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Abstract

Two systems are essential in humans for genome integrity, DNA repair and apoptosis. Cells that are defective in DNA
repair tend to accumulate excess DNA damage. Cells defective in apoptosis tend to survive with excess DNA damage and thus
allow DNA replication past DNA damages, causing mutations leading to carcinogenesis. It has recently become apparent that
key proteins which contribute to cellular survival by acting in DNA repair become executioners in the face of excess DNA
damage.

Five major DNA repair pathways are homologous recombinational repair (HRR), non-homologous end joining (NHEJ),
nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR). In each of these DNA repair
pathways, key proteins occur with dual functions in DNA damage sensing/repair and apoptosis. Proteins with these dual roles
occur in: (1) HRR (BRCA1, ATM, ATR, WRN, BLM, Tip60 and p53); (2) NHEJ (the catalytic subunit of DNA-PK); (3) NER
(XPB, XPD, p53 and p33ING1b); (4) BER (Ref-1/Ape, poly(ADP-ribose) polymerase-1 (PARP-1) and p53); (5) MMR (MSH2,
MSH6, MLH1 and PMS2). For a number of these dual-role proteins, germ line mutations causing them to be defective also
predispose individuals to cancer. Such proteins include BRCA1, ATM, WRN, BLM, p53, XPB, XPD, MSH2, MSH6, MLH1
and PMS2. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A widely held view is that the initial reaction of a
cell to DNA damage is to repair the damage. How-
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deoxyriboseATP; DNA-PK, DNA protein kinase; NAD+, nicoti-
namide adenine dinucleotide (oxidized form); NADH, reduced
form of NAD+; PARP, poly(ADP-ribose) polymerase
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ever, with increasing levels of DNA damage the cell
switches to cell cycle arrest or to apoptosis. Cell
cycle arrest is sometimes permanent, but ordinarily
reversible, allowing time for further DNA repair. The
maintenance of a switching mechanism that shifts the
cell from DNA repair to apoptosis, as appropriate in
the presence of excessive DNA damage, appears to
be of central importance for avoiding progression to
cancer. The default mechanism of apoptosis prevents
clonal expansion of cells in which unrepaired damage
would lead to mutation and to carcinogenesis (Fig. 1).

During progression to cancer, the capability of cells
to undergo apoptosis is often reduced, suggesting that
the normal ability to undergo apoptosis is protective
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Fig. 1. Roles of DNA damage, DNA repair, cell cycle arrest and apoptosis in carcinogenesis.

against cancer. For example, loss of the capacity to
undergo apoptosis occurs early in the progression to
adenocarcinoma of the colon[1–3] and esophagus
[4,5]. Apoptosis capability may be reduced in three
ways: by mutation, by silencing or loss of genes en-
coding required components of the apoptosis pathway
(e.g.p53 andbax) [6,7], or by persistent activation of
genes encoding apoptosis suppressors (e.g.bcl-2) [8].
Failure to undergo apoptosis in the face of unrepaired
damage leads to enhanced mutation[9–11], including
chromosome aberrations, and can be a cause of the
genomic instability that is a general characteristic of
cancer progression[12].

In the following sections, we discuss the various
specific DNA repair processes, how these processes
recognize and repair DNA damage, and how they
switch from repair to apoptosis when DNA damage
presumably overwhelms repair capacity. One should
keep in mind, however, that of necessity most of
the mechanistic information provided is based on in
vitro or purified enzyme studies and, thus, may or
may not reflect processes in vivo in man. Similarly,
biochemical events observed in cultured cells or with
purified enzymes may provide valuable clues to in
vivo processes, but may not be exactly correct.

There are two distinct types of cell death in
vivo, apoptosis and necrosis[13–15]. Apoptosis is
a controlled form of cell death, in which the cell
undergoes “cellular suicide”. The cell shrinks, dehy-
drates, fragments its nucleus, and is phagocytized by
macrophages[16]. Necrosis, on the other hand, is a
traumatic, but passive, form of cell death, in which
ion pumps fail, the cell swells and then undergoes

lysis with the release of inflammatory mediators
[13,17].

A cell will first try to repair any DNA damage
and survive; however, if DNA damages are exces-
sive, the preferred mode of cell death in a multicel-
lular organism is apoptosis, a process which does not
elicit an inflammatory response. How does a cell en-
sure that its death will occur by apoptosis, rather than
necrosis? Given that both DNA repair and apopto-
sis are energy-demanding processes, the answer may
lie in the proper utilization of the available ATP in
the cell (Fig. 2) [18–20]. Energy is required for both
DNA repair [21–35]and apoptosis[18,36–40]. In ad-
dition, during both DNA repair and apoptosis, the
ATP-dependent ion pumps that keep Ca++ [41] at a
low cytosolic concentration and sustain a critical in-
ternal K+ concentration[42] need to be maintained.

If the repair of DNA damage is prolonged in any
given cell, an “energy catastrophe”[43] will occur
(Fig. 2). The considerable investment of energy to
repair DNA was particularly noted by Roca and
Cox [25] in bacteria, where they pointed out the
“profligate” chemical energy invested in the degra-
dation and replacement of a strand of DNA, 1000
bases or more in length, to repair one DNA mismatch.
Therefore, in mammalian cells, a large amount of
ATP may be similarly directed toward the repair of
DNA and diverted away from the ATP-dependent
steps required for the execution phase of apoptosis. In
particular, the formation of the apoptosome[44–49],
the multimeric complex consisting of dATP, Apaf-1
and cytochrome c necessary for the formation of ac-
tive caspase-9[50], and the activation of downstream



C. Bernstein et al. / Mutation Research 511 (2002) 145–178 147

Fig. 2. Demands on the ATP pool to ensure the repair of DNA, the completion of the effector phase of apoptosis and the maintenance of
ion pumps. Excessive DNA damage may result in an “energy catastrophe” if the apoptosome (dATP, Apaf-1, pro-caspase-9) fails to form,
resulting in necrosis. The cleavage of key DNA repair proteins (e.g. hsRad51, ATM, DNA-PK, PARP) that consume a significant amount
of ATP, will divert ATP toward apoptosis and the maintenance of ion pumps.

effector caspases (e.g. caspase-3, -6 and -7) during
the demolition phase of apoptosis[46,49,51], require
dATP or ATP [36,37]. In addition, in the face of
excessive DNA damage, ATP is diverted from main-
taining the ion pumps (Fig. 2). In the case of the
Ca++-ATPase, energy depletion prevents Ca++ ions
from being extruded from the cell, thereby increasing
the intracellular Ca++ concentration from nanomolar

to lethal micromolar concentrations. The influx of
excessive Ca++ activates calcium-dependent phos-
pholipases, nucleases and proteases, which dramati-
cally injure the cell. Failure of the Na+, K+-ATPase
causes excessive amounts of Na+ to enter the cell, fol-
lowed by a large influx of water, resulting in cellular
swelling and lysis. Since K+ normally prevents apop-
tosis [52] by inhibiting the Apaf-1 oligomerization
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step in the formation of the apoptosome[53], the ef-
flux of K+ from the cell will help shift the mode of
cell death from apoptosis to necrosis. It may be that,
in order to ensure that apoptosis occurs instead of
necrosis in the face of excessive DNA damage, key
proteins involved in DNA repair that are consumers
of energy are cleaved and inactivated during apop-
tosis, such as ATM[54,55], DNA-PK [56], hsRad51
[57–59] and PARP [60–63]. Inactivation of these
proteins diverts ATP from DNA repair, and may also
prevent confusing pro-survival signals. In addition to
the formation of the apoptosome, ATP is also nec-
essary for the accumulation and stabilization of p53
[27], a DNA damage-responsive transcription factor
that increases the expression of pro-apoptotic proteins
[64] (e.g. bax) which damage the mitochondrial outer
membrane with the release of cytochrome c (Fig. 2)
[65]. p53 also increases the expression of Apaf-1
[66,67], which is part of the apoptosome. During
DNA damage-induced apoptosis, p53 has also been
reported to directly target the mitochondria[47].

The cleavage of PARP during apoptosis appears
to be an especially critical step, since PARP rapidly
consumes NAD+, the pyridine nucleotide, which,
in its reduced form, contributes electrons to com-
plex I of the mitochondrial electron transport chain
(Fig. 2). The NAD+ precursors, nicotinic acid and
nicotinamide, in fact, can protect against apoptosis
induced by the multiple stress-inducer, deoxycholate
[68]. Since PARP also poly(ADP) ribosylates and
inhibits p53 [69], PARP cleavage will result in the
activation of p53 (Fig. 2). The cleavage of PARP also
results in a gain-of-function, which augments the loss
of PARP activity [70]. After cleavage by caspase-3,
the N-terminal apoptotic fragment of PARP retains
a strong DNA binding activity and totally inhibits
the catalytic activity of uncleaved PARP[70]. Fig. 2
outlines a mechanism whereby the cell senses the
presence of too much DNA damage, and shunts the
available ATP toward apoptosis, while at the same
time, maintaining ion pumps that prevent cellular
lysis. In vivo, cell fate will culminate with the phago-
cytosis of the apoptotic cell and/or apoptotic bodies.
In vitro, cell fate will culminate in the eventual loss
of ion pumps, a fate termed “secondary necrosis” of
apoptotic cells. Since phagocytes are usually absent
from most in vitro culture systems, phagocytosis of
early apoptotic cells does not occur.

