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Abstract

Background: Cumulative evidence suggests that DNA secondary structures impact DNA replication, transcription

and genomic rearrangements. One of the best studied examples is the recurrent constitutional t(11;22) in humans

that is mediated by potentially cruciform-forming sequences at the breakpoints, palindromic AT-rich repeats

(PATRRs). We previously demonstrated that polymorphisms of PATRR sequences affect the frequency of de novo t

(11;22)s in sperm samples from normal healthy males. These studies were designed to determine whether PATRR

polymorphisms affect DNA secondary structure, thus leading to variation in translocation frequency.

Methods: We studied the potential for DNA cruciform formation for several PATRR11 polymorphic alleles using

mobility shift analysis in gel electrophoresis as well as by direct visualization of the DNA by atomic force

microscopy. The structural data for various alleles were compared with the frequency of de novo t(11;22)s the allele

produced.

Results: The data indicate that the propensity for DNA cruciform structure of each polymorphic allele correlates

with the frequency of de novo t(11;22)s produced (r = 0.77, P = 0.01).

Conclusions: Although indirect, our results strongly suggest that the PATRR adopts unstable cruciform structures

during spermatogenesis that act as translocation hotspots in humans.
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Background
Accumulating evidence indicates that alternative DNA

structures (non-B DNA) cause a diversity of genomic

rearrangements [1,2]. It is well known that a subset of

repeat sequences such as trinucleotide repeats sustain

dynamic mutations via DNA secondary structure inter-

mediates leading to their expansion or contraction [3].

The finding that the t(14;18) translocation observed in

follicular lymphoma might result from instability of tri-

plex DNA at the breakpoint implies that gross chromo-

somal rearrangements can also be mediated by non-

canonical DNA structures [4,5]. A large-scale survey

demonstrates that translocation breakpoints or deletion

endpoints in human genetic diseases are consistently

found in proximity to predicted non-B DNA structures

[6].

Chromosomal translocations have long been thought

to be random events. However, recent findings have

highlighted two distinct mechanisms that lead to recur-

rent translocations in humans [7]. A subset of recurrent

translocations arises between two homologous regions

located on different chromosomes. Robertsonian trans-

locations are mediated by highly repetitive regions on

the short arms of the five acrocentric chromosomes,

while t(4;8)(p16;p23) translocations result from exchange

between two clusters of olfactory-receptor genes on 4p

and 8p presumably via homologous recombination [8,9].

Another mechanism is the so-called palindrome-
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mediated chromosomal translocation [10]. Palindromic

AT-rich repeats (PATRRs) were first identified at the

breakpoints of the recurrent constitutional t(11;22)(q23;

q11) [11-13]. All of the translocation breakpoints are

located within the 450 bp PATRR on 11q23 (PATRR11)

and the 590 bp PATRR on 22q11 (PATRR22), which do

not share sequence homology with one another [14].

The majority of the breakpoints are located at the center

of the PATRRs, suggesting that genomic instability of

the palindrome center is the etiology of the recurrent

translocation [15]. PATRRs also contribute to other

recurrent and non-recurrent translocations such as the t

(17;22)(q11;q11) [16,17], t(4;22)(q35;q11) [18], t(1;22)

(p21.2;q11) [19], and t(8;22)(q24.13;q11.21) [20,21].

Translocation-specific PCR can frequently detect de

novo t(11;22)s in sperm from normal healthy males [22].

Recently, we also identified de novo PATRR-mediated

t(8;22)s as well as t(8;11)s by a similar PCR method,

suggesting that a considerable proportion of the translo-

cations result from a palindrome-mediated mechanism

[21].

Palindromic DNA has the potential to form a second-

ary structure, an extruded DNA cruciform, through the

intra-strand base pairing of adjacent inverted repeat

units. A number of palindromic sequences have been

identified in the human genome [23], but not all of the

palindromes behave as sites for translocation break-

points. The translocation-associated PATRRs reported

so far, share a common structure, 1) a nearly perfect

palindrome of several hundred base pairs in length, 2)

an AT-rich center and a non-AT-rich region at both

ends, 3) another nearby AT-rich region on one side of

the PATRR, all of which invoke cruciform structure

forming propensity [24]. Indeed, the cloned PATRRs

identified at the translocation breakpoints assume a cru-

ciform conformation in vitro [25,26]. We propose that

the PATRR also adopts a cruciform conformation in liv-

ing cells, which induces genomic instability leading to

translocation formation in humans. In fact, the propen-

sity for secondary structure of the PATRRs on chromo-

somes 11, 17 and 22 reflects the relative incidence of

the relevant chromosomal translocations [27].

