
 Der, B., Glassey, E., Bartley, B., Enghuus, C., Goodman, D., Gordon,
B., Voigt, C., & Gorochowski, T. (2017). DNAplotlib: programmable
visualization of genetic designs and associated data. ACS Synthetic
Biology, 6(7), 1115-1119. https://doi.org/10.1021/acssynbio.6b00252

Peer reviewed version
License (if available):
CC BY-NC
Link to published version (if available):
10.1021/acssynbio.6b00252

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via ACS at http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00252. Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1021/acssynbio.6b00252
https://doi.org/10.1021/acssynbio.6b00252
https://research-information.bris.ac.uk/en/publications/88308187-e42c-4456-967e-7fba272ea0e6
https://research-information.bris.ac.uk/en/publications/88308187-e42c-4456-967e-7fba272ea0e6

	 1	

	

	

	

DNAplotlib:	programmable	visualization	of	genetic	designs	and	associated	data	

Bryan	S.	Der
1,#
,	Emerson	Glassey

1,#
,	Bryan	A.	Bartley

2
,	Casper	Enghuus

3
,	Daniel	B.	Goodman

4,5
,	

D.	Benjamin	Gordon
1
,	Christopher	A.	Voigt

1
	and	Thomas	E.	Gorochowski

1,*
	

	

	
1	
Synthetic	Biology	Center,	Department	of	Biological	Engineering,	Massachusetts	Institute	of	Technology,	

Cambridge,	Massachusetts,	USA.	

2	
Department	of	Bioengineering,	University	of	Washington,	Seattle,	Washington,	USA.	

3	
MIT	Microbiology	Program,	Massachusetts	Institute	of	Technology,	Cambridge,	Massachusetts,	USA.	

4	
Department	of	Genetics,	Harvard	Medical	School,	Boston,	USA.	

5	
Wyss	Institute	for	Biologically	Inspired	Engineering,	Harvard	Medical	School,	Boston,	USA.	

	

#
	These	authors	contributed	equally	to	this	work.	

*	Correspondence	should	be	addressed	to	T.E.G.	(thomas.gorochowski@bristol.ac.uk)	

	

	

	

	

	

	

	

	

	

	

Keywords:	visualization;	standardization;	SBOLv;	bio-design	automation;	synthetic	biology	

	 	

	 2	

Abstract	

DNAplotlib	 (www.dnaplotlib.org)	 is	 a	 computational	 toolkit	 for	 the	 programmable	 visualization	 of	 highly	

customizable,	 standards-compliant	 genetic	 designs.	 Functions	 are	 provided	 to	 aid	 with	 both	 visualization	

tasks	and	to	extract	and	overlay	associated	experimental	data.	High-quality	output	is	produced	in	the	form	of	

vector-based	 PDFs,	 rasterized	 images,	 and	 animated	movies.	 All	 aspects	 of	 the	 rendering	 process	 can	 be	

easily	 customized	 or	 extended	 by	 the	 user	 to	 cover	 new	 forms	 of	 genetic	 part	 or	 regulation.	 DNAplotlib	

supports	 improved	 communication	 of	 genetic	 design	 information	 and	 offers	 new	 avenues	 for	 static,	

interactive	and	dynamic	visualizations	that	map	and	explore	the	links	between	the	structure	and	function	of	

genetic	parts,	devices	and	 systems;	 including	metabolic	pathways	and	genetic	 circuits.	DNAplotlib	 is	 cross-

platform	software	developed	using	Python	and	released	under	the	MIT	license.	

	

	

	

	

	

	 	

	 3	

Engineering	disciplines	rely	on	standardized	pictorial	representations	of	parts	and	their	 interconnections	to	

create	 schematics	 that	 clearly	 communicate	 how	 they	 are	 pieced	 together	 and	 to	 enable	 the	 reliable	

construction	 of	 large	 complex	 systems.	 In	 bioengineering,	DNA	 sequences	 are	 often	 synthesized	 to	 create	

genetic	constructs	that	probe	or	perturb	the	natural	function	of	a	cell	or	implement	novel	capabilities.	Unlike	

more	 established	 engineering	 disciplines,	 the	 way	 that	 a	 genetic	 design	 is	 visually	 represented	 can	 vary	

significantly	between	labs	and	across	different	areas	of	the	field.	This	 leads	to	ambiguities	that	hinder	data	

exchange,	understanding,	and	the	effective	reuse	of	this	research.	

