
Pérez-Serrano et al. BMC Bioinformatics 2018, 19(Suppl 14):421

https://doi.org/10.1186/s12859-018-2389-6

RESEARCH Open Access

DNA sequences alignment in multi-GPUs:
acceleration and energy payoff
Jesús Pérez-Serrano1, Edans Sandes2, Alba Cristina Magalhaes Alves de Melo2 and Manuel Ujaldón1*

From 5th International Work-Conference on Bioinformatics and Biomedical Engineering

Granada, Spain. 26–28 April 2017

Abstract

Background: We present a performance per watt analysis of CUDAlign 4.0, a parallel strategy to obtain the optimal

pairwise alignment of huge DNA sequences in multi-GPU platforms using the exact Smith-Waterman method.

Results: Our study includes acceleration factors, performance, scalability, power efficiency and energy costs. We also

quantify the influence of the contents of the compared sequences, identify potential scenarios for energy savings on

speculative executions, and calculate performance and energy usage differences among distinct GPU generations

and models. For a sequence alignment on chromosome-wide scale (around 2 Petacells), we are able to reduce

execution times from 9.5 h on a Kepler GPU to just 2.5 h on a Pascal counterpart, with energy costs cut by 60%.

Conclusions: We find GPUs to be an order of magnitude ahead in performance per watt compared to Xeon Phis.

Finally, versus typical low-power devices like FPGAs, GPUs keep similar GFLOPS/w ratios in 2017 on a five times faster

execution.
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Background
The rapid evolution of sequencing techniques has pro-

duced myriads of data in recent Genome Projects. In this

context, data is generated in such a high rate that the tra-

ditional analyses tools are not able to cope with them,

leading to a dilemma usually called data deluge. Conse-

quently, the focus of Genome Projects has moved from

data production to data analysis and the central challenge

nowadays is how to analyze such a huge amount of data in

a rapid and accurate way. In order to face this challenge,

biology and computer science joined forces, exploring

solutions that demand sophisticated algorithms and pow-

erful computing devices. As a result, refined solutions

have been devised to support several biological subdo-

mains such as protein structure prediction and docking

[1, 2], sequence comparison [3] and evolutionary biology

[4], among others.
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High performance computing platforms are composed

of several computing cores and can accelerate sev-

eral algorithms from many research domains, producing

results in reduced time. Modern GPUs (graphics process-

ing units) have thousands of cores and have proved to be

excellent platforms to run parallel applications that exhibit

regular data dependencies. They have been with us for

a decade as typical accelerators, and have recently found

alternatives in Xeon Phi processors as many-core plat-

forms for HPC and FPGAs as low-power devices. CUDA

(Compute Unified Device Architecture) [5] and OpenCL

[6] provide valuable support for data and compute inten-

sive applications to exploit the GPU’s powerful engine,

making it possible to attain several TFLOPS (Trillions

Floating Point Operations per Second) and high speed

bandwidth. GPUs have been used as successful platforms

for large-scale bioinformatics and many researchers have

investigated the behaviour of these applications on GPUs

and suggested improvements [7–9].

This work extends the study to energy consumption,

an issue of growing interest in the High Performance
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Computing (HPC) community. GPU-based supercomput-

ers have been for several years in the top500 list (www.

top500.org) of the most powerful supercomputers and

have recently conquered the green500 (www.green500.

org) supercomputer list. In fact, energy consumption

sometimes represents more than 20% of the budget in

Data Centers, and costs have exceeded 5 billion dollars

per year over the last decade only in the US [10]. Many

estimations state that energy costs will greatly increase

in the near future unless power optimizations are applied

in all system levels, from the operating system to the

application.

This paper is an extended version of [11]. Our

work focuses on pairwise biological sequence align-

ment, aiming to obtain the degree of similarity between

the sequences. Within this topic, there are two basic

approaches: (a) global alignment, which aligns the

entire length of the sequences and is used for simi-

lar sequences in content and size; and (b) local align-

ment, where high similarity sections within the sequences

are highlighted. Needleman-Wunsch (NW) [12] pro-

posed an algorithm for global sequence alignment based

on dynamic programming (DP), and Smith-Waterman

(SW) [13] adapted the NW algorithm to the local align-

ment case. Both algorithms have high computational

requirements, so researchers either use heuristic meth-

ods as in the well-known BLAST tools [14], or rely

on high performance computing solutions to reduce the

execution time. We have chosen GPUs to explore the

latter.

The rest of this paper is organized as follows.

“Biological sequence comparison” section describes

the problem of comparing two DNA sequences.

“Related work” section completes this section with some

related work. “CUDAlign implementation on GPUs”

section summarizes our previous work on GPUs.

“Experimental setup” and “Monitoring energy” sections

introduce our infrastructure for measuring the

experimental numbers, which are later analyzed in

“Results” section. Finally, “Discussion and conclusions”

section draws conclusions of this work.

Methods
Biological sequence comparison
Biological sequences are composed of an ordered

sequence of residues, which can be nucleotides

(DNA/RNA sequences) or amino acids (protein

sequences) [15]. These sequences are treated as

strings composed of elements of the alphabets

� = {A,T ,G,C}, � = {A,U ,G,C} and � =

{A,C,D,E, F ,G,H , I,K , L,M,N ,P,Q,R, S,T ,V ,W ,Y },

respectively. Protein and RNA sequences are rather

small and their sizes range from hundreds to tens of

thousands of residues (amino acids and nucleotide bases,

respectively). On the other hand, DNA sequences can

be very long, often composed of Millions of Base Pairs

(MBP).

Similarity score and alignment

To compare two sequences, we need to find the best align-

ment between them, that is, how characters match when

you overlap them [16]. In an alignment, spaces (gaps) can

be inserted in arbitrary locations along the sequences so

that they end up with the same size.

In order to measure the quality of a DNA sequence

alignment a score is calculated, considering three cases:

(a) matches (ma), if the characters of both sequences at

the same column are identical; (b) mismatches (mi), if

the characters in the same column are distinct and (c)

gaps (gap), if one of the characters in the same column

is a space. The score is the sum of all values assigned to

the columns and a high score points to high similarity

sequences. Figure 1a and b illustrate global and local align-

ments between two DNA sequences (S0 =ACTTGTCCG

and S1 =ATGTCAG).

