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Abstract

Motivation: Significant improvements in the prediction of protein residue–residue contacts are

observed in the recent years. These contacts, predicted using a variety of coevolution-based and

machine learning methods, are the key contributors to the recent progress in ab initio protein structure

prediction, as demonstrated in the recent CASP experiments. Continuing the development of new

methods to reliably predict contact maps is essential to further improve ab initio structure prediction.

Results: In this paper we discuss DNCON2, an improved protein contact map predictor based on

two-level deep convolutional neural networks. It consists of six convolutional neural networks—the

first five predict contacts at 6, 7.5, 8, 8.5 and 10 Å distance thresholds, and the last one uses these

five predictions as additional features to predict final contact maps. On the free-modeling datasets

in CASP10, 11 and 12 experiments, DNCON2 achieves mean precisions of 35, 50 and 53.4%, respec-

tively, higher than 30.6% by MetaPSICOV on CASP10 dataset, 34% by MetaPSICOV on CASP11

dataset and 46.3% by Raptor-X on CASP12 dataset, when top L/5 long-range contacts are

evaluated. We attribute the improved performance of DNCON2 to the inclusion of short- and

medium-range contacts into training, two-level approach to prediction, use of the state-of-the-art

optimization and activation functions, and a novel deep learning architecture that allows each filter

in a convolutional layer to access all the input features of a protein of arbitrary length.

Availability and implementation: The web server of DNCON2 is at http://sysbio.rnet.missouri.edu/

dncon2/ where training and testing datasets as well as the predictions for CASP10, 11 and 12 free-

modeling datasets can also be downloaded. Its source code is available at https://github.com/multi

com-toolbox/DNCON2/.

Contact: chengji@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, protein residue–residue contacts have been identified

as a key feature for accurate de novo protein structure prediction

(Jones, 2001; Mabrouk et al., 2016; Marks et al., 2012; Michel

et al., 2014, 2017a). Successful de novo structure prediction

methods, in the recent CASP experiments, have attributed much of

their performance to the incorporation of predicted contacts

(Ovchinnikov et al., 2016; Xu and Zhang, 2012; Zhang et al.,

2016). In terms of usefulness, contacts with sequence separation of

at least 24 residues, i.e. long-range contacts, have been found more

useful in structure modeling and are usually the primary evaluation

target for evaluating and comparing contact-prediction methods.

While long-range contacts are most useful for folding proteins using

fragment-based methods like FRAGFOLD (Kosciolek et al., 2014),
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Rosetta (Ovchinnikov et al., 2016) and Quark (Xu and Zhang,

2012), for fragment-free methods like CONFOLD (Adhikari et al.,

2015) and GDFuzz3D (Pietal et al., 2015), other two types of con-

tacts—short- and medium-range contacts—are also important.

While successful contact prediction methods like DNCON (Eickholt

and Cheng, 2012) find it effective to predict these separately, a more

recent trend of predicting all contacts with a single machine learning

architecture appears promising (Jones et al., 2014; Wang et al.,

2017).

Much of the recent improvement in the performance of contact

prediction is from detecting coevolving residue pairs in a multiple

sequence alignment and from the machine learning techniques used

to integrate these predictions as features along with other standard

features. Coevolution-based contact predictors can generally predict

accurate contacts in presence of at least a few hundred effective

sequences in the input alignment (Michel et al., 2017b). However,

recent state-of-the-art methods demonstrate that integrating these

co-evolution-based predictions with other features and using a

machine learning method to make final predictions, can almost

always perform better than using coevolution information alone.

These integrative contact predictors have used neural networks

(Jones et al., 2014), random forests (Skwark et al., 2014) and convo-

lutional neural networks (Wang et al., 2017) to combine co-

evolutionary features with other common features like secondary

structures and position specific scoring matrices.

As a successor of our deep belief network based contact predic-

tor, DNCON (Eickholt and Cheng, 2012, 2013), which was ranked

as the top method in the CASP10 experiment (Monastyrskyy et al.,

2014), in this paper, we present our improved contact prediction

method—DNCON2. The primary enhancements of DNCON2 are

(i) inclusion of coevolution-based features, (ii) new deep convolu-

tional neural networks to predict full contact maps and (iii) addition

of new features at multiple distance thresholds, which further

improves the performance. In DNCON2, we transform all 27 input

features, e.g. scalar features like protein length, one-dimensional

(1D) features like secondary structure prediction and two-

dimensional (2D) features like coevolution-based predictions, into

56 two-dimensional features. As the first step of our two-level pre-

diction approach, we train five convolutional neural networks

(CNNs), which accept these 56 2D features as input to predict con-

tact maps at distance thresholds of 6, 7.5, 8, 8.5 and 10 Å. In the sec-

ond level, a separate CNN is trained with these five sets of

predictions as additional 2D features, to make final short-, medium-

and long-range predictions in one contact map all at once. Finally,

we test our method using the free-modeling datasets of CASP10, 11

and 12 and compare it with other state-of-the-art methods, and,

also discuss how the various training hyper-parameters influence the

performance.

