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In the domain of genome annotation, the identification of DNA-binding protein is one of the crucial challenges. DNA is
considered a blueprint for the cell. It contained all necessary information for building and maintaining the trait of an
organism. It is DNA, which makes a living thing, a living thing. Protein interaction with DNA performs an essential role in
regulating DNA functions such as DNA repair, transcription, and regulation. Identification of these proteins is a crucial task
for understanding the regulation of genes. Several methods have been developed to identify the binding sites of DNA and
protein depending upon the structures and sequences, but they were costly and time-consuming. Therefore, we propose a
methodology named “DNAPred_Prot”, which uses various position and frequency-dependent features from protein sequences
for efficient and effective prediction of DNA-binding proteins. Using testing techniques like 10-fold cross-validation and
jackknife testing an accuracy of 94.95% and 95.11% was yielded, respectively. The results of SVM and ANN were also
compared with those of a random forest classifier. The robustness of the proposed model was evaluated by using the
independent dataset PDB186, and an accuracy of 91.47% was achieved by it. From these results, it can be predicted that the
suggested methodology performs better than other extant methods for the identification of DNA-binding proteins.

1. Introduction

DNA (Deoxyribonucleic acid) is a blueprint for the cell. It
contains information that is encoded for all our characteris-
tics. A living thing’s DNA is what makes a living thing a liv-
ing thing. It is an essential part of reproduction that is
transmitted from parents to offspring. There are four pri-
mary functions of DNA, commonly known as replication,
encoding information, gene expression, and mutation and
recombination. But DNA does not do this all alone; thou-
sands of proteins in the cells help DNA to regulate DNA
functions. Actions related to DNA are carried out with the
help of specific proteins in living cells. These actions are car-
ried out as the result of protein-DNA synergy [1]. Non-
specific or specific binding between DNA and protein is

involved in achieving regulation. Proteins that attach to
DNA for such governance are known as DNA-binding pro-
teins. These DNA-binding proteins contain a domain of
DNA-binding and have an affinity for single- as well as
double-stranded DNA. At different stages of life, these func-
tional proteins play a vital role [2].

Moreover, DNA-protein binding plays an imperative
role in the gene study and the development of a living body.
Their research also helps in an inspection of the human
body. It helps in the identification of the procedure of
actions taking place in the body such as ailment, growth,
development, changes, and improvement.

In the development of cell and growth systems, an
important role is played by the transcription factor. It usu-
ally resides in a cell with an inactive state, and the existence
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of ligand TF becomes active. Desireless activation is respon-
sible for many diseases such as inflammation, development
disorder, autoimmunity, cancer, and abnormal hormone
responses. Therefore, keeping a continuous record of
DNA-binding proteins is of significant interest. It helps in
the identification of, and treatment of diseases such as
abnormal TF activity, cancers and genetic disorder which
includes haemophilia, colour blindness, and many more.
DNA-BP also plays an integral part in prokaryotic host
defence in the shape of restriction enzymes. Binding of
DNA with protein is shown in Figure 1.

Many experimental approaches used in biology have
been adopted for the identification of DNA-binding pro-
teins. These include X-ray crystallography [3], chromatin
immunoprecipitation with DNA microarrays [4], and
filter-binding assays [5]. These methods enable us to make
exact identification of DNA-protein binding, but these
mechanisms for proteins structures recognition are labori-
ous, time-consuming, and require comprehensive material
and expanse.

There are two practical approaches for the identification
of sequences based on protein behaviour. One is the ML
algorithms, to make improvements and expert model with
derived numeral feature vector and query sequence forecast-
ing. The second is the elicitation of organic information
enclosed in the sequence of the protein and its metamorpho-
sis into a comparable numeral vector of the features. Modern
computational approaches for the identification of DNA
binding protein are classified into two main classes: (1)
Machine learning-based and (2) template-based.

Based on machine learning, DNA-binding protein pre-
diction methodologies are divided into two general catego-
ries: structure-based [8, 9] and sequence-based [10–14]
prediction. Higher identification rates can be achieved by
the structure-based prediction of DNA-binding protein.
Still, due to the inadequacy of sufficient knowledge about
the structure of a protein, these approaches are not used
on a large scale for the perception of high-throughput
sequences. For predicting the function of a protein, new
approaches are based on sequences of amino acids. By the
result of bountiful experiments and methods, it realizes that
proteins or primary polypeptide structure resembles the
structural arrangement of polypeptide after wrapping and
their methods are also very identical [15]. Template-based
methods are also known as a template-based methodology
because this identifies the consequential correspondence of
protein sequences or structure among a known template
and a query to bind DNA, to determine and evaluate the
DNA-binding priority of sequences that are targeted [16,
17]. In contrary to the template-based approach, machine
learning methodology determines a similar forecasting
model to predict by analyzing and identifying the arrange-
ment and pattern in feature space input. Some cases are sup-
port vector machine (SVM) [11, 12, 18–20], random forest
[21], neural network [22–25], nearest neighbors’ algorithm
[23], naïve Bayes classifier [26, 27], and ensemble classifiers
[28–30]. The process of identifying DNA binding protein
by utilizing machine learning techniques requires two essen-
tial steps: (1) compatible feature extraction and (2) selection

of suitable classification algorithm. The extant predictive
methodology can be divided into two sections based on fea-
ture elicitation methods: (1) from protein structure extract
appropriate features [31–34] and (2) relevant feature extrac-
tion from amino acid sequences [8, 35–38]. For DNA-
binding protein recognition, more accurate and authentic
results can be obtained using a structure-based prophecy
technique [39]. Still, for this, a 3D structure with a high res-
olution of the protein sequence is required.