In our previous study, we demonstrated that the

PATRR11 at the translocation breakpoint often mani-

fests size polymorphisms due to central deletions within

the PATRR11, and that this polymorphism affects the

frequency of de novo t(11;22)s in sperm samples from

normal healthy males [28]. Subsequently, we demon-

strated that PATRR22 polymorphisms also impact de

novo translocation frequency [29]. To determine

whether PATRR polymorphisms influence secondary

structure leading to variation in their translocation fre-

quency, we investigated the secondary structure forming

potential of each polymorphic PATRR11 and compared

it with its relevant translocation frequency. The results

suggest that propensity for secondary structure forma-

tion is reflected in the rate of translocations formed.

Results
Size and symmetry of the palindromes affect de novo

translocation frequency

To better understand how polymorphic variants of the

palindromic sequence affects de novo translocation fre-

quency in sperm, we classified the polymorphic

PATRR11s into three categories based on the size and

symmetry of the palindromic sequences (Figure 1A).

The most frequent allele is characterized by a nearly

perfect palindromic sequence of 442-450 bps (L-

PATRR11). We further grouped minor short variants

into symmetric short and asymmetric short PATRR11s

(SS-PATRR11 and AS-PATRR11). The size of the SS-

PATRR11s and AS-PATRR11s were 212-434 bp.

We attempted to estimate the frequency of de novo

translocations originating from each PATRR allele. To

distinguish the allelic origin of translocation products,

we selected individuals heterozygous for PATRR11 poly-

morphisms for analysis. L-PATRR11 produces de novo

translocations in approximately 10-5 gametes (1.30-2.11

× 10-5). On the other hand, variant PATRR11s generally

produce translocations at a lower frequency. For SS-

PATRR11, the translocation frequency is about 10-fold

lower than that of L-PATRR11 (1.71-1.82 × 10-6), while

AS-PATRR11s rarely produce de novo translocation pro-

ducts (≤6.81 × 10-7) (Table 1, Figure 1B). The differ-

ences in translocation frequency were statistically

significant between the three groups (P = 0.01).

Thus, having determined that the size and symmetry

of the PATRR11 appear to determine the frequency of

de novo t(11;22)s, it seemed reasonable to hypothesize

that polymorphisms of the PATRR11 might dictate

translocation frequency through their secondary struc-

ture-forming propensity.

Therefore, we analyzed the secondary structure-form-

ing propensity of the PATRR by calculating the free

energy required for a transition from standard linear

double-stranded DNA to intrastrand annealing, or a so-

called hairpin structure [19] (Table 1). We then ana-

lyzed the correlation between the calculated secondary

structure-forming propensity of a given PATRR11 and

its de novo translocation frequency. The translocation

frequency did not correlate with the free energy for

hairpin/cruciform formation (r = 0.37, P = 0.32) (Figure

1C).

In vitro analysis of cruciform extrusion of PATRR plasmids

We then analyzed the in vitro cruciform-forming pro-

pensity of the PATRRs using plasmids having various

PATRR11s as inserts [25,27]. First we cloned each
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polymorphic PATRR11 into a plasmid vector and ana-

lyzed its propensity for cruciform formation by an elec-

trophoresis mobility shift assay (EMSA). This assay is

based on the fact that mobility is retarded when nega-

tive superhelical density is relieved by cruciform extru-

sion (Figure 2A). We extracted plasmid DNA using the

triton-lysis method such that cruciform formation dur-

ing DNA extraction was minimal. To induce cruciform

formation, plasmids were incubated for 30 min at 37°C

in 100 mM NaCl. The conformation of plasmid DNA

was analyzed by band shift on agarose gel

electrophoresis.
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Figure 1 Polymorphism of the PATRR11 affects de novo translocation frequency. (A) Classification of PATRR11s. Arrows indicate each arm

of the palindromic sequences. Grey and black arrows indicate complementary strands. (B) Size and symmetry of the palindrome affects the de

novo translocation frequency. Vertical axis indicates de novo translocation frequency in sperm. (C) Correlation between the translocation

frequency and secondary structure-forming propensity of the PATRR analyzed in silico. Horizontal axis indicates the free energy necessary for

transition from standard double strand DNA to a hairpin structure, while the vertical axis indicates the de novo translocation frequency in sperm.

