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Nanopores – nanosized holes that can transport ions and molecules – are very 

promising devices for genomic screening, in particular DNA sequencing1,2. Both solid-

state and biological pores suffer from the drawback, however, that the channel 

constituting the pore is long, viz. 10-100 times the distance between two bases in a 

DNA molecule (0.5 nm for single-stranded DNA). Here, we demonstrate that it is 

possible to realize and use ultrathin nanopores fabricated in graphene monolayers for 

single-molecule DNA translocation. The pores are obtained by placing a graphene 

flake over a microsize hole in a silicon nitride membrane and drilling a nanosize hole 

in the graphene using an electron beam. As individual DNA molecules translocate 

through the pore, characteristic temporary conductance changes are observed in the 

ionic current through the nanopore, setting the stage for future genomic screening. 

In the past few years, nanopores have emerged as a new powerful tool to interrogate 

single molecules. They have been successfully used to rapidly characterize biopolymers 

like DNA3,4, RNA5, as well as DNA-ligand complexes6 and local protein structures along 

DNA7 at the single-molecule level. A key driving force for nanopore research in the past 

decade has been the prospect of DNA sequencing. However, a major roadblock for 

achieving high-resolution DNA sequencing with pores is the finite length of the channel 

constituting the pore (Fig. 1A). In a long nanopore, the current blockade resulting from 

DNA translocation is due to a large number of bases (for typical devices ~10-100 bases) 

present in the pore. Here, we demonstrate that this limitation can be overcome by realizing 

an ultimately thin nanopore in a graphene monolayer.   
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Graphene is a two-dimensional layer of carbon atoms packed into a honeycomb lattice 

with a thickness of only one atomic layer (~0.3 nm)8. Despite its minimal thickness, 

graphene is robust as a free standing membrane9,10. In addition, graphene is a very good 

electrical conductor11. Graphene therefore opens up new opportunities for nanopores such 

as new analytical platforms to detect, for example, local protein structures on biopolymers 

or sequencing with single-base resolution. Indeed, theoretical calculations of DNA 

translocation through a nanopore in graphene have already indicated the possibility for 

single-base resolution by probing the translocating molecule electrically in the transverse 

direction by use of the intrinsic conductive properties of graphene12. 

We obtain single-layer graphene (Fig. 1B) by mechanical exfoliation from graphite on 

SiO2
13. Monolayer graphene is identified by its particular optical contrast14 in the optical 

microscope and by Raman measurements (Fig. 1C). At ~ 1590 cm-1, we measure the so-

called G resonance peak and at ~2690 cm-1 the 2D resonance peak. In the case of multilayer 

graphene, the 2D resonance peak splits off in multiple peaks in contrast to monolayer 

graphene which has a very sharp single resonance peak. In this way, we are well able to 

distinguish single-layer graphene from multilayer graphene15. 

Next we select a monolayer of graphene and transfer it onto a SiN support membrane 

with a 5 micron sized hole16 by use of our recently developed ‘wedging transfer’ 

technique17. This transfer procedure is straightforward: flakes can be overlaid to support 

membranes in less than an hour. Briefly, a hydrophobic polymer is spun onto a hydrophilic 

substrate (here plasma-oxidized SiO2) with graphene flakes, and wedged off the substrate 

by sliding it at an angle in water. Graphene flakes are peeled off the SiO2 along with the 
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polymer. The polymer is then floating on the water surface, located near a target SiN  

substrate, the water level is lowered, and the flakes are positioned onto the SiN membrane 

with micrometer lateral precision. In the final step the polymer is dissolved. 

We then drill a nanopore into the graphene monolayer using the highly focused electron 

beam of a transmission electron microscope (TEM). The acceleration voltage is 300 kV, 

well above the 80-140 kV knock-out voltage for carbon atoms in graphene18 (see Methods). 

Drilling the holes by TEM is a robust well-reproducible procedure (we  

drilled 31 holes with diameters ranging from 2 to 40 nm, in monolayer  

as well as in multilayer graphene; some examples of pores are shown in  

Fig. 2). Because of the high acceleration voltage of the electron beam, drilling could 

potentially induce damage to the graphene around the pore. However, electron beam 

diffraction measurements across the hole (Fig. 2B and C) confirm the crystallinity of the 

monolayer surrounding the hole, as evidenced by the well-defined hexagonal diffraction 

patterns (Fig. 2C). 

Subsequently, we mount a pore into a microfluidic flow cell, add a 1M saline solution 

(1M KCl, TE, pH 8.0) on both sides of the graphene membrane, and measure current-

voltage (IV) curves from ion transport through the graphene nanopores (inset of Fig. 3). 