The	 Synthetic	 Biology	 Open	 Language	 Visual
1
	 (SBOLv)	 initiative	 was	 started	 to	 help	 alleviate	 this	

problem,	defining	a	set	of	agreed	symbols	for	commonly	used	genetic	elements.	In	addition,	other	schemes	

such	as	the	Systems	Biology	Graphical	Notation
2
	 (SBGN)	have	been	developed	to	more	broadly	standardize	

the	 graphical	 notation	 used	 to	 describe	 biological	 processes.	 The	 importance	 of	 these	 standardized	

approaches	 has	 also	 been	 recognized	 by	 publishers,	with	 a	major	 synthetic	 biology	 journal	 (ACS	 Synthetic	

Biology)	adopting	the	use	of	SBOLv	symbols	when	presenting	genetic	design	information
3
.	

Although	 these	 initiatives	 will	 help	 accelerate	 adoption	 of	 these	 standards,	 they	 rely	 on	 the	

availability	 of	 supporting	 tools	 to	 enable	 the	 production	 of	 compliant	 diagrams.	 Some	 tools	 do	 exist	 to	

generate	 SBOLv	 visualizations	 from	 genetic	 design	 information,	 either	 through	 graphical	 point-and-click	

interfaces	 (e.g.,	 VectorNTI
4
,	 TinkerCell

5
,	 GenoCAD

6
,	 DeviceEditor

7
	 and	 SBOL	Designer)	 or	 text-based	 inputs	

(e.g.,	Pigeon
8
	and	VisBOL

9
).	These	are	effective	for	small	numbers	of	constructs,	but	lack	the	ability	to	easily	

process	 large	 design	 libraries,	 are	 difficult	 to	 integrate	 into	 existing	 analyses,	 and	 offer	 only	 limited	

customization	of	the	visualizations	produced.	An	ability	to	tune	how	each	genetic	element	is	displayed	(e.g.,	

the	size,	shape	and	color)	based	on	its	characterized	performance
10
	would	enable	clearer	communication	of	

key	design	features	and	enable	an	effective	comparison	of	multiple	designs.	No	tools	currently	support	this	

capability.	

To	 address	 these	 limitations,	 we	 developed	 DNAplotlib,	 a	 computational	 toolkit	 that	 enables	 the	

highly	 customizable	 visualization	 of	 standardized	 genetic	 designs	 in	 a	 programmable	 way	 (Figure	 1).	

DNAplotlib	 is	 written	 in	 the	 Python	 programming	 language	 and	 makes	 extensive	 use	 of	 the	 matplotlib
11
	

graphics	 library	 to	 produce	 high-quality	 output	 in	 the	 form	 of	 vector-based	 PDFs,	 rasterized	 images	 and	

animated	movies	(Figure	2;	Movie	S1).	Python	was	chosen	due	to	its	broad	and	growing	use	in	the	analysis	of	

biological	data,	its	ability	to	effectively	“glue”	together	many	different	computational	tools	to	create	complex	

workflows
12,	13

,	and	for	being	highly	portable	across	all	major	operating	systems.	To	simplify	 the	process	of	

generating	visualizations	in	code,	numerous	helper	functions	are	included	to	load	genetic	design	information	

from	 files	 in	 the	 Synthetic	 Biology	Open	 Language	 (SBOL)
14,	15

,	 General	 Feature	 Format	 (GFF),	 and	 Comma	

	 4	

Separated	Values	(CSV)	formats	(Supplementary	Text).	The	full	set	of	SBOLv	parts
1
	are	available	(Figure	1b)	

and	users	 can	easily	extend	existing	 functionality	 to	 cover	new	 types	of	part	or	 regulation	and	apply	 their	

own	visual	annotations	at	precise	points	within	a	genetic	construct	(Figure	3).	Built-in	parts	also	offer	a	broad	

range	of	customization	options,	enabling	the	visual	communication	of	other	characteristics	such	as	measured	

performance	(e.g.,	promoter	or	terminator	strength)	that	go	beyond	the	part	type	alone	(Figures	1c).	

At	the	core	of	DNAplotlib	is	the	main	rendering	pipeline	(Figure	4a).	This	is	implemented	within	the	

DNARenderer	object	and	executed	using	the	renderDNA(…)	function.	To	tailor	the	rendering	of	each	type	of	

part	or	regulation	arc,	rendering	functions	are	provided	to	the	DNARenderer	as	dictionaries	(part_renderers	

and	 reg_renderers	 in	 Figure	 2a)	 with	 the	 part	 or	 regulation	 type	 mapping	 to	 the	 associated	 rendering	

function.	 Standard	 built-in	 functions	 can	 be	 chosen	 that	 cover	 the	 full	 range	 of	 SBOLv	 parts	 (Figure	 1b;	

Supplementary	Text),	or	the	user	can	specify	their	own,	which	may	include	new	types	of	part	or	regulation	

not	currently	available	 (e.g.,	 recombinases,	see	Figure	3).	To	create	a	visualization,	designs	are	provided	 in	

the	form	of	a	list	where	each	element	is	a	dictionary	defining	the	part	at	that	position	in	the	design	as	well	as	

other	design	information	such	as	orientation,	length	and	styling	options.	The	use	of	a	dictionary	data	type	to	

store	 this	 information	 allows	 for	 varying	 numbers	 and	 types	 of	 option	 to	 be	 easily	 accommodated.	

