpd_751 = AC/CC
n = 232
BLADSTAT = control
Misclassification = 58.19%

Node 3
xrcc3 = CC/CT
n = 600
BLADSTAT = control
Misclassification = 59.17%

Node 11
x1_399 = GG
n = 256
BLADSTAT = control
Misclassification = 55.47%

Node 14
ape1 = TT
n = 69
BLADSTAT = case
Misclassification = 37.68%

Node 15
ape1 = TG/GG
n = 187
BLADSTAT = control
Misclassification = 52.94%

  Fig. 2.  Classification and regression tree (CART) model of geno-
types. Splitting rules are used to stratify data into subsets of indi-
viduals, which are represented in the CART decision tree as nodes. 
Each ‘child node’ is selected considering only a subset of the pop-

ulation within a ‘parent node’ to explain class, thus, the results are 
conditioned on the first splitting variable.  a  Overall analysis of 
genotype.  b  Analysis of genotype within current smokers. 
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population  [23] . XRCC1 acts as a scaffolding protein 
throughout the BER process  [45] . The codon 399 poly-
morphism occurs in the BRCT1 domain, a region in-
volved in binding polyADPribose polymerase (PARP) 
and APE1  [46] .

  We also previously reported an increased bladder can-
cer risk associated with the  XRCC3- 241 polymorphism 
and increased DNA adduct levels in the Italian study  [8, 
15] . Overall we found a modest association with bladder 
cancer risk for the  XRCC3-241  polymorphism that was 
highest among variant current smokers ( table 2 ).  XRCC3  
variant genotype was included in the best MDR model 
( table 3 ) and explained the most entropy in bladder can-

cer case control status by hierarchical interaction graph 
( fig. 1 ). The initial split on  XRCC3  in the CART and log-
ic regression models reaffirmed this effect ( fig. 2 ,  3 ). In 
the U.S., Stern and colleagues found an elevated bladder 
cancer risk among individuals who carry at least one Met 
variant allele at codon 241 (233 cases, 209 controls), par-
ticularly among heavy smokers  [13] . Results of other in-
dependent analyses of the  XRCC3- 241 polymorphism 
and bladder cancer risk have been inconsistent  [8–10, 13] . 
 XRCC3  is required for stabilization of the RAD51 com-
plex in repair of double strand breaks and crosslinks, and 
for maintaining chromosome stability during cell divi-
sion  [47, 48] . Polymorphic variants for  XRCC3- 241 ap-

Table 5. False positive report probabilities

OR p value OR = 1.2
power

Prior probability

0.1 0.01 0.001 0.0001 0.00001

Single gene
XRCC3-TT vs. CC

Current smokers 1.7 (1.0–2.7) 0.025 0.070 0.760 0.972 0.997 1.000 1.000
XRCC1-GA vs. others

Overall 1.2 (1.0–1.4) 0.020 0.500 0.269 0.802 0.976 0.998 1.000

2 Genes
(XRCC1-399-GA+ XRCC3-241-TT) vs.
others

Overall 1.2 (1.0–1.4) 0.020 0.500 0.269 0.802 0.976 0.998 1.000
(XRCC1-399-GG + XRCC3-241-TT) vs.
(XRCC1-399-GG + XRCC3-241-CC/TT)

Overall 2.0 (1.4–3.0) 0.001 0.007 0.517 0.922 0.992 0.999 1.000
(XRCC1-399-GG + XRCC3-241-TT) vs.
(XRCC1-399-GG + XRCC3-241-CC/TT)

Current smokers 4.3 (1.8–10.3) 0.001 0.002 0.821 0.981 0.998 1.000 1.000
(XRCC1-399-GA/AA + XPD-751-AA) vs.
(XRCC1-399-GG + XPD-751-AA)

Overall 1.4 (1.1–2.0) 0.064 0.198 0.745 0.970 0.997 1.000 1.000
(XRCC1-399-GA/AA + XPD-751-AA) vs.
(XRCC1-399-GG + XPD-751-AA)

Never smokers 1.9 (1.0–3.9) 0.080 0.105 0.873 0.987 0.999 1.000 1.000
(XRCC1-399-GA/AA + XPD-751-AC/CC) vs.
(XRCC1-399-GG + XPD-751-AA)

Overall 1.3 (1.0–1.8) 0.114 0.315 0.765 0.973 0.997 1.000 1.000

3 or more genes
(XRCC1-399-GG + XRCC3-241-TT +
APEX-148-TG/GG) vs. others

Overall 1.9 (1.4–2.5) 0.000 0.001 0.074 0.467 0.898 0.989 0.999
(XPD-751-wt + XRCC1-399-GG + 
RCC3-241-TT + APEX-148-TG/GG) vs.
others or (XPD-751-het + XRCC1-399-GG + 
XRCC3-241-TT + APEX-148-TT) vs. others

Overall 2.7 (1.5–4.9) 0.001 0.004 0.719 0.966 0.996 1.000 1.000
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pear to be functionally capable of homology-directed 
double strand DNA repair ex vivo and were not especial-
ly sensitive to DNA damaging agents  [49] . It is possible 
that the observed relationship between  XRCC3  and blad-
der cancer is due to another biologic function that is 
modified by the codon 241 amino acid substitution, or 
that 241 is in linkage disequilibrium with another causal 
polymorphism.