Over time, a high level of apoptosis can lead to
clonal selection of apoptosis-resistant cells. The gen-
eration of mutations as a consequence of increased
unrepaired DNA damage in apoptosis-resistant, pro-
liferating cells appears to be an important aspect of
the development of cancer at numerous sites within
the body. This is exemplified by the natural progres-
sion of follicular lymphoma to high-grade lymphoma
[71]. The constitutive presence of bcl-2 confers apop-
tosis resistance on follicular lymphoma cells, which
then allows mutations and chromosomal aberrations
to increase. As reviewed next, the mechanism of
apoptosis resistance involves, in part, the loss of key
bi-functional proteins which are necessary for ini-
tiation of both apoptosis and DNA repair. Loss of
apoptosis competence coupled with loss of capability
to repair DNA damage increases genomic instability
which in turn accelerates progression to cancer (Fig. 1)
[72].

Five major DNA repair pathways are homologous
recombinational repair (HRR); non-homologous end
joining (NHEJ); nucleotide excision repair (NER);
base excision repair (BER); and mismatch repair
(MMR) [73]. We review evidence that key proteins
associated with these five major forms of DNA repair
also have a role in triggering cell cycle arrest and
apoptosis (Table 1).

2. Homologous recombinational repair (HRR)

In HRR, sequence information that is lost due to
damage in one double-stranded DNA molecule is ac-
curately replaced by physical exchange of a segment
from an homologous intact DNA molecule. We focus
on seven genes directly involved in HRR that are
also involved in apoptosis (Table 1, Fig. 3). These
are breast cancer-associated gene 1 (BRCA1), ATM,
ATM-related (ATR), Werner syndrome gene (WRN),
Bloom syndrome gene (BLM), Tip60 and p53. We
also discussRad51 andBRCA2 because of their role
in the HRR process andc-Abl which has a clear role
in apoptosis and a possible role in DNA repair.

2.1. Activities of BRCA1 in HRR

BRCA1 protein acts as part of a large multimeric
complex referred to as the BRCA1-associated genome
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Fig. 3. Involvement of gene products in HRR and apoptosis. The dashed lines indicate uncertainty due to differing results in different
reports or less clear results.

surveillance complex (BASC, shown at the top of
Fig. 3) [74]. BASC is thought to act as a sensor for
DNA damage[74]. BRCA1 has an interaction domain
for Rad51, and participates with Rad51 in HRR of
double-strand breaks (shown at the bottom left of
Fig. 3) [75,76]. BRCA1 and Rad51 also participate in
HRR of interstrand crosslinks caused bycis-diamine-
dichloroplatinum(II)[77]. Mutations in BRCA1 cause
reduced HRR of double-strand breaks and of DNA
crosslinks, and increase genomic instability[78,79].

2.2. Cell cycle arrest activities of BRCA1

When BRCA1 and p53 are co-transfected into
cells, their interaction stimulatesp53-mediated tran-
scription from promoters containing p53-responsive
elements, indicating that BRCA1 functions as a p53
transcriptional coactivator[80]. BRCA1 induces the
growth arrest and DNA damage inducible gene 45
(GADD45) [81] which activates the G2M cell cycle
checkpoint[82].



C. Bernstein et al. / Mutation Research 511 (2002) 145–178 151

BRCA1 has a protein interaction domain for p53
[75], and BRCA1 expression is modulated by p53[83].
BRCA1 levels are down-regulated in response to p53
induction by DNA damage in cells that undergo either
growth arrest or apoptosis (Fig. 3) [83]. Since BRCA1
plays a role in DNA repair, one can ask why it disap-
pears shortly after DNA damage has been produced.
A possible explanation, suggested by Arizti et al.[83],
is that BRCA1, once phosphorylated, acts synergis-
tically with p53 to activate the p53 pathways of cell
cycle arrest and DNA damage response, and then is
repressed and/or degraded in a p53-dependent manner
when it is no longer needed. MacLachlan et al.[84]
also suggested on the basis of their findings that, upon
treatment with DNA damaging agents, BRCA1 ini-
tially participates in accumulation of p53 protein, but
later p53 acts to reduce BRCA1 expression, forming
a feedback loop.

2.3. Role of BRCA1 in apoptosis

BRCA1 acts as a transcriptional regulator, and a ma-
jor target of BRCA1 is the DNA damage-responsive

Table 2
Human genes encoding DNA repair proteins which predispose to cancer when mutated in the germ line

Gene Repair pathway Cancer site(s) associated with defective
or reduced gene product

BRCA1 HRR Breast, ovarian[75,106]
BRCA2 HRR Breast, ovarian[75,106]
ATM HRR Leukemia, lymphoma, breast[99]
WRN HRR? Increase in cancer incidence, mainly sarcomas[139]
BLM HRR Early development of cancers seen in normal population[139]
RTS (RECQ4) DNA repair but

type unknown
Increased cancer incidence, mainly osteogenic
sarcomas[139]

NBS HRR Increased malignancy, AT-like[287]
Mre11 HRR AT-like [288]
FANCA, FANCC, FANCD2,

FANCE, FANCF, FANCG
HRR? Acute myeloid leukemia; squamous cell

carcinomas of head and neck[289]
XPC, XPE GGR Skin[172]
XPA, XPB, XPD, XPF, XPG GGR and TCR Skin[172]
XPV Polymerase�

postreplication repair
Skin [290]

hMSH2, hMSH6, hMLH1, hPMS2 MMR, HRR, TCR Hereditary non-polyposis colon cancer[221,291]

HRR: homologous recombinational repair; GGR: global genomic repair (a form of nucleotide excision repair); TCR: transcription coupled
repair (a form of nucleotide excision repair); MMR, mismatch repair;XPA, XPB, XPC, XPD, XPF, XPG: xeroderma pigmentosum
complementation groups A, B, C, D, F and G, respectively;hMSH2 and hMSH6: humanMutS homologs 2 and 6, respectively;hMLH1:
humanMutL homolog 1;hPMS2: human post-meiotic segregation 2;FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG: Fanconi anemia
complementation groups A, C, D2, E, F and G, respectively; RTS: Rothmund–Thomson syndrome;NBS: Nijmegen breakage syndrome;
AT-like: ataxia telangiectasia-like.

geneGADD45 [85]. This indicates that BRCA1 trig-
gers apoptosis through activation of c-Jun N-terminal
kinase/stress-activated kinase (JNK/SAPK,Fig. 3),
a signaling pathway potentially linked toGADD45
gene family members[85]. This also indicates that the
p53-independent induction of GADD45 by BRCA1
and its activation of JNK/SAPK might provide a
pathway for BRCA1-induced apoptosis[85].

Under conditions of excessive DNA damage
BRCA1 is necessary for the induction of apoptosis
[86]. BRCA1 modulates stress-induced apoptotic sig-
naling through a pathway that sequentially involves
the H-Ras proto-oncogene, mitogen and extracel-
lularly activated protein kinase 4 (MEKK4), JNK,
Fas (CD95)/Fas ligand interactions, and activation of
procaspase-8. This Fas-dependent signaling pathway
is independent of p53 function (Fig. 3) [86].

2.4. Defects in BRCA1 are associated with cancer

Germ-line mutations in genes involved in repair
predispose to cancer (Table 2). Germline mutations
in BRCA1 and BRCA2 confer a high risk of breast
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and ovarian tumors[87] and may also be associated
with adenocarcinoma of the colon[88,89]. In sporadic,
non-inherited breast cancer, the majority of high-grade
ductal carcinomas have reduced or undetectable levels
of BRCA1 [90]. This reduced expression of BRCA1
may be due, in part, to epigenetic silencing by methy-
lation of the BRCA1 promoter[91] and, in part, to
loss of heterozygosity[92].

2.5. Role of BRCA1 in avoiding genetic instability

Most cancers exhibit genetic instability. This in-
stability occurs at two levels[12]. In some cancers,
instability is observed mainly at the nucleotide level
and results in base substitutions or deletions or inser-
tions of a few nucleotides. In most cancers, instability
is observed at the chromosome level resulting in loss
and gain of whole chromosomes (or large portions
thereof) and chromosomal translocations. BRCA1
acts to regulate centrosome duplication and the G2M
checkpoint[93]. In BRCA1-defective cells, improper
amplification of functional centrosomes leads to the
formation of multiple spindle poles within a single
cell. These abnormalities directly result in the unequal
segregation of chromosomes, abnormal nuclear divi-
sion and aneuploidy. Loss of BRCA1 function causes
genetic instability (including frequent numerical and
structural chromosomal aberrations) which leads to
further alterations including inactivation of tumor
suppressor genes and/or activation of oncogenes and
ultimately to increased tumorigenesis[94]. In general,
defectiveBRCA1 can enhance cancer progression by
allowing excessive DNA damage through insufficient
DNA repair, improper centrosome duplication, loss
of the ability to undergo cell cycle arrest, and loss
of the ability to undergo apoptosis in the presence of
increased unrepaired DNA damage.

2.6. BRCA2 in HRR

BRCA2 appears to be needed for the nuclear local-
ization of RAD51 as well as for cell cycle checkpoint
regulation[95]. BRCA1, BRCA2 and RAD51 inter-
act and co-localize in a punctuate pattern, called foci
(identified by immunofluorescence), in the nucleus
during the S-phase of the cell cycle, indicating coor-
dinated function[75,76,96]. Mutations inBRCA2 give
rise to phenotypic effects similar to those of mutations

in BRCA1, suggesting that they have related functions
[96]. Despite the similarity in function of BRCA1
and BRCA2, the two genes are not related by se-
quence. BRCA2, in contrast to BRCA1, associates in
vivo with a significant portion of the endogenous pool
of RAD51 [97], suggesting that BRCA2 may have a
more direct role in the strand exchange reactions of
HRR. BRCA2-deficient cells are defective in HRR of
double-strand breaks and DNA crosslinks[98].

