
Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   350  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

DNABIT Compress – Genome compression 
algorithm  
 
 

Pothuraju Rajarajeswari1*, Allam Apparao2  
 
 
1DMSSVH college of Engineering, Machilipatnam; 2Jawaharlal Nehru Technological University, Kakinada; Pothuraju Rajarajeswari – Email: 
rajilikhitha@gmail.com; *Corresponding author. 
 
 
Received September 21, 2010; Accepted October 29, 2010; Published January 22, 2011 
 
 
Abstract: 
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in 
the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a 
compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases 
to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger 
genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. 
While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running 
time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA 
sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best 
compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. 
 
Keywords: Ziv-Lempel, BioCompress, GenCompress, Arithmetic coding, DNA compress. 
 

 
 
 
Background: 
Life is strongly associated with organization and structure [1].With the 
completion of 1000 genomes project, the project is estimated to generate 
about 8.2 billion bases per day, with the total sequence to exceed 6 trillion 
nucleotide bases. The DNA molecule is made up of a concatenation of four 
different kinds of nucleotides namely: Adenine, Thymine, cytosine and 
Guanine (A,T,C,G).General purpose compression algorithms do not 
perform well with biological sequences. Giancarlo et al. [2] have provided 
a review of compression algorithms designed for biological sequences. 
Finding the characteristics and comparing Genomes is a major task 
(Koonin 1999[3]; Wooley 1999[4]). In mathematical point of view, 
compression implies understanding and comprehension (Li and Vitanyi 
1998) [5]. Compression is a great tool for Genome comparison and for 
studying various properties of Genomes. DNA sequences, which encode 
life should be compressible. It is well known that DNA sequences in 
higher eukaryotes contain many tandem repeats, and essentials genes (like 
rRNAs) have many copies. It is also proved that genes duplicate 
themselves sometimes for evolutionary purposes. All these facts conclude 
that DNA sequences should be compressible. The compression of DNA 
sequences is not an easy task. (Grumback and Tahi 1994[6], Rivals et al. 
1995 [7]; Chen et al. 2000 [8]) DNA sequences consists of only four 
nucleotides bases {a,c,g,t}. Two bits are enough to store each base.  The 
standard compression softwares such as “compress”, “gzip”, “bzip2”, 
“winzip” expanded the DNA genome file more than compressing it. Most 
of the Existing software tools worked well for English text compression 
(Bell et al. 1990[9]) but not for DNA Genomes. Increasing genome 
sequence data of organisms lead DNA database size two or three times 
bigger annually. Thus it becomes very hard to download and maintain data 
in a local system. Other algorithms specifically designed for DNA 
sequences compression did not manage to achieve average compression 
rate below 1.7 bits/base. Algorithms for Compressing DNA sequences, 
such as Ziv-Lempel compression algorithms [10, 11]. Biocompress [12], 
Gencompress [13] and DNAcompress [14] compress DNA sequences.  

Their average compression rate is about 1.74 bits per base. Hence we 
present a new compression algorithm named “DNABIT Compress” whose 
compression rate is below 1.56 bits per base (for Best case) even for larger 
genome (nearly 2,00,000 characters). 
 
Existing compression algorithms: 
General purpose compression algorithms do not perform well with 
biological sequences, resulting quite often in expansion rather than 
compression. Probably one of the most well-known DNA compressors is 
Ziv-Lempel compression algorithms [10, 11] are based on an idea of 
complexity presented by Lempel and Ziv in [15]. Grumbach and Tahi 
proposed two lossless compression algorithms for DNA sequences, namely 
Biocompress and Biocompress-2 using the technique of Ziv and Lempel 
(1997) data compression method. Biocompress-2 detects exact repeats and 
complementary palindromes located in the target sequence and then 
encode them by repeat length and the position of a previous repeat 
occurrence. Biocompress-2 also uses arithmetic coding of order 2 if no 
significant repetition is found. Biocompress also uses the same 
methodology as in Biocompress-2 except that it does not use order-2 
arithmetic coding. Gencompress (Chen et al. 2000 [13]) achieves 
significantly higher compression ratios than either Biocompress-2 or Cfact. 
Gencompress is a one-pass algorithm. In Gencompress we search for 
approximate matches that satisfy condition C. This algorithm carefully 
finds the optimal prefix and uses order-2 arithmetic encoding (Nelson 
1991; Bell et al. 1990) whenever needed. Gencompress also detects the 
approximate complemented palindrome in DNA sequences. The Average 
compression ratio is 1.7428. DNA compress employs the Lempel-Ziv 
compression scheme as Biocompress-2 and Gencompress. It consists of 
two components: find all approximate repeats including complemented 
palindromes; and encode approximate repeat regions and non-repeat 
regions. The Average ratio used for compressing sequences found to be 
1.7254. Behzadi and Fessant find repeats to the cost of a dynamic 
programming search and select from a second order markov model, a 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   351  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