Thus, until now, for the identification of DNA-binding
protein, many computing techniques direct from their
amino acid sequences have been proposed and suggested.
These approaches independently analyze and probe four dis-
tinct kinds of a feature of protein sequences and ciphering
sequences [11, 39–42]. Categorically, the four specific types
consist of (1) structural information, (2) functional and
compositional information, (3) information about evolution,
and (4) physicochemical properties. The four distinct cate-
gories of encoding procedures are as follows: (i) OCTD
(global strategy) overall composition-transition-distribution,
(ii) SSA transformation (local procedure) called split amino
acid, (iii) ACC transformation (nonlocal approach) auto-
cross covariance, and (iv) position-specific scoring matrix
distant transformation known as “PSSM-DT”. These proce-
dures have been considered deep in their related scrutinize
work [28, 39, 43, 44].

There exist few recent studies which perform prediction
of DNA-binding proteins using multiple features and
machine learning classifiers. In 2022, Zhang et al. proposed
a novel method for prediction of DNA-binding proteins by
using features from amino acid composition and evolution-
ary information of protein sequences. Later, these features
were fed to an XGboost classifier [45]. Furthermore, Harini
et al. in 2022 created a database named ProNAB for DNA
and protein complexes [46]. Jia et al., in 2021, proposed
KKDBP, a classifier for the prediction of DNA-binding pro-
teins using multiple PSSM feature fusions and random forest
as a classifier [47]. In 2021, Hu et al. proposed TargetDBP+,
which performed prediction of DNA-binding proteins using
five convolutional features and SVM classifier [48]. Qian
et al. in 2021, extracted six sequence-based features and used
Multiple Kernel Learning-based on Centered Kernel Align-
ment for fusion of these features. Further, SVM was used
for the classification of DNA-binding proteins [49]. Zou
et al. proposed FTWSVM-SR, which used multiple
sequence-based features and SVM as a classifier for predict-
ing DNA-binding proteins [50]. Zou et al. also proposed
MK-FSVM-SVDD, another predictor for DNA-binding pro-
tein prediction using six features with central kernel align-
ment and SVM as classifier [51]. However, the accuracy of
all these proposed methods still has room for improvement.
Nevertheless, most of the suggested approaches are inade-
quate in their capability to describe protein-DNA binding.
Therefore, it is vital to develop a new strategy for the predic-
tion of DNA-binding proteins accurately and efficiently and
to compare it with existing state-of-the-art techniques.

The present work focuses on the identification of DNA-
binding proteins through sequences. There are usually two
goals for predicting DNA-binding proteins with different
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techniques: (1) to help scientists for the development and get
covet data and (2) to encourage academic studies for appro-
priate fields. For establishing a sound analytical protein
identification system, we need to deal with following the 5-
step rule that includes (a) a valid standard dataset, (b) sam-
ple formulation, (c) algorithm for operation purpose, (d)
performing cross-validation, and (e) friendly user web server
for forecasting which is publicly accessible. The proposed
system is highly accurate as compared to the previously
existing methods and is easy to opt for as it only uses
sequence-based features of proteins to identify them as
DNA binding or non-DNA binding.

2. Materials and Methodology

The methodology is divided into five steps, the first aspect,
which is “A valid benchmark,” is discourse here in this sec-
tion. The protein sequence benchmark dataset was obtained
from UniProtKB. At first, all types of sequences are passed
out from a process of CD-HIT, which stands for Cluster
Database at High Identity with Tolerance, and is initially
composed by Weizhong Li and is now available publicly.
The basic functionality of CD-HIT is to take input in FASTA
format and remove similar or highly similar sequences from
the dataset. The purpose is to reduce the size of the dataset
by removing redundant or highly matching sequences from
the dataset. So, for a benchmark dataset used in this study,
sequences’ identity cut-off is set to 60%. Redundant
sequences or 60% identical were removed out, and a dataset
is formed. All sequences of the obtained dataset are classified
into two categories: (a) positive and (b) negative. These
sequences of the DNA-binding protein are available in the
dataset named “Dataset”. The dataset contains 57,194
DNA-binding protein sequences in which there are positive
11,526 sequences. Moreover, to check the robustness of the
proposed methodology model, an independent dataset
PDB 186 [40] has also been used. There are 93 binding pro-
teins and 93 nonbinding protein sequences in an indepen-
dent dataset. The performance of the proposed method has
been compared with state-of-the-art methodologies. The
details of datasets are shown in Table 1.

For the identification of DNA-binding protein, the
methodology followed includes data collection from Uni-
Prot, applying preprocessing and filtration techniques, after
that calculating the features obtained, in the end, training
the classifier and getting the results, as shown in Figure 2.

2.1. Extracting Features. The second step describes how the
dataset samples are devised into proper expressions of math-
ematics which equate and compare these samplings with
aimed biological class in a remarkably precise, efficient,
and accurate way.

