DNA sequences at immunoglobulin switch region recombination sites

Wesley Dunnick, Gerald Z.Hertz ${ }^{1}$, Lori Scappino ${ }^{2}$ and Christine Gritzmacher ${ }^{2,3}$ Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Ml 48109-0620, ${ }^{1}$ Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, ${ }^{2}$ Medical Biology Institute, La Jolla, CA and ${ }^{3}$ Scripps Clinic and Research Foundation, La Jolla, CA, USA

Received October 22, 1992; Revised and Accepted December 28, 1992

Abstract

The immunoglobulin heavy chain switch from synthesis of lgM to $\lg G, \lg A$ or $\lg E$ is mediated by a DNA recombination event. Recombination occurs within switch regions, 2-10 kb segments of DNA that lie upstream of heavy chain constant region genes. A compilation of DNA sequences at more than 150 recombination sites within heavy chain switch regions is presented. Switch recombination does not appear to occur by homologous recombination. An extensive search for a recognition motif failed to find such a sequence, implying that switch recombination is not a site-specific event. A model for switch recombination that involves illegitimate priming of one switch region on another, followed by error-prone DNA synthesis, is proposed.

INTRODUCTION

Single immunoglobulin-producing lymphocytes (B cells) have the capability to produce one type of immunoglobulin (usually IgM) early in their development and another type (IgG, IgE, or $\operatorname{Ig} A$) after antigen-induced differentiation. All the types of immunoglobulin produced by the progeny of a single B cell have the same light chain and variable (VH) region of the heavy chain (excepting somatic mutations-ref. 1), but differ in the constant (C) region of the heavy chain. The switch in heavy chain C region is brought about by a DNA deletion that moves the VH gene from its position about 8 kb 5 ' of the $\mathrm{C} \mu$ gene to a similar location 5^{\prime} of $\mathrm{C} \alpha, \mathrm{C} \epsilon$, or $\mathrm{C} \gamma$ genes. (There are four $\mathrm{C} \gamma$ genes in mice, called $\gamma 1, \gamma 2 \mathrm{a}, \gamma 2 \mathrm{~b}$, and $\gamma 3$.) The DNA deletion begins and ends in switch (S) regions, $2-10 \mathrm{~kb}$ segments that are found 5^{\prime} of each CH gene except $\mathrm{C} \delta$. S regions are composed of simple sequences repeated in tandem. Murine $\mathrm{S} \mu, \mathrm{S} \epsilon$, and $\mathrm{S} \alpha$ are composed of variations of pentamers such as GGGGT, GAGCT, and GGGCT; the $S \gamma$ regions are composed of repeats of a 49 or 52 bp sequence ($2-7$). Human S regions include similar sequences, but with a more irregular repetition pattern (8).
The switch deletion can also be thought of as a recombination event between the donor S region (usually $S \mu$) and the acceptor switch region (usually $\mathbf{S} \gamma, \mathbf{S} \epsilon$, or $\mathrm{S} \alpha$). Switch recombination is
a reciprocal event, at least to a first approximation. Not only is a breakpoint in the donor S region joined to a breakpoint in the acceptor S region, but also the ends of the deleted DNA are ligated together ($9-11$). The mechanism of switch recombination at the level of the chromosome and the heavy chain locus has been reviewed extensively, as has the regulation of switch recombination ($12-14$). We will discuss what has been learned about the mechanism of switch recombination from evaluation of DNA sequences at recombination sites.

defining switch recombination sites versus SECONDARY, NON-SWITCH, DNA REARRANGEMENTS

More than 150 recombination sites in switch regions have been sequenced (Table 1). A continuing controversy has been the validity of subsets of switch recombination data. S regions might undergo secondary rearrangements, which are not related to switch recombination. These secondary rearrangements would delete the true switch recombination site and create a new site, obscuring the nature of true switch recombination sites. As discussed below, it is difficult to define characteristics that differentiate switch recombination sites from other illegitimate recombination events which are not B cell specific. Hence, it is not possible to distinguish switch recombination from secondary recombination by sequence evaluation.
Rearrangements of S regions during growth of bacteriophage clones is one type of secondary rearrangement that is known to occur $(2,49)$. In a few studies, the sequenced fragment has been shown to be the same size as the corresponding fragment in genomic DNA. However, for the majority of the switch region recombination sites, secondary rearrangement during recombinant clone growth or during PCR amplification is a formal possibility.

Available data suggest that secondary recombination within lymphoid cells is relatively rare. The $\mathrm{S} \mu \mathrm{S} \gamma 2 \mathrm{~b}, \mathrm{~S} \mu-3^{\prime} \mathrm{c}-m y c$, and $\mathrm{S} \mu-5^{\prime} \mathrm{c}-m y c$ sites from MOPC21 have been cloned and sequenced by two or three laboratories $(29,35,56)$. The three cell lines from which these recombination sites were cloned had been separated from one another by hundreds of generations. Nevertheless, the independent determination of each of the above recombination sites are identical in sequence, demonstrating that secondary rearrangments did not occur in cell lines derived from

Table 1. Complilation of DNA Sequences in Switch Regions

DONOR SEQUENCES:

B cells:						
No.	Name	Sequence				Ref.
1.	RH20	gcgtatatacaittgtctgg	anttatttcagttangtgta	$\mu-\mu$		15
2.	GAM3-2	gcctgacctggactcagatg	tgctagactgagctgtactg	$\mu-\gamma^{3}$	7 ins.	15
3.	GAM3-8	AGTAAGCGAGGCTCTAAAAA	ocatggetgagctgagatgg	$\mu-\gamma 3$		15
4.	T2-26 R	GCTGGGGTGAGCTGGGCTGA		$\mu-\gamma 3$		16
5.	L32-21R		gCtgagctgccgigacctic	$\mu-\gamma^{3}$		11
6	PCS29 R	gatcgagctancctgagcti	GGTGAGCTGAGCTGAGCTGA	$\mu-\gamma^{3}$		17
7.	pcs 35 R	TGTGTGAGCTGAGCTGGGGT	CAOCTGAGCAAGAGTGACTA	$\mu-\gamma^{3}$		17
8.	pCS28 R	CTGAGCTGAGCTGAGCTGGG	gTGAGCTGGGCtGAGCTGAG	$\mu-\gamma 3$		17
9	pCS23 R		gagttgggetgagctgagct	$\mu-\gamma^{3}$		17
10.	RH4	CCACCCAGACCTGGGAATGT	ATGGTTGTGGCTTCTGCCAC	$\mu-\gamma 1$		15
11	RH20	gagctgagctgagctggcgi	gag	$\boldsymbol{\mu - \gamma 1}$		15
12	RH21	tgacgtactgatcctatcte	tacttcagttatacatgtgg	$\mu-\gamma 1$		15
13.	pCs7 R		OGGGTGAGCTGGGCTGAGCT	$\mu-\gamma 1$		10
14	pCS6 R		OCTGAGCTGAGCTGGGGTGA	$\mu-\gamma 1$		10
15.	pCS5 R		tGggetgagctgacctggag	$\mu-\gamma 1$		10
16	pCS8 R		gCTGGGGTGAGCTGAGCTGA	$\mu-\gamma 1$		10
17	pCS3 R		AOCTGAGCTGGGGTGAGCTG	$\mu-\gamma 1$		10
18.	pCS9 R		Ctgagctgagctgagctgag	$\mu-\gamma 1$	1 ins.	10
19.	PCS13 R		AGCTGAGCTGAGCTGGGGTG	$\mu-\gamma 1$		10
20	N5-2 R	tacttcgttatacatgtgg	tTTGAATTTTGGAATCTATTC	$\mu-\gamma 1$		16
21.	N5-4 R		gTGcgetcagctigcgctang	$\mu-\gamma 1$		16
22.	148-3 R		tgagatctgagctgccetga	$\mu-\gamma 1$		16
23.	148-21 R		ctgegctgagctgggetgag	$\mu-\gamma 1$		16
24.	N52-1 R	gagctgagtgagctgaccta		$\mu-\gamma 1$		16
25.	P3 R		gGGCTGAGCTGGGGTGAGCT	$\mu-\gamma \mathrm{b}$		9
26.	pCS24 R	GAGCTGGGGTGAGCTGAGCT	gagctgacctgagctgcgat	$\mu-\gamma \mathrm{b}$		17
27.	pCS22 R	gagctgagctgagctcccet	gagctgagctgagctggcge	$\mu-\gamma \mathrm{b}$	1 ins	17
28.	N52-1 R		CTGAOCTGAGCTGAGCTGGG	$\mu-\varepsilon$		16
29.	T2-11 R		AGCTGGGGTGAGCTGAGCTG	$\mu-\alpha$		11
30.	T2-26 R		CTGAGCTGAGCTGAGCTGCC	$\mu-\alpha$		16
31.	pCS18 R		tGGGCTGAGCTGGGTGAGCT	$\mu-\alpha$		17
32.	L32-52 R	ccaggctggacgectctgeg	gGtagctaggctanctacg	$\gamma-\gamma 2 b$		11
33.	T2-7 R	AgGCTGAGCAGCTCTCAGGG	agctggcgaggtggagctat	人3- α		11
34.	T2-2 R	gTAGTTGGGGGTGTGGGGAC	TagGctgcgcagctctgccg	r-a		11
35.	pCS19	gactagcttggccacctaca	OGTGAGCTGGGTTGGATGGA	$\gamma^{3-\alpha}$		17
36.	N5-7 R	tgtgggeaccetgtaggita	gCtGtaggganatcaggaca	$\gamma 1-\varepsilon$		16
37.	1412-3		agggagccaggacaggtaga	\%1-غ		16
38.	1412-4		agggaggacaggtagangig	Y1-\&		16
39.	T2-4 R	Cagctaggaggeagctggeg	caggtcggagtgtcagcgac	$\gamma 2 b-\alpha$		11
40.	pCS43 R	atgtggaggaccagacctaa	cagctaggagggagctgcge	$\gamma 2 b-\alpha$		17
41.	pCS44 R		gGGACCTGACAGTACATCTG	2b-a		17
42.	pCS20 R	gagganclagtctcagcagc	taggagggagctgggccagg	$\gamma 2 b-\alpha$	1 ins	17
43.	pCS4 1 R	a ${ }^{\text {atgtgggagaccagatcta }}$	ocagctatagggagcaggg	$\gamma 2 b-\alpha$	1/23	17
44.	pCS32 R	Ctagcagcagtgggtcactt	agantgttgganatgtgag	$\gamma 2 b-\alpha$		17
45.	pCS31 R	gCcCtggcetangtagactg	ggctaggctgagcanatcta	$\alpha-\alpha$		17
Lymphomas/leukemias:						
46.	18.81 A 2	gattactctgagetahgcan	AGCTOGGCTTGAGCCAAAAT	$\mu-\mu$		18
47.	I. 29	gadctgagctgggetgacct	gagctggag	$\mu-\gamma^{3}$		19
48.	18.81 A 2	gagctgcgetgagttcagct		$\mu-\gamma \mathrm{b}$		18
49.	18.81 R	gCtangaatagactacctga	attgtgccaanctgcgetcg	$\mu-\gamma 2 b$	1/22	20
50.	300-18	acttangtttatccacttct	aAantgtatttaganttcat	$\mu-\gamma \mathrm{b}$ I		21
51.	1.29(40)	gggetgagctgacctggect	ogGctgagctggactgacct	$\mu-\alpha$		22
52.	BFO. 3	tgagctgagctaggetgacc	tGAGCTOGGGTGAGCTGACC	$\mu-\alpha$	1/32	22
53.	1.29 (Ja)	tGagctggcgtgabitcgge	tgggetgagctgagctgagc	$\mu-\alpha$	6/300	22
54.	300-18		gCtGAagatcctaggantct	$\gamma 2 \mathrm{bI}-\gamma \mathrm{b}$	6/378	21
55.	300-18	gtgaggtaccagttctagca	octatggcggagctgggeat	$\gamma \mathrm{rb}-\mathrm{r}_{2} \mathrm{~b}$		21
56.	300-18	atatgagggaccagtctcag	CAGCTATGGAGGAGCTGGGG	Y2b- 2 l b		21

Leukemias (on retroviral vectors):

57	NB32	attactctgaggtangcana	gctggacttgacccaanatg	$\mu-\mu$		23
58.	NB3	CTACTGCCTACACTGGACTG	ttctgagctgagatgacctg	$\mu-\gamma 2 \mathrm{~b}$		23
59.	NB27	agattgcgctggeatcagct	gtactcagatgagctgcgat	$\mu-\gamma 2 b$		23
60.	NB7	ctcagctatgctacgcgtgt	tgggctgagctgatctgana	$\mu-\gamma \mathrm{b}$		23
61.	NB1	ggectgagctggactgagct	G	$\mu-\gamma 2 \mathrm{~b}$		23
62.	NB29	tggegtangatggatchac	tGTGGTGAGGGGAGCTGGAT	$\mu-\gamma 2 b$		23
63	NB32	atgagctganctgggetang	atgggatgagctgtgetgag	$\mu-\gamma 2 b$		23
64.	NB32	CAGTCCtagancctatggag	gatctgcantaggtagtaga	$\underline{2 b-\gamma} 2 \mathrm{~b}$		23
Hybridomas:						
65.	180.2B2	anctctccagccacagtant	gacccagacagagaacccca	μ		25
66.	KWD1	ganamactagtanamgana	atGTtGcctattaaccancc	$\mu-\delta$		24
67.	KWD2	GGGCCAAAGGTCTGAGACCA	gGCTOCTGCTGGGTAGGCCT	$\mu-\delta$		24
68.	KWD4	gctiancitgacctaacctgg	gctgagctgagttgacctig	$\mu-\delta$		24
69.	KWD5	СТАAACTCTACTGCCTACAC	tGGACTGTTCTGAGCTGAGA	$\mu-\delta$		24
70.	KwD6	CAACTCAATGTGGTTTAATG	AATTTGAAGTtGccagtana	$\mu-\delta$		24
71.	KWD8	gctggegtgagctgagctgg	ggtgagctggactgagctga	$\mu-\delta$		24
72.	KWD9	tTCCTTGAAAAACTAGTAAA	AGAAAAATGTTGCCTGTTAA	$\mu-\delta$		24
73.	180.2 B 2	GCTGAGCTGGGGTGAGCTGA	GCTGGG	$\mu-\gamma^{3}$		26
74.	59.655	aAactgagctant actetg	aggrangcanagctggcett	$\mu-\gamma^{3}$		25
75.	198.5C8	gctgggetgacctganctia		$\mu-\gamma^{3}$		19
76.	470	gCagctgggetangctggat		$\mu-\gamma 3$		26
77.	137.566	agctgagccacctcgegtca		$\mu-\gamma 1$		26
78.	$3 \mathrm{B12}$	actcagtcagtcagtggcgi	gabgcgcttctancccagtc	$\mu-\gamma 1$	This	pub.
79.	HB137	AACTTCATtaATCTAGGTtG	antagagctaaketctactg	$\begin{array}{ll}\mu-\gamma 1 & 3 / 341\end{array}$	This	pub.
80.	$\varepsilon-1$	gGCTGAGCTGAGATGGGTGG	gcttctetgagccettetal	$\mu-\gamma 2 b$		7
81.	TIB141	tggatacgcaganggangec	cacagctgtacaganttgag	$\boldsymbol{\mu - Y a ~ 6 / 1 3 1 3 ~}$	This	pub.
82.	2B4	tatggatacgcaganggaig	○ccacagctgtacagaitt	$\mu-\gamma 2 \mathrm{a}$ 3/96		27
83.	198.5 C 8	tgagcacctacagtagagct	gGgGcagctctgcgegatct	$\gamma^{3} \mathrm{I}-\gamma^{3}$		19
84.	470	gcggaccagcticgacagct	ctcgcgccagctagcciag	$\gamma^{3}-\gamma_{1}$		26
85.	470	ggggagccaggacaggtgga		$\gamma 1-\gamma 1$		19
86.	HB137	gGagccagcacaggtgcaia	tgtgctgacccagccagagt	人1- $\boldsymbol{\gamma 1}$ 3/279	This	pub.
87.	3B12	AgGacagctcganatcticc	gacccagccagagtagctct	ץ1-E 2/413	This	pub.
88.	HB137	agtgcagagatccangctga	ocagctccagctetagctata	ץ1-R 4/632	This	pub.
89.	26.82	tgggatagctatgtggegag	ACCAGGTTAAGCAAACAGTG	Y1-E 13/148	This	pub.
90.	E-1	gcagctaggaggeagctggg	gcaggtgggagtctaaggea	$\gamma 2 \mathrm{~b}-\varepsilon$		7
91.	TIB141	agggecacatgggetccaca	gadactctaganacttagcg	Ya-e 7/547	This	pub.