2.7. Activities of ATM in HRR

ATM is a serine/threonine protein kinase, and in
response to DNA damage phosphorylates, and thus
activates a number of proteins. ATM is a component
of the BASC complex (top ofFig. 3) and plays a
central role in signaling DNA damage, particularly
double-strand breaks in DNA[99] (Table 1). ATM acts
as a cellular gatekeeper and is a key initiating factor in
the cascade of events leading to activation of at least
the six DNA damage-responsive signaling pathways
and cell cycle checkpoints shown inFig. 3 as well as
its interaction with H2AX, discussed in the following
sections. It is not clear which of the activities of ATM
are of most importance in its role in DNA repair.

Cells derived from patients defective in ATM are
hypersensitive to ionizing radiation (IR), bleomycin,
restriction endonucleases, and inhibitors of topoiso-
merase, all agents that induce double-strand breaks
[100]. For example, the topoisomerase inhibitor,
camptothecin, induces double-strand breaks predom-
inantly in replication forks, and ATM mutant cells
are defective in repair of this particular subclass of
double-strand breaks[101].

Although in some cell lines there is evidence that
ATM acts, in part, through activation of c-Abl, in
another cell line this was not found, so inFig. 3, the
arrow indicating c-Abl-activating DNA repair through
Rad51 is drawn with a dashed line. On the one hand,
Chen et al.[102] showed that IR induces RAD51 ty-
rosine phosphorylation, which depends on both ATM
and c-Abl tyrosine kinase. ATM is required for the
activation of the tyrosine kinase c-Abl[103], prob-
ably by phosphorylating c-Abl on serine 465[104].
c-Abl phosphorylates RAD51 in vitro and in vivo
enhancing complex formation between RAD51 and
RAD52, and RAD51 and RAD52 cooperate in HRR
[102,105,106]. On the other hand, a recent report by
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Takao et al.[103], using a chicken B lymphocyte cell
line, indicated that ATM was essential for DNA repair
after IR, but that c-Abl was not.

In response to IR, ATM also phosphorylates and
activates BRCA1, which may be critical for proper
responses to IR-induced DNA damage[107,108].
C-terminal binding protein interacting protein (CtIP)
inhibits BRCA1 by binding to the BRCA1 C-terminal
(BRCT) domain repeats of BRCA1. Upon IR, ATM
directly phosphorylates CtIP, dissociating it from
BRCA1 [109]. Failure of this dissociation results in
persistent repression of BRCA1-dependent induction
of GADD45. Another possible way in which ATM
may be active in repair is through the phosphorylation
and activation of H2AX, which opens up chromatin
to allow DNA repair enzymes access to double-strand
breaks[34].

2.8. Cell cycle arrest activities of ATM

In response to DNA damage and replication blocks,
cells prevent cell cycle progression through the control
of critical cell cycle regulators. Cells deficient in ATM
exhibit defective cell cycle checkpoints at the G1S
transition, during S phase, and at the G2M boundary.
The G1S cell cycle checkpoint is mediated primarily
by activation and accumulation of the p53 protein,
which in turn activates the gene encoding p21, an in-
hibitor of the cell cycle machinery[105]. In response
to double-strand breaks, ATM acts upstream of p53
(Fig. 3) and controls its activity through phosphory-
lation of a single residue, serine 15, thought to act
by decreasing binding of p53 to its inhibitor MDM2
[110,111]. A later report, however, indicated that ser-
ine 15 phosphorylation contributes to p53 activation
by causing increased binding of the phosphorylated
p53 to the transcription factor CBP/p300 (and in this
report, serine 15 phosphorylation did not influence the
interaction of p53 with MDM2)[112]. The p300/CBP
protein acetylates lysine 382 at the C-terminus of
p53, which promotes p53 binding to specific DNA
sequences[113]. Serine 15 is located in the nuclear
export signal sequence of p53, and phosphorylation of
serine 15 after DNA damage results in p53 not being
exported from the nucleus[114]. This increases its
transactivation function. In response to DNA damage,
ATM also phosphorylates the p53 inhibitory protein
MDM2, reducing its binding to p53 and preventing the

rapid degradation of p53[115]. In addition, JNK, acti-
vated by ATM phosphorylation, can in turn phospho-
rylate p53 on ser 37 to block MDM2 binding[116].

Checkpoint kinase 2 (Chk2) is the mammalian ho-
molog of theS. cerevisiae Rad53 andS. pombe Cds1
protein kinases required for the DNA damage and
replication checkpoints. TheChk2 gene encodes a
G2M checkpoint kinase. Chk2 is rapidly phosphory-
lated and activated in response to replication blocks
and DNA damage; the response to DNA damage
occurs in an ATM-dependent manner (Fig. 3) [117].
When activated by DNA damage, hChk2 phosphory-
lates p53 on serine 20 blocking binding to MDM2 and
thereby stabilizing p53[118]. The Nijmegen breakage
syndrome 1 gene (NBS1), encodes a component of
the BASC complex, which interacts with ATM and is
phosphorylated by it after exposure to IR. When the
NBS1 gene is mutated, the resulting syndrome appears
to be caused by defective responses to double-strand
breaks. The ATM-dependent activation of the check-
point kinase hChk2 by IR also requires NBS1[119],
suggesting that NBS1 has a role in cell cycle arrest. In
general, ATM both directly and indirectly mediates a
series of p53 modifications aimed at creating structural
configurations that stabilize and activate p53[105].

2.9. Role of ATM in apoptosis

Xu and Baltimore[120] found that mouse ATM−/−
embryonic stem cells are hypersensitive to IR and
defective in cell cycle arrest following radiation.
However, in contrast to mouse ATM−/− embryonic
stem cells, mouse ATM−/− thymocytes are more
resistant to apoptosis induced by IR than normal
thymocytes, implying a role for wild-type ATM in
inducing apoptosis[120]. Bhandoola et al.[121] pre-
sented evidence that mature T cells are signaled to
die by ATM-dependent, but p53-independent, apop-
tosis. Following IR, c-Abl is phosphorylated in an
ATM-dependent manner, and activated c-Abl can, in
turn activate p73 (Fig. 3), a p53-like protein, which
has a role in DNA damage-induced apoptosis[103].

The transcription factor, E2 promoter binding fac-
tor 1 (E2F1) protein, has a role in regulating cell cycle
progression, particularly at the G1S transition. Lin
et al. [122] showed that, in response to DNA damage
of mouse thymocytes, E2F1 protein is phosphory-
lated by ATM and ATR kinases at a site in its amino
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terminus. This stabilizes E2F1, which transcription-
ally activates the p73 promoter (Fig. 3). Accumula-
tion of p73 leads, in turn, to induction of apoptosis
[123,124]. ATM is also required for IR-induced apop-
tosis in differentiated neurons. This occurs through a
pathway that depends on ATM-induced phosphory-
lation of two sites on p53[125], and is also largely
dependent on BAX[126], a member of the Bcl-2
family of cell death regulators, which promotes
apoptosis. In response to double-strand break dam-
age, ATM is involved in DNA repair, entry into cell
cycle arrest, and apoptosis. Defects in ATM lead to
loss of these abilities, causing increased genomic
instability [99].

2.10. ATM cleavage upon commitment
to apoptosis

Upon commitment to apoptosis, caspases (cysteine
aspartic acid proteases) are activated in a prote-
olytic cascade. In this cascade, initiator caspases (e.g.
caspase-8 and -9) activate downstream caspases such
as caspase-3, -6 and -7, which are responsible for
dismantling cellular proteins as part of the execution
phase of apoptosis. During IR-induced apoptosis,
ATM is cleaved by a caspase-3-like apoptotic pro-
tease[54,127]. The cleavage of ATM during apop-
tosis generates a truncated protein devoid of kinase
activity. This truncated protein nevertheless retains
its DNA binding ability suggesting that it may act
in a trans-dominant-negative fashion to prevent DNA
repair and DNA damage signaling[127]. These find-
ings support the hypothesis ofSection 1(illustrated
in Fig. 2) that upon commitment to apoptosis, DNA
repair is counterproductive.

2.11. Defects in ATM are associated with cancer

Inherited mutations of theATM gene cause in-
creased susceptibility to T-cell pro-lymphocytic
leukemia, and B-cell chronic lymphocytic leukemia.
Defective ATM may also predispose to sporadic
colon cancer in tumors with microsatellite instability
[128]. Epidemiological studies also indicate an excess
of breast cancer in the relatives of individuals with
ataxia telangiectasia. Loss of heterozygosity of ATM
frequently occurs at an early stage of development of
breast cancer[92].

2.12. ATR (ATM-related) kinase

Like ATM, ATR is a member of a family of
high molecular weight protein kinases occurring in
a variety of eukaryotes and involved in DNA dam-
age responses. Brown and Baltimore[129] have
suggested that ATR and ATM may have both over-
lapping and non-redundant roles in regulating p53.
ATM is responsive to IR but not UV, hydroxyurea
or MMS-induced DNA damage, whereas ATR is
responsive to both IR- and UV-induced damage. ATR
activates p53 in response to DNA damage by phos-
phorylating p53 on serines 15 and 37. In response to
DNA damage, ATR also phosphorylates and activates
Chk1, a protein kinase that phosphorylates p53 on
serine 20[130] and regulates cell cycle progression
[131]. ATR kinase also mediates phosphorylation of
BRCA1 in response to UV, but at sites that are both
distinct and overlapping with those phosphorylated
by ATM in response to IR[108]. Thus, BRCA1 is
activated by ATM and ATR and acts downstream of
them. As noted by Shiloh[105], ATM and ATR are
sentries at the gate of genome stability.

2.13. c-Abl activity in HRR

There have been several reports on the activity of
c-Abl in HRR. In one report, upon activation, c-Abl
phosphorylated RAD51 (on tyr 54), inhibiting its bind-
ing to DNA and the function of RAD51 in strand ex-
change reactions[132]. In a second report, activation
of c-Abl resulted in phosphorylation of Rad51 at other
tyrosine residues, and enhanced the interaction be-
tween Rad51 and Rad52, thought to stimulate strand
exchange activity[102]. In a third report, c-Abl de-
ficiency had little effect on tested functions of HRR,
though it was clearly necessary for apoptosis[133].