The resistance value (5.1 MΩ in the example of the inset of Fig. 3) and the linearity of the 

IV curve indicate that the current is consistent with ion flow through the pore and does not 

arise from electrochemical processes at the conductive graphene surface. Furthermore, 

samples with a graphene layer but without a nanopore exhibit a very high ionic resistance 
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(>10 GΩ), which indicates that the graphene flake adheres well to the SiN surface and 

forms an insulating seal.  

We measured IV curves for a number of pores ranging from 5 to 25 nm in diameter, 

both in graphene monolayers (n = 6) and multilayers (n = 7). Sample thickness is 

determined based on transmitted light intensity (2.3% reduction per layer). Fig. 3 shows the 

obtained resistances versus pore diameter, for both monolayers and multilayers with 2-8 

layers (with a total thickness of 0.3 to 2.7 nm respectively). We find that the pore resistance 

scales with pore diameter as R = α/d2, with α = 2.4±0.2x10-9 Ωm2. 

Double-stranded DNA (dsDNA) can be driven electrophoretically through the nanopore 

and detected by monitoring the ion current. Upon addition of the 48.5 kb λ dsDNA (16 

micron long) on one side of the pore and applying a voltage across the graphene membrane, 

a series of spikes is observed in the conductance traces (Fig. 4A). Each temporary drop in 

the measured conductance, ΔG, arises from a single DNA molecule that translocates 

through the pore. As for conventional SiN nanopores19, three characteristic signals are 

observed, corresponding to three types of translocation events: nonfolded (where the 

molecule translocates in a simple head-to-tail fashion), partially folded or fully folded 

molecules (where multiple pieces of the DNA are in the pore at the same time). Example 

events are shown in Fig. 4B. The events are color coded in black (nonfolded), red (partially 

folded) and blue (fully folded). From a large number (n = 1222) of such events, we obtain a 

histogram of conductance blockade levels ΔG, as presented in Fig. 4C. Three peaks are 

visible, the first being the open-pore current at 0 nS (that is the baseline); the peak at ~1.5 
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nS which corresponds to one strand of DNA in the pore; and the peak at ~ 3 nS due to two 

strands of the same DNA molecule in the pore. 

In addition to the event amplitude, we studied the translocation times of the events. A 

scatter plot of ΔG versus the time duration of the events is shown in Fig. 5, with the same 

color coding as used in Fig. 4B. Each dot in this diagram represents a single DNA 

translocation event. As expected, ΔG is twice as large for the folded events (2.9 ± 0.4 nS) 

compared to the nonfolded events (1.5 ± 0.4 nS). The blockade amplitude ΔG = 1.5 nS for 

nonfolded DNA in these graphene pores is quite similar in magnitude to that measured for 

pores of similar sizes in a 20 nm thick SiN membrane (1.4 ± 0.3 nS)20. The average 

translocation time is 2.7 ± 0.8 ms for the nonfolded DNA, a value that is notably larger than 

for solid-state nanopores in a 20 nm SiN membrane for which the translocation time is 

about 1.2 ms under the same applied voltage of 200 mV. Such a slower translocation is 

helpful for analytical applications such as local structure determination or sequencing. 

The establishment of double-stranded DNA translocation to single-layer graphene 

nanopores represents an important step towards pushing the spatial-resolution limits of 

single-molecule nanopore analytics to subnanometer accuracy. This can be expected to 

impact single-nucleotide resolution in genomic DNA sequencing.  Whereas this paper 

reports the first translocation of double-stranded DNA through graphene nanopores, future 

research will also explore single-strand DNA translocation and the engineering of graphene 

pores for sequencing. 
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Methods. 

Preparation of graphene samples for wedging transfer. 

We prepared graphene sheets on clean and freshly plasma-oxidized (O2, Diener) Si/SiO2 

substrates by mechanical exfoliation of natural graphite (NGS Naturgraphit GmbH) with 

blue NITTO tape (SPV 224P). The plasma serves to make the substrate hydrophilic, which 

is needed for the wedging transfer. To render graphene monolayers visible, we used Si/SiO2 

wafers with a 90 nm thermally grown SiO2 layer (IDB Technologies). We located the 

single and few layer graphene sheets under an optical microscope and identified the number 

of layers by their optical contrast as well as by Raman spectroscopy. Graphene flakes were 

transferred onto microfabricated Si/SiO2/SiN chips described before16. We used cellulose 

acetate butyrate (Sigma-Aldrich) dissolved in ethyl acetate (30 mgs/mL) as the transfer 

polymer. Contrary to the design described by Krapf et al, prior the transfer of graphene, we 

etched the 20 nm thin SiN membrane using hot phosphoric acid (200 °C) for 45 minutes. 
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Transmission electron microscopy and fabrication of nanopores in graphene. 