Such a formulation of samples is essential depending upon
the static nature of classifiers. With frenzied extension and
expansion of biological sequences in a postgenomic era, one
of the most complex and critical issues in bioinformatics is
to identify the suitable way to define these sequences with vec-
tors based on unique models. Such notations and transforma-
tions assist in maintaining the unique arrangement of
sequence characteristics and essential information about pro-
teomic data. Machine learning algorithms are incorporated
to use vectors for entertaining them, but a dataset of sequences
needs to decipher among classes based on data extracted by
the transformation process [52]. There is a risk that a vector
which is represented in a discrete structure may mislay infor-
mation about sequences completely or to bypass from com-
plete loss of information of sequences arrangement for
protein, a strategy named ‘PseAAC’ [53] was suggested which
stands for the “Pseudo Amino Acid Composition” [54]. This
strategy has been prevalently used in all fields of proteomic
calculation [55–61]. This extensive and progressive use led to
the formation of three existing opened access powerful and
useful softwares, called “PseAAC-Builder”, “propy”, and
“PseAAC-General”, for developing different methods of
Chou’s special PseAAC [62] where the last one is a generaliza-
tion of “PseAAC” [63]. They not only include the distinctive
approach for feature extraction of proteomic data but also
extend to feature vectors which include, “Functional Domain”
mode, “Gene Ontology” mode, and “Sequential Evolution” or
“PSSM” mode. Inspired by the complementary outcome of
utilizing “PseAAC” to handle the sequences of peptide or pro-
tein, the proposed strategy of “PseAAC” was continued to
Pseudo K-tuple Nucleotide Composition (PseKNC) for

(a) (b)

Figure 1: DNA binding protein bound to respective target DNAs. Created from PDB (a) 1LMB and (b) 1 RVA. Image source [6, 7],
respectively.
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developing and achieving different feature vectors for RNA/
DNA that have confirmed very favourable as well [64–70].
Especially, recently, an advanced web server named “Pse-in-
One” [71] and “Pse-in-One 2.0” [72], which is its advanced
version and can be utilized in generating any required pro-
tein/peptide vector and sequences of DNA and RNA accord-
ing to the requirement of the users. Here are some
methodologies used for extracting the features, to identify
the specific arrangements associated with the primary protein
structure.

2.2. Position Relative Incidence Matrix (PRIM). The first step
is to transform the primary structure of protein into a matrix
form for expressing the typical features of proteins. PRIM is
built by utilizing the protein sequence length. With the help
of a row-major strategy, protein basic structure is converted
into two-dimensional from singular dimensional. We can cal-
culate the two-dimensional matrix by the following equation if
we simply take the square root of the length of the protein.

n =
ffiffiffi
k

p��� ���, ð1Þ

Here, n and k are the two-dimensional square matrix
dimension and primary sequence length, respectively. Later
on, this amino acid matrix is used in the computation of PRIM
through which the development of feature vector is done. The
formation structure of PRIM is 20x20. The representation of
two dimensional is as follows in equation (2).

SPRIM =

Y1 ⟶ 1 Y1 ⟶ 2 ⋯ Y1 ⟶ j Y1 ⟶ 20
Y2 ⟶ 1 Y2 ⟶ 2 ⋯ Y2 ⟶ j Y2 ⟶ 20

⋮ ⋮ ⋯ ⋮ ⋮

Yi ⟶ 1 Yi ⟶ 2 ⋯ Yi ⟶ j Yi ⟶ 20
⋮ ⋮ ⋯ ⋮ ⋮

Yn ⟶ 1 Yn ⟶ 2 ⋯ Yn ⟶ j Yn ⟶ 20

2
666666666664

3
777777777775
:

ð2Þ

Here, Y figures out the ith position residue score relative to
jth type amino acid. The possible values for j could be 0, 1, 2, 3,
4…, and so on. This 20x20matrix can produce a total of four
hundred coefficients. Statistical moments are computed for
PRIM by reducing the number of coefficient elements which
is 24 in the case of PRIM computation. 10 raw, Hahn, and cen-
tral moments were calculated up to order three, and hence, 30
unique features were obtained.

2.3. Reverse Position Relative Incidence Matrix (RPRIM). To
explore concealed and complicated characteristics of an ele-
mentary sequence of the protein that has confusion with
similar sequences of other protein, a matrix is used which
have 400 coefficients as it contains 20x20 dimension as
PRIM, known as reverse position incidence matrix.

SPRIM =

Y1 ⟶ 1 Y1 ⟶ 2 ⋯ Y1 ⟶ j Y1 ⟶ 20
Y2 ⟶ 1 Y2 ⟶ 2 ⋯ Y2 ⟶ j Y2 ⟶ 20

⋮ ⋮ ⋯ ⋮ ⋮

Yi ⟶ 1 Yi ⟶ 2 ⋯ Yi ⟶ j Yi ⟶ 20
⋮ ⋮ ⋯ ⋮ ⋮

Yn ⟶ 1 Yn ⟶ 2 ⋯ Yn ⟶ j Yn ⟶ 20

2
666666666664

3
777777777775
:

ð3Þ

Dimensions of the matrix mentioned above are reduced.
Statistical moments are calculated for RPRIM, which have
24 elements set. 10 raw, Hahn, and central moments are cal-
culated using 2D SRPRIM up till third order, 30 unique fea-
tures obtained.

2.4. Statistical Moments. In recognition of patterns, many
research methodologies demonstrate that statistical
moments are fruitful to generate features against those
sequences which do not rely upon any guideline. A specific
category of biased average, which is used in analyzing the
consolidation of some unique structure in problems related
to sequence recognition is known as moments [73]. These
are also helpful in many issues related to pattern recognition.
Another important method for determining and under-
standing different kinds of sequences and object depiction
is orthogonal moments.

By using techniques of polynomial and distribution func-
tions, many statisticians develop certain moments. Further,
Hahn, central, and raw moments are utilized to explain the
problem in discussing in this study. There are two types of
orthogonal moments, (1) discrete moments and (2) continu-
ous moments. It has been considered in a recent study [74]
that for quantized and distinct data, the result gained by a dis-
crete moment was much better than a continuous moment. A
different form of the moment can be calculated by the matrix
or vector collection which represents any pattern. The raw
moments are treated as generally known moments which
can be calculated using the below equation (4).