No statistically significant correlation between ∆G and translocation frequency was observed (r = 0.372, P = 0.323).

Table 1 Potential secondary structure of individual PATRR11 variants by free energy calculation

Type of PATRR11 Nucleotide bp (Accession No.) Gds Kcal/mole Gstru Kcal/mole ∆G Kcal/mole Translocation frequency

L-PATRR11 445(AF391129) -392.5 -178.4 17.9 1.32 × 10-5

450(AB235178) -397.5 -187.9 10.9 2.11 × 10-5a

SS-PATRR11 292(AB235183) -259.8 -121.8 8.1 1.73 × 10-6

350(AB235180) -314 -144.7 12.3 1.82 × 10-6a

386(AB235182) -335.2 -147.3 20.3 1.71 × 10-6

AS-PATRR11 212(AF391128) -195.6 -83.1 14.7 <4.05 × 10-8a

277(AB235187) -247.9 -104.2 19.8 <1.67 × 10-7

483(AB235186) -252.9 -99.95 26.5 <7.62 × 10-8

434(AB235190) -380.1 -157.3 32.8 6.81 × 10-7

a These values are the mean of 4 (450 bp L-PATRR11 allele), 2 (350 bp SS-PATRR11 allele), and 3 (212 bp AS-PATRR11 allele)samples.
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For L-PATRR11, one distinct band with retarded

migration was observed accompanied by a ladder of

multiple bands (Figure 2B). We confirmed that the plas-

mids in the retarded band extruded a cruciform by

showing that the band disappeared if the plasmid was

digested with T7 endonuclease prior to electrophoresis.

This enzyme can cut the four-way junction of cruciform

DNA (data not shown). Similar results were obtained in

the analysis of SS-PATRR11, whereas AS-PATRR11 did

not show such retarded bands. To estimate the percen-

tage of cruciform forming plasmids, we summed the

intensity of the retarded bands and calculated their ratio

to the sum of all of the bands including the band at the

standard negative supercoiled position. The ratio corre-

lated to the frequency of de novo translocations for each

allele (r = 0.73, P = 0.03) (Figure 2C). However, inter-

assay variability was significant due to difficulty in the

quantification of multiple bands.

To estimate the prevalence of cruciform extrusion more

accurately, EMSA was performed for the plasmid insert

only. Since the PATRR cannot maintain a cruciform confor-

mation as short linear DNA, PATRR plasmids were treated

with psoralen and ultraviolet light to form covalent cross-

links prior to excision of the plasmid insert by restriction

enzyme digestion. We detected a clear retarded band

derived from the plasmid insert on standard agarose gel

electrophoresis (Figure 3A). We confirmed that the DNAs

located in the retarded bands originate from the cruciform

by cleavage with T7 endonuclease or by direct observation

using atomic force microscopy (AFM) (Figure 3B). The

intensity of the retarded band on EMSA correlated well with

the translocation frequency (r = 0.77, P = 0.01) (Figure 3C).

Discussion
Our previous study demonstrated that the size and sym-

metry of polymorphic PATRRs appears to affect the
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Figure 2 In vitro assay for secondary structure formation induced by negative supercoiling. (A) The palindromic region can form

cruciform structures in the presence of negative torsion of the double-stranded DNA, which is relieved upon cruciform extrusion. (B) EMSA for

plasmids during agarose gel electrophoresis. The arrow indicates the position for plasmids with a negative supercoil, while the bracket indicates

that for a relaxed plasmid that corresponds to the fraction with cruciform extrusion. In general, relaxed plasmids show up as a ladder consisting

of various topoisomers with different linking numbers, which appears as a smear due to the low resolution of gel electrophoresis. (C) Correlation

between translocation frequency and secondary structure-forming propensity of the PATRR estimated by EMSA. The horizontal axis indicates the

percentage of plasmid extruding a cruciform, while the vertical axis indicates the de novo translocation frequency in sperm. A linear correlation

was observed and was statistically significant (r = 0.71, P = 0.03).
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frequency of de novo t(11;22)s in sperm samples (Kato

et al. 2006, Tong et al. 2010). Here we demonstrate that

the size and symmetry of PATRRs reflect their second-

ary structure propensity. It has been suggested that

polymorphic variations affect translocation frequency

and induce genomic instability leading to translocation

susceptibility. We recently established a model system

for generating the t(11;22) using human somatic cell

lines [30]. In this system, the endogenous PATRR11 and

PATRR22 do not generate t(11;22)s, but two co-trans-

fected plasmids containing a PATRR11 and a PATRR22

generate translocation-like rearrangements only when

transfected as cruciform-extruding plasmids. This sup-

ports the hypothesis that palindrome-mediated recurrent

translocations are facilitated through cruciform extru-

sion of the two PATRRs.