2.14. c-Abl activity in growth arrest and apoptosis

c-Abl is a tyrosine kinase that is phosphorylated
and activated in cells exposed to IR and other DNA
damaging agents by DNA-PK[134] and ATM (Fig. 3)
[104]. Activation of c-Abl by ATM prevents the nu-
clear export of p53[135] and can induce growth arrest
in a p53-dependent and Rb-dependent manner[136];
c-Abl, through its Src-homology (SH3) domain, binds
to p73 in vivo through a p73 PXXP domain[137,138].
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IR-induced activation of c-Abl (through ATM) then al-
lows c-Abl to phosphorylate p73 at tyrosine residues,
and this, in turn, activates the p73-dependent apopto-
sis pathway (Fig. 3) [137,138].

2.15. Werner syndrome and Bloom syndrome

Two further genes, which may be involved in HRR,
are the genes responsible for Werner syndrome (WRN)
and Bloom syndrome (BLM). These two genes each
encode a RecQ family DNA helicase[139]. Homozy-
ous mutations in each of these genes are associated
with genomic instability and cancer predisposition.
WRN is unique within this family in that it also has
an exonuclease activity. WRN protein forms distinct
nuclear foci (identifiable by immunofluorescence) that
partially overlap with RAD51 nuclear foci formed in
response to DNA damages (including double-strand
breaks), suggesting that WRN takes part in HRR[140].
The finding that WRN defective cells are sensitive to
DNA crosslinking drugs[141]also suggests a defect in
HRR, since DNA crosslinks are ordinarily repaired by
HRR. BLM protein is a component of the BASC com-
plex (described earlier), which includes BRCA1 and
ATM, suggesting that BLM is also involved in HRR
[74]. BLM interacts directly with RAD51[139]. Both
BLM and WRN interact functionally with p53, and
p53-mediated apoptosis is defective in BLM and WRN
mutant cells[142–145]. Although the evidence indi-
cates that BLM and WRN participate in both HRR and
p53-mediated apoptosis, their specific roles in these
processes are not yet understood.

2.16. TIP60 and p53

Histone acetylases are important chromatin modi-
fiers and play a central role as chromatin transcrip-
tion activators. TIP60 histone acetylase is part of a
multimeric protein complex. Besides histone acety-
lase activity, TIP60 also acts as a DNA helicase and
binds specifically to Holliday-like structures in DNA
(three- and four-way junctions) that are intermediates
in HRR. Ectopic expression of mutated TIP60 lacking
histone acetylase activity results in cells with defective
double-strand DNA break repair and with loss of apop-
totic competence[146]. The defect in double-strand
break repair may reflect a role of TIP60 in resolving
Holliday junctions during HRR. The loss of apoptotic

competence suggests a defect in the cell’s ability to
signal the existence of DNA damage to the apoptotic
machinery.

p53 binds strongly and with high specificity to Hol-
liday junctions and facilitates their cleavage, which is
an important step in the HRR pathway[147]. In ad-
dition, p53 interacts physically and functionally with
BRCA2 [96] and RAD51[148]. These findings are
consistent with a role of p53 in HRR. p53 also ex-
hibits a 3′ to 5′ exonuclease activity indicating a direct
role in DNA repair[149]. Marmorstein et al.[96] pre-
sented evidence that BRCA2 and RAD51 cooperate
to down-regulate p53, which decreases p53 transac-
tivation activity and limits the length or severity of
p53-mediated cell cycle arrest after DNA damage.
Thus, in response to DNA damage, p53 fulfills mul-
tiple roles. It not only participates in HRR, but also,
when activated, signals cell cycle arrest to allow for
further repair, and apoptosis if repair is insufficient.

2.17. Rad51 has a central role in HRR (but no
pro-apoptotic role)

The human form of Rad51 (HsRad51) binds to
DNA and promotes ATP-dependent homologous pair-
ing and strand exchange, the central reactions of HRR
[150,151]. HsRad51 is a homolog of, and functionally
similar to, the extensively studied RecA protein ofE.
coli and the Rad51 protein of yeast, where the basic
mechanism of HRR is understood in detail. Antisense
inhibition of mouse Rad51 enhances radiosensitivity
[152] and Rad51 homozygous mutant mouse embryos
are hypersensitive to IR[153]. The underlying basis
for this sensitivity appears to be the loss of ability to
repair double-strand breaks. Loss of heterozygosity of
RAD51 is associated with progression toward sporadic
breast carcinoma[92]. Upon commitment to apopto-
sis, Rad51 is cleaved by caspase-3[59]. The cleavage
of both ATM and Rad51 by caspase-3 suggests that in-
hibition of HRR may be part of the apoptotic response
in cells suffering from excessive DNA damage.

3. Non-homologous end-joining (NHEJ)

There are two distinct mechanisms for repairing
double-strand breaks, HRR and NHEJ. HRR is thought
to be largely accurate by analogy with this process
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in microorganisms. NHEJ is regarded as largely inac-
curate because it involves end-joining reactions with
junctions containing deletions back to regions of mi-
crohomology of 1–10 bases within 20 base pairs of
the ends[154]. Mammalian cells repair the major-
ity of double-strand breaks by NHEJ[154], although
there is evidence that NHEJ may be coupled to HRR
to generate accurate repair of double-strand breaks
[155].

3.1. Role of DNA-PK in repair

NHEJ is carried out, in part, by DNA-PK, a holoen-
zyme consisting of a catalytic subunit (DNA-PKcs)
and a DNA binding and regulatory subunit, Ku. NHEJ
is initiated by Ku (a heterodimer of Ku70 and Ku86),
binding to both DNA ends of a double-strand break
(Fig. 4). Ku then recruits DNA-PKcs, a quiescent
protein kinase which is only activated by associa-
tion with Ku at DNA ends. The complex of Ku and
DNA-PKcs, now an active heterodimer protein ki-
nase called DNA-PK, is able to align the ends of the
double-strand break (Fig. 4) and allow their ligation
by DNA ligase IV, which, among one or more other
factors and activities, completes NHEJ DNA repair
[156]. The two pathways, HRR and NHEJ, appear to

Fig. 4. Involvement of gene products in NHEJ and apoptosis. The dashed lines relating to apoptosis indicate differences in results in
different organisms and cell lines in these reactions (see text).

be complementary since double mutant cells defective
in both HRR and NHEJ are profoundly more sensitive
to IR than either mutant alone[157].

3.2. Role of DNA-PK in apoptosis

Studies involving different mouse strains or dif-
ferent cell lines have different results with respect to
DNA-PK involvement in apoptosis, so the arrows in
Fig. 4 that deal with apoptosis are drawn with dashed
lines. On the one hand, one study indicates that upon
exposure to IR, DNA-PK phosphorylates p53 at ser-
ines 15 and 37. This activation of p53 then leads to
apoptosis in response to DNA damage[158]. Along
the same line, another study indicates that DNA-PK
also phosphorylates MDM2, preventing its inhibitory
action on p53 and allowing p53 to transactivate down-
stream target genes[159]. Further, DNA-PK and p53
were shown to form a protein complex that interacts
with gemcitabine-containing DNA and plays a role in
signaling apoptotic pathways[160]. In addition, mice
defective in DNA-PKcs had significantly suppressed
IR-induced apoptosis and BAX expression, indicating
that DNA-PKcs serves as an upstream effector for p53
activation in response to IR, linking DNA damage to
apoptosis[161].
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On the other hand, studies by Jhappan et al.[162],
using IR on another strain of DNA-PKcs-defective
mice, and by Jimenez et al.[163] on another cell line
defective in DNA-PK, found that the p53-mediated
apoptosis response was intact. In addition, the re-
striction enzyme PvuII forms blunt end double-strand
breaks and such damages are ordinarily repaired
by NHEJ catalyzed by DNA-PK. Such blunt end
double-strand breaks were found to induce apoptosis
in p53-deficient cells, indicating that apoptosis can
be induced by these damages in a p53-independent
fashion [164]. The mechanism appears to involve a
decline in Bcl-2 levels.

It is not clear whether the different findings are due
to mouse strain or cell line differences, or different
conditions of the assays. But once cells become com-
mitted to apoptosis, DNA-PK is specifically cleaved
by caspase-3[165].

4. Nucleotide excision repair (NER)

NER repairs DNA with helix-distorting damages,
including the damages of cyclobutane pyrimidine
dimers and 6–4 photoproducts produced by UV light,
and adducts produced by the chemotherapeutic agents
cisplatin and 4-nitroquinoline oxide[166,168]. About
30 polypeptides are involved in NER, and the NER
process has been reconstituted with purified compo-
nents (summarized in[167]). Key steps of NER (see
Fig. 5 for some of these steps) include: (i) recognition
of a DNA defect; (ii) recruitment of a repair com-
plex; (iii) preparation of the DNA for repair through
action of helicases; (iv) incision of the damaged
strand on each side of the damage, with release of
the damage in a single-strand fragment about 24–32
nucleotides long; (v) filling in of the gap by repair
synthesis; (vi) ligation to form the final phospho-
diester bond[168,169]. Two subpathways of NER
are global genomic repair (GGR) and transcription
coupled repair (TCR). These pathways are initiated
somewhat differently, with GGR acting on damages
in non-transcribed regions of DNA and TCR acting
on damages in actively transcribed DNA. However,
after initiation, most enzymatic steps utilize the same
enzymes and enzyme complexes[168,169]. The ini-
tiation step, the rate-limiting step of NER, can in-
volve one of the three different pairs of proteins (see

Fig. 5), depending in part on which helix-distorting, or
transcription-blocking damage is involved[170–172].
Rates of initiation depend on how much the helix
is distorted and can vary by more than 1000-fold
[166,172].