Visualizations	are	automatically	generated	by	scanning	this	list	and,	for	each	element,	calling	the	associated	

function	 for	 the	 part	 type	 encountered.	 If	 an	 unrecognized	 part	 type	 or	 attribute	 is	 met,	 this	 element	 is	

ignored	 to	 ensure	 that	multiple	 rendering	 functions	with	 differing	 levels	 of	 functionality	 do	 not	 break	 the	

entire	 pipeline.	 Regulation	 is	 handled	 in	 a	 similar	 way	 with	 start	 and	 end	 points	 provided,	 in	 addition	 to	

styling	options.	 Regulation	 links	 are	 automatically	 routed	 to	minimize	overlapping	 regions.	All	 rendering	 is	

performed	 using	 a	 matplotlib	 axis	 object,	 which	 enables	 genetic	 designs	 to	 be	 directly	 incorporated	 into	

existing	plotting	routines	(e.g.,	bar	charts	and	scatter	plots,	see	Figure	2).	

All	built-in	part	and	regulation	renderers	can	be	customized	through	the	use	of	pre-defined	options	

(Figures	4b	and	5).	 To	 customize	part	 appearance,	 a	dictionary	 called	opts	 is	 added	 to	 the	 specific	part	or	

regulation	element	that	needs	customizing.	The	opts	dictionary	defines	a	mapping	between	a	customization	

option	and	the	value	it	should	take.	These	options	are	automatically	sent	to	the	relevant	rendering	function	

by	the	DNARenderer	object	when	the	part	or	regulation	arc	is	drawn.	Options	not	used	by	the	renderer	are	

ignored.	A	full	table	of	all	options,	their	format,	and	the	elements	that	are	compatible	are	shown	in	Figure	5.	

The	programmable	nature	of	DNAplotlib	opens	up	many	unique	capabilities	not	possible	with	other	

tools.	For	example,	genetic	circuits	are	composed	of	many	parts	whose	regulation	leads	to	numerous	internal	

states	 of	 gene	 expression.	 Illustrating	 these	 and	 the	 strengths	 of	 regulation	 present	 is	 a	 challenge	 as	 the	

complexity	 of	 a	 circuit	 grows.	 Similarly,	 the	 construction	 of	 large	 variant	 libraries	 that	 explore	 a	 potential	

	 5	

genetic	design	space	has	become	commonplace	as	DNA	synthesis	costs	have	 fallen	and	assembly	methods	

have	 improved
16-19

.	Visualizing	a	 large	number	of	 internal	 circuit	 states	or	design	variants	manually	 is	both	

time-consuming	and	highly	error-prone.	However,	a	simple	computer	program	can	be	written	to	rapidly	and	

accurately	enumerate	these,	and	DNAplotlib	used	to	automate	the	visualization	of	key	design	features,	part	

attributes	and	 the	 internal	 regulatory	 links	 that	 are	present	 (Figures	2a-b).	 This	 is	made	possible	by	direct	

programmable	access,	which	also	allows	 for	 tight	 integration	 into	existing	analysis	workflows	with	minimal	

effort.	DNAplotlib	 is	already	used	within	 the	genetic	 circuit	design	automation	program	Cello
20
	 to	visualize	

candidate	designs.	 Furthermore,	 the	 ability	 to	 automate	 the	 generation	of	 large	numbers	of	 visualizations	

containing	small	variations	in	regulation	opens	up	new	opportunities	to	produce	animated	visualizations	that	

convey	 the	dynamics	of	 a	 system	 (Movie	 S1).	 This	 is	 useful	 for	 genetic	devices	 such	as	oscillators
21
	whose	

output	naturally	varies	in	time,	having	no	single	steady	state.	