Mxy =〠
i

〠
j

ix jy f i, jð Þ: ð4Þ

Table 1: Detail of the dataset used.

Sequences Benchmark dataset Independent dataset

Negative sequences 45,668 93

Positive sequences 11,526 93

Total 57,194 186

Data collection from
uniport 

Training Features calculation

Preprocessing and
filtration

Figure 2: Flowchart of the proposed methodology.
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The origin of data is considered as a remark point by the
raw moments; on the other hand, components that are far
away from the origin point are used in calculating the
moments. The data’s centroid is used by central moments as
their remark point, which was calculated by the following
equation (5).

Uxy =〠
p

〠
q

p − p′
� �

pow x q − q′
� �

pow yf p, qð Þ: ð5Þ

Distinct features up to third order are obtained with the
help of central moments and defined as U00, U01, U10, U11,
U02, U20, U12, U21, U30, and U03. Now, the centroids p′ and
q′ are computed from equations (11) and (13).

p′ = theM10

M00 ,

q′ = M01

M00 :

ð6Þ

Orthogonal moments which need a square matrix input
data in two-dimensional are Hahn moments of two dimen-
sional. They can be calculated when the notations of one-
dimension are converted into square matrix notations. N
order of Hahn polynomial is calculated from the Eq. (7).

hu,vn r, nð Þ = N + 1 + rð Þn N − 1ð Þn, ð7Þ

〠
n

k=0
−1ð Þk −nð Þk −rð Þk 2N + μ + v − n − 1ð Þk

N + v − 1ð Þk N − 1ð Þk
∗

1
k! : ð8Þ

Generalization of the Pochhammer symbol is made as in
equation (9).

að Þk = a a + 1ð Þ⋯ : a + k − 1ð Þ: ð9Þ

The Pochhammer symbol will become more simplified
when using an operator named Gamma as follows in equation
(17)

að Þk =
Γ a + kð Þ
Γ að Þ : ð10Þ

Raw values for Hahn’s moments are generally measured
by utilizing a square norm and weighting method, as shown
in Eq. (22).

hὐ,vn r,Nð Þ =
ffiffiffiffiffiffiffiffiffiffi
ρ rð Þ
d2n

,
s

n = 0, 1,⋯N − 1: ð11Þ

On the other hand, in equation (12).

ρ rð Þ = Γ r + μ + vð Þ + Γ r + v + 1ð Þ r + 1 + μ + vð ÞN
v + μ + 2r + 1ð Þn! N − r − 1ð Þ! : ð12Þ

The Hahn moments which are orthogonally normalized
for discrete data of two dimensional are calculated up to three

orders as mentioned in equation (13).

Hij = 〠
N−1

q=0
〠
N−1

p=0
βpqh

ὐ,v
i q,Nð Þhὐ,vj p,Nð Þ,m, n = 0, 1, 2⋯N − 1:

ð13Þ

For every sequence 10 raw, 10 central, and 10 Hahn
moments are calculated up to third order. Features obtained
by Hahn moment are represented as H00, H01, H10, H11, H02,
H20, H12, H21, H30, and H03. By using the methods mentioned
above, we can obtain feature vectors, after that, they are used
in training and in developing a classifier.

2.5. Frequency Vector. In sequences, the number of the exis-
tence of amino acid is represented by frequency; a vector is
figured out for frequency distribution measurement known
as frequency vector.

ξ = τ1 + τ2 + τ3,⋯, τ20f g: ð14Þ

Here, in the above equation, the occurrence frequency of
an amino acid ith residue is denoted by τi. The primary pur-
pose of calculating this vector is to uncover and reveal the
hidden sequence compositional information. A total of 20
unique features were obtained that were used with others
for training purposes.

2.6. Accumulative Absolute Position Incidence Vector
Formation (AAPIV). The purpose of the frequency matrix
is to obtain compositional information about the sequence.
Still, the knowledge about the residue relative position did
not get from it, for this purpose, a vector named accumula-
tive absolute position incident is computed, which has a
length of 20 elements. In this vector, the mean of all statisti-
cal values for every endemic amino acid, appearing in a pri-
mary sequence is located at their specific locations, and 20
features are obtained from it.

This vector can be denoted as M and represented in
equation (15):

M = μ1,μ2,μ3, ⋯ :,μ20+
� �

: ð15Þ

For the computation of ith arbitrary AAPIV’s element, below
mentioned equation is used.

μi = 〠
n

M=1
PM: ð16Þ

2.7. Reverse Accumulative Absolute Position Incidence Vector
(RAAPIV). RAAPIV is generated by overturning the pri-
mary sequence and producing the AAPIV from the overturn
sequence. Hence, give 20 unique features. The primary pur-
pose of developing RAAPIV is to draw out and uncover the
facts and figures from the relative residue’s position of the
sequences. This reverse vector is represented as

Λ = η1,η2,η3,⋯,η20
� �

: ð17Þ
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2.8. Feature Fusion. After passing through all the procedures
mentioned above, multiple features were fused into one vec-
tor. PRIM and RPRIM were converted into concise data by
calculating moments (such as raw, central, and Hahn) and
further integrated into a feature vector as well as with
AAPIV and RAAPIV. This yielded 100 features. All these
features helped in defining relative positions as well as abso-
lute positions of amino acid residues. Furthermore,
frequency-based features were computed through frequency
vector, which elaborated the frequency of amino acids and
yielded 20 features.