In Fig. 1, a single value is assigned for matches and mis-

matches (+1 and −1 in the example) regardless of the

parts involved. This works well with nucleotides (DNA or

RNA sequences) but not for proteins. During evolution,

some combinations are more likely to occur than others,

so higher scores are assigned to these combinations [17].

Therefore, the alignment of protein sequences employ

scoring matrices, such as PAM (Percent Accepted Muta-

tions) and BLOSUM (Blocks Substitution Matrix), which

associate values for matches/mismatches that correspond

to the likelihood of a particular combination [15]. PAM

matrices have scores that are calculated by analyzing the

frequencies in which a given amino acid is substituted by

another amino acid during evolution. BLOSUM scoring

matrices are created by evaluating evolutionary rates of a

(a)

(b)

Fig. 1 (a) Global and (b) local alignments and scores. Values for

matches, mismatches and gaps are +1, -1 and -2, respectively
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region of inside a protein (block) rather than considering

the entire protein.

Exact algorithms: obtaining the optimal alignment

AlgorithmNW for global alignment

The algorithm proposed by Needleman andWunsh (NW)

[12] is an exact method based on dynamic program-

ming to obtain the optimal global alignment between two

sequences in quadratic time and space. In fact, the algo-

rithm originally proposed by NW had cubic time com-

plexity [16], but later on, its complexity was reduced to

quadratic, which is the version we describe in this paper.

The algorithm is divided in two phases: create the DP

matrix and obtain the optimal global alignment.

Phase 1 - calculate the DPmatrix In the first phase, the

input sequences are S0 and S1, with |S0| = m and |S1| = n,

where |Si| is the length of sequence Si. For sequences S0
and S1, there arem+1 and n+1 possible prefixes, respec-

tively, including the empty sequence. In order to represent

the n-th character of a sequence Si, the notation is Si[ n].

Fianlly, we use Si[ 1..n] to characterize a prefix with n

characters, from the beginning of the sequence.

In the initialization step, the first row and column are

set to −Gx, where x is the size of the non-empty subse-

quence and G is the gap penalty. This represents the cost

of aligning a non-empty subsequence with an empty one.

In other words, the first row and column of the DP matrix

are initialized with values H0,j = −Gj and Hi,0 = −Gi.

Additionally, H0,0 = 0. The remaining elements of H are

calculated with the recurrence relation Eq. 1. The optimal

score is the value contained in cell Hm,n.

Hi,j = max

⎧

⎨

⎩

Hi−1,j−1 + p(i, j)

Hi,j−1 − G

Hi−1,j − G

(1)

In Eq. 1, if DNA or RNA sequences are compared, p(i, j)

is usually the match value (ma) if S0[ i]= S1[ j] or the mis-

match penalty (−mi), otherwise. If protein sequences are

compared, p(i, j) is given by a scoring matrix (e.g. PAM or

BLOSUM).

Figure 2 presents the DP matrix between sequences

S0 = ATTGTCAGGAGG and S1 = ACTTGTCCGAGA.

The arrows indicate the cell from where the value was

obtained, according to Eq. 1. Cells with multiple arrows

indicate that the same maximum value was produced by

more than one cell (Hi−1,j−1, Hi,j−1, Hi−1,j).

Phase 2 - obtain the optimal global alignment Phase

2 starts from the position that contains the optimal score

(Hm,n) and follows the arrows until cell H0,0 is reached. A

left arrow in Hi,j (Fig. 2) produces the alignment of S0[ i]

with a gap in S1. An up arrow aligns S0[ j] with a gap in

Fig. 2 DP matrix for global alignment between sequences S0 and S1

S1. Finally, a diagonal arrow indicates that S0[ i] is aligned

with S1[ j].

Note that many optimal global alignments may exist,

since many arrows may be present in the same cell Hi,j.

Usually, the implementations restrict to one the optimal

alignment, giving preference to a given type of arrow

(diagonal, up, left).

Algorithm SW for local alignment

Local alignment must be employed when the goal is

to obtain the similarity between regions inside the

sequences. Smith and Waterman (SW) [13] proposed

an exact algorithm for local alignment 1985 and,

since then, this algorithm is widely used. Like NW

(“Algorithm NW for global alignment” section), SW is

also based on dynamic programming with quadratic time

and space complexity. However, there are three basic

differences between the algorithmsNWand SW, concern-

ing the calculation of the DP matrix (“Phase 1 - calculate

the DP matrix” section) and the alignment retrieval.

In the initialization step, all elements of the first row

and column are set to zero in SW. This is done because

gaps should not receive any penalty at the beginning of the

alignment.

The second difference is the recurrence relation itself

since since negative values are not allowed in SW, as

shown in Eq. 2.

Hi,j = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Hi−1,j−1 + p(i, j)

Hi,j−1 − G

Hi−1,j − G

0

(2)
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In the second phase (obtain the optimal local align-

ment), the algorithm starts from the cell which has the

highest value in the DP matrix, following the arrows until

a zero-valued cell is reached.

Figure 3 presents the similarity matrix to obtain local

alignments between sequences S0 = TATAGGTAGCTA

and S1 = GAGCTATGAGGT. Note that, in this example,

even though there are no multiple arrows leaving a single

cell, two optimal alignments can be obtained, both of them

with score 5. Most of the implementations of SWwill only

retrieve one of those optimal alignments.

Affine-gap

Algorithms NW (“Algorithm NW for global align-

ment” section) and SW (“Algorithm SW for local align-

ment” section) use the linear gap model, where each gap is

assigned the same penalty. To produce more biologically

relevant results, Gotoh [18] proposed an algorithm that

implements the affine-gap model for the global alignment

case. This model takes into account the observation that,

in nature, gaps tend to occur together [17]. In this case,

a higher penalty is assigned to open a gap (Gopen) than to

extending it (Gextend). The cost of a sequence of gaps of

length x in the affine gap model is γ (x) = Gopen+ (x−1)∗

Gextend .

The Gotoh algorithm calculates three DP matrices:H, E

and F, where H keeps track of matches/mismatches and

E and F keep track of gaps in each sequence. Time and

space complexities are quadratic. Matrix H is calculated

with Eq. 3 and matrices E and F use Eqs. 4 and 5, respec-

tively [18]. The optimal score is the value of cellHm+1,n+1.