Another	 feature	differentiating	DNAplotlib	 is	 the	 inclusion	of	“trace-based”	symbols	 for	promoters,	

ribosome	 binding	 sites	 (RBSs),	 genes,	 terminators,	 and	 user-defined	 regions	 that	 goes	 beyond	 the	 SBOLv	

standard.	These	symbols	 take	 inspiration	 from	genome	browsers
22,	23

,	aiming	 to	display	not	only	 functional	

information	about	 the	part	 type	encoded	at	a	particular	point	 in	a	design,	but	also	 to	provide	a	physically	

accurate	 representation	 of	 its	 position	 and	 extent	within	 the	DNA.	 This	 allows	 for	 a	 direct	 comparison	 to	

experimental	data	(Figure	2c)	or	other	designs	(Figure	2d)	at	a	base	pair	resolution.	This	is	achieved	by	either	

extending	 the	 length	of	gene	and	user-defined	element	symbols,	or	having	 filled	 rectangular	 regions	cover	

the	backbone	of	the	construct	for	the	length	of	a	promoter,	RBS	or	terminator,	and	using	standard	symbols	

extending	 from	 these	 to	 denote	 the	 part	 type	 (see	 Figures	 2c-d).	 With	 sequencing	 seeing	 increased	 use	

across	biology	and	allowing	for	the	collection	of	large	amounts	of	data	at	this	level	of	detail,	the	demand	for	

this	capability	 is	 likely	to	grow.	To	support	 the	use	of	associated	data	at	a	base	pair	 resolution,	DNAplotlib	

includes	functions	to	 load	trace	files	 in	the	commonly	used	Browser	Extensible	Data	(BED)	format
24
	 (Figure	

2c;	Supplementary	Text).	

Direct	 access	 to	 DNAplotlib	 from	 Python	 gives	 greatest	 flexibility	 when	 generating	 visualizations.	

However,	in	some	cases	it	may	be	simpler	for	non-programmers	to	specify	designs	and	part	customizations	in	

text-based	 files.	 These	 can	 be	 shared	more	 easily,	 allow	 for	 better	 reuse	 of	 design	 or	 styling	 information	

amongst	 members	 of	 a	 lab,	 and	 support	 the	 wider	 adoption	 of	 standardized	 genetic	 designs.	 For	 this	

purpose,	we	provide	two	command-line	interfaces.	The	first	called	‘Quick	Plotter’	(quick.py)	mimics	the	idea	

of	Pigeon
8
	and	uses	a	simple	syntax	to	define	basic	constructs	as	a	single	 line	of	text.	This	 is	useful	 for	the	

quick	 creation	 of	 small	 constructs	 with	 limited	 customization.	 The	 second	 called	 ‘Library	 Plotter’	

(plot_SBOL_designs.py)	 is	 designed	 for	 the	 visualization	 of	 large	 design	 libraries.	 Users	 are	 required	 to	

	 6	

provide	several	text	files	defining	their	set	of	parts,	styling	information,	and	the	library	of	designs	(e.g.,	part	

ordering,	orientation	and	regulatory	links).	These	are	then	processed	and	a	visualization	of	the	full	library	of	

designs	generated	and	saved	to	file.	

There	are	also	 several	broader	 impacts	 that	DNAplotlib	 supports.	 First,	 the	visualization	of	 genetic	

designs	 at	 present	 is	 a	 predominately	manual	 process.	 Illustration	 tools	 are	 commonly	 used	 to	 draw	 the	

individual	 components	 and	 these	 are	 then	 added	 to	 existing	 plots	 of	 underlying	 data	 to	 create	 a	 final	

diagram.	 Errors	 in	 the	 design	 are	 time-consuming	 to	 fix	 and	 similar	 forms	 of	 diagram	 cannot	 be	 easily	

generated	 by	 others.	 While	 the	 development	 of	 a	 visualization	 using	 DNAplotlib	 might	 initially	 take	 a	

comparable	amount	of	time,	once	a	script	is	produced,	it	can	immediately	act	as	a	template	for	others.	For	

example,	the	novel	plot	shown	in	Figure	2d,	which	displays	a	comparison	of	the	homology	present	within	a	

genetic	circuit,	could	immediately	be	used	by	others	with	minimal	change,	greatly	simplifying	the	distribution	

of	 useful	 visual	 analyzes.	 Second,	 the	 maintenance	 of	 standards-compliant	 designs	 over	 time	 can	 be	 a	

challenge	as	standards	often	change	and	evolve	with	their	field.	Because	DNAplotlib	internally	captures	the	

visual	 standard,	existing	 scripts	merely	need	 to	be	 rerun	 to	generate	up-to-date	diagrams.	 This	provides	a	

powerful	means	of	ensuring	the	long-term	applicability	and	relevance	of	visualizations	developed.	