2.9. Algorithms for Classification. The third stage of the five-
step rules of Chou’s is elaborated in this part, which is the
formation of an operational algorithm. For classification,

one of the most commonly used methodologies, Random
Forest (RF) has been adopted at this stage. To compare
results from the random forest “Support Vector Machine”
(SVM) and “Artificial Neural Network” (ANN) were also
used. In research studies related to bioinformatics, methods
of ensemble learnings have been practiced [74, 75] and effi-
cient results produced by them in terms of performance. In
ensemble learning techniques, the results of all several classi-
fiers used for solving particular problems are aggregate. The
two most frequently used schemes are bagging [76] and
boosting [77].

Bagging the trees which are succeeding to the previous
does not depend upon the preceding trees; instead, each tree
is formulated independently utilizing a bootstrap sample
from the data available. In the end, the prediction is

X dataset

Features N1 Features N2
… Features Nn

Tree #1
Class A

Tree #2
Class B

Tree #3
Class C

Majority voting

Final class

Figure 3: Representation of random forest classifier.

Support vector

Optimal hyper 
plane 

Margin

Figure 4: Representation of support vector machine.
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Input #1

Hidden
layer

Output
layer

Error 
back propagation

Input #2

Input #3

Input #4

Input #5

Figure 5: Artificial neural networks working representation.

Table 2: Description of equation symbols.

Symbols Description

N+ The total number of true DNA-binding proteins

N+
− The total number of true DNA-binding proteins incorrectly predicted as nonbinding proteins

N− Total number of true non-DNA-binding proteins

N−
+

The total number of true non-DNA-binding proteins incorrectly identified as
DNA-binding proteins

Table 3: Description of possible values.

When, Then, Details

N+
− = 0 Sn = 1 None of the DNA-binding proteins is predicted as non-DNA-binding protein

N+
− =N+ Sn = 0 All of the DNA-binding protein is incorrectly predicted as non-DNA-binding protein

N+
− = 0 Sp = 1 None of the non-DNA-binding proteins is incorrectly predicted as DNA-binding protein.

N−
+ =N− Sp = 0 All of the non-DNA-binding proteins incorrectly predicted as DNA-binding proteins

N+
− +N−

+ = 0 MCC = 1, ACC =
1

None of the DNA-binding protein and none of non-DNA-binding protein was
incorrectly predicted

N+
− =N+andN−

+ =N− MCC = −1, ACC
= 0

All of the DNA-binding protein and all of non-DNA-binding protein was incorrectly
predicted

N+
− = N+/2ð ÞandN−

+ =N−/2 ACC = 0:5, MCC
= 0 Overall prediction is not good enough than any other random prediction outcomes.

Table 4: 10-fold cross-validation results.

Classifier True positive False positive True negative False negative Accuracy

Random Forest 45,480 2,748 8,778 127 94.97%

Artificial neural network 45,540 11,404 112 67 79.5%

Support vector machine 21,529 5,314 6,212 24,078 48.55%
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determined by a simple ballot majority. Contrary to this,
trees that are next in order in boosting promulgate addi-
tional value to points that were incorrectly anticipated by a
former classifier. In the end, the weighted majority deter-
mines the prediction. Random forest is built by Adele Cutler
and Leo Breiman [6]. A supplementary layer of randomness
is an add-on to bagging. Usually, in classification trees, the
partition of each node is performed by distributing a node
equally between all available variables, whereas in random
forest, splitting is done by selecting perfect among the avail-
able predictor’s subset which was selected arbitrary were at
that node. The random forest becomes a counterintuitive

approach that is firmly against overfitting and performs
effectively.

Random forest is an ensemble of decision trees where the
training (sample) dataset is recursively partitioned into dif-
ferent decision trees based on the value of a parameter. It
is firmly across overfitting, fast, and scalable, which enables
it to give better results with an increasing number of
examples.

A random forest is also known as a random decision for-
est because at the time of training, tasks are operated by
making a multitude of decision trees, and at the time of out-
put, the class which is the mode of all the classes used in the
process or individual trees mean evaluation is given as the
final result. A pictorial representation of the random forest
is shown in Figure 3.

In machine learning, SVM is a supervised machine
learning model. These are selective classifiers that are for-
mally designed by a separable hyperplane. Initially, it is
introduced in the 1960s and improved in the 1990s. Its
working in space example can be easily understood by
points. Points of each category are separated. In case the
gap between an instance of different types is more massive,
more comfortable to identify the cluster. So, the primary
purpose of SVM is to segregate the available data in the best
possible way. For this purpose, SVM kernels are used; their
primary function is to add more dimensions to low dimen-
sion space. By using the kernel, an inseparable problem
can be converted to a separable problem. SVM is always
implemented and practiced by the kernel. Some types of
the kernel are as follow: (a) linear kernel, (b) polynomial ker-
nel, and (c) radial basis function kernel. The main advantage
of SVM is that it works well in cases where the number of
dimensions is greater than the number of samples. It also
performs well when the space between classes is large. It
does not perform well when the available data is too large
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Figure 6: ROC comparison for 10-fold cross-validation.
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Figure 7: ROC comparison for 5-fold cross-validation.
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or contains too much noise. SVM was used in this study just
to compare results with a random forest of cross-validation,
jackknife, self-consistency, and independent testing to check
the effectiveness and validity of random forest. The working
of SVM can be seen in Figure 4.