As shown by Li and Ho[173], when lower levels
of helix-distorting damages are produced by UV, p53
protein is increased, which in turn promotes participa-
tion in NER. After high doses of UV, cells are ineffi-
cient at NER. NER is also activated at an early stage of
apoptosis before apoptosis becomes irrevocable, after
which NER is greatly reduced[174]. p53-regulated
NER and apoptosis occur at different levels depending
on the state of cellular differentiation[175,176].

Four genes of the NER pathways,XPD, XPB, p53
and p33ING1b, as described below are required for
both efficient NER and for apoptosis in response to
UV-induced damages.

4.1. The role of XPD in NER, apoptosis
and disease

Alterations at specific sites within the XPD protein
have been identified as affecting one of two different
primary functions of XPD: stabilization of the tran-
scription factor complex TFIIH, and a 5′ → 3′ heli-
case function most strongly expressed when XPD is
part of the TFIIH complex[177]. The helicase func-
tion of XPD is essential for NER. When XPD helicase
function is defective due to an alteration in its ATP
hydrolysis region, neither 5′ nor 3′ incisions in de-
fined positions around a DNA adduct can be detected
[178]. XPD function is also required for p53-mediated
apoptosis[179,180].

Different alterations in XPD cause different defects
in DNA repair, RNA transcription and in apoptosis.
Identified defects at specific sites within XPD cause
defects in transcription and NER, and also cause one
of three different major diseases, xeroderma pigmen-
tosum, Cockayne’s syndrome or trichothiodystrophy
[177]. Other mutations in XPD cause more subtle
effects. An XPD substitution at amino acid 312 (a
minority variant polymorphic form of the protein)
increases protection from lung cancer[181]. In ad-
dition, an alteration at amino acid 751 gives some
protection against basal cell carcinoma[182], but pos-
sibly increases risk among smokers and drinkers for
squamous cell carcinoma of the head and neck[183].
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Fig. 5. Involvement of gene products in NER and apoptosis.

TFIIH is a nine subunit complex which acts in NER
(Fig. 5). XPD and XPB are members of this complex
whose helicase activities are required for NER, as they
allow the opening of DNA around the DNA damage
during the GGR subpathway of NER[184]. During
the TCR subpathway of NER, it is thought that stalling
of RNA pol II at a site of DNA damage recruits the
TFIIH complex, with its XPD subunit, to participate
in NER [184].

The XPD protein binds with p53 in vitro, and p53
binding to XPD within the TFIIH complex inhibits the

helicase activity of XPD[185]. Binding of XPD to p53
occurs at the carboxy terminal domain of XPD[186].
While transfer of a wild-typep53 expression vector
into primary normal human fibroblasts results in apop-
tosis, primary fibroblasts from individuals with a de-
fect in XPD have a deficiency in the apoptotic response
[179]. The XPD polymorphic variant at amino acid
312 did not have an altered binding efficiency for p53.
However, when present in lymphoblastoid cell lines,
this XPD variant produced a 2.5-fold higher apoptotic
response to UV-induced damage than that shown by
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the majority type of XPD[186]. This higher apoptotic
response may account for the protective effect of this
variant against lung cancer.

4.2. The role of XPB in NER and apoptosis

The XPB protein is a 3′ → 5′ helicase acting
within the TFIIH complex (Fig. 5) [167] and XPB
is necessary for transcription and NER[187] as well
as for p53-dependent apoptosis[179]. The few XPB
mutations known each have different levels of defi-
ciency with respect to repair of cyclobutane pyrimi-
dine dimers and pyrimidine(6–4)pyrimidine dimers,
two different types of UV lesion[188]. XPB (also
known as ERCC3) has been shown to bind to p53 in
vitro [189] and to the C-terminal domain of p53 in
vivo [185].

4.3. The role of p53 in NER and in apoptosis after
DNA damage usually repaired by NER

The induction of NER and apoptosis after UV dam-
age in mouse fibroblasts is observed only in p53+/+
and not in p53−/− cells, indicating that both stress
response functions are dependent on wild-type p53
function [173]. Both NER subpathways, GGR and
TCR, in human fibroblasts depend on p53[190]. In
p53+/+ fibroblasts, NER only requires low levels of
p53 induction, but a large amount of p53 induction
is required for triggering apoptosis[173]. However,
wild-type p53 activity was not required for apopto-
sis in undifferentiated murine keratinocytes, although
p53 was needed for apoptosis of differentiated ker-
atinocytes [191]. p53 directly interacts with three
components of the TFIIH complex, which is at the
center of the NER response (Fig. 5). As reviewed by
Frit et al. [184], the amino terminal transactivation
domain of p53 interacts with p62, a component of
TFIIH, and the carboxy terminus of p53 binds to the
amino-terminal half of XPD and to helicase motif III
of XPB. These interactions inhibit the helicase ac-
tivity of TFIIH without affecting its ATPase activity.
The p53 mutants frequently found in tumor cells are
less efficient helicase inhibitors. Mutant p53 affects
NER in a dominant negative manner. This implies that
wild-type p53 undergoes protein–protein interactions
which are important in NER[192]. UV-induced apop-
tosis is dependent on p53, but this UV-induced apop-

tosis requires active XPB and XPD proteins as well
[179].

In addition to direct interaction with components of
TFIIH, p53 also functions in NER by transcriptional
activation of XPE (p48, involved in damage detec-
tion). This effect of p53 occurs through the basal level
of p53 present before UV damage occurs plus the
newly induced level of p53 after irradiation[171]. In
addition to its role in NER, the transactivation activ-
ity of p53 was found to be needed for p53-dependent
apoptosis[193]. Recently, one particular p53 transacti-
vation activity needed for apoptosis after UV-induced
damage has been elucidated by Oda et al.[194]. This
transactivation occurs after phosphorylation of the
ser46 of p53, changing the conformation of p53 so
that it now transactivates p53-regulated apoptosis-
inducing protein 1 (p53AIP1). p53AIP1 localizes to
mitochondria where it causes dissipation of the mito-
chondrial membrane potential (�ψm). The down-
stream cytotoxic effects of this perturbation are not
known.

4.4. The role of p33ING1b in NER and
apoptosis

p33ING1b is one of four isoforms of the tumor
suppressor geneING1, coded for by alternative splic-
ing of ING1. p33ING1b expression is induced by
UV-irradiation and enhances repair of UV-damaged
DNA through a mechanism which requires the par-
ticipation of p53, and a possible interaction with
GADD45 [195]. p33ING1b, through an octapep-
tide motif called the proliferating cell nuclear anti-
gen (PCNA)-interacting-protein domain (PIP), also
strongly binds PCNA in a UV-inducible manner.
This binding apparently correlates with the ability of
p33ING1b to induce apoptosis[196].

5. Base excision repair (BER)

BER is a major DNA repair pathway protecting
mammalian cells against single-base DNA damage
caused by methylating and oxidizing agents, other
genotoxicants, and a large number (about 10,000 per
cell per day) of spontaneous depurinations[197]. BER
is mediated through at least two subpathways, one in-
volving single nucleotide BER and the other involving
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Fig. 6. Involvement of gene products in BER and apoptosis.

longer patch BER of 2–15 nucleotides. BER can be
initiated through removal of a damaged base by a
DNA glycosylase, which binds the altered deoxynu-
cleoside in an extrahelical position and catalyzes
cleavage of the base–sugar bond. This generates an
apurinic/apyrimidinic site (AP site). BER can also
occur at a site of spontaneous depurination. Ref-1, an
AP endonuclease, then makes a 5′ nick in the DNA
backbone. This is followed by poly(ADP-ribose)
polymerase-1 (PARP-1) acting as a nick surveillance
protein, binding to the nicked DNA (Fig. 6). PARP-1
binds even more strongly if there is a stalled single
nucleotide BER block at the excision step. Subse-
quently, repair patch synthesis and DNA ligation
complete the process[197,198](some steps shown in
Fig. 6).

5.1. Role of Ref-1 in BER and cancer

Ref-1 is a multifunctional protein that serves as the
AP endonuclease in BER (seeFig. 6) [197]. Ref-1 is
dramatically elevated in prostate cancer[199] and a
variety of other cancers[197], indicating that during
progression to prostate cancer enhanced BER may
provide a growth advantage.

5.2. Role of Ref-1 in apoptosis

Ref-1 associates with p53 and is a potent activator
of p53 binding in vivo, enhancing the ability of p53
to transactivate a number of p53 target promoters
[200]. Ref-1 overexpression increases the ability of
p53 to stimulate p21 and cyclin G expression. Up-
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regulation of p21 leads to cell cycle arrest by inhibiting
cyclin-dependent kinase function[201] and cyclin G
has pro-apoptotic activity[202]. Down-regulation of
Ref-1 (by antisense strategies) causes a reduction in
the ability of p53 to transactivate the p53 and Bax pro-
moters. Thus, Ref-1 not only plays a key role in BER,
but also is a key regulator of p53 and, hence, of cell
cycle arrest and apoptosis. Ref-1 is induced by oxida-
tive agents and in turn stimulates the DNA binding
activity of several transcription factors including Fos,
Jun and NF-�B [197]. When cells become commit-
ted to apoptosis, presumably due to excessive DNA
damage, Ref-1 expression is down-regulated[203].