DNAplotlib	 is	 released	 as	 open-source	 software	 under	 the	 MIT	 license.	 The	 project	 welcomes	

contributions	from	others	within	the	community	and	all	source	code	and	a	gallery	of	examples	is	available	at	

the	project	website	(www.dnaplotlib.org).	

	

Supporting	Information	

The	 Supporting	 Information	 is	 available	 online	 and	 includes:	 Supplementary	 Text;	Movie	 S1:	 Repressilator	

dynamics.	

	

Acknowledgements	

This	 work	 was	 supported	 by	 US	 Defense	 Advanced	 Research	 Projects	 Agency	 (DARPA)	 Living	 Foundries	

awards	 HR0011-13-1-0001	 and	 HR0011-15-C-0084	 (C.A.V.,	 T.E.G.	 and	 D.B.G.);	 Office	 of	 Naval	 Research,	

Multidisciplinary	 University	 Research	 Initiative	 grant	 N00014-13-1-0074	 (C.A.V.);	 NSF	 Synthetic	 Biology	

Engineering	 Research	 Center	 grant	 SynBERC	 EEC0540879	 (C.A.V.);	 and	 National	 Science	 Foundation	 grant	

DBI-1355909	(B.A.B.)	

	

Author	contributions	

	 7	

T.E.G.,	C.A.V.,	D.B.G.,	B.S.D.	and	E.G.	conceived	of	the	project.	T.E.G.,	B.S.D.	and	E.G.	developed	the	library.	

D.B.G.	 and	 C.E.	 contributed	 to	 the	 gallery	 of	 examples.	 B.A.B.	 implemented	 functions	 to	 load	 design	

information	from	SBOL-compliant	files.	T.E.G.	wrote	the	manuscript.	

	

Competing	financial	interests	

The	authors	declare	no	competing	financial	interests.	

	

	 	

	 8	

References	

[1]	Quinn,	J.	Y.,	Cox,	R.	S.,	3rd,	Adler,	A.,	Beal,	J.,	Bhatia,	S.,	Cai,	Y.,	Chen,	J.,	Clancy,	K.,	Galdzicki,	M.,	Hillson,	

N.	 J.,	 Le	 Novere,	 N.,	 Maheshwari,	 A.	 J.,	 McLaughlin,	 J.	 A.,	 Myers,	 C.	 J.,	 P,	 U.,	 Pocock,	 M.,	 Rodriguez,	 C.,	

Soldatova,	L.,	Stan,	G.	B.,	Swainston,	N.,	Wipat,	A.,	and	Sauro,	H.	M.	(2015)	SBOL	Visual:	A	Graphical	Language	

for	Genetic	Designs,	PLoS	Biol	13,	e1002310.	

[2]	Le	Novère,	N.,	and	al.,	e.	(2009)	The	Systems	Biology	Graphical	Notation,	Nat	Biotechnol	27,	735-741.	

[3]	Hillson,	N.	J.,	Plahar,	H.	A.,	Beal,	J.,	and	Prithviraj,	R.	(2016)	Improving	Synthetic	Biology	Communication:	

Recommended	Practices	for	Visual	Depiction	and	Digital	Submission	of	Genetic	Designs,	ACS	Synth	Biol.	

[4]	Lu,	G.,	and	Moriyama,	E.	N.	(2004)	Vector	NTI,	a	balanced	all-in-one	sequence	analysis	suite,	Breifings	in	

Bioinformatics	5,	378-388.	

[5]	Chandran,	D.,	Bergmann,	F.	T.,	and	Sauro,	H.	M.	(2009)	TinkerCell:	modular	CAD	tool	for	synthetic	biology,	

J	Biol	Eng	3,	19.	

[6]	Czar,	M.	J.,	Cai,	Y.,	and	Peccoud,	J.	(2009)	Writing	DNA	with	GenoCAD,	Nucleic	Acids	Res	37,	W40-47.	

[7]	Chen,	J.,	Densmore,	D.,	Ham,	T.	S.,	Keasling,	J.	D.,	and	Hillson,	N.	J.	 (2012)	DeviceEditor	visual	biological	

CAD	canvas,	Journal	of	Biological	Engineering	6,	1-12.	

[8]	Bhatia,	S.,	and	Densmore,	D.	(2013)	Pigeon:	a	design	visualizer	for	synthetic	biology,	ACS	Synth	Biol	2,	348-

350.	

[9]	McLaughlin,	J.	A.,	Pocock,	M.,	Misirli,	G.,	Madsen,	C.,	and	Wipat,	A.	(2016)	VisBOL:	Web-Based	Tools	for	

Synthetic	Biology	Design	Visualization,	ACS	Synth	Biol	5,	874-876.	