The processing way of the brain is adopted as a founda-
tion for an artificial neural network. It falls in the category of
supervised learning technique which utilizes backpropaga-
tion to train data. ANN is used in solving a vast dimension
of the problem. It can easily discriminate nonlinear data.
ANN is a framework of coupled neurons in which the next
neuron input is the output of the previous one, as shown
in Figure 5. A connection is known as an edge, both edge
and neuron’s weight help in the learning process. In ANN,
outputs of the previous neuron become the input of the next
neuron. The following equation represents ANN working.

Om = f 〠
h

b=1
Wbn ∗ f 〠

i

a=1
WabXa

 ! !
: ð18Þ

Here in the above equation, the input is represented by i,
the total number of output nodes and hidden layer nodes are
represented by o and h, respectively. Om denotes every mth

neuron output. Xa acts as an input for node a. The weight
of edge connecting node a and of input layer to node b of
the hidden layer is denoted by Wab, whereas the weight of
connecting output layer node to node b is represented by
Wbn. At last, the neuron activation function is a classical sig-
moid function that is denoted as f .

f xð Þ = 1
1 + e−x

: ð19Þ

The prior formulated benchmark dataset contains posi-
tive as well as negative samples. For all collected models, a
feature vector is calculated against each of them. Every fea-
ture vector consists of Hahn, raw, and central moments of
the basic structure of protein for two-dimensional depiction,

RPRIM along with PRIM. Furthermore, information about
the position and composition is obtained in the form of
the Frequency Matrix (FM). By associating all the feature
vector, so each row correlates to a unique individual speci-
men and forms a Feature Input Matrix (FIM). Then, a
matrix is acquired in an administrative aspect that adjusts
to the category, i.e., negative or positive of the equivalent
component in the Frequency Input Matrix. These matrices
which have been discussed before, are used in training of
the random forest, support vector machine and artificial
neural network [75].

2.10. Adaptive Learning and Gradient Descent. In the train-
ing of an algorithm, gradient descent is used. This reduces
the motion of the function in the contradictory route of
the function’s gradient and change in the rate is calculated
in a further output such that

θ = θ − γ∇∅F θð Þ, ð20Þ

where theta θ is a parameter to the objective function F, θ is
an element of d, the learning rate which is shown by γ, and
the gradient function is represented as ∇θFðθÞ. The overall
algorithm efficiency depends upon the rate of learning γ
because it ascertains the effective minimization.

There should be optimal values for the learning rate, and
it is kept small, usually because more time is taken by a small
percentage to join. The convergence, on the other hand,
function oscillation may be caused due to the large learning
rate. An adaptive learning algorithm calculates fluctuation in
the learning rate and it depends on algorithm performance.
On comparing the two consecutive iteration errors if an
error in second as to first increases, then parameters used
for that particular iteration are dismissed and the rate of
learning fluctuates in a specific manner that function is
downplayed by it. By usage of two consecutively calculated
parameters, the weights used are again computed, and as a
result, the output is also recomputed. For that ensuing run
consequent errors that may occur are also calculated. Finally,
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Figure 8: Box plot for Random Forest.
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Figure 9: Box plot representation for ANN.
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on comparing with a previously calculated error rate, if it is
greater than the rate of learning is diminished, furthermore,
the unique rate of theta +1 is calculated and weights are

eliminated as well. Likewise, the learning rate becomes high
for a nominal error rate. Hence, learning rate continuously
varies depending upon the execution of an algorithm.

SVM 10-fold cross-validation BoxPlot
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Figure 10: Box plot representation for SVM.

Table 5: Accuracy obtained from jackknife testing.

Classifier True positive True negative False positive False negative Accuracy

Random Forest 45,492 8850 2,676 115 95.11%

Artificial neural network 45,540 11,404 112 67 79.5%

Support vector machine 21,529 5,314 6,212 24,078 48.55%

DNSPred_Prot:Jackknife testing by RF
DNSPred_Prot:Jackknife testing by ANN
DNSPred_Prot:Jackknife testing by SVM
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Figure 11: ROC for jackknife testing.

Table 6: Confusion matrix obtained from independent testing.

Classifier Type True positive True negative False positive False negative Accuracy

Random Forest Testing 13,693 3,044 450 7 97.33%

Support vector machine Testing 95 3,483 11 13,551 20.88%

Artificial neural network Testing 13,646 0 3,494 0 79.61%
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It is observed that the learning rate can fluctuate on each
point and for a parameter of each succeeding epoch these are
computed as follows:

θn+1 = θn − γn∇F θnð Þ: ð21Þ

For the nth epoch γn is the learning rate.

3. Experiment and Results

3.1. Prediction of Accuracy. Among many hurdles, one of the
most substantial tasks in making a state-of-the-art predic-
tion model is how the predicted model determines the rate
of success objectively [58]. Focusing on this point, the pro-
posed model requires two significant issues to examine. (1)
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Figure 12: ROC of independent testing by classifiers.

Table 7: Accuracy obtained by self-consistency.

Classifier True positive True negative False positive False negative Accuracy

Random Forest 45,474 8,859 2,667 133 95.1%

Artificial neural network 45,365 23 11,503 242 79.44%

Support vector machine 6212 5314 24078 21529 48.56
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Figure 13: ROC comparison for self-consistency.
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To quantitatively express the predictor capacity and excel-
lence, which benchmark should be used? (2) What type of
test procedure is used to explore and evaluate metrics? Sev-
eral parameters with different techniques for all three classi-
fiers were used to measure the performance.

3.2. Test Methodology. It is essential to consider which type
of test methodology should be used to examine and rate
the four metrics mentioned in Eq. (2). In the examination
and determination of statistics, the coming three methods
are commonly utilized in the inspection and analysis of the
predictor.