Fig. 3 Similarity matrix for local alignment between sequences S0 and

S1

To do the traceback, the arrows are followed in matrix H

when a match/mismatch occurs or in matrices E and F, to

track multiple gaps [18].

Hi,j = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0

Ei,j
Fi,j
Hi−1,j−1 − p(i, j)

(3)

Ei,j = max

{

Ei,j−1 − Gext

Hi,j−1 − Gfirst
(4)

Fi,j = max

{

Fi−1,j − Gext

Hi−1,j − Gfirst
(5)

Linear space

The quadratic space complexity of NW, SW and Gotoh

imposes severe restrictions when long sequences are com-

pared. In such cases, linear space algorithmsmust be used.

Hirschberg [19] proposed one of the first linear space

algorithms for exact pairwise global sequence comparison

[19]. The algorithm employs a recursive divide and con-

quer strategy that works as follows. First, the DP matrix is

computed in linear space from the beginning to the mid-

dle row (i∗), storing only the last row calculated. Second,

the DP matrix is calculated from the end to the middle

row over the reverses of the sequences. The algorithm

then uses these two middle rows and obtains the posi-

tion where the addition of both columns j is maximal.

This position is called midpoint and it corresponds to an

element that belongs to the optimal alignment [19]. The

midpoint divides the matrix into two smaller submatrix,

which are processed recursively, until trivial solutions are

found.

Myers and Miller [20] (MM) adapted Hirschberg’s algo-

rithm to the affine gap model (“Affine-gap” section), using

two additional vectors to treat situations where a sequence

of gaps occurs. Let i∗ = m
2 be the middle row of the

DP matrices, CC(j) be the minimum cost of a conver-

sion of S0[ 1..i∗] to S1[ 1..j], DD(j) be the minimum cost

of a conversion of S0[ 1..i∗] to S1[ 1..j] that ends with a

gap, RR(n − j) be the minimum cost of a conversion of

S0[ i ∗ ..m] to S1[ j..n] and SS(n − j) be the minimum

cost of a conversion of S0[ i ∗ ..m] to S1[ j..n] that begins

with a gap.

To find the midpoint of the alignment, the algorithm

realizes a matching procedure against a) vectors CC with

RR and b) vectors DD with SS. The midpoint is the coor-

dinate (i∗, j∗), where j∗ is the position that satisfies the

maximum value in Eq. 6.

maxj∈[0..n]

{

max

{

CC(j) + RR(n − j)

DD(j) + SS(n − j) − Gopen
(6)
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As in Hirshbergś, after the midpoint is found, the matrix

is recursively split into smaller submatrix, until trivial

solutions are found.

Heuristic algorithms

Usually, a given protein sequence is compared against

thousands or even millions of sequences that compose

genomic databases. Also, two long DNA sequences with

more than a million base pairs are often compared.

In these scenarios, the use of exact algorithms such as

NW and SW is often prohibitive in terms of execution

time. For this reason, faster heuristic methods for local

alignment were proposed which do not guarantee that the

optimal result will be produced. Usually, these heuristic

methods are evaluated using the concepts of sensitivity

and sensibility. Sensitivity is the ability to recognize as

many significant alignments as possible, including dis-

tantly related sequences. Selectivity is the ability to narrow

the search in order to discard false positives [17]. Typi-

cally, there is a tradeoff between sensitivity and sensibility.

The FASTA (FAST-All) algorithm [21] was proposed in

1988 and it computes local alignments of DNA or protein

sequences. It is based on FastP [22], which is a heuris-

tic algorithm to compare a protein sequence to a genomic

database composed of several protein sequences.

BLAST (Basic Local Alignment Search Tool) [23] was

proposed in 1990 and it is based on FASTA. Nowadays, it

is the most widely used heuristic tool for local sequence

alignment. Like FASTA, the BLAST algorithm assumes

that significant alignments have words of length w in

common and it is divided into three well-defined phases:

seeding, extension and evaluation.

The original BLAST algorithm searched for local align-

ments without considering gaps. In 1996 and 1997, two

improved gapped versions of the original BLAST, NCBI-

BLAST2 [24] and WU-BLAST2 [25], were proposed.

Related work
The Smith-Waterman (SW) algorithm has become very

popular over the last decade to calculate the optimal pair-

wise comparison of (1) two DNA/RNA sequences or (2) a

protein sequence (query) to a genomic database which is

composed of several sequences.

Both scenarios have been parallelized in the literature

[26, 27], but fine-grained parallelism applies better to the

first scenario due to the amount of data and computa-

tion involved, and therefore fits better into many-core

platforms. Among them, we find Intel Xeon Phis [28],

Nvidia GPUs using CUDA [29], and even multi-GPU

using CUDAlign 4.0 [30], which is our departure point

to analyze cost, performance and power efficiency along

this work.

Studies that deal with energy consumption are becom-

ing relevant in DNA sequence comparison applications,

which motivates to provide methodologies to measure

energy in this context.

Cheah et al. [31] apply an application specific inte-

grated circuit (ASIC) design flow to decrease the power

consumption of an accelerator that compares biological

sequences. Reduced clock cycles and dynamic frequency

scaling are employed to minimize the energy cost.

Hasan and Zafar [32] present a thorough perfor-

mance versus power consumption study for bioinformat-

ics sequence alignment using distinct field programmable

gate arrays (FPGAs). A linear systolic array was used to

implement the SW algorithm in those FPGA platforms.

Zou et al. [33] analyze performance and power for SW

on CPU, GPU and FPGA, declaring the FPGA as the

overall winner. Nevertheless, the authors do not measure

real-time power dynamically, but simplify the measure-

ments with a static value for the whole run.Moreover, they

use models from the first and second Nvidia GPU gen-

erations (GTX 280 and 470), which are, by far, the most

inefficient CUDA families as far as energy consumption is

concerned (just 4-6 GFLOPS/W versus 15-17 GFLOPS/W

in the third generation and up to 40 GFLOPS/W in the

fourth generation).