5.3. The role of poly(ADP-ribose) polymerase
(PARP) in BER

One of the immediate cellular responses to DNA
damage by alkylating agents, IR, oxidants[204] and
hydrophobic bile acids[205] is the activation of
PARP-1. PARP-1 is a member of a family of enzymes
which includes the DNA damage-responsive mem-
bers PARP-1 and PARP-2[206]. PARP-1 is activated
upon binding to single- or double-strand breaks in
DNA, and is involved especially in long patch BER,
probably by recruiting DNA repair enzymes to the
vicinity of a DNA lesion[198] (see left side ofFig. 6).
PARP-1 is part of the BER multi-protein complex
(also includes XRCC1 and possibly DNA ligase III
and DNA polymerase�), which detects DNA inter-
ruptions and carries out efficient repair[207]. PARP-1
catalyzes the synthesis of poly(ADP-ribose) from
the respiratory coenzyme NAD+ with the release of
nicotinamide (NAM, Fig. 6). The branched linear
ADP polymer is attached (seeFig. 6) to PARP-1 it-
self, p53, the Ca++/Mg++ endonuclease[208], and to
other nearby DNA binding proteins such as histones
[209]. Because of its negative charges, the attachment
of ADP-ribose polymers to acceptor proteins creates
a region of negative charge around the break, thereby
opening up the chromatin and allowing access of
repair proteins to the site of DNA damage.

5.4. The role of PARP in apoptosis

Treatment of cells with 3-aminobenzamide, an
effective PARP inhibitor, sensitized Jurkat cells to
apoptosis, suggesting that, at lower levels of DNA

damage, PARP activity protects against apoptosis
[205]. Since PARP inhibits the pro-apoptotic Ca++/
Mg++ endonuclease through poly(ADP) ribosylation
[208], this may be one mechanism of its protective
action. Also Beneke et al.[213] found that, in the
presence of single-strand breaks, the rate of apopto-
sis in PARP-1 defective cells was strongly increased
compared to cells with intact PARP-1 activity. p53
expression was also drastically increased in the
PARP-1 defective cells, suggesting that PARP activ-
ity may delay apoptosis by inhibiting the increase in
pro-apoptotic p53 levels.

Since PARP-1 consumes NAD+ and ultimately,
ATP, excessive DNA damage will eventually lead to
cell death through excessive PARP-1 activity (see
Fig. 2). The addition of the NAD+ precursors, nico-
tinic acid and nicotinamide, can however, effectively
increase intracellular levels of NAD+ [210–212],
thereby protecting cells against excessive DNA dam-
age, ATP depletion and cell death. We recently
reported that both nicotinic acid and nicotinamide
dramatically protect cells against apoptosis induced
by the DNA-damaging agent, deoxycholate[68],
suggesting that the drain on NAD+ levels may be
responsible for the induction of apoptosis. Thus, de-
pletion of NAD+ by PARP-1 utilization may provide
a linkage between excessive DNA damage and the
triggering of apoptosis or necrosis, depending upon
the severity of the ATP drain (seeFig. 2).

PARP-1 also enhances induction of p53 in response
to DNA damage[214,215]. Furthermore, p53 under-
goes extensive poly(ADP) ribosylation (Fig. 6) early
in the apoptotic program prior to commitment to cell
death[69]. These findings suggest that PARP-1 may
activate p53 function, and thus influence entry into
apoptosis.

As an essential early event in apoptosis, PARP-1
is cleaved by caspase-3[216], suggesting that
PARP-1-mediated BER is counterproductive once a
cell is committed to apoptosis.

5.5. The role of PARP in cancer prevention

Inactivation of p53 in mice results in spontaneous
development of tumors which are mainly lymphomas,
soft tissue sarcomas, and rare carcinomas, but over-
all the spectrum of tumors in p53-deficient mice is
narrower than in p53-deficient humans (Li–Fraumini
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syndrome). However, mice deficient for both p53 and
PARP-1 have a high frequency of carcinomas in the
mammary gland, lung, prostate and skin, as well as
brain tumors, reminiscent of Li–Fraumini syndrome
in humans[176]. These findings suggest that PARP-1
and p53 may interact to maintain genome integrity
by promoting effective repair of DNA damage and/or
induction of apoptosis in the face of excessive DNA
damage, thereby suppressing tumorigenesis in mice.

Individuals with familial adenomatous polyposis
(FAP) are predisposed to colon cancer. Cristovao
et al. [217] showed that cells from healthy individ-
uals have a marked stimulation of PARP-1 activity
upon IR, whereas this response is absent in FAP
patients. These authors proposed that a deficiency
of PARP-1-mediated BER might contribute to FAP-
associated colon cancer. They suggested that in FAP
patients there might be a defect in NAD+ consump-
tion in relation to PARP activity in DNA repair.

5.6. The role of p53 in BER

Offer et al. [218] have shown that p53 acts
directly in BER, as a DNA repair protein, and not
through its transactivation role. They showed that a
transactivation-deficient p53 mutant, p53-22-23, was
more efficient in BER than wild type p53. Zhou et al.
[219] showed that stimulation of BER by p53 is cor-
related with its ability to interact directly with Ref-1
and DNA polymerase�, and that p53 stabilizes the
interaction between polymerase� and abasic DNA.
Offer et al.[220] also showed that p53 modulates BER
in a cell cycle specific manner after exposure to IR.

6. Mismatch repair (MMR)

A highly conserved set of MMR proteins in humans
is primarily responsible for the post-replication cor-
rection of nucleotide mispairs and extra-helical loops.
Mutational defects inMMR genes in humans give
rise to a mutator phenotype, microsatellite instability,
and a predisposition to cancer. MMR mutations are
implicated in the etiology of hereditary non-polyposis
colorectal cancer (HNPCC) syndrome[221] and a
wide variety of sporadic tumors. The MMR system
is also involved in the cellular response to a variety
of DNA damaging agents. Although mutants defective

in MMR genes might be expected to exhibit increased
cytotoxicity upon treatment with DNA damaging
agents, they are observed to be resistant to the nor-
mally cytotoxic effects of several genotoxic methy-
lating agents[222]. Mouse embryonic fibroblast and
human epithelial cell lines lacking the MMR pro-
tein MLH1 are more resistant than wild-type cells to
two inducers of oxidative stress, hydrogen peroxide
and tert-butyl hydroperoxide[223]. Analysis of this
resistance indicates that it results from a defect in
apoptosis, as the consequence of a requirement for
wild-type MLH1 in the transduction of apoptotic sig-
nals by a mitochondrial pathway, although the details
of this pathway are currently unknown.

6.1. The roles of MLH1, PMS2, MSH2 and
MSH6 in MMR repair

The MMR system includes hMLH1 and hPMS2,
which form a heterodimer (hMutL�), and hMSH2
and hMSH6, which form another heterodimer
(hMutS�) (Fig. 7). When methylated bases of the
type O6-methylguanine (O6MeG) are paired in duplex
DNA with a C or a T, these altered pairs are corrected
by MMR. The MMR repair process involves the de-
tection of the mispair by hMutS�, the recruitment
of hMutL�, and the replacement of the mispaired
base (left side ofFig. 7) [224]. The hMSH2/hMSH6
heterodimer is also part of the BASC complex[74]
and thus it may be employed in HRR to correct base
mispairs or other abnormalities that can arise from
the strand exchange reactions of HRR.

6.2. The roles of MLH1, PMS2, MSH2 and
MSH6 in apoptosis

Cells impaired in MMR are unable to remove
O6MeG and are less sensitive to induction of apop-
tosis by methylating agents[225]. O6-alkylguanine
is considered the preponderant toxic lesion formed
by several anticancer alkylating agents[226].
Methylation-induced apoptosis appears to be MMR
dependent and to be triggered by secondary lesions,
possibly double-strand breaks[226]. Induction of
apoptosis by methylation is preceded by a decrease
in Bcl-2, hypophosphorylation of Bad, cytochrome
c release from the mitochondria, and activation of
caspase-9 and -3 (right side ofFig. 7). The ultimate
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Fig. 7. Involvement of gene products in MMR and apoptosis.

O6MeG-derived lesions that trigger apoptosis are
probably DNA double-strand breaks formed during
the process of MMR (e.g. by nuclease attack at gaps
and stalled replication forks)[226]. Agents which
introduce methylations in DNA, to form adducts such
as O6MeG, cause p53 phosphorylation on serine
residues 15 and 392, and these phosphorylation events
depend on the presence of functional hMutL� and
hMutS� [225]. Upon exposure to alkylating agents
that generate O6MeG, induction of apoptosis was
found to require MutS� but, surprisingly, was largely

p53-independent[227]. These results implicate the
MMR system in the initial step of a damage-signaling
cascade that can lead to p53-independent apoptosis in
response to methylation-induced DNA damage.

6.3. The role of O6-methylguanine methyl
transferase in MMR and cancer

Although the DNA-methylated base O6MG can be
removed by MMR (see the previous section), it can
also be repaired specifically by O6-methylguanine
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methyl transferase (MGMT) which removes the
methyl group and restores the guanine base to its
original undamaged state. MGMT defective cells are
hypersensitive to killing by methylating agents, and
this killing is due to apoptosis. Presumably, apoptosis
is induced by the MMR system which can act as a
backup for MGMT repair of O6MG [226].

MGMT plays an important role in the resistance
of pancreatic tumors to chemotherapeutic DNA alky-
lating agents[228]. MGMT activity is upregulated
in dysplastic pancreatic epithelium, and its expres-
sion increases during tumor progression, reaching the
highest levels in the invasive components of the tumor.
On the other hand, epigenetic silencing ofMGMT by
promoter hypermethylation can lead to G:C to A:T
transition mutations in thep53 gene[229].