(1) “Subsampling” (cross-validation) test, (2) “Jackknife
Test” [71], and (3) “Independent dataset test” (IDT). Out
of previously mentioned testing techniques, the one which
is assumed the minimum inconsistent is jackknife. Jackknife
produces the slightest different output for a given dataset on
testing, explained in detail in the citation [58]

In case while confirmation set is not available, for estab-
lishing an exception that the methodology that was pro-
posed is working excellent, the cross-validation technique
is used. Dataset is divided into disassociate k-folds in
cross-validation, while k is preserved fixed. For each parti-
tion obtained, testing is performed k-times on it after com-
puted models for every single iteration training and
accuracy. In the end, the absolute accuracy mean obtained
is the outcome of the subsampling testing technique cross-
validation. In the current scenario to get the result, k-fold
cross-validation has been implemented, and an arbitrary
choice to generate subsets for k = 10 was executed.

3.3. Formulation of Metrics and Evaluation Parameters. Pre-
sented metrics in Eq. (23) are commonly utilized to calcu-
late prediction’s degree of excellence from four different
perspectives: (a) MCC for strength and stability, (b) Acc
for measuring the precision and accuracy, (c) Sp for pre-
dictor specificity, and (d) Sn for the sensitivity of the pre-
dictor [74]. Regrettably, the traditional formulation of the
abovementioned was provided in [76], most experienced
scientists observe difficulties in understanding them, for
MCC, it is especially. Amazingly, by using Chou’s letter
presented in analyzing peptide signals [77] Chen et al.
[6] and Xu et al. [7] transformed them into a group of
four intuitive equations, which are given as follows:

Sn = TP
TP + FN

Sp = TN/TN + FP
Accuracy = TP + TN/TP + FP + FN + TN

MCC = TP ∗ TN − FP ∗ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp

8>>>>>>>><
>>>>>>>>:

:

ð22Þ

A symbol used for the conventional equation was
introduced in ref. To define the equation, N−

+, N
+
−, N

+,
and N− symbols were used. Their details are available in
Table 2.

Substitute symbols of Table 2 to Eq. (22) we get Eq. (23)

Sn = 1 − N+
−

N+

Acc = 1 − N+
− +N−

+
N+ +N−

Sp = 1 − N−
+

N−

MCC = 1 − N−
+/N−ð Þ +N+

−/N+Þðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +N+

− +N−
+/N−Þð 1 +N−

+ +N+
−/N+Þðp

: ð23Þ

Eq. (21) and Eq.(20) have the same meaning but it
becomes easy to understand what that equation means. Eq.
(21) description is available in Table 3.

Thus, by equation (23), the overall accuracy, specificity,
sensitivity, and MCC can be easily understood compared
to the equation defined in (22) which is authenticated only
forsingle-label systems. A real unique metric set is required
for systems that are multilabelled as described in [78] and
whose emergence is becoming common in biomedicine
[79], system medicine [80], and system biology [81].

4. Discussion

Here, it is vital before going into the result section, to discuss
the techniques used to get these results. As mentioned above,
there are usually three popular testing techniques, (1) 10-
fold cross-validation, (2) independent testing, (3) jackknife
testing, and (4) self-consistency were used to validate the
accuracy of the predictor model. So, in DNAPred_Prot, all
the techniques were used to examine the accuracy of the
proposed model. The classifier used in testing and training
of the model was “Random Forest”, “Support Vector
Machine”, and “Artificial Neural Network”.

The accuracy achieved by DNAPred_Prot for the predic-
tion of DNA binding proteins is better than models [14, 40]
proposed previously. DNAPred_Prot results achieved can
also be viewed in graphical representation; moreover,
receiver operation characteristic curves for each testing tech-
nique were also done for more precise and efficient analysis.
In the end, the web server was developed using a flask frame-
work. It was done by following the five-step rule to facilitate
others with these findings.

Table 8: Comparison of jackknife results with state-of-the-art
predictors.

Metric/method ACC Sensitivity Specificity MCC

iDNA-Prot 0.7540 0.8381 0.6473 0.5000

PSSM-DT 0.7996 0.8191 0.7800 0.6220

DNA-binder 0.7358 0.6647 0.8036 0.4700

DNA-Prot 0.7255 0.8267 0.5976 0.4400

StackDPPred 0.8996 0.9112 0.8880 0.7990

DNAPred_Prot 0.9511 0.9975 0.7678 0.8444
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4.1. 10-Fold Cross-Validation. Using a 10-fold cross-
validation testing technique, an accuracy of 94.97%,
48.55%, and 79.5% was achieved with random forest, sup-

port vector machine, and artificial neural network, respec-
tively. The results obtained from 10-fold cross-validation
via random forest demonstrate that an overall accuracy

Table 9: Comparison of independent dataset PDB186 on the proposed method with other predictors.

Method ACC Sensitivity Specificity MCC

PSSM-DT 0.8000 0.8709 0.7283 0.6470

iDNA-Prot 0.6720 0.6770 0.6670 0.8330

DNA-Prot 0.6180 0.6990 0.5380 0.2400

DNAbinder 0.6080 0.6990 0.5380 0.2400

DNA-BIND 0.6770 0.6670 0.6880 0.3550

DBPPred 0.7690 0.7960 0.7420 0.5380

StackDPPred 0.8655 0.9247 0.8064 0.7363

KKDBP 0.8120 0.9780 0.6450 0.6610

MKSVM (with MKL-CKA) 0.8370 0.9360 0.7420 0.6910

MK-FSVM-SVDD 0.8550 0.9570 0.7530 0.7250

FTWSVM-SR 0.8660 0.9460 0.7850 0.7410

TWSVM 0.8330 0.9460 0.7200 0.6840

DBP-PSSM 0.8118 — — 0.657

DNAPred_Prot (proposed) 0.9140 0.9785 0.8495 0.8349
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Figure 14: Jackknife results compared with the state-of-the-art predictors.