  Our analytic strategy utilized multiple interaction 
modeling approaches to efficiently assess potential gene-
gene interactions. All methods concordantly predicted 
an interaction between  XRCC1- 399 and  XRCC3- 241 and 
a related interaction ( XRCC1- 194) was observed previ-

ously in another study  [13] . In vitro studies indicate that 
XRCC3 is required for the assembly and stabilization of 
the Rad51 complex with heteroduplex DNA  [47]  and 
modulates progression of replication forks  [50] . The BER 
pathway enzyme XRCC1 co-localizes with Rad51 in re-
sponse to DNA damage  [51] . Thus, the possibility of an 
interaction between these polymorphisms warrants fur-
ther consideration.

  Three analytic methods (MDR, hierarchical interac-
tion graph, logic regression) predicted an interaction be-
tween  XRCC1- 399 and  XPD- 751 that was supported by 
our logistic regression analysis ( table 4 ). The CART mod-
el conditioned its single tree analysis on  XRCC3 , there-

OR = 2.0
power

Prior probability OR = 3.0
power

Prior probability

0.1 0.01 0.001 0.0001 0.00001 0.1 0.01 0.001 0.0001 0.00001

0.754 0.227 0.763 0.970 0.997 1.000 0.992 0.182 0.710 0.961 0.996 1.000

1.000 0.155 0.669 0.953 0.995 1.000 1.000 0.155 0.669 0.953 0.995 1.000

1.000 0.155 0.669 0.953 0.995 1.000 1.000 0.155 0.669 0.953 0.995 1.000

0.500 0.014 0.138 0.617 0.942 0.994 0.975 0.007 0.076 0.452 0.892 0.988

0.043 0.182 0.711 0.961 0.996 1.000 0.210 0.044 0.335 0.835 0.981 0.998

0.975 0.373 0.867 0.985 0.998 1.000 1.000 0.367 0.865 0.985 0.998 1.000

0.556 0.565 0.935 0.993 0.999 1.000 0.893 0.447 0.899 0.989 0.999 1.000

0.995 0.508 0.919 0.991 0.999 1.000 1.000 0.507 0.919 0.991 0.999 1.000

0.643 0.000 0.001 0.007 0.066 0.415 0.999 0.000 0.000 0.005 0.044 0.313

0.162 0.057 0.400 0.870 0.985 0.999 0.636 0.015 0.145 0.631 0.945 0.994
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fore, it is not surprising that an independent  XRCC1 / XPD  
interaction was not included in the tree ( fig. 2 ). Logic re-
gression showed this interaction as a separate tree ( fig. 3 ). 
MDR selects the high risk combinations of factors, which 
may include both additive and multiplicative effects. Hi-
erarchical interaction graphing is useful for interpreting 
the exact nature of the interactions. The line between 
 XRCC1- 399 and  XPD- 751 is green accompanied by a pos-
itive percent of entropy indicating a greater than additive 
effect. XPD / ERCC2 is a member of the TFIIH complex 
that unwinds the damaged DNA following DNA damage 
recognition. This complex is also involved in normal 
gene transcription and controlled cellular apoptosis  [52] . 
The highest odds ratios were observed in never and for-
mer smokers, coinciding with a previously observed as-
sociation between higher DNA adduct levels and  XPD -
751 or  XRCC1- 399 genotype in never smokers  [11] . A pos-

sible explanation for this finding is that the effects of 
DNA repair genotype on risk may be overwhelmed by the 
carcinogenic effects of tobacco constituents. The pheno-
type is more apparent among never smokers, probably 
reflecting impaired removal of more subtle, environmen-
tally related, DNA damage events.

  Not surprisingly, when all variables were entered into 
the model, current smoking was the strongest single risk 
factor, followed by male gender and age  [53] .  XPD -751, 
 XRCC1- 399 and  XRCC3- 241 genotypes combined with 
smoking predicted bladder cancer risk well. Bladder can-
cer risk associations with these three genes were previ-
ously observed in the individual studies ( XPD- 751 and 
 XRCC1- 399 in New Hampshire  [16, 23]  and  XRCC3- 241 
in Italy  [15] ).

  Associations between polymorphisms and complex 
diseases may simply be false positive findings. After ap-
plying a method for the estimation of the number of false 
positive results, many of the above reported combina-
tions of polymorphisms remained plausibly true associa-
tions. In particular, the combination of  XRCC1- 399-GG 
+  XRCC3- 241-TT +  APE1- 148-TG/GG versus the remain-
ing ‘low-risk’ genotypes consistently appeared at higher 
risk even considering the very low prior probability of 
0.0001 (OR = 2 or 3). While we observe associations be-
tween DNA repair SNPs and bladder cancer risk, these 
findings could be due to chance, and may not be causal.

  Our results highlight the utility of our comprehensive 
analytic approach for efficiently picking the important 
associations out of a large group of potentially related fac-
tors. Further investigation of these interactions in other 
epidemiologic studies and experimental systems will be 
required to support these observations and elucidate 
their mechanisms.
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  Fig. 3.  Logic Regression model of genotype interactions. The al-
gorithm constructs predictors from binary SNP data that are 
Boolean (logical) combinations of the original genotype data. 
Logic expressions are depicted as trees with AND/OR operators 
at each branch point.     
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