ACCEPTOR SEQUENCES:

B cells:

GAM3-2	AGGCTGGGCAGCCTGGGGAG	CTAGGGTAGGTGGGATGTGG	$\mu-\gamma^{3}$	1/46	15
GAM3-8	agctctcagggacctgcget	CSGTGGGGTTGTGAGGACCA	$\mu-\gamma 3$	2/274	15
T2-26 R	gGganclaggctgcacaict	ctgggganactgcgetacat	$\mu-\gamma^{3}$		16
L32-21 R	CAGGCTGGACGGCTCTGGGG	gragctaggetangtgaga	$\mu-\gamma^{3}$		11
pCS29 R	tgagcacctacagtagagct	gGGGCagCTCTGGGGGATCT	$\mu-\gamma^{3}$	1/20	17
pCS35 R	gGtaggtgcgatgiccgal	CAGGCTGGGGAGCAGCTCTG	$\mu-\gamma^{3}$		17
pCS28 R	gctgtgggcgtgctggcgia	ogttagagcatggaalccag	$\mu-\gamma^{3}$		17
pCs23 R	GAGATATCTGGGGTTGTGGG	gancagcticgacacctctg	$\mu-\gamma^{3}$		17
RH4	agctataggggagccaggac	AGGTGGAAGTGTGGTGACCC	$\mu-\gamma 1$		15
RH20	tTCCAAACAGAAGAGCTACA	gagcagccangacanctaca	$\mu-\gamma 1$	2/78	15
RH21		gagccaggacaggtggang	$\mu-\gamma 1$		15
PCS7 R	AGGAAAGGTGGAAGTGTGGG	octccaggcagagcagttat	$\mu-\gamma 1$		15
PCS6 R	aggacagctggangigtget	gacccagccagagcacctat	$\mu-\gamma 1$		10
pCS5 R	ccaggcagagcagctatagg	ttagccaggacagctgcaat	$\mu-\gamma 1$	1/24	10
pCS8 R	tgtggtgacccagccagacc	agctataggggagccaggac	$\mu-\gamma 1$		10
pCS3 R	gGangtgtggggagccaggc	agagcagctccagcgcagcc	$\mu-\gamma 1$		10
pCS9 R	ccaggcagagcagctccagg	gcagccaggacagctggaa	$\mu-\gamma 1$		10
N5-2 R	gcagccaggacagctggang		$\mu-\gamma 1$		16
N5-4 R	gatccaggetgagcagctcc	agcttagctcgetaggicga	$\mu-\gamma 1$		16
148-3 R	cagctccaccccacccacga	CAGGTGGAAGTGTGGTGACC	$\mu-\gamma 1$		16
148-21 R	TGGAAGTGTGGTGACCCAGG	cagagcagct	$\mu-\gamma 1$		16
N52-1 R	cagccagactagctatagg	Agccagcacaggiggang	$\mu-\gamma 1$		16
p3 R	aAgGaccagaictagcagct	gtgggagagctgggaatggt	$\mu-\gamma 2 \mathrm{~b}$		9
pCS24 R	gGcacctcgegatggtag	gaatgtcgacgaccacacct	$\mu-\gamma \mathrm{b}$		17
PCS22 R	gataggantgtggaggacca	GTCCTAACAGCTaggaggga	$\mu-\gamma \mathrm{b}$	1 ins.	17
L32-52 R	gatgataggattgtggagga	ccagtcctancagctaggag	$\gamma^{3}-\gamma \mathrm{b}$		11
N52-1 R	ctgagctgagtcahgatget	ctGagttcatt caicticge	$\mu-\varepsilon$		16
N5-7 R	angttaggaggaltttgect	TGGCT'TAGCTGGGCCAAGCT	$\boldsymbol{\gamma 1 - 2}$		16
1412-3	gCtgtatgacctatctatcc		r1-e		16
1412-4	tggtatgagctgetctantc		$\boldsymbol{\gamma 1 - \varepsilon}$		16
T2-11 R	gGctaggctgagctgagctg	ggattagctggeat	$\mu-\alpha$		11
T2-26 R	acttccgicacctanctagt	ctgatggagtactga	$\mu-\alpha$		16
pCS18 R	TGAGCTGGAATGAGCTGGGA	TGGGCTGAACTAGGCTGGAA	$\mu-\alpha$		17
T2-7 R	TGAGCTGAGCTAGGCTGAGC		$\gamma^{3}-\alpha$		11
T2-2 R	atgacctgggatgggctgan	ctaggetggataggctggg	$\gamma 3-\alpha$	1/30	11
pCS19 R	ACTGGGCTAGGGTTGGATGG	OCTCAATAACTGGgCtantc	$\gamma^{3-\alpha}$		17
T2-4 R	CTGAGCTGGAATGAGCTGGG	atggectancctacgetcga	$\gamma 2 \mathrm{~b}-\alpha$		17
pCS43 R	ACTGGCTGGGCTGGAATTTG	CTGGGCTGTGCTGAGCTGGG	$\gamma 2 b-\alpha$		17
pCS44 R	gGatgaggtcgactcaccti	goctangctanattangctg	r2b-a		17
pCS20 R	Ctactctgccatggictggg	ctaggctagatcgactgag	$\gamma \mathrm{b}-\alpha$	1 ins.	17
pCS41 R	AGCTGCAATGAGCTGGGATG	gGctganctaggctcganta	p $2 \mathrm{~b}-\alpha$		17
pCS32 R	agctggettagcetgagctg	AGCTGAGCTGAGCTGAGCTG	$\gamma 2 \mathrm{~b}-\alpha$		17
pcs31 R	TGAGCTGGGTtagGctgagc	tGagctgacctgcaitgagc	$\alpha-\alpha$	2/21	17