Benkrid et al. [27] perform a similar analysis on CPU,

FPGA and GPU, even including the Cell BE. They report

0.085 GCUPS for the CPU, 1.2 GCUPS for the GPU, 3.84

GCUPS for Cell BE and 19.4 GCUPS for the FPGA. Eight

years later, we attain 276.53 GCUPS on a Pascal GPU and

37.67 GCUPS on a Altera Stratix V FPGA as we will show

later on “Comparison with other devices and implemen-

tations” section, where we compare our work with theirs.

Additionally, we measure real power on physical wires at

real-time, instead of using static values or even TDPs like

contemporary authors do [34].

CUDAlign implementation on GPUs
SW executes in two phases: (1) compute the DP matrix

and (2) traceback. Most of the time is spent in phase 1

and, therefore, this phase is often parallelized. Equation 2

exposes the data dependency among the DP matrix cells,

i.e., Hi,j depends on three other cells: Hi−1,j, Hi−1,j−1 and

Hi,j−1. The parallelization of this kind of dependency is

traditionally made by the wavefront method [35], in which

each diagonal of the DP matrix is computed in parallel.

The wavefront method is illustrated in Fig. 4. At the

beginning (step 1) a single cell is calculated in diagonal

d1. In step 2, both cells of diagonal d2 are computed in

parallel. In steps 3 to 5, the number of cells that can be cal-

culated in parallel increases until it reaches the maximum

parallelism in diagonal d5. The maximum parallelism is

kept in the computation of diagonals d5, d6, d7, d8 and d9
(five cells are calculated in parallel). In the computation

of diagonals d10 to d12, the parallelism decreases until a

single cell is computed in diagonal d13. In the wavefront
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Fig. 4 The wavefront method

method, parallelism is non-uniform and it is explored in a

limited way when the wavefront is being filled (beginning

of the computation) and when it is being emptied (end of

the computation).

CUDAlign [29] obtains the alignment of long sequences

with variants of SW and Myers-Miller (see stages and

phases summarized in Table 1). The GPU calculates a sin-

gle SW matrix using all many-cores in a fine grained way,

and data dependencies force neighbour cores to commu-

nicate in order to exchange border elements.

When CUDAlign is executed in a platform composed

of multiple GPUs, a challenging scenario arrises. The

computation of the SW matrix is split among the GPUs

and each GPU calculates a subset of columns. GPUs are

arranged logically in a linear way, sending the border col-

umn elements to the next GPU. Communication between

neighbor GPUs is overlapped with computations, i.e., it

is carried by asynchronous CPU threads while the GPUs

keep computing (Fig. 5).

CUDAlign 4.0 [30] introduces two strategies to optimize

the traceback phase in multi-GPU executions: Pipeline

Traceback (PT) and Incremental Speculative Traceback

(IST). PT executes in parallel Stages 2 to 4 from different

partitions. First, Stage 1 is executed, and then starts Stage

2 in last GPU. When last GPU gets the crosspoint, this is

sent to previous GPU, which starts the execution of Stage

2 for the neighboring partition. The executions of Stages

2, 3 and 4 might be calculated in pipeline at each GPU.

Table 1 Summary of CUDAlign stages, including the SW phase it

belongs to and the processor where it is executed

Stage Description SW Phase Who

1 Obtaining the optimal score. 1 GPU

2 Partial traceback. 2 GPU

3 Splitting partitions. 2 GPU

4 Balanced splitting. 2 CPU

5 Concatenating the optimal alignment. 2 CPU

6 Alignment visualization (optional). 2 CPU

The IST strategy for stage 2 was built based on PT strat-

egy. IST uses the knowledge obtained in several analyses,

particularly that the best score in border columns tend

to coincide with the crosspoints in them. With this in

mind, IST speculates crosspoints in intermediate border

columns and Stage 2 in Fig. 5 can be executed in parallel

before the optimal alignment crosspoints are known.

CUDAlign versions

CUDAlign was implemented in CUDA, C++ and

pthreads. Results obtained in a large GPU cluster using

long DNA sequences present good scalability for up

to 16 GPUs [30]. Using CUDAlign 4.0 and input data

set described in “Experimental setup” section, a 14.8x

speedup was attained. In this case, the execution time was

reduced from 33 h and 20 min (single GPU) to 2 h and 13

min (16 GPUs).

Table 2 presents the set of improvements and optimiza-

tions performed on CUDAlign over the years. Along this

work, we use CUDAlign 4.0.

Experimental setup
We have conducted an experimental study on a com-

puter endowed with an Intel Xeon server, where we

have plugged different number and models of Nvidia

GPUs (they will be changing depending of the experi-

ment performed). See Table 3 for a summary of hardware

features.

As input, we used real DNA sequences obtained from

the National Center for Biotechnology (NCBI) [36]. We

compare homologous chromosomes from human and

chimpanzee genomes, as it has been observed high simi-

larity in evolutionary studies on the human species [37],

in particular for chromosomes 16 [38], 22 [39] and Y [40].

Our selection is summarized in Table 4, where compar-

isons are named chr22, chr21, 47M, chrY, following

names found in [29, 30]. DNA sequences from all those

chromosomes are compared in the results presented in

Table 5. From Table 6 on, we always use as input the

pair of sequences from the chromosome 22 comparison
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Fig. 5 Timeline for a multi-GPU sequence alignment (4 GPUs)

Table 2 Summary of CUDAlign versions

Version Major contributions Ref.

1.0 Uses SW with affine gap (Gotoh) to compare long
sequences on GPUs. It ouputs the optimal score and
the end coordinates of the optimal alignment.

[50]

2.0 Includes an adapted version of Myers-Miller to retrieve
the optimal alignment in linear space.

[51]

2.1 Block pruning optimization. [29]

3.0 Multi-GPU version for SW phase 1 (distributes the
matrix, overlaps computations with communications).

[49]

4.0 Multi-GPU version for SW phases 1 and 2, including
Incremental Speculative Traceback (IST) to accelerate
the multi-GPU retrieval of the optimal alignment.

[30]

MASA Multi-platform architecture for sequence aligner,
enabling versions to run on (1) multicore CPU using
OpenMP, (2) multicore CPU using OmpsSs, (3) many-
core GPU using CUDA, and (4) Xeon Phi using
OpenMP.