context tree and two-bit coding for the non-repeated parts. They use an 
expert model with Bayesian averaging over a second order Markov model, 
a first order Markov model estimated on short term data (last 512 symbols) 
and a repeat model. Expressed per element complexity can provide 
information about the structure of the regions and local properties of a 
genome, or proteome. Perhaps more than their use in compressing 
biological sequences, compression algorithms, in particular variants of the 
Ziv-Lempel algorithms [10, 11], have been useful as measures of 
evolutionary distance (Li et al.) [17] used. Gencompress is used as the 
distance estimator in hierarchical clustering of biological sequences as a 
solution to the phylogeny construction problem.  
 
Methodology: 
Please see Supplementary material for methodology. 
 
Experimental Results: 
To experiment our algorithm, we tried to compress a standard set of DNA 
sequences with our algorithm, and we compare with results published for 
other efficient DNA compressors. A test prototype is implemented to 
assess the capability of our framework. The code is written in java and 
compiled in java 1.2 SDK. Tests ran on a system based on intel Pentium 
we tested our DNABIT program on a dataset of DNA sequences typically 
used in DNA compression studies. The datasets includes 9 sequences: two 
chloroplast genomes (CHMPXX AND CHNTXX); 4 HUMAN GENES 
[HUMDYSTROP, HUMHBB, HUMHDABCD (Humanbeta globinregion 
on chromosome11) and HUMHPRTB (Humanhypoxanthine 
phosphoribosyl transferase gene); 1 mitochondria genome (MPOMTCG); 
and genomes of 2 Viruses (HEHCMVCG AND VACCG) 
 
The results are displayed on Table 10 (see Supplementary material). The 
table shows that our proposed new DNABIT compress algorithm program 
performs better than other programs. Other existing algorithms that are 
used to compare with the proposed DNABIT are Normal CTW, CTW+LZ, 
BIOCOMPRESS 2, GENCOMPRESS, DNA COMPRESS, DNA PACK. 
During our experiments, we tried to compress the DNA genomes as long 
as nearly 2 lakhs length. The time taken to compress is approximately in 
seconds. Our proposed algorithm DNABIT compress performs better than 
the best algorithms GENCOMPRESS and DNA PACK whose 
compression ratio is approximately 1.7. Our DNABIT compress 
algorithm’s compression ratio is as less as 1.58 bits/base. 
 
DNABIT Compress Comparison with other Compressors: 
Compression algorithms designed to compress DNA sequences 
comparison is a difficult task because the source or executable code of 
compressors are usually not available. Another reason is space and time 
requirement of most compressors makes it difficult to test them on 
sequences of larger Genomes.  Complete data on the running times is not 
available. In [14] the authors report some compression times for the file 
hehcmvcg (229354 bases) on a 700MHz Pentium III. According to [14] the 
compression of hehcmvcg takes a few hours for CTW+LZ, 51 seconds for 
GenCompress-2 [8], but only 10 Seconds for our proposed algorithm 
DNABIT Compress. Unfortunately, we could not test in depth the 

performance of DNACompress. Since it is based on the PatternHunter [17] 
search engine which is not freely available. 
Finally, we would like to comment on the performance of Off-line which, 
like our algorithms, only encodes exact repeats.  While we use a simple 
and fast procedure to find repeats, Off-line is designed to search for an 
“optimal” sequence of textual substitutions. It is therefore not surprising 
that Off-line is much slower than our algorithms (for the yeast sequences 
the difference is by a factor 1000 or more). The experimental results show 
that our algorithms are an order of magnitude faster than the other DNA 
compressors and that their compression ratio is very close to the one of the 
best compressors.The speed of our algorithm and its small working space 
have been able to compress sequences of length up to 220MB, which are 
well beyond the range of any other DNA compressor. Figure 1 shows the 
comparison ratios of proposed DNABIT compress algorithm with popular 
existing algorithms. 
 
DNA COMPRESS JAVA TOOL: 
The proposed DNABIT compress tool screens are shown in Figure 2, 3, 4. 
The tool has the option of selecting the type as either encrypt or decrypt. 
The DNA genomes of any length can be given as Input in the input column 
selecting the encryption option. The compression ratio is displayed in the 
output column with the time taken for computing. The encrypted text can 
be decrypted back to its original DNA sequence by using the decryption 
option. The original DNA text is displayed in the output option. Sample 
Code is given in Supplementary material. 
 