98. MOPC21	CTCAGCAGCTAGGAGGGAGC	TGGGGCAGGTGGGAGTGTGA	$\mu-\gamma 2 b$	29
$99 . \mathrm{MOPC141}$	agtcctgcgecccaggagag	ttgtccgattgagcaggaic	$\mu-\gamma 2 \mathrm{~b}$	2
100. MPC11	gTgactitgcagatgttgga	atgtgaggtaccagtcctag	$\begin{array}{ll}\mu-\gamma 2 \mathrm{~b} & 4 / 69\end{array}$	0
110. MPC11	angctaggcgeagccgegat	AgGtgcgagtattagcgact.	$\boldsymbol{\gamma - \gamma 2 b} 2 / 813$	5
111. MC101	CACCAGGGAGCTGGAGCTGA	tgGctatanakaggtaccag	$\alpha-\gamma 1$	36
113. MOPC21	angtgtggtgacclaggcag	agcagctataggggagceag	1-E.Tn	42
114. 653-1	GCTCCAGGGGAGCCAGGACA	gGTagangTgTGGTGACCCA	r -ODC	43
115. MOPC21	gagagctcanalaccaggat	afccctgagcagacgigag	Ya-E.Tn	43
116. MOPC21	CTGGOCCAAAGAGAGATGCC	aggantgactgaggetctac	ra-E.Tn	43
117. MPC11		CtCTGGGTGGGTAACTAGGC	Ya-c-mye	45
118. MPC11	gtagacagatangctctggt		「a-c-myc	45
101. TEPC15	TGGGCTGAGCTGGAATGAGC	tgGgTtGagctganctagat	$\mu-\alpha$	4
102. MePC603	gCtaggetggantaggttg	GCTGGGCTGGTGCGAGCTGG	$\mu-\alpha$	4
103. MC101	ctgagctgagctgagctgga	atgagctgggatgagctgag	$\mu-\alpha \quad 7 / 556$	31
104. J558	agcactetctggctagcctg	TACTGGAATGAGCTGAGCTG	$\mu-\alpha$	32
105. MOPC167	CTGGAATGAGCTGGGATTGG	ctagantaggctgccetgga	$\mu-\alpha \quad 3$ ins.	33
106. ABPC45	GGGTGAGCTGGAATGAGCTG	gGatganctgagcgagcetg	$\mu-\alpha \mathrm{I}$	34
112. MOPC167	CTAGGTTGAGTCTAGCGGA	agctggantgagctggeatg	$\boldsymbol{\alpha}-\alpha$	34
119. MOPC167	agctogcatcgactacgata	afctangctgggatgagaca		46
120. McPC603	gGCTGAGCTGGAATGAGCTG	gGTTGAGCTGAACTAGTATA	a-c-mye	46
121. J558	tigctaggctgtactggat	gagctgacctgacetgcgat	$\alpha-c-m y c$	47
122. ABPC45	GCCTAGACTGGTCTGACGCG	gcctantctgcgatgagtgg	$\alpha-c-m y c$	34
123. W267	GCTGGGCTGGGCTGGTGTGA	gCtGgcctaggctgacctga	$\boldsymbol{\alpha - c}$-myc	35
124. W267	gCtaggetgagctgagctgg	abtgagctgcgattggctag	$\alpha-c-m y c$	35
125. HOPCI	gagattganccataatgacc	tgggatgagctggatggacc	$\alpha-\varepsilon$-my ${ }^{\text {c }}$	35
126. HOPC1	gCtagcetggantaggttg	GCTGGGCTGGTGTGACAGCT	$\alpha-c-m y c$	35
127. MOPC315	CTGGAATGAGCTGGGATTGG	CTAGAATAGGCTGGGCTGGA	α-c-myc 6 ins.	48
128. MOPC104E	tgcaggtcgactctagagga		α 人-c-myc	48
Hybridomas (in vitro):				
129.9.9.2.1	gtacacatctangecctcta	agcanacacctanamcagga	- $\mathrm{r} \mathbf{a}$	37
130.9.7.1	ganagagagtanatcctccc	agcagctgtggacagatgg	2b-Ya	37
Human switches:				
138. SKS251	TGGGCTCACCTAACCTGGGC	AGAGctGagctggectgagc	$\mu-\mu$	39
139. 2 Cl 0	ggcaggaggatcagctagct		$\mu-\gamma \mathrm{I}$	40
140. U 266	tgGccagagccgcccttgat	actgtcatttrtccgegtacc	-е	39
141. 2 C 4	ACTGAGTTCTGCTGGGATAA	gСtGatctactctgcgctga	$\begin{array}{ll}\mu-\varepsilon & 2 / 71\end{array}$	40
142. SKS251	GCAACTGTATTCAGCTGGGC	TgGcctagcetccectacgi	$\mu-\mathrm{e}$	39
143. SKS252	соясTССССTGGGTTCAGCT	cosctigccctgaccagccct	$\begin{array}{ll}\mu-\varepsilon & 1 / 27\end{array}$	39
144. SKS271	GGGCTGAGCTGGGTTGGGTG	GAAATGGGCTGAGCTGAGCT	$\begin{array}{ll}\mu-\varepsilon & 1 / 22\end{array}$	39
145. SKS274	AGCTGGGCTGAACTGGGCTG	ctgccctgcactgggtangc	$\mu-\varepsilon$	39
146. SKS275	gTattacctgctgagttacc	tgacctggcctgagttcagc	$\begin{array}{ll}\mu-\varepsilon & 3 / 34\end{array}$	39
147. SKS278	gCtagcctanactgcgittg	GCTGGGCTGGGCTGEGCTGG	$\mu-\varepsilon$	39
148. SKS281	GTTCTGCTGGGATAAGCTGA	tCTACTCTGGGCTGAACTGA	$\mu-\varepsilon \quad 1 / 23$	41
149. SKS282	GACTAAGCTGGTTTGGGCTA	Aactgcgigagctggggagg	$\mu-\varepsilon \quad 1 / 25$	41
150. SKS283	tGGgCTGAACTGAGCAGAGC	tgancctagctcgectgcce	-	41
151. SKS285	TgGGCTAAACTGGGTGAGCT	ggggaggactaggetggetg	$\mu-\varepsilon$	41
152. SKs286	CTGAGTCAGAAGCAAGCTGG	tTGAGCTGGCTGGACTGAAA	$\mu-\varepsilon \quad 1 / 23$	41
153. SKS287	ACCTAACCTGGGTtCAGCTG	gCctagerttggcteggett	$\mu-\varepsilon$	41
154. SKS288	gGCCAACTGGACTGAGGTGG	atggagctgggctgagctgg	$\mu-\varepsilon$	41
155. 2 C 10	gGCTGAGCTAAATGGGATTG	AGctGAGGAgGCTAGGCTGG	$\boldsymbol{\gamma - \varepsilon}$ 3/61	40