[52]

(chr22) between the human (51.30 MBP [41], accession

number NC_000022.11) and the chimpanzee (49.73 MBP

[42], accession number NC_006489.4).

The execution of the required stages on a multi-GPU

platform required two modifications in CUDAlign 4.0: (1)

Table 3 Characterization of the infrastructure (CPU and GPUs)

Processor Intel Xeon CPU Nvidia GeForce GPUs

Model E5-2620 v4 GTX 680 GTX 980 Titan X Titan X

Generation Broadwell-EP Kepler Maxwell Maxwell Pascal

Year 2017 2013 2015 2016 2017

Number of cores 8 1536 2048 3072 3584

Core speed (MHz) 2100 1006 1216 1000 1405

GFLOPS (peak) 16,8 3090 4980 7144 10157

Memory Size (GB) 64 2 4 12 12

” Speed (MHz) 2400 6000 7000 7000 10000

” Width (bits) 256 256 256 384 384

” Bandwidth (GB/s) 76,8 192 224 336 480



Pérez-Serrano et al. BMC Bioinformatics 2018, 19(Suppl 14):421 Page 168 of 176

Table 4 The input data set used along our experiments

DNA
sequence
comparison

chr22 chr21 47M chrY

Human size 51.304.566 48.129.895 46.944.323 59.373.566

Human
accession #

NC_000022.11 NC_000021.8 NC_000021.7 NC_000024.9

Chimpanzee
size

49.737.984 46.489.110 32.799.110 26.342.871

Chimpanzee
accession #

NC_006489.4 NC_006488.2 BA000046.3 NC_006492.3

Petacells 2.55 2.24 1.54 1.56

Score 31.510.791 36.006.054 27.206.434 1.394.673

Length 51.929.087 48.579.349 33.583.457 2.283.191

Coverage 98.9% 99.0% 70.5% 6.0%

Matches 88.5% 91.9% 94.4% 88.1%

Mismatches 3.8% 1.1% 1.5% 2.0%

Gaps 7.7% 7.1% 4.1% 10.0%

partitioning the input sequences to fit them in texture

memory, and (2) saving extra rows to the file system as

marks to be used in later stages to find crosspoints with

the optimal alignment. Furthermore, our experimental

analysis is done on the first three stages of CUDAlign,

which are the ones executed on GPUs as shown in Table 1.

Stages 4 and 5 contribute with marginal execution times,

and porting codes to the GPU would not be amortized,

whereas stage 6 represents the external visualization.

Monitoring energy
Our system to measure current, voltage and wattage was

built based on a Beaglebone Black, an open-source hard-

ware [43] combined with the Accelpower module [44],

which has eight INA219 sensors [45]. As described in

[46], we consider two power pins on the PCI-express slot

(12 and 3.3 volts) plus six external 12 volts pins coming

from the power supply unit in the form of two supplemen-

tary 6-pin connectors (see Fig. 6).

The Accelpower module uses a modified version of

pmlib library [47], a software package specifically cre-

ated for monitoring energy. A server daemon collects

power data from devices and sends them to the clients,

together with a client library for communication and

synchronization with the server.

Our procedure formeasuring energy begins with a start-

up of the server daemon. Then, the CUDAlign 4.0 source

code was modified in order to include the measurement

calls within the GPU code as shown in Fig. 7. Before

launching the code, we have to (1) declare pmlib vari-

ables, (2) clear and set the wires which are plugged to the

server, (3) create a counter and (4) start it. At the end

of the GPU execution, we (5) stop the counter, (6) get

the data, (7) save them to a .csv file, and (8) finalize the

counter.

Results
We study performance and power efficiency on GPUs

from different perspectives, studying the influence of a

wide variety of issues, namely:

Table 5 Power, execution times and energy consumption on four GTX980 GPUs for different comparisons

Comparison Stage 1 Stage 2 Stage 3 Total

Average power (watts per GPU) GCUPS/W

chr22 101.11 W 116.26 W 77.27 W 101.33 0.55

chr21 102.11 W 116.47 W 78.89 W 102.18 0.56

47M 104.37 W 117.12 W 76.33 W 104.50 0.54

chrY 103.25 W 119.63 W 77.00 W 103.26 0.56

Execution time (seconds) GCUPS

chr22 11161.92 s 185.20 s 14.25 s 11361.38 s 224.60

chr21 9687.36 s 61.49 s 11.03 s 9759.89 s 229.25

47M 6694.95 s 88.25 s 9.05 s 6792.26 s 226.68

chrY 6798.12 s 3.99 s 0.07 s 6802.18 s 229.93

Energy consumption (kilojoules per GPU) Cost

chr22 1128.63 kJ 21.53 kJ 1.10 kJ 4x 1151.27 kJ 0.1660 e

chr21 989.26 kJ 7.16 kJ 0.87 kJ 4x 997.29 kJ 0.1440 e

47M 698.82 kJ 10.34 kJ 0.69 kJ 4x 709.85 kJ 0.1024 e

chrY 701.94 kJ 0.48 kJ 0.00 kJ 4x 702.42 kJ 0.1012 e

We also use GCUPS (GigaCells Updated Per Second) as performance metric, GCUPS/W as power efficiency metric and overall costs in euros (shown for all GPUs involved and

on an average fare of 0.13 e/kWh)
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Table 6 Power, execution times and energy consumption on different number of GTX980 GPUs for the chr22 comparison

No. GPUs Stage 1 Stage 2 Stage 3 Total Versus 2 GPUs

Average power (watts) GCUPS/W

4 101.11 W 116.26 W 77.27 W 101.33 W 0.55

3 101.53 W 108.16 W 78.79 W 101.62 W 0.59

2 100.30 W 114.68 W 76.74 W 100.38 W 0.57

Execution time (seconds) GCUPS

4 11161.92 s 185.20 s 14.25 s 11361.38 s 1.96x 224.59

3 14719.32 s 253.72 s 17.70 s 14990.76 s 1.49x 170.21

2 22080.04 s 159.77 s 23.17 s 22262.99 s 114.62

Energy consumption (kilojoules) Cost

4 1128.63 kJ 21.53 kJ 1.10 kJ 4x 1151.27 kJ 1.03x 0.1660 e

3 1494.60 kJ 27.45 kJ 1.40 kJ 3x 1523.44 kJ 1.02x 0.1650 e

2 2214.77 kJ 18.32 kJ 1.78 kJ 2x 2234.88 kJ 0.1614 e

We also compare performance and power consumption versus the execution on 2 GPUs

1 The input data volume.

2 The computational stage within SW.

3 The multi-GPU factor.

4 The cost of speculative executions.

5 Comparison among GPUs (different generations and

models).