Figure 15: Visualization of the web server.
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obtained is highly acceptable than previously proposed pre-
dictors and SVM and ANN classifiers. Overall predicted
results obtained from Eq. (23) and comparison with other
existing methodologies are shown in Table 4. The ROC
comparison for 10-fold, 5-fold cross-validation of random
forest, artificial neural network, and support vector machine
are shown in Figures 6 and 7, respectively.

4.2. Boxplot Visualization. Box plot is a convenient and
straightforward way of displaying a set of data on scale inter-
vals. For analysis of 10-fold cross-validation result boxplots
for each classifier RF, ANN, and SVM are shown in
Figure 8, Figure 9, and Figure 10, respectively.

4.3. Jackknife Testing. To check the quality of the predictor,
we also make use of jackknife testing. In the process of jack-
knife testing, training and testing datasets are opened, and
every sample is lifted between the two. Using this technique
“Memory” effect and unforeseen problems can be removed
in test and independent dataset subsampling, as from a
unique dataset, always the impressive result is obtained by
using jackknife testing. Results obtained in the process of
recursive training via the random forest are 95.11% accurate,
whereas 79.5% and 48.56% accuracy achieved by artificial
neural network and support vector machine, respectively,
which shows that random forest performs better than the
other two classifiers. The results of all three classifiers used
in this study are shown in Table 5, while ROC is shown in
Figure 11.

4.4. Independent Testing. In independent testing, the dataset
is divided into two subsamples, testing and training, first
subsample training contains 70% of the dataset and the sec-
ond testing subsample consists of 30%. Using the random
forest technique, 97.33% accurate results were achieved
which is better than 20.88% with support vector machine
and 79.51% with artificial neural network, training and test-
ing, respectively. The results of all three classifiers used in
this study are shown in Table 6, while ROC is shown in
Figure 12.

4.5. Self-Consistency. Hastie and Stuetzle in 1989 introduced
the term “self-consistency” which becomes the fundamental
concept in the field of statistics. It gives the suitable method
for a lot of techniques in statistics which led to a more
straightforward and more accessible structure for distribu-
tions representation by self-consistency, results via random
forest obtained are 95.11% accurate, and 79.5% and 48.56%
accuracy is obtained by support vector machine and artificial
neural network which shows random forest classifier per-
forms better. The results of all three classifiers used in this
study are shown in Table 7. Also, the ROC of self-
consistency for all three classifiers is shown in Figure 13.

4.6. Comparison with State-of-the-Art Approaches. Using the
jackknife testing technique on the standard dataset for the
sake of metrics represented in Equation (23), the results
obtained by this methodology have an accuracy of 95.11%.
To facilitate and comfort, a comparison from the different
existing state-of-the-art methodologies with jackknife testing

results of this methodology is shown in Table 8 and Table 9.
To have a clear view and understanding of the comparison, a
bar chart is also shown in Figure 14. It is visible from the
table that DNAPred_Prot for metrics, i.e., accuracy, sensitiv-
ity, and MCC scores are much high. It indicates that the sug-
gested anticipator is advanced in all four parameters on
which the prediction is made for the identification of
DNA-binding protein which are stability, sensitivity, speci-
ficity, and overall accuracy with its counterparts.

The comparative analysis provided in Table 9 shows that
the proposed model with Random-Forest as classifier out-
performs all previous existing methods and provides an
accuracy of 0.914 on the independent dataset (PDB186).

4.7. Web server. Developing a convenient web server is the
5th step in the five-step rule. As specified and explained in
the number of recent publications [73–75, 81, 82], for devel-
opment of practical, more useful forecasting methods and
tools for computation in the future need a web server that
is publicly available at the link and easy to use. The user
can follow a series of steps to take benefit from the study
using a web server. Steps are provided below.

Step 1. Open your browser and go to (https://share
.streamlit.io/waqarhusain/dnapred_prot/main/app.py). It
can also be seen from Figure 15 that the first page that open
is the home page

Step 2. For prediction, input sequence in the sidebar
input field. You can also find example data by clicking
Example button

Step 3. After entering data, press SUBMIT to perform
prediction. Results are shown on the main page in a tabular
form. Specifically, a lot of practically important web servers
have a rising impact on medical science and get it into a
never known before kind of revolution. We serve our
attempt for the analysis, examination, and prediction of the
approach proposed in this paper by building a web server

5. Conclusion

DNA-binding protein plays a vital role in a lot of biological
activities like transcription, DNA recombination, replica-
tion, modification, and repair. The present study is dedicated
to the identification of DNA-binding protein following the
five-step rules. In consideration of this intention, position
relative and statistical features were integrated into
DNAPred_Prot. Popular verification testing techniques
jackknife and cross-validation were utilized to check the pro-
posed model’s capability and efficiency. It is crystal clear
from the results that random forest performs best among
support vector machines and artificial neural networks.
Results of a random forest classifier using 10-fold cross-
validation and jackknife’s approach include 94.97% and
95.11% accurate results achieved, respectively. These results
are better as compared to results obtained by support vector
machine and artificial neural network. The system’s overall
accuracy is 95.11% to the sensitivity of 99.75% and specific-
ity of 76.78%. It is to wind up that there is a capability in this
model to be more improved in result computation as the
number of protein sequences increases.
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