In our data, the percentage of cruciform DNA for the

L-PATRR11 was found to be high, while the transloca-

tion frequency was relatively low. One possibility is that

we performed these experiments under the conditions

that favored for cruciform extrusion to see the

difference in cruciform propensity clearly among the

PATRR11 variants. It is possible that only a small pro-

portion of PATRRs actually extrude a cruciform in liv-

ing cells. Another possibility is that the longevity of a

cruciform might be transient in living cells. Cruciform

extrusion requires strong free negative supercoiling,

which could be easily resolved by topoisomerase activity

prior to translocation formation.

Among the AS-PATRR11s, only the 434 bp PATRR11

produces translocations, although the cruciform forming

propensity of the 434 bp PATRR11 is the lowest. The

434 bp PATRR11 was the longest in length among the

AS-PATRR11s we examined in this study. In our pre-

vious study, size and symmetry of the PATRR are the

important determinants for translocation frequency

[28,29]. Size might affect the stability of a cruciform

once it forms, or, a cruciform-specific nuclease might

more readily recognize and digest a larger cruciform

leading to translocation formation.

Although a DNA cruciform is likely to be etiologic for

palindrome-mediated translocations, the existence of
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Figure 3 In vitro assay for secondary structure formation. (A) EMSA for the plasmid insert upon agarose gel electrophoresis. (right) psoralen

crosslinking that can retard the mobility of the cruciform-extruding insert. (B) Confirmation of cruciform extruding plasmid inserts by AFM.
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the de novo translocation frequency in sperm. Linear correlation was observed which was statistically significant (r = 0.77, P = 0.01).
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DNA cruciforms in living cells is still controversial and

no direct evidence has yet demonstrated the presence of

such a configuration in the context of eukaryotic chro-

matin [31-34]. Such an energetically unfavorable struc-

ture would require sufficient negative superhelicity to

stabilize the structure. However, the existence of such a

level of negative supercoiling has not yet been proved.

Nonetheless, the data in this study indirectly, but

strongly imply that PATRRs extrude cruciform struc-

tures in living cells. Thus, the question to be answered

is when and where such a structure forms and induces a

translocation.

We have previously reported sperm-specific occur-

rence of the t(11;22) translocation in humans [22,35],

suggesting that a physiological event during spermato-

genesis might be involved in the mechanism of cruci-

form extrusion and/or structure-dependent instability

[36,37]. One way to account for these observations is to

postulate that translocations arise during DNA replica-

tion. Spermatogenesis engenders a greater number of

replications than occur in other somatic tissues or

oocytes. The majority of non-recurrent translocations

are of paternal origin and de novo non-recurrent trans-

locations are often associated with increased paternal

age, despite the fact that an age-dependent increase was

not observed for the occurrence of the t(11;22) in sperm

[38-40]. One possibility is that translocations might

occur late in spermatogenesis, when male-specific

dynamic changes of chromatin structure take place [41].

In this study, we estimated the ∆G that reflects sec-

ondary structures formed by single-stranded DNA.

These can be formed within long single-stranded

regions of DNA on the lagging-strand template during

DNA synthesis. Our data indicate that, similar to the

PATRR22, the secondary structure forming propensity

of the PATRR11 estimated by its ∆G does not correlate

with its translocation frequency [29]. These observations

suggest that DNA replication may not significantly con-

tribute to de novo translocation formation. This is con-

sistent with the observation that deletions within the

PATRR appear to be caused by replication errors, but

translocations are not [42,43]. On the other hand, a sig-

nificant correlate of translocation frequency is observed

with the in vitro cruciform propensity of PATRR-con-

taining plasmids under torsional constraint. During

spermatogenesis standard histones are removed and

replaced with protamines at a majority of chromosomal

regions. The removal of histones might provide suffi-

cient negative superhelicity to induce cruciform extru-

sion in vivo [44,45]. Such chromatin-remodeling-

induced genomic instability deserves further investiga-

tion in studies designed to elucidate the mechanism and

timing of gross chromosomal rearrangements.