6 Comparison with other accelerators (Xeon Phis) and

low-power devices (FPGAs).

Now we dedicate a different subsection to analyze each

of them separately.

Influence of the input data set

We have executed the modified CUDAlign 4.0 ver-

sion using four different comparisons (see Table 4) on

a multi-GPU environment composed of four GeForce

GTX 980 GPUs. Table 5 includes the numbers coming

from this first experiment. Wattage is slightly sensitive

to workload, around 3% higher on smaller comparisons

(47M and chrY). Execution time is proportional to the

number of Petacells computed on each comparison, and

finally, energy consumption and costs follow this tendency

too. Performance keeps stable around 225-230 GCUPS

(Giga-Cell Updates per Second), and power efficiency

remains constant in 0.55 GCUPS/W, which is not a great

value, but the use of four GPUs here penalizes it. We will

see higher efficiency on a single GPU later on.

Overall, we expect the compared sequences to play

a more decisive role on smaller data volumes, say

Mega-Cells or even Giga-Cells. But when exceeding the

Peta-Cells threshold, the GPU already reaches a stationary

behaviour that stabilizes power over time regardless of

input/output transitions, and it is logical to find solid per-

formance and power efficiency. Since the influence of the

Fig. 6 Infrastructure for measuring energy on GPUs. Wires, slots, cables and connectors for measuring energy on GPUs
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Fig. 7 Flow chart for measuring energy on a code excerpt when

running on the GPU

compared sequences is negligible, we will continue our

analysis just using chr22 in remaining executions.

Behaviour of every computational stage

Table 5 also shows that stage 1 predominates for the

execution time of SW, and that wattage keeps stable

around 100 watts in that stage for all sequences. From that

point, power goes up around 15% for stage 2, and goes

down around 25% for stage 3. We find an explanation for

this if we look at the energy budget for Kepler andMaxwell

GPUs (see Table 7): Fetching operands costs more than

computing on them. Therefore, stage 1, which is the

most computationally intensive, keeps on an intermediate

point. In stage 2, where communications are more often,

average power increases. And finally, we have stage 3,

almost negligible in elapsed time, but performing selective

operations with texture memory and disk as we already

mentioned at the end of “Experimental setup” section.

File operations are offloaded to a different subsystem

of the computer, and they escape to our measurement

system, so the GPU is mostly idle during that time,

which reduces average power and compensates those

expensive DRAM operations through a much larger time

window.

Table 8 summarizes gains (in time reduction) and losses

(as extra energy costs) on all scenarios of our multi-GPU

execution for the chr22 sequence comparison, compar-

ing 3 and 4 GPUs taking as baseline the first multi-GPU

execution (2 GPUs). Stage 1 presented scalable results

with a time reduction of almost 50% when doubling the

number of GPUs from 2 to 4, at the expense of less than 2%

in the overall energy budget. Stage 2 slowdowns the exe-

cution time due the insufficient level of parallelism when

using few GPUs, what causes a serial execution of the

Stage 2 among GPUs. Since Stage 3 executes in parallel on

each GPU, speedups increase up to 38.5%. Finally, we have

a solid conclusion on four GPUs, with time being reduced

Table 7 Energy budget on a 28 nm. manufacturing process chip

(all Kepler and Maxwell GPUs)

Computational task
performed on the GPU

Power consumption
(energy in picojoules)

Computation Add operator using
integer operands (ALU)

0.4

Mul operator using
fp64 operands (FPU)

25

Fused multiply-add
on fp64 operands (FPU)

40

Data movement Transition (milimeter
traversed per bit)

0.2

On-chip
fp64 communication [1,
10, 20 mm.]

[3, 64, 250]

Efficient off-chip link 500

Memory access Local access to a
register file

2

256-bit access to on-chip
8 KB. SRAM cache

50

DRAM read/write (for an
entire cache line)

16000



Pérez-Serrano et al. BMC Bioinformatics 2018, 19(Suppl 14):421 Page 171 of 176

Table 8 Savings (in execution time) and penalties (in energy cost) when accelerating SW for the chr22 comparison on 4 and 3 GPUs

taking as baseline the twin GPUs execution

Stage 1 Stage 2 Stage 3 Total

No. GPUs Savings
(time)

Penalty
(energy)

Savings
(time)

Penalty
(energy)

Savings
(time)

Penalty
(energy)

Savings
(time)

Penalty
(energy)

4 49.96% 1.91% -15.92% 135.04% 38.50% 23.60% 48.97% 3.03%

3 33.34% 1.22% -58.80% 124.75% 23.61% 17.98% 32.67% 2.25%

50% at the expense of doubling the energy budget. Being

Stage 1 the one with highest workload, the total execution

time and energy usage follows its behaviour. Figure 8 pro-

vides details about the dynamic behaviour over time for

each of the SW stages on different GPU models.

Changing the number of GPUs

Table 6 shows power and execution times when running

SW for the chr22 comparison on a multi-GPU environ-

ment composed of 2, 3 and 4 GTX980 GPUs. We spend

more than 6 h on two GPUs, and progressively reduce this

time to less than a half using 4 GPUs.

As expected, power consumed by each GPU remains

stable regardless of the number of GPUs active dur-

ing the parallelization process. Execution times exhibit

good scalability on stage 1 and 3 and somehow unsta-

ble for stage 2. Because GPUs keep computing on stage 1

most of the time, the overall energy cost is heavily influ-

enced by this stage. Basically, doubling from 2 to 4 GPUs

cuts execution times in half and doubles performance in

GCUPS, with a small reduction on power efficiency: 0.57

GCUPS/W on two GPUs versus 0.55 GCUPS/W on four

GPUs.

Energy costs for speculative executions

CUDAlign 4.0 executes the two SW algorithm phases

(“Algorithm SW for local alignment” section) in six stages.