Detecting Tandem repeats of Repetitive Nucleotides: 
In addition to the compression techniqu , an algorithm is designed to find 
tandem repeats as DNABIT compress enlighthens on compressing 
repetitive bases The detection of tandem repeats is important in biology 
and medicine as it can be used for phylogenic studies and disease 
diagnosis. This paper proposes two techniques for detecting approximate 
tandem repeats (ATRs) in DNA sequences. We have proposed a algorithm 
to calculate the tandem repeats since our proposed DNABIT compress 
focuses on repetitive Bases. our algorithm calculates consequetive similar 
two repeats (di nucleotides) and three repeats (tri nucleotides or codons). 
Tandem repeats (TRs) are defined as two or more contiguous approximate 
copies of a pattern of nucleotides. Tandem repeats have been known to 
play important roles in human disease, regulation, and evolution.   
 
Repetitive structures are present in over one-third of the human genome 
[18]. The expansion of the trinucleotide repeat results in anticipation or 
progression in severity of the disorder through each generation. In general, 
there is a correlation between the size of the expansion and the severity of 
the phenotype. Furthermore, instabilities in dinucleotide repeat sequences 
have been observed in colon cancer [19] Some biological mechanisms for 
the expansion of repeats include: defect in mismatch repair system, 
polymerase slippage during replication, and genetic instability of some 
DNA structures [20, 21]. Repeats play a role in gene regulation when 
present in regions with transcription factors [22]. Sample code is given in 
Supplementary material. 

 

 
Figure 1: Comparison of ratios of DNABIT Compress with existing algorithms 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   352  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

 
Figure 2: DNAcompress Tool Screen 
 

 
Figure 3: Compression Ratio displayed in the output Box. 
 

 
Figure 4: Decompressed Text in the output Box. 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   353  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

Conclusion: 
A simple DNA compression algorithm which is completely new in its 
design is proposed to compress DNA sequences which are repetitive as 
well as non repetitive in nature. Data compression reveals certain 
theoretical ideas such as entropy, mutual information and complexity 
between sequences of different genomes. Data compression also plays a 
vital role in analyzing biological sequences to discover hidden patterns, 
infer phylogenetic relationship between organisms which are areas of 
active research in bioinformatics. If the sequence is compressed using 
DNABIT Compress algorithm, it will be easier to compress large bytes of 
DNA sequences with the average compression ratio of 1.5359 bits per base 
which will be very useful in sequence comparisons and Multiple sequence 
Alignment analysis. The simplicity and flexibility of DNABIT Compress 
algorithm could make it an invaluable tool for DNA compression in 
clinical research. 
 
Limitations: 
Summative evaluation of learning outcomes such as testing the real 
biological sequences on this algorithm, performance with the tools, or the 
transfer of knowledge to similar tasks could not be performed.  
 
Future work: 
(1)The compression algorithm can be applied to calculate phylogeny and 
multiple sequence alignment of various DNA sequences. 
(2) Developing a new DNA compressor with compressed text data rather 
than Binary bits. 
 
Acknowledgements: 
Authors are thankful for the support rendered by V. K. Kumar during its 
development phase. 
 
References:  
[1] E Schrodinger. Cambridge University Press: Cambridge, UK, 1944. 

[PMID: 15985324] 
 

[2] R Giancarlo et al. A synopsis Bioinformatics 25:1575 (2009) [PMID: 
19251772] 

[3] EV Koonin. Bioinformatics 15: 265 (1999) 
[4] JC Wooley. J.Comput.Biol 6: 459 (1999) [PMID: 10582579] 
[5] CH Bennett et al. IEEE Trans.Inform.Theory 44: 4 (1998) 
[6] S Grumbach & F Tahi. Journal of Information Processing and 

Management 30(6): 875 (1994) 
[7] E Rivals et al. A guaranteed compression scheme for repetitive DNA 

sequences. LIFL, Lille I University, technical report IT-285 (1995) 
[8] X Chen et al. A compression algorithm for DNA sequences and its 

applications in Genome comparison. In Proceedings of the Fourth 
Annual International Conference on Computational Molecular 
Biology, Tokyo, Japan, April 8-11, 2000. [PMID: 11072342] 

[9] TC Bell et al. Newyork:Prentice Hall (1990) 
[10] J Ziv & A Lempel. IEEE Trans. Inf. Theory 23: 337 (1977)  
[11] J Ziv & A Lempel. IEEE Trans. Inf.Theory, 24: 530 (1978) [PMID: 

20157474] 
[12] A Grumbach & F Tahi. In Proceedings of the IEEE Data 

Compression Conference, Snowbird, UT, USA, March 30–April 2, 
1993. 