Conclusions
In this study, a significant association between de novo

translocation frequency and in vitro cruciform forming

propensity of the polymorphic alleles of the PATRR11 is

observed. Our results indirectly but strongly suggest

that the PATRR adopts unstable cruciform structures

during spermatogenesis that act as a translocation hot-

spot in humans.

Materials and methods
PCR amplification and cloning of the PATRR

All of the data related to PATRR11 genotype and de

novo t(11;22) translocation frequency in sperm from

normal healthy males have been previously reported

[28]. Samples were collected from 2 males who were

heterozygous for the L- and SS-PATRR11, while 3 sam-

ples were obtained from males heterozygous for L- and

AS-PATRR11. Samples from two SS/AS heterozygotes

and from one AS/AS heterozygote are also included. All

of the donors provided informed consent for further

analysis. This study protocol was approved by the Ethi-

cal Review Board for Clinical Studies at Fujita Health

University.

The PATRR11s were amplified from genomic DNA of

the donors by PCR using primers described previously

[28]. The plasmids containing the polymorphic

PATRR11s were constructed as previously described

[26] by TA cloning the PATRR11 PCR products into

pT7-blue (Novagen, Madison, WI). The SURE strain

(Agilent Technologies, Palo Alto, CA), whose relevant

genotype concerning DNA rearrangement and deletion

(recB, recJ, sbcC, umuC::Tn5, uvrC), is known to show

increased stability for palindromic sequences, and was

used for cloning and propagation of plasmids.

In silico analysis for secondary structure

Potential secondary structure formed within single-

stranded DNA was determined by entering PATRR

sequence into the m-fold server http://mfold.rna.albany.

edu/?q=mfold/DNA-Folding-Form). A free energy value

(GSTRUC) was obtained. Similarly, free energy values for

the same sequence annealed to its complementary

strand (GDS) were obtained and then halved. Free energy

for the formation of secondary structure (∆G) is calcu-

lated as the GDS -GSTRUC difference [19].

In vitro cruciform extrusion assay

The cruciform-free plasmids were obtained by a dena-

turation-free, triton-lysis method as previously described

[25]. In brief, the E. coli cells from a 50 ml culture were

dissolved with 10 ml lysis buffer of 50 mM Tris-HCl

(pH7.5), 5% sucrose, 1.5 mg/ml lysozyme, 0.1 M EDTA,

25 μg/ml RNase A and 0.75% Triton X-100. The
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plasmids were extracted without the use of phenol, and

purified using an ion-exchange column (QIAGEN,

Valencia, CA). The plasmid DNA was precipitated in

aliquots with 2-propanol and stored at -30°C until used

in an experiment. All of the procedures were performed

at 4°C in a cold room to avoid spontaneous cruciform

formation during the procedure. To induce cruciform

formation, the plasmids were incubated for 30 min at

37°C in 10 mM Tris-HCl (pH 7.5), 0.1 mM EDTA and

100 mM NaCl [27]. The plasmids were cooled on ice

before electrophoresis at 50V for approximately 4 hours

in a 0.9% agarose gel at 4°C. The gel was stained with

ethidium bromide and photographed using the Image-

Master VDS system (GE Healthcare, Diegem, Belgium).

Band intensities were quantified using NIH image 1.62

software.

To examine the cruciform conformation in linear

DNA, DNA crosslinking was performed by a method

similar to that previously described [25]. In brief, plasmid

DNA was dissolved in a solution of 4, 5’, 8-trimethylpsor-

alen (100 μg/ml) and exposed to UV light at 365 nm for 5

min. The DNA was digested with the appropriate restric-

tion enzymes to excise the PATRR-containing fragments,

purified, and then divided into two aliquots. One half was

used for observation by AFM, and the other half was sub-

jected to 2% agarose gel electrophoresis. To confirm that

the shifted bands are the result of cruciform extrusion,

the plasmid DNA was treated with 5 units of T7 endonu-

clease I (New England Biolabs, Beverly, MA). Digestion

was performed in 20 μl of NEB2 buffer for 40 min. The

reaction was performed on ice so as to minimize addi-

tional cruciform extrusion during digestion.

Statistical analyses

Intergroup comparison was performed by one-way ana-

lysis of variance, followed by the Mann-Whitney test.

Correlations were evaluated with linear straight line

regression. In significant difference tests, P-values of

<0.05 were considered statistically significant.
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