In the first stage, the DP matrix is computed by mul-

tiple GPUs, which asynchronously communicate border

elements to the right neighbour in order to find the opti-

mal score. In the remaining stages, the traceback phase

of SW speculates the location of the optimal alignment

incrementally over the values calculated so far, thus antic-

ipating results. Otherwise, its inherent serial execution

would consume more than 50% of the overall execution

time, depending on the sizes of the sequences. The

speculative strategy, called IST (Incremental Speculative

Traceback), has already been proven to be an effective

mechanism for reducing the execution time, particularly

on large-scale comparisons mapped to a wide number of

GPUs [30].

To guarantee an effective reduction of the execution

time, we speculate on two premises: (1) during the time

the GPUs are otherwise idle, and (2) showing a very high

speculation hit ratio. In terms of power consumption,

the first premise consumes extra energy, which would

only be amortized through a much shorter execution.

And mispredictions may also jeopardize the GFLOPS/w

ratio.

In order to analyze energy costs and establish amortiza-

tion times for CUDAlign 4.0 in multi-GPU environments,

we have monitored power consumption at real-time on a

dual GPU execution performed on Titan Maxwell GPUs.

Figure 9 shows the dynamic behaviour of a GPU when it

speculates (IST - on the left) and when it does not (PT

- on the right). We see that speculation skips inactivity

(boxed on the right), and the GPU ends 18% earlier. That

produces average power to increase 11%, but with energy

savings of 6.5% when we speculate.

Table 9 summarizes pros and cons of the speculative

approach. We need at least a 2 hit/miss ratio to waive

energy penalties, and when doing so, we would save 12%

of execution time as starting threshold.

Comparison among GPUs

Our next analysis compares different GPU generations

and models. We have GPUs coming from three different

generations (one Kepler, two Maxwells and one Pascal),

and from two different budgets (two mid-end GTXs and

two high-end Titans). Figure 8 illustrates the dynamic

behaviour of power consumption for every GPU model

(represented in rows, newer are lower) and CUDAlign

stage (in columns).

Going stage by stage, we can see that:

1 Stage 1 reduces power in its final part on Titan

GPUs.

2 Stage 2 has a different pattern on every GPU,

predominating regions of lower power on newer

GPUs, particularly at the end of the process.

3 Stage 3 shows the same pattern in all cases, and

average power is higher on newer GPUs, but this is

caused by a much higher throughput when

computing and bandwidth when communicating,

leading to power savings overall.

Table 10 provides more detailed results. In general,

Titan Maxwell disappoints in power efficiency but fulfills
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Fig. 8 Power consumption running the chr22 comparison on a single GPU for different SW stages and GPU models (first row for GTX680, second

row for GTX980, third row for Titan Maxwell and last row for Titan Pascal

expectations in acceleration, whereas Titan Pascal is

outstanding in both respects. We have built a GPU

comparison taking GTX 980 (2015) as baseline (see sixth

column in Table 10. Titan Maxwell (2016) improves 30%

the execution time but penalizes energy in the same

percentage. Titan Pascal (2017) is able to reduce time

by 59% and also energy by 23%. Finally, Kepler, our

2013 model, increases execution time by 50% and almost

doubles energy requirements.

Concerning power efficiency, GTX models behave

better than Titans. And we are nicely surprised by energy

costs: in less than five years, we have been able to

reduce the energy cost of running our algorithm by as

much as 60%.
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Fig. 9 Power consumption running the chr22 comparison on 2 Pascal GPUs without (right) and with (left) speculative execution

Comparison with other devices and implementations

For Megabase DNA sequences, the SW matrix is several

Petabytes long, and so, few implementations allow align-

ments for DNA sequences longer than 10 MBP (Million

Base Pairs) like CUDAlign does.

SW# [48] performed a CUDA implementation of

dynamic programming algorithms for local alignment.

With an emphasis on memory optimizations, SW# was

the first alternative to CUDAlign to produce sequence

alignments on genome-wide scale, reporting a perfor-

mance few hundred times faster than a counterpart CPU

version.

More recently, Rucci et al. [34] have developed an

OpenCL version of SW to study performance and power

efficiency on Intel Xeon Phis and, overall, FPGAs, which

has traditionally been the most power efficient devices

for SW [27, 33]. Using an Altera Stratix V FPGA, they

analyze the influence of data types for the matrix ele-

ments, showing that performance can be almost dou-

bled when migrating from long int (32 bits) to int

Table 9 Speculative costs on a dual GPU execution using Pascal

GPUs and chr22 comparison

Execution Time Avg. Power Energy

Regular (PT) 99.04 s 160.21 W 15867.19 J

Speculative (IST) 83.39 s 177.97 W 14840.91 J

Comparison -18% +11% -6.5%

Spec. Time Avg. Power Energy

Hit 83.39 s 177.97 W -6.5%

Miss 99.04 s 177.97 W +11.0%

(16 bits), and from here to char (8 bits). Unfortunately,

those smaller data types overflow when using their scor-

ing function on large sequences, so they conclude that

FPGAs are faster than GPUs on small sequences (up to

200K x 200K matrices), and achieve the best GCUPS/W

ratios.

Table 11 summarizes results for those counterpart

implementations and also from previous CUDAlign ver-

sions. Running on the same device (the GTX 980 GPU),

our code improves 1.39x performance and 2.25x power

efficiency those results reported in [49]. And using the

Pascal GPU, we are able to increase performance and

power efficiency an additional 2.45x and 1.28x factors,

respectively. Note that those results in Table 11 coming

from other sources do not measure real power consump-

tion like we do, but estimate it using the TDP reported by

the manufacturer.

To dedicate few words to CPUs, Korpar et al. [48]

already demonstrated that the CUDA version of SW

running on GPUs is few hundred times faster than

a counterpart CPU version, and given the fact that

GPUs have conquered the green500.org list, we assume

that CPUs are not competitive on power efficiency

either. Even x86 many-cores, like the Xeon Phi 3120P

endowed with 57 cores show the lowest performance

and power efficiency of all configurations compared in

Table 11.