[13] X Chen et al. In Proceedings of the Fourth Annual International 
Conference on Computational Molecular Biology, Tokyo, Japan, 
April 8-11, 2000. 

[14] X Chen et al. Bioinformatics 18: 1696 (2002) [PMID: 12490460] 
[15] A Lempel & J Ziv. IEEE Trans. Inf. Theory 22: 75 (1976) 
[16] M Li et al. IEEE Trans. Inf. Theory 50: 3250 (2003) 
[17] B Ma et al. Bioinformatics 18:440 (2002) [PMID: 11934743] 
[18] ES Lander et al. Nature 409: 860 (2001) [PMID: 11237011] 
[19] S Thibodeau et al. Science 260: 816 (1993) [PMID: 14988818] 
[20] M Mitas. Nucleic Acids Research 25: 2245 (1997) [PMID: 9618442] 
[21] RD Wells. Journal of Biological Chemistry 271: 2875 (1996) [PMC: 

178294] 
[22] M Perutz. Current Opinion in Structural Biology 6: 848 (1996) 

[PMC: 1692597] 

 
Edited by R Sowdhamini 

Citation: Rajarajeswari & Apparao, Bioinformation 5(8): 350-360 (2011) 
License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-

commercial purposes, provided the original author and source are credited. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   354  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

Supplementary material: 
 
Methodology: 
Proposed Algorithm – DNABIT Compress: 
In this paper we consider the problem of DNA compression both for 
repetitive and non repetitive DNA sequences. To improve the compression 
rate, a new technique named DNABIT Compress has been devised, which 
is much effective with respect to compression rate. Simple AG/TC 
similarities are not considered in this abstraction of data into primary bits. 
The new proposed algorithm to compress DNA sequences of complete 
Genomes is of Two Phases. The Two phases in turn uses five different 
techniques namely 2 Bit Technique, 3, 5, 7, and 9 Bit Technique. 
 
The two Phases are: (1) Even Bit Technique: 2Bit Technique; (2) Odd Bit 
Technique: 3Bit Technique, 5Bit Technique, 7Bit Technique, 9Bit 
Technique. 
 
Even Bit Technique: 
The DNA sequence is assigned two bits for every individual base. Bases 
are {a,c,g,t}. Two bits are assigned to bases of non-repeat regions. The bits 
assigned to individual bits are shown in Table 1. 
 
Odd Bit Technique: 
The Odd Bit technique employs 4 different Techniques. They are 3Bit 
Technique, 5Bit Technique, 7Bit Technique, 9 Bit Technique 
       
3 Bit Technique:   
In the DNA sequence if two or three similar bases exists next to one 
another, this 3 Bit technique is applied.  The encoded string is represented 
as 3 Bit CODE. In the 3 Bit CODE, first significant bit is allocated as 
either “1”or “0”. “0”represents the significant bit if the base repeat is two 
times. “1” represents the significant bit if the base repeat is three times. 
The 3 bit code is in Table 2, 3. 
 
5 BIT Technique:    
In the DNA sequence if there exists more than 3 repeats upto 8 repeats ( 
4,5,6,7,8)  Three to eight similar bases next to one another, this 5 Bit 
technique is applied.  The encoded string is represented as 5 Bit CODE 
(Table 4-8).  
 
 
7 BIT Technique: 
7 BIT CODE for 2 EXACT BASE REPEATS: 
In the given string if there is 2 characters repeat more than 1time upto 8 
times, we represent it in 7 bit sequence. In this 7 bit code, first 3 bits 
represent the number of repeats of that characters. The other 4 bits 
represent the code for that characters (Table 9). 
 
9 BIT Technique: 
In this 9 BIT CODE, there are two techniques. If the consecutive 4 bases 
are same, then the encoded string is taken to be 9 bit CODE. The first 
significant bit either represents as “0”or “1”. “0” indicates that the repeat is 
exact repeat. “1” indicates that the repeat is reverse repeat.  
9 BIT Technique: 

 
Significant bit        a                    g                   c                       t 
 
In the 9 bits the first significant bit represents same or reverse. The other 8 
bits represents CODE for each base. 
 