Each sequence is assigned a number (left most column) for purposes of reference; the numbers of the acceptor and donor sequence are the same for the same recombination site. Each sequence is named by the cell line from which it was obtained or by the name of the corresponding molecular clone. ' R ' indicates the reciprocal product of recombination (i. e., a deletion circle). Germline sequences are presented; bp which are changed in the actual recombination site are underlined. Sequences that do not fill up the space are those for which the germline sequence is not available. The breakpoint in the sequence represents the 5'-most recombination site; bp which could be assigned to either the acceptor or donor sequences are italicized. The nature of the recombination site is indicated in the third column from the right. ' I ' indicates that one of the switch regions is inverted in the recombination event. Numbers in the 'Mutations' column indicate the number of discrepancies as compared to the germline sequence/number of bp examined. For most recombination events, this data is not available. The sequence of the inserted bp, which are designated by 'ins.', are not shown. References for germline sequences: $S_{\mu}(2,52) ; S_{\gamma} 3(6,25) ; S \gamma 1(49) ; S \gamma 2 b(5) ; S \gamma 2 a(7) ; S \epsilon(50,51)$ and $S \alpha(4,17$, 31,34). Sequences $78,79,81,86,87,88,89$, and 91 are presented for the first time in this publication. DNA clones containing rearranged Se sequences were isolated from IgE-producing hybridomas $71-3 B 12.1$ (called 3B12, ref. 50, a gift from Ann Feeney), IGEL b4 (ref. 53, ATCC \# TIB141), SE 1.3 (ATCC \# HB137), and DNP- $\epsilon-26.82$ (called 26.82 , ref. 54, a gift from Fu-Tong Lui). Size selected EcoRI fragments were isolated and cloned into the vector gZAP (Stratagene). Subclones in Bluescript were sequenced by the dideoxy method (55). Germline $\mathbf{S} \boldsymbol{\gamma} 2 \mathrm{a}$ sequences were obtained from the plasmid $\mathrm{pS} \boldsymbol{\gamma} \mathbf{2 a - 1}$, a gift of Ken Marcu.

MOPC21. The MOPC21 $\mathrm{S} \mu \mathrm{S} \gamma 1$ recombination site has been cloned from various cell lines three times with no change in sequence at the recombination site $(3,26,57)$. Similarly, identical $\mathrm{S} \alpha$-c-myc sites from the J558 myeloma have been sequenced twice $(35,47)$. Finally, there are many examples of independently derived hybridomas from a single mouse that share somatic mutations in the VH or VL regions. These hybridomas must have been derived from sister B cells which arose from antigen driven expansion of a single B cell. These hybridomas almost always share one or more recombined switch regions of identical size, as determined by a Southern blot (58-62). Thus, secondary rearrangements of these switch regions did not occur during the expansion of the B cell clone in vivo, nor during the expansion of the hybridoma in vitro. Therefore, we see no compelling reason to suspect that either myeloma or hybridoma recombination sites are more likely to be derived from secondary rearrangements than are sites derived from other sources.

CHARACTERISTICS OF SWITCH RECOMBINATION SITES

Switch recombination occurs within the tandemly repeated sequences; $S \mu$ is a noteworthy exception

With a few exceptions, all of the recombination sites within $S \gamma$, $S \epsilon$, and $\mathrm{S} \alpha$ regions occur within the tandemly repeated elements (Table 2). Recombination sites are found throughout the tandemly repeated elements, at the 5^{\prime} end, middle, and 3^{\prime} end of the switch region.

Recombination sites within $S \mu$ do not always fall within the tandemly repeated elements. About 40% of $S \mu$ recombinations fall outside of the tandemly repeated sequences; most of those are 5^{\prime} of $S \mu$. $\mathrm{S} \mu$ recombination sites from different sources are similar in this regard. For example, 15 of 25 B cell and hybridoma recombination sites are outside of the tandem repeats and 9 of 14 myeloma sites are outside of the $S \mu$ tandem repeats.

Table 2. Murine switch recombination sites within or outside of tandemly repeated sequences

	Within $\mathbf{S} \mu$ repeats	Outside $\mathbf{S} \mu$ repeats	Within $\mathbf{S} \gamma, \mathbf{S} \alpha, \mathbf{S \epsilon}$ repeats	Outside $\mathbf{S} \boldsymbol{\gamma}, \mathrm{S} \alpha, \mathrm{Se}$ repeats
All murine sequences	57^{*}	35	119	$14 * *$
Deleted circles	30	2	46	3

*Number of recombination sites in the indicated sequences.
**Of these 14 , seven are recombinations to the $\gamma 2 \mathrm{a}$ gene. Three of the 119 recombinations within the $\mathbf{S} \gamma, \mathbf{S} \alpha$, or $\mathbf{S} \boldsymbol{\epsilon}$ repeats are to the $\gamma 2$ a gene.

- ${ }^{98}$

Figure 1. Location of murine recombination sites within the switch region consensus tandem repeat. Murine switch region recombination sites, with numbers corresponding to those in Table 1, are located on the various consensus sequences (determined from all the available sequence information) for the tandemly repeated elements found in $S \gamma 3$ (25), $S \gamma 1$ (49), $S \gamma 2 b$ (5), $S \gamma 2 \mathrm{a}$ (7), and $\mathrm{S} \alpha$ (31). The 5^{\prime} end of each tandem repeat is arbitrarily defined; any bp position could have been designated the 5^{\prime} end. For sites with uncertainty in the point of recombination due to sharing of bp between the donor and acceptor switch regions, the 5^{\prime} most site is indicated. Nineteen sites could not be placed due to poor similarity with the consensus sequence. Eleven were $S \alpha$ recombinations that occurred within the common pentamer elements associated with $\mathrm{S} \alpha$, but the arrangement of these pentamers does not fit the reported consensus sequence. Six of the sites that could not be placed were recombinations to the $S \boldsymbol{\gamma} 2 \mathrm{a}$ gene.

Switch recombination sites from deleted circles show a more skewed distribution; almost all $S \mu$ recombination sites fall within the tandemly repeated sequences (Table 2). This might mean that switch recombination naturally favors the tandemly repeated sequences of $S \mu$ and that the deleted circles reflect the natural event better than do hybridoma, lymphoma, or myeloma data. However, the skewed distribution might also reflect the choice of restriction fragments and bacteriophage vectors used to clone these recombination sites. Phage λ has a very strong preference for optimum size of its DNA (63). There might be strong selection against inserts with recombination sites 5^{\prime} of $S \mu$; these inserts would be as much as 6 kb larger than those with recombination sites in the tandemly repeated sequences. This problem is illustrated by the more unusual results obtained by cloning of $\mathrm{S} \mu \mathrm{S} \alpha$ switches via $\mathrm{X} b a \mathrm{I}$ sites into gZapII (17). These cloned inserts have recombination sites, not in the tandemly repeated sequences, but 3^{\prime} of $\mathrm{S} \mu$ (and in the 5^{\prime} end of $\mathrm{S} \alpha$). It is not clear

Table 3. Sharing of base pairs between donor and acceptor sequences at switch region recombination sites

none:41(59)*	$1 \mathrm{bp}: 27(29)$	$2 \mathrm{bp}: 15(11)$
$3 \mathrm{bp}: 5(3.6)$	$>3 \mathrm{bp}: 16(1.6)$	

*Number of recombination sites for which the indicated number of bp are shared by the donor and acceptor sequences at the site of recombination. This is also the number of italicized bp in Table 1. Shown in parentheses is the number of sequences that would share, by chance, the indicated number of bp. This was estimated by multiplying the probability of sharing the indicated number of bp (and not more or less) by the total number of sequences (104) by the number of ways to share the indicated number of bp given a defined recombination site. For sharing of 2 bp , the estimate is $3 / 4 \times 1 / 4 \times 1 / 4 \times 3 / 4 \times 104 \times 3$. That is, there are 3 ways to share 2 bp ($1 / 4$ chance of sharing one bp), but not share the adjacent bp ($3 / 4$ chance of two bp being different). The 3 ways are: the two bp 5^{\prime} to the recombination site, the two bp on either side of the recombination site, and the two $\mathrm{bp} 3^{\prime}$ of the recombination site.
whether these small inserts arose because switch recombination in B cells favored these parts of the S regions or because this vector is designed to accomodate relatively small inserts (64).