FPGAs, on the other hand, are much slower than

GPUs on large DNA sequences, but tough competitors

regarding power efficiency. In fact, we compiled in

“Related work” section several results where FPGAs

clearly outperformed GPUs in GCUPS/W using GeForces

coming from the first CUDA generation. Eight years and
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Table 10 Summary of CUDAlign stages, including the SW phase it belongs to and the processor where it is executed

GPU model Stage 1 Stage 2 Stage 3 Total Versus GTX 980

Average power (watts) GCUPS/W

GTX 680 (Kepler) 133.10 W 119.13 W 79.16 W 132.63 W +28% 0.57

GTX 980 (Maxwell) 102.95 W 114.44 W 81.27 W 103.06 W 1.09

Titan X Maxwell 189.45 W 172.71 W 115.48 W 189.00 W +83% 0.84

Titan X Pascal 194.54 W 176.52 W 112.56 W 193.96 W +88% 1.42

Execution time (seconds) GCUPS

GTX 680 (Kepler) 33207.27 s 642.37 s 128.70 s 33978.34 s +50% 75.10

GTX 980 (Maxwell) 22302.24 s 291.50 s 46.65 s 22640.40 s 112.71

Titan X Maxwell 15870.33 s 222.11 s 46.51 s 16138.95 s - 29% 158.10

Titan X Pascal 9114.21 s 144.75 s 33.02 s 9291.98 s - 59% 274.62

Energy consumption (kilojoules) Cost

GTX 680 (Kepler) 4419.88 kJ 76.52 kJ 10.18 kJ 4506.58 kJ +93% 0.1627 e

GTX 980 (Maxwell) 2296.22 kJ 33.36 kJ 3.79 kJ 2333.37 kJ 0.0842 e

Titan X Maxwell 3006.63 kJ 38.36 kJ 5.37 kJ 3050.36 kJ +30% 0.1101 e

Titan X Pascal 1773.07 kJ 25.55 kJ 3.71 kJ 1802.33 kJ - 23% 0.0650 e

The comparison on sixth column takes GTX 980 as baseline

four generations later, GPU technology has turned around

this situation. Table 12 summarizes speedups attained by

GPUs and their deficit in energy versus FPGAs. We can

see how performance gaps widens and power efficiency

converges whenever GPUs reach contemporary models.

And the programming effort on a FPGA is remarkable:

300 days versus just 45 days on a GPU for the implemen-

tation described in [27].

Discussion and conclusions
Along this paper, we have studied GPU acceleration and

power consumption on a multi-GPU environment for the

Smith-Waterman method to compute, via CUDAlign 4.0,

the biological sequence alignment for a set of real genome

scale DNA sequences coming from human and chim-

panzee homologous chromosomes retrieved from the

National Center for Biotechnology Information (NCBI).

We may distinguish 6 stages within CUDAlign 4.0,

and the first half have been implemented in CUDA

for its acceleration on GPUs. On a stage by stage

analysis, the first one is more demanding and takes

the bulk of the computational time. On the other

hand, power consumption was kept more stable across

executions of different alignment sequences, though

it suffered deviations of up to 30% across different

stages.

Table 11 Summary of SW implementations on accelerators and low-power devices over the past five years

Device Hardware model Power Implementation Input size GCUPS GCUPS/W Ref.

FPGA Altera Stratix V 25 W (a) OpenCL 23Mx25M 37.67 1.50 [34]

Accel. Intel Xeon Phi 3120P 270 W (a) OpenCL 23Mx25M 30.36 0.12 [34]

GPU Nvidia Tesla K20 225 W (a) SW# 23Mx25M 44.19 0.19 [48]

GPU ” Tesla K20 225 W (a) CUDAlign 3.0 23Mx25M 40.69 0.18 [49]

GPU ” GeForce GTX 980 165 W (a) SW# 23Mx25M 67.55 0.41 [48]

GPU ” GeForce GTX 980 165 W (a) CUDAlign 3.0 23Mx25M 84.84 0.51 [49]

GPU ” GeForce GTX 980 103.06 W CUDAlign 4.0 51Mx50M 112.71 1.09

GPU ” Titan X Maxwell 189.00 W CUDAlign 4.0 51Mx50M 158.10 0.84

GPU ” Titan X Pascal 193.96 W CUDAlign 4.0 51Mx50M 276.53 1.43

aAuthors do not measure real power consumption, but estimate it using TDP (Thermal Design Power)
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Table 12 GPUs contribution in acceleration and energy consumed versus a 2017 FPGA implementation using OpenCL

Platform FPGA GTX 980 GTX 980 GTX 980 Titan Pascal

Implementation OpenCL SW# (CUDA) CUDAlign 3.0 CUDAlign 4.0 CUDAlign 4.0

Year 2017 2013 2014 2016 2017

Performance Baseline +79.3% +125.2% +213.5% +669.2%

Power efficiency Baseline - 72.6% - 66.0% - 23.3% - 1.3%

One of the major innovations in CUDAlign 4.0 was the

Incremental Speculative Traceback (IST) [30] introduced

within stage 2 to estimate the point where optimal align-

ment crosses border columns among multiple GPUs. This

strategy allows GPUs to anticipate their activation, min-

imizing idle times required to solve dependencies when

parallelizing. Mispredictions barely affect the execution

time, but they may compromise power efficiency. On a

dual GPU execution performed on Titan Maxwell GPUs,

we find that a 2 hit/miss ratio is required to waive energy

penalties, and in that case, we will also save 12% of the

execution time.

In a multi-GPU environment composed of 4 GTX980

GPUs, we reduce the computational time by half when

compared to a dual GPU execution, at the expense of just

3% penalty in power usage. That way, our experiments

demonstrated an efficient correlation between accelera-

tion and extra energy required.

Overall, we have reduced execution times from 9.5 h on

a Kepler GPU to just 2.5 h on Titan Pascal, with energy

costs cut by 60%. Compared to FPGAs, which have an

excellent reputation as low-power devices, GPUs are com-

petitive and keep similar GFLOPS/w ratios in 2017 while

maintaining the leadership as HPC accelerators for a five

times faster execution.

We expect GPUs to increase their role as high perfor-

mance and low power devices for biomedical applications

in future GPU generations, particularly after the intro-

duction in early 2017 of the 3D memory within Pascal

models.
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