Calculation of Compression Ratio: 
LET ₤ = Total number of bases in the given sequence. 
Compression Rate = Number of Bits/Total number of Bases.  
   µ = Number of 3 BIT CODE * 3 
   β = Number of 5 BIT CODE * 5 

   δ = Number of 7 BIT CODE * 7 
   γ = Number of 9 BIT CODE * 9 
   þ = Number of even BIT CODE * 2(individual base sequences)     
Total number of Encoded Binary Bits = (¥ + Ψ + δ + γ+ þ)   
   Ratio Ř = (µ + β + δ + γ+ þ) / ₤ Bits/Bases. 
Example:    Gggggagctacgagctagctacaccacatatatatatatatata           
Encoded: 
1000100011011001001000011011100011000001111011111100 
Ratio =   2*3 + 5*1 +7*1 + 9*2 +2*8 /   50 
       = 52/50   
       = 1.04 bits/bases 
Best Case: The Best-case efficiency is proved in our proposed new 
DNABIT COMPRESS algorithm since its compression Rate = 1.04 for 
Best case and 1.58 for Worst case. Worst case is defined when the number 
of repetitions in the input DNA sequence is neglible, which is the best 
among all the present existing DNA compression Algorithms. 
 
Analysis for various cases: 
CASE 1:  DNA sequence applying EVEN BIT TECHNIQUE. 
Examples: 
Input String = agctatcg 
The above strings are non-repeated bases where every individual base is 
not a repetition of the next base. 
The encoded string is:  00 01 10 11 00 11 10 01 
 
CASE 2: DNA SEQUENCE applying ODD BIT TECHNIQUE-3 BIT 
TECHNIQUE. 
a) 3 BITCODE for Exact 2 Repeat Bases. 
Example:    
Input string       =     aa    t    c   a   
Encoded string  =    000 11 01 00 
 
b) 3 BIT CODE for Exact 3 Repeat Bases  
Example:    
Input string        =    t   c    a   ggg    
Encoded string   =  11 01 00  110 
 
CASE 3: DNA SEQUENCE applying ODD BIT TECHNIQUE-5 BIT 
TECHNIQUE. 
a) 5 BIT CODE for EXACT 4 Repeat Bases. 
Example: 
Input string       =  aaaa    gggg    g   t  
Encoded String = 01100 01110 10 11 
 
b) 5 BIT CODE for EXACT 5 Repeat Bases. 
Example: 
Input string       =   aaaaa ggggg   g   t  
Encoded String = 10000 10010 10 11 
 
c) 5 BIT CODE for EXACT 6 Repeat Bases. 
Example: 
Input string      =   tttttt    aaaaaa  c 
Encoded string = 10111  10100  01 
 
d) 5 BIT CODE for EXACT 7 Repeat Bases. 
Example : 
Input string       = ccccccc  aaaaaaa  c 
Encoded string =   11001   11000   01 
 
5 BIT CODE for EXACT 8 Repeat Bases. 
Example:   
Input String       = tttttt      a   c  gggggggg 
Encoded string = 10111 00 01 11110 

0/1 0 0 1 0 0 1 1 1 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   355  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

In the above sequence “t” repeat is 6 times. So binary representation of 6  
is “101”. The first 3 bits are code for 6. The other 2 bits are the code for 
character “t”. 11110 = “g” is repeat in 8 times binary code for 8 is “111”. 
The next 10 is code for “g”. 
 
CASE 4: DNA SEQUENCE applying ODD BIT TECHNIQUE-7 BIT 
TECHNIQUE. 
a) 7 BIT CODE For EXACT 2 Repeat Bases 6 times. 
Example: 
Input String       :  cacacacacaca  
Encoded String  :  101 01 00 
 
b) 7 BIT CODE For EXACT 2 Repeat Bases 8 times. 
Example: 
Input String     :  cacacacacacacaca 
Encoded String:  111 01 00 
 
c) 7 BIT CODE For EXACT 2 Repeat Bases 4 times. 
Example: 
Input String:        ta ta ta ta 
Encoded String:  011 11 00 
 
CASE 5:  DNA SEQUENCE applying ODD BIT TECHNIQUE-9 BIT 
TECHNIQUE. 
a) 9 BIT CODE for EXACT 4 Repeat Bases. 
Example: 
Input String   =      agct agct   
Encoded String = 0 00 10 01 11 
 
b) 9 BIT CODE for EXACT REVERSE 4 Repeat Bases. 
Example: 
Input String    =      tata atat  
Encoded String =   1 00 1100 11 
 
DNABIT COMPRESS ENCODING ALGORITHM: 
Input: Input String (INSTRING) Containing A, T, G and C  
Output: Encoded String (OUTSTRING)  
 