One must consider the possibility that switch recombination in $S \mu$ might be different than switch recombination in other switch regions. The important role of chromatin configuration and accessibility in the regulation of switch recombination has been established by several different results (reviewed in 12-14). Among the heavy chain genes, μ is unique in that it has a very strong enhancer at its 5^{\prime} end. Perhaps the intronic immunoglobulin enhancer plays a role in directing switch recombinase to the 5^{\prime} end of $S \mu$.

Switch recombination occurs throughout the unit tandem repeat

By locating recombination sites on a consensus tandem repeat, one can pose a second question: Is any part of the consensus tandem repeat used preferentially in recombination? There are more sites found in one half of the tandemly repeated element compared to the other half. (Figure 1-In this Figure more recombination sites are found in the left half than in the right half of the tandemly repeated elements. The start and end of the repeated unit are defined arbitrarily; more sites could be found in the middle or right end, depending on where one chose to 'begin' the element. It is important to note that the four $\mathbf{S \gamma}$ elements are aligned, by allowing one bp gaps, to one another.) However, sites in the right-hand end of the consensus element are used, and it is possible that recombination is random with respect to position within the tandemly repeated elements.

Switch recombination sites frequently lack donor-acceptor homology

At those recombination sites for which both donor and acceptor sequences are known, 39% share no bp, and an additional 25% have a single bp shared between donor and acceptor sequences at the recombination site (Table 3). Furthermore, if homologous pairing were important in switch recombination, recombination would have occurred with the tandemly repeated elements from the donor and acceptor S regions lined up 'in register' so that the homology between the elements would be maximized. Recombination would then occur between (for example) bp 23 of the donor tandem repeat and bp 24 of the acceptor tandem repeat. In most $\mathbf{S} \boldsymbol{\gamma}$ - $\boldsymbol{\gamma} \boldsymbol{\gamma}$ recombination sites studied (sequences 32, 54, 64, 83, 84, 85, 110 in Table 1), recombination occurred between disparate bp of the donor and acceptor tandemly repeated
A
 B

D

	prior probability	30	31	32	33	34	35	36	37	38	39	40	Posi	42	43	44	45	46	47	48	49	50	51	52	53
A	0.24	7	6	7	18	2	3	2	15	16	6	0	9	14	21	7	9	8	8	11	11	5	11	8	8
C	0.17	13	6	3	5	5	16	5	5	0	4	20	3	1	1	6	17	1	3	2	1	15	3	2	6
G	0.38	12	6	19	11	24	9	8	17	16	25	8	6	17	10	21	3	11	22	19	16	8	7	25	18
T	0.21	5	19	8	3	6	9	22	0	5	2	9	19	5	5	3	8	17	4	5	9	9	16	2	5

Figure 2. Computer assisted search for a switch recombination site consensus sequence. A. Information content of each residue $1-75$ for aligned donor sequences from B cells and hybridomas. The sequence data used in this analysis extended beyond that shown in Table 1. B. Information content for the same sequences as in Part A., but after allowing up to 5 bp slippage. C. Information content for myeloma and lymphoma acceptor sequences, allowing up to 5 bp slippage. D. The sequences in B were randomized and then aligned as in B to optimize information content. E. The distribution of bp at positions $30-53$ for the alignment graphed in B. The formula for information content is $\Sigma_{\mathrm{i}=\mathrm{AGCT}} f_{\mathrm{i}} \log _{2} f_{\mathrm{i}} / p_{\mathrm{i}}$, in which f_{i} is the observed frequency for base i at the indicated postion and p_{i} is the prior probability for base i. We used the bp composition of the subset of sequences being analyzed as the 'prior distribution'. In addition, we adjusted the information content for sample size by subtracting the average information expected from random sequences having the designated prior distribution and being arbitrarily aligned; thus, the adjusted information content of arbitrary alignments will average to zero (68). We also analyzed the data using different subsets, S_{μ} and non-S μ. We also aligned sequences allowing unlimited sliding throughout the 75 bases surrounding the recombination sites using a modification of the method of Hertz et al. (67). Both of these analyses resulted in the identification of positions of high information content, but the motifs identified were once again those that are prevalent in S regions. The motifs in the latter analysis were also placed randomly relative to switch recombination sites.
elements. Recombination occurred at homologous positions in the donor and acceptor tandem repeats in only two $\mathbf{S} \gamma S \gamma$ sites (sequences 55 and 56-Figure 1).

Switch recombination sites are often associated with mutations

Mutations are found in some recombined switch regions. This was recognized when two products of a single switch recombination event were isolated (22). The two products differed by several single bp changes, even though the $\mathrm{S} \mu \mathrm{S} \alpha$ re-
combination sites were identical for both products. Sübsequent analysis revealed that, in the $S \mu$ sequences, one product had all the mutations, the other had none (63). In the compilation of switch recombination sites (Table 1), there are many recombined S sequences with mutations relative to the germline. Importantly, in a series of $S \gamma S_{\epsilon}$ recombination sites (sequences 87, 88, 89, 91), the $S \gamma$ sequences are always mutated, whereas the $\boldsymbol{S} \epsilon$ sequences are not. Other switch recombination sites demonstrate this characteristic of mutations on one side of the recombination site, but not the other.

Table 4. Putative recognition sequences at switch recombination sites

Sites with GAGCT or	
GGGGT	60
Sites with YAGGTTG	39
Neither	67

Switch region recombination sites were scored as having a GAGCT or GGGGT pentamer if there was a 4 out of 5 match to either pentamer in the recombination site or immediately next to it. Sites were scored as having a YAGGTTG motif if there was a 5 out of 7 match within 3 bp of the site. This is a different criteria than originally proposed (32). Using the original criteria (4 out of 7 match, 7-14 bp 5' of the recombination site), 126 sites score as having a YAGGTTG motif. The two motifs suggested by Wuerffel and colleagues (66) for switch recombination to c 3 were also evaluated. For 13 Sc 3 sites, the best fit was to the motif CAGCTCTGGGGAGC; the mean identity was 9 bp , with a range of 5 to ll bp . For the other 9 Sc 3 sites, the best fit was to the motif GGGGACTAACC; the mean identity was 5 bp , with a range of 3 to 9 bp .

Switch recombination sites sometimes include bp that cannot be derived directly from either germline S region. Insertions of one to 33 bp have been observed (Table 1). The larger insertions usually have some similarity to S region sequences. For example, the NB32 recombination site (sequence 64) includes 22 bp which are very similar to $\mathrm{S} \boldsymbol{\gamma} 2 \mathrm{~b}$ sequences, but are not identical to any cloned $\mathrm{S} \boldsymbol{\gamma} 2 \mathrm{~b}$ sequences inserted into this switch recombination retrovirus.

Switch recombination does not necessarily follow transcriptional polarity

There are several examples of S-S recombination in which one of the S regions is inverted. For example, in the recombined switch region in 300-18 cells, $S \mu$ is joined to a segment of $S \gamma 2 b$ which is inverted. A second recombination site is found a few hundred bp downstream, where the inverted $\mathrm{S} \gamma 2 \mathrm{~b}$ is joined to $\mathbf{S} \gamma 2 \mathrm{~b}$ which is in the same orientation as the $\mathrm{C} \gamma \mathbf{2 b}$ gene (sequences 50 and 54).

