
DNA sequencing with chain-terminating inhibitors

F. Sanger, S. Nicklen, and A. R. Coulson

Presented by Kim Butt, Yumiko Komatsu, and Amelia Parrott

Nobel Prize in Chemistry (1980)

"for his fundamental studies of the biochemistry of nucleic acids, with particular regard to recombinant-DNA"

"for their contributions concerning the determination of base sequences in nucleic acids"

Paul Berg

Walter Gilbert Fred Sanger

DNA Sequencing Timeline

1953 – Structure of DNA double helix deduced by Watson and Crick

1972 - Development of recombinate DNA technology by Berg

1975 – Plus and minus method of DNA sequencing developed by Sanger

<u>1977</u> – DNA sequencing dideoxy method developed by Sanger

1986 – PCR developed by Mullis

1986 - First semi-automated DNA sequencing machine announced

2000 - Drosophila genome is completed

2003 – Human genome sequence is released

The Dideoxy Method

PRINCIPLE BEHIND THE METHOD

Sanger method - DNA sequencing using <u>chain-terminating inhibitors</u> to terminate DNA synthesis at a specific site

- also known as the dideoxy method

How did Sanger come up with this method?

Method

1. Preparation of ddNTPs

Complex chemistry

Now: A lot of materials are commercially available

2. Sequencing procedure:

Chain termination method:

- Primer annealed to tDNA in H buffer
- Template DNA from Phage Phi X174

Make 5 separate mixtures and incubate as follows:

dATP chase—put additional dATP into each of the tube & incubate.

A critical step to avoid random termination at A residues

Figure 1: Small primer, no further splitting required

Figure 2: Longer primer, further splitting was necessary to separate the primer from synthesized DNA.

• Used restriction enzyme, Hae III.

Electrophoresis on 12% acrylamide gel to separate fragments of different sizes

Autoradiograph was used to visualize bands

Results

- Figure 1 Small primers do not need to be removed before sequencing.
- Figure 2 Long primers must be removed before sequencing.
- Figure 3 Fragments with multiple restriction sites close together are problematic.
 - Problems can be avoided with single site ribosubstitution.

Discussion

The dideoxy method is the **simplest**, **fastest**, and **most effecient** method of sequencing DNA to date.

However

This paper was written in 1977.

DNA sequencing has significantly advanced since this paper was written.

Modern techniques are based on the **same principles** as the dideoxy method.

See cycle sequencing.

The Phi X174 genome has been synthesized as of 2003.

Biology 4241 Homepage