Procedure Encode: 
Begin  
1: Divide the given DNA sequence in to fragments, where each fragment 
consists of 2 characters, 4 characters. 
2: Generate all possible combinations of DNA sequence (A, C, G, T). 
3: Apply Even Bit Technique if the simultaneous bases do not match with 
each other. (The DNA sequence is assigned two bits for every individual 
base of non-repeat regions.) 
4: If there exists two or three similar bases next to one another, the 3 Bit 
technique is applied.   
5: If there exists more than 3 repeats upto 8 repeats (4,5,6,7,8)  Three to 
eight similar bases next to one another, the 5 Bit technique is applied.  The 
encoded string is represented as 5 Bit CODE. 
6: In the given string if there is 2 characters repeat more than 1 time upto 8 
times, it is represented as 7 bit code. In this 7 bit code, first 3 bits represent 
the number of repeats of that character. (The other 4 bits represent the code 
for that character.) 
7: If the consecutive 4 bases are same, then the encoded string is taken to 
be 9 bit CODE. The first significant bit either represents as “0”or “1”. “0” 
indicates that the repeat is Exact repeat. “1” indicates that the repeat is 
reverse repeat. 
8: Transfer the binary bits to the output String (OUTSTRING). 
End  
The Decryption algorithm involves the same procedure as Encryption in 
the reverse form. 
 
DNABIT COMPRESS DECODING ALGORITHM: 
Input: Input String  
Output: Decoded String (DECSTRING)  

Procedure Decode:  
Begin  
1: Generate all possible combinations for {A, C, G, T}. 
2: Allocate unique binary bit number (0 and 1) to each combination. 
3: Divide given binary code in to segments. 
4: According to the Binary code (either 3 BIT CODE, 5 BIT CODE, 7 BIT 
CODE, or 9 BIT CODE) assign appropriate base {a, c, g, t}. 
5: Repeat step 4, until the end of the input sequence is reached. 
6: If there are any individual bases (non repeat regions) the corresponding 
binary code gets transformed. (Assigned values for bases are :a=”00”, 
G=”01”,c=”10”,t=”11”). 
End  
 
Examples:  
The Total number of bits per base (Ř) is calculated as: LET ₤ = Total 
number of bases in the given sequence. 
Total number of Encoded Binary Bits = (µ + β + δ + γ+ þ)   
      Ratio Ř = (µ + β + δ + γ+ þ)/ ₤ bits/bases. 
 
a) InputDNAString:     
aaaagggggggttttttccccccacgtacgttgcaacgttgcacacacagtgtgt 
Encoded string:      
01100  11010  10111  10101  000011011  100011011 1110 0110100  
0101011 
Total number of encoded binary bits  =  56.0 
Total number of Bases                        =  55.0 
Compression Ratio                              =  1.018 bits/bases. 
 
b)  InputString: 
GAATTTGCAAAAAAAAGCTAATGCCTAGGGTTTTTGCCCCCCCC
AAAATCAGTTGCATA 
GGACG 
Encoded String: 
10 000  111 1001 11100  100111 000 1110 001 1100 110  10011 10 11101   
01100 11010010 011 1001001100 010 000110 
Total number of encoded binary bits  =  87.0 
Total number of Bases                        =  64.0 
Compression Ratio                              = 1.359375 
 
Methodology of DNABIT COMPRESS: 
The length of the DNA sequence is divided in to fragments of four and 
two. Each fragment (ACGT) is replaced with binary code (0 or 1). Then 
the total number of bits required to encode the DNA sequence obtained is 
shown below.  
The Total number of bits per base (Ř) is calculated as following: 
 
 
 
 
Approximately1. 3593 bits per base is required to encode each base if the 
DNA sequence contains more number of repeated bases. 
Let us consider the sequence: 
GAAT TTGC AAAA AAAA GCTA ATGC CTAG GGTT TTTG CCCC 
CCCC   AAAA TCAG TTGC ATAG GACG. 
SequenceLength                   = 64. 
Bytes to store in a text file    = 64 bytes. 
Windows XP zip size            = 163 bytes. 
Biocompress                         = 14 bytes. 
DNABIT Compress algorithm = 10 bytes. 
 
Thus our proposed algorithm DNABIT compress has the following 
advantages: 
i) Compression ratio of 1.5359 bits per base compared to 1.76 bits per base 
for the other DNA compression algorithms. 
ii) Because the method doesn’t use dynamic programming technique which 
was used by other methods e.g., BioCompress, GenCompress etc, it is 
simple and takes less execution time. 