Switch recombination may involve multiple sites within a single switch region

Recombined S regions often have internal deletions in either the donor or acceptor S regions. This implies an internal switch recombination event between two sites in a single S region. Similarly, a few S regions include duplications, which must also result from the use of at least two recombination sites.

Switch recombination sites lack a consensus sequence

After the first few switch recombination sites had been sequenced, it was apparent that switch recombination was not a site specific recombination event akin to V-D-J joining (12-13). The wellconserved sequences used in V-D-J joining are not found at switch recombination sites. This is not surprising, as the two recombination events occur at different developmental stages and at different DNA locations. The lack of V-D-J recombination signals at switch recombination sites does not rule out a role of some of the enzymes involved in V-D-J joining; it does argue against those involved in sequence recognition.

Various short motifs have been suggested as recognition sequences in switch recombination (7, 26, 32, 66). Some of the proposed motifs are prevalent in S regions. Nevertheless, about 25% of switch recombination sites lack stringent similarity to any of the proposed motifs (Table 4). To determine if switch recombination is mediated by a more subtle recognition sequence, we aligned germline sequences, using the switch recombination

Figure 3. An illegitimate priming model for switch recombination. A. S_{D} and S_{A} designate the donor and acceptor S regions, respectively. Newly synthesized DNA, including mutations, is noted by a dotted line. Base pairing at sites of priming for DNA synthesis are noted by bold vertical lines. The region with 'Xs' symbolizes repair of the mismatched region at the recombination site. Formation of deletion circles would be accomplished by the symetrical reaction using the remaining two 3' ends. B. The template switching model for switch recombination. Symbols used are the same. The vertical line indicates the recombination site. Note that this model predicts that recombined sequences with mutations will have mutations on both side of the recombination site. See text for further explanation.
sites shown in Table 1, for those B cell and hybridoma sequences for which the germline sequence was known. The information content, a measure of the divergence from a prior (random) distribution of bp , of each position in the alignment was determined (67). A high information content at a particular position means that the bp composition at that position is nonrandom. No significant information was detected in the sequence alignments for either the donor or the acceptor sequences from B cells and hybridomas (Figure 2A-the recombination site is between residues 32 and 33). The information content was consistent with what would be observed with random sequences being arbitrarily aligned (68).

We next tested whether small shifts in the alignments might identify a peak of information. We aligned the sequences for optimal information, allowing up to 5 bp of sliding (67). The resulting alignments (Figure 2B) had significantly more information than the alignments that did not allow sliding. There appeared to be a clustering of information in the region just 3^{\prime} of the recombination sites (which vary from residue 28 to 39), particularly in the donor sequences. A notable feature of the cluster of information is that it is based on the motif G/A A/G G C T, the common pentamer found frequently in $\mathrm{S} \mu, \mathrm{S} \alpha$, and $S \epsilon$ and less often in the four $S \gamma s$. Since GAGCT, or variants of it, are found so often in switch regions, one might expect that this motif would arise in this analysis, even if it had little to do with sequence recognition in the switch recombination. Also arguing against a role for this cluster of information in switch recombinase recognition is the fact that clusters of information that arose from the analysis of other data subsets (for example,
the acceptor sequences for myelomas and lymphomas, Figure 2C) were less dramatic and located differently relative to the recombination site. To summarize, we were able to derive some interesting sequence motifs by information content analysis (including other analyses described in the Legend to Figure 2), but the characteristics of those motifs prevented a strong conclusion concerning their role in switch recombination.

AN ILLEGITIMATE PRIMING MODEL FOR SWITCH RECOMBINATION

To account for the duplications and mutations found in some recombined switch regions, it has been proposed that DNA synthesis plays a role in switch recombination (22). At least two mechanisms have been considered-template switching and illegitimate priming (65). If the switch were accomplished by template switching from donor to acceptor S region, this would imply that either both S regions or neither S region would harbor mutations (Fig. 3B). On the other hand, illegitimate priming by one S region for error-prone DNA synthesis on the other S region would predict mutations on only one side of the recombination site, the S region that was synthesized (Fig. 3A). The other side (the primer S region) would lack mutations, since it is formed from pre-existing DNA. The available data favor an illegitimate priming mechanism (see above).

To accomplish switch recombination for both strands of DNA, a reciprocal reaction must also occur (Figure 3). Since there is no a priori reason to suspect that the two priming reactions would occur exactly opposite one another, a bubble of two single strands, with many mismatches, would be found at the recombination site (Fig. 3A). This bubble might be repaired using one strand or the other as a template, resulting in an apparent recombination site with bp shared between the donor and acceptor switch regions. These shared bp represent the short sequence identity needed for the priming reaction. Alternatively, repair might occur from both ends of the bubble, which could lead to a apparent recombination site with no shared bp. Finally, repair could be more or less random, leading to a recombination site with several 'inserted' or mutated bp. The fact that the number of inserted bp is usually small suggests that the bubble region must be likewise small.

The compilation of sequences at switch region recombination sites is available from W.A.D. in printed form (Table 1) or on diskette. Investigators are encouraged to send corrections or additions to the compilation to W.A.D.

ACKNOWLEDGEMENTS

The authors thank Dr Michael Savageau for careful reading of the manuscript and the many workers in switch recombination for their helpful discussions. Work in the authors laboratories was supported by grants from the National Institutes of Health (CA34068 to W.A.D., HG00249 to Gary Stormo, and AL25086 to C.G.)