7. Induction of apoptosis by DNA damage:
role of p53

7.1. Activation of p53 through increased stability

p53, in unstressed cells, is present in a latent
state and is maintained at low levels by targeted
degradation. Different genotoxic stresses, including
double-strand breaks produced by IR and lesions re-
sulting from UV irradiation or chemical damage to
DNA, initiate signaling pathways that transiently sta-
bilize p53, causing it to accumulate in the nucleus and
activate it as a transcription factor[230]. After DNA
damage, the level of p53 increases largely because
the half-life of the protein is increased and also be-
cause of increased translation of p53 mRNA[7]. The
increase in p53 is ordinarily proportional to the extent
of damage, but the kinetics of p53 increase differs
for different types of DNA damage. The cellular level
of p53 can dictate the response of the cell such that
lower levels of p53 result in growth arrest, whereas
higher levels result in apoptosis[231]. Growth arrest
and apoptosis are two genetically separable functions
of p53. A transactivation-incompetent p53 can induce
apoptosis but not growth arrest, whereas induction of
p21/WAF1, a major transcription target of p53, can
induce growth arrest but not apoptosis[231].

p53 can be activated or induced in response to
DNA damage by specific DNA repair proteins (e.g.
BRCA1, ATM, ATR, DNA-PK, Ref-1, PARP-1, as

described earlier). Normally, the p53 protein is un-
stable with a half-life ranging from 5 to 40 min,
depending on the cell type[232]. Upon exposure to
DNA damaging agents, p53 becomes metabolically
stable and transcriptionally activated. This activation
results from post-translational modifications on some
of 18 different sites, including phosphorylations,
acetylations or sumoylations (covalent attachments of
small ubiquitin-like proteins)[230]. p53 instability
is due to its ubiquitination and proteosomal degrada-
tion in vivo. Both of these processes are transiently
suppressed after DNA damage[233].

Interaction of p53 with sites of DNA damage has
also been shown to induce selective proteolytic cleav-
age of p53, resulting in fragments of 40 and 35 kDa
molecular weight. The interaction of p53 with single-
stranded DNA also gives rise to a novel p50 kDa pro-
tein [234]. Okorokov and Milner[234] have proposed
that the cleaved forms may also be a means to activate
functions of p53 that are cryptic in the intact protein.

7.2. Transactivation by p53

p53 degradation is mediated by MDM2, a nu-
clear protein induced by p53 that binds to the p53
transactivation domain and promotes p53 degradation
[235,236]. MDM2 directly suppresses p53 transacti-
vation and p53-mediated growth arrest and apoptosis
[237]. MDM2 is a member of a novel class of E3
ubiquitin ligases which can ubiquitinate p53 in the
nuclear compartment[238], presumably preparing
p53 for export from the nucleus to the cytoplasm and
for proteosome degradation in the cytosol. c-Abl pro-
tein tyrosine kinase can enhance the expression level
of p53 by inhibiting MDM2-mediated degradation of
p53 [239].

p300/CBP transcriptional coactivators play an im-
portant role in enhancing the transcriptional functions
of p53. They bind directly to the p53 transactivation
domain, thereby enhancing p53 activation of the p21
promoter. This results in an increase in p21 which car-
ries out the p53-dependent checkpoint function[240].
p300, through its acetyl transferase activity, acety-
lates lys-382 in the carboxy terminus of p53, which
enhances its sequence-specific binding and activity as
a transcription factor[113]. p300 also plays a pivotal
role in regulating MDM2-mediated p53 degradation.
Normal p53 turnover requires specific and indepen-
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dent interaction of p300 with both p53 and MDM2
[241]. Therefore, post-translational acetylation en-
hances p53 stability and transcriptional activity.

7.3. Cell cycle arrest induced by p53

Increase of p53 by DNA damage leads to cell cycle
arrest in G1 and/or G2, allowing time for DNA repair
to take place, and then induces apoptosis if excess
DNA damage is present[7]. Cell cycle arrest involves
the transcriptional activation of p21WAF1/Cip1, a
cyclin-dependent kinase inhibitor. In the early phase
of the p53 response to DNA damage, p53 is stabi-
lized by phosphorylation of specific residues which
impedes the inhibitory effect of MDM2 binding. This
allows p53 to activate cell cycle checkpoints giving
further time for DNA repair. If the damage is not
excessive, the cell cycle can resume because p53 ac-
tivation also induces MDM2 synthesis, which then
inhibits p53 as part of an autoregulatory loop. Another
protein transcriptionally activated by p53 is GADD45
which binds to PCNA and can arrest the cell cycle,
and is also involved in NER[242].

7.4. Induction of apoptosis by p53

Both a p53-mediated transcriptional activity and a
p53 activity not requiring transcription appear to play
a role in apoptosis, and the relative importance of each
type of activity depends on the cell type and experi-
mental situation[7,116]. Two distinct mechanisms by
which p53 contributes to apoptosis are the transcrip-
tional up-regulation of Bax[243]and direct interaction
of p53 with mitochondria[47,244]. Regulation of Bax
by p53 appears to influence the decision to commit to
apoptosis in at least some cell types. Overexpression
of Bcl-2 can block p53-mediated apoptosis, presum-
ably because Bcl-2 binds to Bax, antagonizing Bax’s
ability to promote apoptosis. Thus, p53-dependent Bax
synthesis tips the scales toward apoptosis. The associ-
ation of p53 with mitochondria results in the opening
of the mitochondrial permeability transition pore, re-
lease of cytochrome c, activation of caspases, degra-
dation of survival proteins and induction of apop-
tosis [47]. Another gene induced by DNA damage
in a p53-dependent manner is killer/death receptor 5
(DR5), a member of the tumor necrosis factor receptor
family [245]. Overexpression ofkiller/DR5 leads to

apoptosis. Mutation in this gene leads to loss of apop-
totic function and is associated with head and neck
cancer[246].

8. Induction of apoptosis by DNA damage:
role of Bcl-2 family proteins

The Bcl-2 family of cell death regulators plays a
crucial role in determining cell fate in the apoptotic
pathway. The anti-apoptotic members of the Bcl-2
family include Bcl-xL, Bfl-1 and Mcl-1, and the
pro-apoptotic members include Bax, Bcl-xS, Nbk,
Bak, Bad and Bid. Both Bcl-2 and Bax are asso-
ciated with the outer membrane of mitochondria,
the endoplasmic reticulum and the nuclear envelope
[247]. Bax forms channels in lipid membranes and
the pro-apoptotic effect of Bax appears to be elicited
through an intrinsic pore-forming activity[8], thus
leading to leakage of cytochrome c from the mitochon-
drial intermembrane compartment into the cytosol.
Cytosolic cytochrome c initiates the apoptotic pro-
gram by activating caspases, leading to degradation of
specific survival proteins. Bcl-2 overexpression pre-
vents the release of cytochrome c and ensuing events
and thus mediates anti-apoptotic effects[248,249].
An inhibitory effect of Bcl-2 on Bax channel-forming
activity seems likely[8]. Onset of apoptosis appears
to be controlled by the ratio of death promoters
(like Bax) to antagonists (like Bcl-2). This death–life
rheostat is mediated, at least in part, by competitive
dimerization: when Bax is in excess, Bax homodimer
formation will dominate, and apoptosis occurs. As
Bcl-2 increases, Bax/Bcl-2 heterodimers predominate,
and cells are protected from apoptosis[250,251]. An
excess of Bcl-2, for example, is normally found in
memory cells of the B-cell lineage, thereby contribut-
ing to long-term survival. Bax also forms heterodimers
with Bcl-xL and Mcl-1. In some cell types, c-Myc is
necessary for DNA damage-induced apoptosis in the
G2 phase of the cell cycle[252]. The pro-apoptotic
function of c-Myc may occur by stimulating Bax
activity at the mitochondria[253].

The DNA damaging agent, cisplatin, induces the
pro-apoptotic conformation of Bak[254]. Cisplatin is
a widely used anticancer drug and its action presum-
ably depends on Bak-mediated induction of apoptosis
in cancer cells.
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9. Reduction of apoptosis capability during
progression to cancer

We now discuss evidence indicating that defects in
the recognition of excess damage and/or failure of the
apoptotic machinery to act on this information leads
to genomic instability and progression to cancer.

9.1. p53 defects reduce apoptosis capability and
increase cancer risk

Since p53 plays a key role in apoptosis induced by
DNA damaging agents, mutant embryonic stem cells
defective in p53 have greater clonogenic survival
than p53 wild-type cells upon exposure to increas-
ing doses of UV-irradiation[255]. Among surviving
p53-defective clones, mutation frequency is higher
than inp53 wild-type clones, as expected if loss of an
appropriate apoptosis response and reduction in NER
capability (see the previous sections) causes genomic
instability. Human germline mutations in thep53 gene
have been found to cause Li–Fraumini syndrome (het-
erozygousp53 mutant), which is characterized by the
development of various tumor types including soft tis-
sue sarcomas, osteosarcoma, breast carcinomas, brain
tumors, leukemia and lymphomas[256]. In addition,
p53 mutations have been found in about half of human
cancers[257]. Thus, loss of the ability to appropri-
ately respond to DNA damage by inducing apoptosis
contributes to progression of a wide range of cancers.

In most cases, Li–Fraumini syndrome results from
inheritance of a mutantp53 allele, followed by soma-
tic loss of the remaining wild-type allele. However,
some cases of Li–Fraumini do not exhibit ap53
genetic defect, but instead exhibit heterozygous germ
line mutations in thehCHK2 gene[258]. Thus, hChk2
and p53 respond similarly to DNA damage in that
both are activated by ATM and both block entry into
mitosis; furthermore, when mutant, both give rise to
the Li–Fraumini syndrome involving increased risk
of several types of cancer.