Nanopores were fabricated and imaged using a Cs-corrected Titan Cubed Supertwin/STEM 

FP5600/40 microscope operated at an accelerating voltage of 300 kV. An electron beam 

with a diameter of 15 nm at full width at half-maximum height and a beam density of 106 

electrons/(s·nm2) was used for drilling. Gatan 2k x 2k CCD with binning 1 was used for 

image recording. Diffraction patterns were acquired with a beam size of 3 nm and a beam 

density of 105 electrons/(s·nm2). To remove contamination, samples were heated at 200 °C 

for at least 20 minutes prior to their insertion in the vacuum chamber of the microscope. 

After drilling, samples were stored in ethanol.  

 

Nanopore experiments. For the electrical measurements, a membrane with a single 

graphene nanopore is mounted in a polyether ether ketone (PEEK) microfluidic flow cell 

and sealed to liquid compartments on either side of the sample. Measurements are 

performed in 1 M KCl salt solution containing 10 mM Tris-HCl and 1mM EDTA at pH 8.0 

at room temperature. Ag/AgCl electrodes are used to detect ionic currents and to apply 

electric fields. Current traces are measured at 100 kHz bandwidth using a resistive feedback 

amplifier (Axopatch 200B, Axon Instruments), and digitized at 500 kHz. Before injecting 

dsDNA, the graphene-SiN-microchip was flushed with a 1 mg/mL solution of 16-

mercaptohexadecanoic acid in 8:2 toluene/ethanol and additionally rinsed in respectively 

clean 8:2 toluene/ethanol and ethanol. This is expected to form a flat self-assembled 

monolayer on the graphene surface which demotes DNA adhesion21. dsDNA was 

unmethylated λ-DNA (20 ng/uL, Ref. No. D152A, lot no. 27420803, Promega, Madison, 
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USA). The event-fitting algorithm used to analyze and label the translocation events was 

the same as the one described before20. Only events exceeding 6 times the standard 

deviation of the open-pore root-mean-square noise are considered. Due to possible baseline 

fluctuations, we only considered events whose current before and after the event does not 

change more than 10% of the event amplitude. We additionally filtered the data at 10 kHz 

for better signal-to-noise ratio, and we discarded levels shorter then 200 μs. 
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Figure 1. Graphene Nanopores for DNA translocation (A) To-scale side-view illustration 

comparing DNA translocation through a SiN solid-state nanopore with that through a 

freestanding one-atom-thick graphene nanopore. (B) Optical micrographs depicting the 

transfer of graphene from Si/SiO2 (left) onto a micro-fabricated silicon nitride chip 

containing a 5 µm hole (right). After the transfer by wedging, the flake entirely covers the 

hole (bottom image). (C) Raman spectrum of the flake on Si/SiO2 before the transfer. 
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Figure 2. Drilling of graphene nanopores. (A) Transmission electron microscopy (TEM) of 

some nanopores drilled into multilayer graphene  (B) TEM image (top) and diffraction 

patterns (bottom) across a 25 nm diameter pore in a monolayer of graphene. Numbers of 

the diffraction images indicate the spots where the patterns were recorded. (C) Diffraction 

patterns measured across the monolayer nanopore of panel B. The diffraction pattern was 

measured at three spots –indicated in panel B – with a 3 nm electron beam. The hexagonal 

lattice of diffraction spots is highlighted by the solid lines for clarity. 
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Figure 3. Nanopore resistances. Measured values of pore resistance versus diameter for a 

number of graphene nanopores (n=13). For each pore, the number of graphene layers is 

indicated by the number within the circle: 1 denotes graphene monolayers (blue); x denotes 

x layers of graphene (black). The solid line denotes a 1/d2 dependence. The inset shows an 

IV curve of a 22 nm nanopore in a graphene monolayer recorded in 1M KCl.  A linear 

resistance of 5.1 MΩ is observed. 
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Figure 4. DNA translocation through a graphene monolayer. (A) Translocation of 48 kbp 

double-stranded λ-DNA across a 22 nm nanopore within a graphene monolayer, showing 

the baseline conductance (left) and blockade events upon addition of DNA (right). (B) 

Examples of translocation events of nonfolded (black), partially folded (red) and fully 

folded (blue) DNA molecules recorded at 200 mV. (C) Conductance histogram of 1222 

translocation events, including 1 ms of open-pore conductance before and after the event. 

Note that counts in this histogram correspond to a single current measurement, not to a 

single event. 
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Figure 5. Event analysis. Scatter diagram of the amplitude of the conductance blockade 

versus translocation time with the accompanying histograms for the nonfolded and fully 

folded data at the top and the right. Color coding as in Fig. 4B. Each point in this scatter 

diagram corresponds to a single translocation event. For the labelling of events, each 

conductance data point within a translocation event (defined as an excursion of more than 6 

times the standard deviation of the open-pore rms noise) is attributed to one of the peaks in 

the conductance histogram shown in Fig. 4C. The minimum required subsequent duration 

at one level is set to 100 μs, given by the rise-time resulting from the 10 kHz low-pass 

filtering. 

 