REFERENCES

1. French,D.L., Laskov,R., and Scharff,M.D. (1989) Science, 244, 1152-1157.
2. Sakano,H., Maki,R., Kurosawa,Y., Roeder,W., and Tonegawa,S. 1980. Nature, 286, 676-683.
3. Dunnick,W., Rabbits,T.H., and Milstein,C. (1980) Nature, 286, 669-675.
4. Davis,M.M., Kim,S.K., and Hood,L.E. (1980) Science, 209, 1360-1365
5. Kataoka,T., Miyata,T., and Honjo,T. (1981) Cell, 23, 357-368.
6. Stanton,L.W. and Marcu,K.B. (1982) Nuc. Acids Res., 10, 5993-6006.
7. Nikaido,T., Yamawaki-Kataoka, Y., and Honjo,T. (1982) J. Biol. Chem., 257, 7322-7329.
8. Mills,F.C., Brooker,J.S., and Calmerini-Otero,R.D. (1990) Nuc. Acids. Res., 18, 7305-7316.
9. von Schwedler,U., Jack,H.-M., and Wabl,M. (1990) Nature, 345, 452-455.
10. Iwasato,T., Shimizu.A., Honjo,T., and Yamagishi,H. (1990) Cell, 62, 143-149.
11. Matsuoka,M., Yoshida,K., Maeda,T., Usuda,S., and Sakano,H. (1990) Cell, 62, 135-142.
12. Lutzker,S.G. and Alt,F.W. (1989) in Berg,D.E and Howe,M.M. (eds.) Mobile DNA. ASM Press, pp. 693-714.
13. Gritzmacher,C.A. (1989) CRC Critical Reviews in Immunology, 9, 173-200.
14. Esser,C. and Radbruch,A. (1990) Ann. Rev. Immunol., 8, 717-735.
15. Winter,E., Krawinkel,U., and Radbruch,A. (1987) EMBO J., 6, 1663-1671.
16. Yoshida,K., Matsuoka,M., Usuda,S., Mori,A., Ishizaka,K., and Sakano,H. (1990) Proc. Natl. Acad. Sci. USA, 87, 7829-7833.
17. Iwasato,T., Arakawa,H., Shimizu,A., Honjo,T., and Yamagishi,H. (1992) J. Expt. Med., 175, 1539-1546.
18. DePinho,R., Druger,K., Andrews,N., Lutzker,S., Baltimore,D., and Alt,F. (1984) Mol. Cell. Biol., 4, 2905-2910.
19. Petrini,J. and Dunnick,W.A. (1989). J. Immunol. 142, 2932-2935.
20. Jack,H.-M., McDowell,M., Steinberg,C.M., and Wabl,M. (1988) Proc. Natl. Acad. Sci. USA, 85, $1581-1585$.
21. Yancopoulos,G.D., DePinho,R.A., Zimmerman,K.A., Lutzker,S.G., Rosenberg,N., and Alt,F.W. (1986) EMBO J., 5, 3259-3266.
22. Dunnick, W., M. Wilson,M., and Stavnezer,J. (1989) Mol. Cell. Biol., 9, 1850-1856.
23. Ott,D.E. and Marcu,K.B. (1989) Intl. Immunol., 1, 582-591.
24. Owens,J.D., Jr., Finkelman,F.D., Mountz,J.D. and Mushinski,J.F.(1991) Mol. Cell. Biol. 11, 5660-5670.
25. Szurek,P., Petrini,J., and Dunnick,W. (1985) J. Immunol. 135, 620-626.
26. Petrini,J., Shell,B., Hummel,M., and Dunnick,W. (1987) J. Immunol., 138, 1940-1946.
27. Gerstein,R.M., Frankel,W.N., Hsieh,C.-L., Durdik,J.M., Rath,S., Coffin,J.M., Nisonoff,A. and Selsing,E. (1990) Cell 63, 537-548.
28. Greenberg,R., Lang,R.B., Diamond,M.S., and Marcu,K.B. (1982) Nucleic Acids Res., 10, $7751-7761$.
29. Neuberger,M.S. and Calabi,F. (1983) Nature, 305, 240-243.
30. Lang, R.B., Stanton, L.W., and Marcu, K.B. (1982) Nucleic Acid Res., 10, 611-630.
31. Obata, M., Kataoka, T., Nakai, S., Yamagishi, H., Takahashi, N., Yamakami-Kataoka, Y., Nikaido, T., Shimizu, A., and Honjo, T. (1981) Proc. Natl. Acad. Sci. USA, 78, 2437-2441.
32. Marcu,K.B., Lang,R.B., Stanton,L.W., and Harris,L.J. (1982) Nature, 298, 87-89.
33. Kim,S., Davis,M., Sinn,E., Patten,P., and Hood,L. (1981) Cell, 27, 573-581.
34. Fahrlander,P.D., Sumegi,J., Yang,J.-Q., Weiner,F., Marcu,K.B., and Klein,G. (1985) Proc. Natl. Acad. Sci. USA, 82, 3746-3750.
35. Gerondakis,S., Cory,S., and Adams,J.M. (1984) Cell, 36, 973-982.
36. Kataoka,T., Kawakami,T., Takahahi,N., and Honjo,T. (1980) Proc. Natl. Acad. Sci. USA, 77, 919-925.
37. Eckhardt,L.A. and Birshtein,B.K. (1985) Mol. Cell. Biol., 5, 856-868.
38. Davis,D.D., Yoshida,K., Kinsbury,L., and Sakano,H. (1991) J. Exp. Med., 173, 743-746.
39. Shapira, S. K., Jabara,H.H., Thienes,C.P., Ahern,D.J., Vercelli,D., Gould,H.J., and Geha,R.S. (1991) Proc. Natl. Acad. Sci. 88: 7528-7532.
40. Mills,F.C., Thyphronitis,G., Finkelman,F.D., and Max,E.E. (1992) J. Immunol., 149, 1075-1085.
41. Shapira,S.K., Vercelli,D., Jabara,H.H., Fu,S.M. and Geha,R.S. (1992) J. Expt. Med. 175, 289-292.
42. Shell,B.E., Collins,J.T., Elenich,L.A., Szurek,P.F., and Dunnick,W.A. (1990) Gene, 86, 269-274.
43. Katz,A. and Kahana, C.(1989) EMBO J. 8, 1163-1167.
44. Elenich,L.A. and Dunnick,W. (1991) Nucleic Acids Res., 19, 396.
45. Stanton,L.W., Yang,J.-Q., Eckhardt,L.A., Harris,L.J., Birshtein,B., and Marcu,K.B. (1983) Proc. Natl. Acad. Sci. USA, 81, 829-833.
46. Calame,K., Kim,S., Lalley,D., Hill,R., Davis,M., and Hood,L. (1982) Proc. Natl. Acad. Sci. USA, 79, 6994-6998.
47. Stanton,L.W., Watt,R., and Marcu,K.B. (1983) Nature, 303, 401-405.
48. Piccoli, and Cole,M.D. (1984) Nature, 310, 326-329.
49. Mowatt,M. and Dunnick,W. (1985) J. Immunol., 136, 2674-2683.
50. Gritzmacher,C.A. and Lui,F.-T. (1987) J. Immunol., 139, 324-329.
51. Scappino,L.A., Chu,C., and Gritzmacher,C.A. (1991) Gene, 99, 295-296.
52. Richards,J., Tucker,P., and Blattner,F., MUSIGCDO7, MUSIGCDO9 and unpublished.
53. Rudolf,A.K., Burrows,P.D., and Wabl,M.R. (1981) Eur. J. Immunol., 11, 527-529.
54. Lui,F.-T., Bohn,J.W., Ferry,E.L., Yamamoto,H., Molinaro,C.A. Sherman, L.A., Klinman, N.R., and Katz,D.H. (1980) J. Immunol., 124, 2728-2732.
55. Sanger,F., Nicklen,S., and Coulson,A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-6467.
56. Dunnick,W., Shell,B.E., and Dery,C. (1983) Proc. Natl. Acad. Sci. USA, 80, 7269-7273.
57. Schultz,C., Petrini,J., Collins,J., Claflin,J.L., Denis,K., Gearhart,P., Gritzmacher,C., Manser,T., Shulman,M., and Dunnick,W. (1990) J. Immunol., 144, 363-370.
58. Hummel,M., Berry,J., and Dunnick,W. (1987) J. Immunol., 138, 3539-3548.
59. Siekevitz,M., Kocks,C., Rajewsky,K., and Dildrop,R. (1987) Cell, 48, 757-770.
60. Fish,S., Zenowich,E., Fleming,M., and Manser,T. (1989) J. Exp. Med., 170, 1191-1209.
61. Manser,T. (1990) Int. Immunol. 2, 893-902.
62. Shan,H., Shlomchik,M., and Weigert,M. (1990) J. Exp. Med., 172, 531-536.
63. Feiss,M., Fisher,R.A., Crayton,M.A., and Egner,C. (1977) Virology, 77, 281-293.
64. Short, J.M. (1988) J. Mol. Biol., 162, 729-773.
65. Dunnick,W. and Stavnezer,J. (1990) Mol. Cell. Biol., 10, 397-400.
66. Wuerffel, R., Jamieson,C., Morgan,L., Merkulov,G.V., Sen,R., and Kenter,A.L. (1992) J. Expt. Med. 176, 339-349.
67. Hertz,G.Z., Hartzell III,G.W., and Stormo,G.D. (1990) Comput. Appl. Biosci., 6, 81-92.
68. Schneider,T.D., Stormo,G.D., Gold,L., and Ehrenfeucht,A. (1986) J. Mol. Biol., 188, 415-431.