9.2. Overexpression of Bcl-2 reduces apoptosis
capability and increases cancer risk

Suppression of apoptosis by overexpression of
Bcl-2 or Bcl-xL markedly elevates the levels of
IR-induced mutations[9]. Overexpression of Bcl-2

increases chromosome instability[11,259]. This sug-
gests that inability of cells to undergo apoptosis when
excess DNA damage is present leads to an increase in
errors of replication and repair in surviving cells, and
thus an increase in mutation. NER of UV-induced cy-
clobutane pyrimidine dimers is attenuated in cells that
overexpress Bcl-2[260]. Two possible explanations
were proposed for this effect: (a) Bcl-2 might block
the nuclear trafficking needed for NER; or (b) the
possible antioxidant function of Bcl-2 might attenu-
ate NER. The increased mutation promoted by Bcl-2
overexpression could be due, in part, to the persistence
of DNA damages, that would otherwise be repaired
by NER, and inaccurate DNA synthesis past these
damages in template DNA. The increase in mutation
may contribute to cancer progression as evidenced
by the findings that Bcl-2 is frequently overexpressed
in colon, breast, and skin cancers[261–263]. In ad-
dition, for over 50% of non-Hodgkin’s lymphoma
cases, thebcl-2 gene is markedly overexpressed due
to a t(14;18)(q32;q21) translocation[264,265], which
places bcl-2 gene expression under control of the
immunoglobulin enhancer[266].

9.3. Genes with a dual role in DNA
repair and apoptosis

The genes encoding proteins which are listed in
Table 1have a dual role in DNA repair and apoptosis.
Mutation, epigenetic silencing, or dysregulation of
each of these genes could, in principle, lead to loss of
both DNA repair capability and apoptosis capability.
Loss of either of these capabilities would be expected
to increase genomic instability and predispose to
cancer. Therefore, it is not surprising that many of
the genes encoding proteins listed inTable 1, when
defective, strongly predispose to cancer (e.g.BRCA1,
ATM, WRN, BLM, p53, XPB, XPD, hMLH1, hPMS2,
hMSH2, hMSH6, seeTable 2).

10. Conclusions

10.1. The switch from repair to apoptosis

A key unresolved issue is how a cell “determines”
when DNA damage is “excessive” and how this de-
termination triggers the shift from repair to apoptosis.
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It seems plausible that proteins employed in recogni-
tion of DNA damage in order to initiate repair may
also use this recognition capability to help trigger
cell cycle arrest followed by apoptosis when damage
is excessive. Altogether, about 130 genes have been
identified in the human genome whose products are
employed in DNA repair[73]. As described in detail
in previous sections, a subset of DNA repair proteins
appear to serve a triggering function for DNA repair
initiation, cell cycle arrest and for apoptosis. These in-
clude ATM, ATR, BRCA1 (and perhaps BLM, WRN
and NBS1) employed in HRR; DNA-PK employed
in NHEJ; XPB, XPD, p53 and INGING1b in NER;
Ref-1/Ape and PARP employed in BER; MLH1,
PMS2, MSH2 and MSH6 proteins in MMR.

ATM, a component of the BASC DNA dam-
age sensing complex, plays a key role in activating
multiple responses to DNA damage, particularly
double-strand breaks. Through its kinase activity it
phosphorylates BRCA1 and c-Abl to promote HRR,
particularly of double-strand breaks. ATM also phos-
phorylates and thus activates p53, MDM2, hChk2 and
JNK promoting cell cycle arrest. Thus, it appears that
ATM promotes HRR, initiates the switch from HRR
to cell cycle arrest, and by its action on E2F1 induces
apoptosis. ATR may have a parallel role to ATM in
response to a partially non-overlapping set of DNA
damages. BRCA1, another component of the BASC
DNA damage sensing complex, participates in HRR
and induction of p53-independent apoptosis (Fig. 3).
Other components of the BASC complex, BLM and
NBS1 may also have a role in cell cycle arrest and/or
induction of apoptosis. DNA-PK has a role in both
NHEJ and in induction of p53 leading to growth cycle
arrest and apoptosis.

The helicases XPB and XPD, and the p53 and
p33ING1b proteins are needed for both NER and
apoptosis in response to excess DNA damages. Ref-1
functions in BER as an AP endonuclease and also
regulates the transactivation and pro-apoptotic func-
tions of p53 in vivo. MMR gene products both act to
repair DNA mispairs, and to signal apoptosis.

10.2. Short term consequences of DNA damage

1. The DNA of the human cell is subjected to high lev-
els of damage, especially from endogenous reactive

oxygen species. The average rate is estimated to
be from about 104 damages per cell per day[267]
to as high as 106 damages per cell per day[268].
For cells exposed to extrinsic genotoxic agents, this
rate is much higher.

2. The initial reaction of the cell to incident damage
is to employ DNA repair processes to remove the
damage. Five major repair pathways in humans are
HRR, NER, BER, MMR and NHEJ, each special-
ized for certain types of DNA damage.

3. When incident DNA damage overwhelms repair
capabilities, some damages persist.

4. DNA damages that remain unrepaired can cause
mutation when the cell replicates inaccurately past
the altered bases in template DNA, or when the
damage is repaired inaccurately (e.g. by NHEJ).

5. To avoid such errors, certain DNA-repair proteins
(e.g. ATM, ATR, BRCA1, DNA-PK, Ref-1, PARP
and MMR proteins) detect high levels of DNA
damage and induce growth arrest (e.g. by activat-
ing p53) to allow time for further DNA repair.
If this fails they induce apoptosis (for example,
through the action of p53 on Bax, or through
p53-independent pathways).

6. When a cell becomes committed to apoptosis,
DNA repair is counter-productive and so repair
enzymes are cleaved (e.g. ATM, Rad51, PARP-1
and DNA-PKcs) or down-regulated (e.g. BRCA1,
Ref-1). Since DNA repair is a very energy-consu-
ming process, a dramatic drop in ATP due to re-
pair can trigger necrosis, a mode of cell death
that usually does not occur in vivo, since it elicits
an inflammatory process. The cleavage of DNA
repair enzymes, such as ATM[54,127], Rad51
[59], PARP-1[60], and DNA-PKcs [56] may con-
serve a damaged cell’s remaining energy to ensure
that the physiologic process of cellular attrition,
apoptosis, occurs[269].

One particular example of when damages are
“excessive” for the repair capabilities available is
when an individual gets a sunburn. Another example
is when ingestion of high fat meals cause an increased
release of bile acids into the intestinal tract. Physio-
logical levels of total bile acids in the aqueous portion
(the portion in contact with colonic epithelial cells)
of the feces after a series of high fat meals can go
up to 1960�M [270]. It was shown by Booth et al.
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[271] that 300�M of the bile salts deoxycholate or
lithocholate cause moderate to extensive levels, re-
spectively, of DNA damage, measured by the comet
assay, in HT29 cells. We showed[3] that treatment
of normal colon epithelial cells, obtained in biopsies,
with 1000�M deoxycholate caused about 60% of the
goblet cells within the biopsy to undergo apoptosis.
Thus, for at least two tissues, the skin and the colonic
epithelium, there are acute circumstances when cells
receive DNA damages at levels in excess of the
ability of cells to repair them. These two tissues, in
particular, are susceptible to carcinogenesis.

However, in some in vitro studies, genotoxicity is
observed (i.e. chromosome aberration, micronuclei)
after the use of a DNA-damaging agent but no apop-
totic cells are found. Although these observations ap-
parently contradict the hypothesis that excessive DNA
damage leads to apoptosis, these in vitro cell lines
are usually transformed or neoplastic. Neoplastic cells
have developed mechanisms to avoid apoptosis, such
as failure to adequately form the apoptosome[272],
up-regulation of anti-apoptotic transcription factors,
e.g. NF-�B [205,273], up-regulation of anti-apoptotic
molecules that protect against mitochondrial loss of
cytochrome c, e.g. bcl-2[248], or up-regulation of the
inhibitors of apoptosis proteins (IAPs), which inhibit
the downstream caspases[274], to name a few. Ulti-
mately, non-apoptotic modes of cell death may result
after genotoxic stress and failure of homeostasis.

10.3. Long term consequences of DNA damage
in relation to cancer

Mutations arise in large part from inaccurate repli-
cation of a damaged template strand or inaccurate
repair of damaged DNA. Although excessive rates of
cell division were originally thought to be responsible
for cancer, this concept alone does not explain why
cancers of hematopoietic cells are not the most preva-
lent cancers, and why cancers of the colon are more
frequent than those of the small intestine. Also, al-
though basal cell carcinoma of the skin has a high mi-
totic rate, it has a very favorable prognosis and rarely
metastasizes. In addition, follicular lymphoma cells
with a mitotic rate less than that of a reactive germinal
center progress to high-grade lymphoma whereas a
reactive germinal center does not. These conundrums
can be explained by taking into consideration the

basal rate of apoptosis and the mutation–induction ca-
pabilities of environmental toxins and dietary factors.

Deleterious mutations in genes encoding proteins
employed in DNA repair and/or apoptosis (e.g.p53
and hChk2, Li–Fraumini syndrome) increase ge-
nomic instability. Genomic instability increases the
occurrence of new mutations including those affect-
ing oncogenes and tumor suppressor genes. Genomic
instability appears to be the engine of both tumor
progression and tumor heterogeneity[92]. Mutations
affecting oncogenes or tumor suppressor genes ordi-
narily convey growth advantages leading to selective
proliferation of cells harboring them. Such cell lin-
eages may progress to malignancy. During progres-
sion to malignancy and tumor cell invasion, cells with
new mutations that promote survival and proliferative
vigor are selected. Thus, there may be a constitutive in-
crease in the levels of some pro-survival proteins, such
as phosphatidyl inositol 3′-kinase (PI3-K)[275] and
NF-�B [276], and DNA repair enzymes such as Ref-1
[199] and MGMT[228], in progression to cancer.
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