[10]	Canton,	B.,	Labno,	A.,	and	Endy,	D.	(2008)	Refinement	and	standardization	of	synthetic	biological	parts	

and	devices,	Nat	Biotechnol	26,	787-793.	

[11]	Hunter,	J.	D.	(2007)	Matplotlib:	A	2D	Graphics	Environment,	Computing	in	Science	&	Engineering	9,	90-

95.	

[12]	Cock,	P.	J.,	Antao,	T.,	Chang,	J.	T.,	Chapman,	B.	A.,	Cox,	C.	J.,	Dalke,	A.,	Friedberg,	I.,	Hamelryck,	T.,	Kauff,	

F.,	 Wilczynski,	 B.,	 and	 de	 Hoon,	 M.	 J.	 (2009)	 Biopython:	 freely	 available	 Python	 tools	 for	 computational	

molecular	biology	and	bioinformatics,	Bioinformatics	25,	1422-1423.	

[13]	Sanner,	M.	F.	(1999)	Python:	a	programming	language	for	software	integration	and	development,	J	Mol	

Graph	Model	17,	57-61.	

[14]	Galdzicki,	M.,	Clancy,	K.	P.,	Oberortner,	E.,	Pocock,	M.,	Quinn,	J.	Y.,	Rodriguez,	C.	A.,	Roehner,	N.,	Wilson,	

M.	 L.,	 Adam,	 L.,	 Anderson,	 J.	 C.,	 Bartley,	 B.	 A.,	 Beal,	 J.,	 Chandran,	 D.,	 Chen,	 J.,	 Densmore,	 D.,	 Endy,	 D.,	

Grunberg,	R.,	Hallinan,	J.,	Hillson,	N.	J.,	Johnson,	J.	D.,	Kuchinsky,	A.,	Lux,	M.,	Misirli,	G.,	Peccoud,	J.,	Plahar,	H.	

A.,	 Sirin,	 E.,	 Stan,	G.	 B.,	 Villalobos,	 A.,	Wipat,	 A.,	 Gennari,	 J.	 H.,	Myers,	 C.	 J.,	 and	 Sauro,	H.	M.	 (2014)	 The	

	 9	

Synthetic	 Biology	 Open	 Language	 (SBOL)	 provides	 a	 community	 standard	 for	 communicating	 designs	 in	

synthetic	biology,	Nat	Biotechnol	32,	545-550.	

[15]	Roehner,	N.,	Beal,	J.,	Clancy,	K.,	Bartley,	B.,	Misirli,	G.,	Grunberg,	R.,	Oberortner,	E.,	Pocock,	M.,	Bissell,	

M.,	Madsen,	C.,	Nguyen,	T.,	Zhang,	M.,	Zhang,	Z.,	Zundel,	Z.,	Densmore,	D.,	Gennari,	J.	H.,	Wipat,	A.,	Sauro,	H.	

M.,	and	Myers,	C.	J.	(2016)	Sharing	Structure	and	Function	in	Biological	Design	with	SBOL	2.0,	ACS	Synth	Biol	

5,	498-506.	

[16]	Casini,	A.,	Storch,	M.,	Baldwin,	G.	S.,	and	Ellis,	T.	(2015)	Bricks	and	blueprints:	methods	and	standards	for	

DNA	assembly,	Nat	Rev	Mol	Cell	Biol	16,	568-576.	

[17]	Engler,	C.,	Gruetzner,	R.,	Kandzia,	R.,	and	Marillonnet,	S.	 (2009)	Golden	gate	shuffling:	a	one-pot	DNA	

shuffling	method	based	on	type	IIs	restriction	enzymes,	PLoS	One	4,	e5553.	

[18]	 Appleton,	 E.,	 Tao,	 J.,	 Haddock,	 T.,	 and	 Densmore,	 D.	 (2014)	 Interactive	 assembly	 algorithms	 for	

molecular	cloning,	Nat	Methods	11,	657-662.	

[19]	Weber,	E.,	Engler,	C.,	Gruetzner,	R.,	Werner,	S.,	and	Marillonnet,	S.	(2011)	A	Modular	Cloning	System	for	

Standardized	Assembly	of	Multigene	Constructs,	PLoS	ONE	6,	e16765.	

[20]	Nielsen,	A.	A.	K.,	Der,	B.	S.,	Shin,	J.,	Vaidyanathan,	P.,	Paralanov,	V.,	Strychalski,	E.	A.,	Ross,	D.,	Densmore,	

D.,	and	Voigt,	C.	A.	(2016)	Genetic	circuit	design	automation,	Science	352,	aac7341.	