Ratio Ř = (µ + β + δ + γ+ þ) / ₤   bits/bases. 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   356  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

Table 1: The bits assigned to individual bits 
 
 
 
 
 
 

 
Table 2: 3 BITCODE for Exact 2 Repeat Bases 

 
 
 
 
 
 

3 BIT CODE for “aa”: 
     
                                               

                                                     
 Significant Bit, Base value for “a” 
3 BIT CODE for “gg”: 

  
   

3 BIT CODe for “tt”:   
  
 

3 BIT CODE for “cc”: 
  
 

 
Table 3: 3BIT CODE for Exact three repeat bases 

 
  
 
 
 
 

First 3 bits represents code for number “4” (repeats). [4 = “011”] 
3 BIT CODE for “aaa”: 

 
 

 
     Significant Bit, Base value for aa 
3 BIT CODE for “ggg”: 

 
           

3 BIT CODE for “ttt”:                     
 
 

3 BIT CODe for “ccc”: 
 
 

Table 4: 5 BITCODE for 4 repeats 
 
 
 
 
 
 

First 3 bits represents code for number (repeat) 5. [5 =”100”.] 
5BITCODE for “aaaa”: 

 
                 

5BIT CODE for “gggg”: 
 
 

5BIT CODE FOR “tttt”:       

   BASE BINARY BITS 
    A     00 
    G     01 
    C     10 
    T     11 

BASES 3BIT CODE 
aa  000 
gg  010 
tt  011 
cc  001 

0 0 0 

0 1 0 

0 1 1 

0 0 1 

BASES 3 BIT CODE 
Aaa 100 
Ggg 110 
Ttt 111 
Ccc 101 

1 0 0 

1 1 0 

1 1 1 

1 0 1 

BASES 5BIT CODE 
aaaa 01100 
gggg 01110 
Tttt 01111 
Cccc 01101 

0 1 1 0 0 

0 1 1 1 0 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   357  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

 
 

5BIT CODE FOR “cccc”:  
 
 

 
Table 5: 5 BITCODE for 5 repeats 

 
 
 
 
 
 

5BITCODE for “aaaaa”:    
 
 

5BITCODE for“ggggg”:  
 
 

5BITCODE for “ttttt”:     
 
 

5BITCODE for “ccccc”: 
 
 

 
Table 6: 5 BITCODE for 6 repeats 

 
 
 
 
 
 

First 3 bits represents code for “6”. (repeats) [6 = 101]. 
5BITCODE for “aaaaaa”:    

 
 

5BITCODE for “gggggg”:       
 
 

5BITCODE for “tttttt”:         
 
 

5BITCODE for “cccccc”:   
 
 

 
Table 7: 5 BITCODE for 7 repeats 

 
 
 
 
 
 

First 3 bits represents code for number “7” (repeats)[7= 110] 
5BITCODE for “aaaaaaa”: 

 
 

5BITCODE for “ggggggg”: 
 
 

5BITCODE for “ttttttt”:        
 
 

5BITCODE for “ccccccc”: 
 
 

0 1 1 1 1 

0 1 1 0 1 

BASES 5BIT CODE 
Aaaaa 10000 
Ggggg 10010 
Ttttt 10011 
Ccccc 10001 

1 0 0 0 0 

1 0 0 1 0 

1 0 0 1 1 

1 0 0 0 1 

BASES 5BIT CODE 
aaaaaa 10100 
gggggg 10110 
Tttttt 10111 
cccccc 10101 

1 0 1 0 0 

1 0 1 1 0 

1 0 1 1 1 

1 0 1 0 1 

BASES 5BIT CODE 
aaaaaaa 11000 
ggggggg 11010 
ttttttt 11011 
ccccccc 11001 

1 1 0 0 0 

1 1 0 1 0 

1 1 0 1 1 

1 1 0 0 1 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   358  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

 
Table 8: 5 BITCODE for 8 repeats 

 
 
 
 
 
 

First 3 bits represents code for number “8” (repeats) [8=111]. 
5BITCODE for “aaaaaaaa”:     

 
 

5BITCODE for “gggggggg”: 
 
 

5BITCODE for “tttttttt”        
 
 

5BITCODE for“cccccccc”: 
 
 

 
Table 9: 7 BIT Technique 

 
 
 
 
 
 
 
 
 

 
Input String = cacacacacaca 
 

1 0 1 0 1 0 0 
 
Number of Repeats CODE FOR “c” CODE FOR “a” 
In the above sequence the first 3 bits represent “6” in binary form. Ca repeat is 6 times. The next 4 bits represent the code for that 2 characters. 101=6, 
c=01 a=00. 
 