[21]	Elowitz,	M.	B.,	and	Leibler,	S.	(2000)	A	synthetic	oscillatory	network	of	transcriptional	regulators,	Nature	

403,	335-338.	

[22]	Kent,	W.	J.,	Sugnet,	C.	W.,	Furey,	T.	S.,	Moskin,	K.	M.,	Pringle,	T.	H.,	Zahler,	A.	M.,	and	Haussler,	D.	(2002)	

The	Human	Genome	Browser	at	UCSC,	Genome	Res	12,	996-1006.	

[23]	Robinson,	J.	T.,	Thorvaldsdóttir,	H.,	Winckler,	W.,	Guttman,	M.,	Lander,	E.	S.,	Getz,	G.,	and	Mesirov,	J.	P.	

(2011)	Integrative	genomics	viewer,	Nat	Biotechnol	29,	24-26.	

[24]	 Quinlan,	 A.	 R.,	 and	 Hall,	 I.	 M.	 (2010)	 BEDTools:	 a	 flexible	 suite	 of	 utilities	 for	 comparing	 genomic	

features,	Bioinformatics	26,	841-842.	

[25]	Smanski,	M.	J.,	Bhatia,	S.,	Zhao,	D.,	Park,	Y.,	L,	B.	A.	W.,	Giannoukos,	G.,	Ciulla,	D.,	Busby,	M.,	Calderon,	J.,	

Nicol,	 R.,	Gordon,	D.	B.,	Densmore,	D.,	 and	Voigt,	 C.	A.	 (2014)	 Functional	optimization	of	 gene	 clusters	by	

combinatorial	design	and	assembly,	Nat	Biotechnol	32,	1241-1249.	

[26]	 Nielsen,	 A.	 A.,	 and	 Voigt,	 C.	 A.	 (2014)	 Multi-input	 CRISPR/Cas	 genetic	 circuits	 that	 interface	 host	

regulatory	networks,	Mol	Syst	Biol	10,	763.	

[27]	Yang,	 L.,	Nielsen,	A.	A.,	 Fernandez-Rodriguez,	 J.,	McClune,	C.	 J.,	 Laub,	M.	T.,	 Lu,	T.	K.,	and	Voigt,	C.	A.	

(2014)	Permanent	genetic	memory	with	>1-byte	capacity,	Nat	Methods	11,	1261-1266.	

	 	

	 10	

Figure	Legends	

	

Figure	1:		 Overview	 of	 DNAplotlib.	 (A)	 Schematic	 of	 the	 visualization	 pipeline	 and	 supporting	 libraries.	

Genetic	designs	are	provided	as	SBOL
14
,	GFF	or	CSV	 files,	or	 created	 through	direct	calls	 to	 the	DNAplotlib	

library.	 Associated	 experimental	 data	 relating	 to	 individual	 parts	 or	 entire	 designs	 (e.g.,	 RNA-seq	

transcription	profiles	 in	the	BED	format
24
)	can	also	be	provided	to	 influence	properties	of	the	visualization.	

Shaded	boxes	denote	elements	 included	as	part	of	the	library.	(B)	DNAplotlib	supports	the	complete	set	of	

standardized	SBOLv
1
	parts	in	both	forward	and	reverse	orientations.	(C)	The	size,	color,	shape	and	labeling	of	

all	genetic	parts	can	be	customized	to	convey	associated	part	information,	e.g.,	promoter	strength.	

	

Figure	2:	 Examples	of	DNAplotlib	visualizations.	All	are	available	from	the	project	website.	(A)	Bar	graph	

shows	predicted	output	 in	relative	promoter	units	 (RPUs)	 for	a	hypothetical	repressor-based	XNOR	genetic	

device	designed	by	Cello
20
.	The	corresponding	construct	and	expected	state	of	all	promoters	and	genes	for	

each	combination	of	inputs	is	shown	to	the	right.	Input	promoters	are	active	if	black	and	labeled,	repressible	

promoters	are	active	if	strongly	colored,	and	genes	are	expressed	if	filled.	Regulatory	links	that	are	present	

for	 a	 given	 set	 of	 inputs	 are	 included.	 (B)	 Selection	 of	 refactored	 nifUSVWZM	 gene	 cluster	 designs
25
.	 Bar	

graphs	 represent	 the	 relative	 activity	 of	 the	 encoded	 synthetic	 nitrogen	 fixation	 pathway	with	 error	 bars	

showing	 ±	 1	 standard	 deviation.	 Numbers	 correspond	 to	 the	 variant	 number	 in	 the	 original	 study.	 In	 the	

genetic	 designs,	 promoter	 and	 RBS	 strengths	 are	 shown	 ranging	 from	 strong	 (black)	 to	weak	 (light	 grey),	

spacer	elements	are	blue	and	cloning	scars	are	red.	(C)	Zoomed	section	of	variant	75	from	the	nifUSVWZM	

library
25
	 drawn	 using	 trace-based	 renderers	 to	 enable	 direct	 comparison	 of	 nucleotide	 data.	 Three	 data	

tracks	 are	 show:	 strand-specific	 RNA-seq	 read	 depths
25
,	 scores	 from	 an	 RBS	 prediction	 software,	 and	 GC	

percentage	 for	 a	 50	 bp	 centered	 moving	 window.	 Data	 for	 the	 nifS	 region	 has	 been	 highlighted.	 (D)	

Homology	analysis	of	a	CRISPRi	circuit	implementing	a	2-input,	1-output	AND	gate
26
.	The	promoters	pTet	and	

pTac	 act	 as	 inputs	 and	 the	 g2	 guide-RNA	 is	 the	 output.	 The	 same	 construct	 is	 plotted	 vertically	 and	

horizontally	using	trace-based	renderers.	Heat	map	shows	the	internal	homology	present	ignoring	homology	

that	would	be	present	between	identical	positions	in	each	copy	of	the	circuit.	Highlighted	regions	show	that	

part	reuse	and	similarity	of	several	regions	within	the	guide-RNA	sequences	leads	to	potential	hot-spots	for	

recombination.	

	

Figure	3:			 Extending	 functionality	 to	cover	new	types	of	genetic	part	and	 regulation.	Recombinase	sites	

do	not	 form	part	of	 the	 current	 SBOLv	 standard.	 Even	 so,	 they	 can	be	easily	 incorporated	 into	DNAplotlib	

	 11	

plots	by	providing	custom	renderers	for	these	specific	elements.	(A)	Array	of	recombinase	sites	implementing	

a	 64-bit	 genetic	memory	 device
27
.	 Current	 binary	 state	 is	 shown	 below	 each	 pair	 of	 recombination	 sites.	

Arrows	 indicate	 manipulations	 of	 the	 array	 at	 each	 step	 by	 integrases	 associated	 to	 each	 pair	 of	

recombination	 sites.	 (B)	 Illustration	 of	 a	 reversible	 recombinase	 NOT-gate	 device.	 In	 these	 examples,	

regulation	arcs	are	used	to	indicate	the	flipping	of	DNA	between	the	recombinase	sites.	

	

Figure	4:			 Data	 structures	 controlling	 the	 visualization	 of	 a	 genetic	 design.	 (A)	 DNAplotlib	 provides	 the	

DNARenderer	object	that	takes	design	and	regulatory	information	(parts	and	regs)	with	associated	rendering	

functions	 for	 each	 element	 (part_renderers	 and	 reg_renderers),	 and	 then	 coordinates	 the	 creation	 of	 a	

visualization	 through	 the	 renderDNA(…)	 function.	 Dotted	 lines	 denote	 optional	 elements	 and	 chevrons	

denote	part	objects.	All	rendering	is	performed	using	a	matplotlib	axis	to	allow	for	the	easy	incorporation	of	

other	 standard	 plotting	 routines.	 (B)	 The	 opts	 dictionary	 can	 be	 included	 with	 any	 part	 or	 regulatory	

definition	to	tailor	the	styling	of	the	component	(see	Figure	5	for	a	full	list	of	options).	Options	are	shown	for	

the	coding	region	parts.	

	

Figure	5:			 Customization	 options	 supported	 by	 each	 part	 and	 regulation	 type.	 (A)	 Options	 for	 all	 part	

types	covering	both	SBOLv	and	trace	part	renderers.	Black	squares	denote	a	supported	option.	For	options	

with	a	color	format,	values	are	given	as	fractions	of	1.0	for	red,	green	and	blue	components.	(B)	Options	for	

all	regulation	renderers.	

	 	

	 12	

Figure	1	

	

	

	

	 	

	 13	

Figure	2	

	

	
	

	 	

	 14	

Figure	3	

	

	
	

	 	

	 15	

Figure	4	

	

	

	

	 	

	 16	

Figure	5	

	

	

	 	

	 17	

For	Table	of	Contents	Use	Only	

DNAplotlib:	programmable	visualization	of	genetic	designs	and	associated	data	

Bryan	S.	Der,	Emerson	Glassey,	Bryan	A.	Bartley,	Casper	Enghuus,	Daniel	B.	Goodman,	D.	Benjamin	Gordon,	

Christopher	A.	Voigt	and	Thomas	E.	Gorochowski	

	

	

	

	

	

	

	