Table 10: Comparison of Compression Ratios for different algorithms (bits/base) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
SAMPLE CODE: 
 
/*************************************************************** 
 /*                      ENCP & DECP                                                                                           
/*************************************************************** 
 import java.awt.*;  
 import java.awt.event.*;  
 import javax.swing.*;  
 import java.io.*; 

BASES 5BIT CODE 
aaaaaaaa 11100 
gggggggg 11110 
tttttttt 11111 
cccccccc 11101 

1 1 1 0 0 

1 1 1 1 0 

1 1 1 1 1 

1 1 1 0 1 

NUMBER OF REPEATS 3 BIT CODE 
2 001 
3 010 
4 011 
5 100 
6 101 
7 110 
8 111 

SEQUENCE NAME SEQ 
LENGTH 

Normal CTW  CTW 
+LZ 

BIOCOM 
PRESS2 

Gen Com Press DNA 
Com press 

DNA  
PACK 

DNABIT 
Compress 

CHMPXX  121024 1.838 1.669 1.684 1.673 1.671 1.660 1.5170 
CHNTXX  155844 1.933 1.612 1.617 1.614 1.612 1.610 1.5843 
HEHCMVCG  229354 1.958 1.841 1.848 1.847 1.849 1.834 1.5731 
HUMDY STROP 33770 1.920 1.917 1.926 1.922 1.911 1.908 1.5721 
HUMHBB  73308 1.892 1.808 1.88 1.820 1.789 1.777 1.606 
HUMHDABCD  58864 1.897 1.821 1.877 1.819 1.795 1.739 1.606 
HUMHPRTB  56737 1.913 1.843 1.906 1.846 1.816 1.788 1.5744 
MPOMTCG  186609 1.962 1.900 1.937 1.905 1.892 1.893 1.5652 
VACCG  191737 1.857 1.761 1.761 1.761 1.758 1.758 1.6523 
Average  1.907 1.796 

 
1.826 1.800 1.788 1.774 1.583 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   359  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

 import java.util.*; 
 import java.util.Calendar; 
 import java.util.Date; 
 import java.util.Locale; 
 import java.text.DateFormat; 
 /**  
class window extends JFrame  
 {  
  // Variables declaration  
  
  JLabel labtme; 
  JLabel lpassion; 
  JLabel lcombo; 
 JLabel image; 
  JLabel comment; 
 JButton Submit; 
  JButton Cancel; 
 JEditorPane abtme;  
  JScrollPane abtme1;  
  JEditorPane passion;  
  JScrollPane passion1; 
   
  JPanel contentPane;  
 String str; 
  String user,combo,a="",strin="",a1=""; 
 float ratio=0,count=0; 
 float loop=0; 
 int strlen=0; 
 String c="00",d="01",e="10",f="11"; 
 String  
     Sindou[]={"000","001","010","011","100","101","110","111"}; 
     
 // End of variables declaration  
    public window()  
  {    
   super(); 
   JFrame.setDefaultLookAndFeelDecorated(true);  
   JDialog.setDefaultLookAndFeelDecorated(true);  
   try  
   {  
    UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel"); 
**************************************************************** 
 
SAMPLE CODE: 
 
/****************************************************** 
 /*                      TANDEM REPEATS                                                                                           
/****************************************************** 
class tand 
{ 
 public static void main(String arg[])throws Exception 
 { 
 String msg=""; 
 int i,j=0,seq=0,pr=0,re=0,value=0,val=64,value1=0,rec=0,mat=0,t=0; 
 int v=0,c1=0,c2=0,c3=0,c4=0,mat1=0,mat2=0,pr1=0,ss=0; 
 int tan1=0,tan2=0,tan3=0; 
 float loop=0; 
 String temp="",comp="",che1="",che2=""; 
 char r,c; 
 /************************************************** 
 DataInputStream dis=new DataInputStream(System.in); 
 String text=dis.readLine(); 
 loop=text.length(); 
 for(i=0;i<loop;i++) 
 { 
  if(i<loop-1) 
  { 



Bioinformation Volume 5 open access 

www.bioinformation.net Issue 8 Software
 

   
ISSN 0973-2063 (online) 0973-8894 (print)                   360  
Bioinformation 5(8): 350-360 (2011)                       © 2011 Biomedical Informatics 
 

 

  c1=0; 
  che1=""; 
  che2=""; 
 /************************************************** 
  if(i<=loop-8&&pr==0) 
  { 
   comp=text.substring(i,i+4); 
   temp=text.substring(i+4,i+8); 
   c1=0; 
   mat1=0; 
   mat2=0;  
  /***********************comparison***************** 
  while(temp.equals(comp)) 
  { 
    
   che1=comp.substring(0,2); 
   che2=comp.substring(2,4); 
   temp=" "; 
   if(comp.charAt(0)==comp.charAt(1)) 
   { 
   mat1=1; 
   } 
   
   if(che1.equals(che2)) 
   {   
   mat2=1; 
   } 
****************************************************** 
 
 

 

 