2 Materials and methods

2.1 Datasets and evaluation metrics

We used the original DNCON dataset consisting of 1426 proteins

having length between 30 and 300 residues curated before the

CASP10 experiment to train and test DNCON2. The protein struc-

tures in the dataset were obtained from the Protein Data Bank

(PDB) and of 0-2 Å resolution, which were filtered by 30% sequence

identity to remove redundancy. 1230 proteins from the dataset are

used for training and 196 as the validation set, and the two sets have

less than 25 percent sequence identity between them. In addition to

the validation dataset, we benchmarked our method using (i) 37

free-modeling domains in the CASP12 experiment, (ii) 30 free-

modeling domains in the CASP11 experiment (Kinch et al., 2016)

and (iii) 15 free-modeling domains in the CASP10 experiment

(Monastyrskyy et al., 2014). These CASP free-modeling datasets

have zero or very little identity with the training dataset.

In this study, we define a pair of residues in a protein to be in

contact if their carbon beta atoms (carbon alpha for glycine), are

closer than 8 Å in the native structure. We consider contacts as long-

range when the paring residues are separated by at least 24 residues

in the protein sequence. Similarly, medium-range contacts are pairs

which have sequence separation between 12 and 23 residues and

short-range contacts are pairs with sequence separation between

6 and 11 residues. These definitions are consistent with the common

standards used in the field (Monastyrskyy et al., 2016).

As a primary evaluation metric of contact prediction accuracy,

we use the precision of top L/5 or L/2 predicted long-range contacts,

where L is the length of the protein sequence. The metric has

also been the main measure in the recent CASP evaluations

(Monastyrskyy et al., 2011, 2014, 2016) and some recent studies

(Adhikari et al., 2016). When evaluating the predictions for the pro-

teins in the CASP datasets, we evaluate them at the domain level to

be consistent with the past CASP assessments, although all predic-

tions were made on the full target sequences without any knowledge

of domains. We used the ConEVA tool to carry out our evaluations

(Adhikari et al., 2016).

2.2 Input features

In addition to the existing features used in the original DNCON, we

used new features derived from multiple sequence alignments,

coevolution-based predictions and three-state secondary structure

predictions from PSIPRED (Jones, 1999). The original DNCON fea-

ture set includes length of the protein, secondary structure and sol-

vent accessibility predicted using the SCRATCH suite (Cheng et al.,

2005), position specific scoring matrix (PSSM) based features (e.g.

PSSM sums and PSSM sum cosines), Atchley factors, and several

pre-computed statistical potentials. During our experiments, we

found PSSM and amino acid composition from the original

DNCON feature set were not very useful and hence removed them

from the feature list. Besides the DNCON features, the new features

include coevolutionary contact probabilities/scores predicted using

CCMpred (Seemayer et al., 2014), FreeContact (Kaján et al., 2014),

PSICOV (Jones et al., 2012) and alignment statistics such as number

of effective sequences, Shannon entropy sum, mean contact poten-

tial, normalized mutual information and mutual information gener-

ated using the alignment statistics tool ‘alnstat’ (Jones et al., 2014).

During our experiments, often, PSICOV did not converge when

there are too many or too few alignments, especially if the target

sequence is long. To guarantee to get some results, we set a time

limit of 24 h, and run PSICOV with three convergence parameters

(‘d¼0.03’, ‘r¼0.001’ and ‘r¼0.01’) in parallel. If the first predic-

tion (with option d¼0.03) finishes within 24h, we use the predic-

tion, and if not, we use the second prediction and so on. Using all

these features above as input, we predict contact maps at 6, 7.5, 8,

8.5 and 10 Å distance thresholds at first, and then use these five

contact-map predictions as additional features to make a second

round of prediction. Contact predictions at lower distance thresh-

olds are relatively sparse and include only the residue pairs that are

very close in the structure, whereas, contact predictions at higher

distance thresholds are denser and provide more positive cases for

the deep convolution neural network to learn (see Supplementary

Fig. S1 for visualization of contact maps at various distance
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thresholds, and Supplementary Table S2 for a full list of all the fea-

tures used).

2.3 Generating multiple sequence alignments

Generating a diverse/informative multiple sequence alignment with

a sufficient number of sequences is critical for generating quality

coevolution-based features for contact prediction. On one hand,

having too few sequences in the alignment, even though they may be

highly diverse, can lead to low contact prediction accuracy. On the

other hand, having too many sequences can slow down the process

of co-evolution feature generation, creating a bottleneck for an over-

all structure prediction pipeline. To reliably generate multiple

sequence alignments, an alignment method should produce at least

some sequences in alignment whenever possible, and does not gener-

ate too many more sequences than necessary. Following a similar

procedure in (Ovchinnikov et al., 2016) and (Kosciolek and Jones,

2015), we first run HHblits (Remmert et al., 2011) with 60% cover-

age thresholds, and if a certain number of alignments are not found

(usually around 2L), then we run JackHMMER (Johnson et al.,

2010) with e-value thresholds of 1E�20, 1E�10, 1E�4 and 1 until we

find some alignments. JackHMMER is not run if HHblits can find

at least 5000 sequences. These alignments are used by the three

coevolution-based methods (CCMpred, FreeContact and PSICOV)

to predict contact probabilities/scores, which are used as two-

dimensional features and to generate alignment statistics related fea-

tures for deep convolutional neural networks.

2.4 Deep convolutional neural network architecture

Convolutional neural networks (CNNs) are widely applied to recog-

nize images with each input image translated into an input volume

such that the size of the image are length and width of the volume,

and the three channels (hue, saturation and value) represent the

depth. Based on such ideas, to build an input volume for each pro-

tein of any length, we translate all scalar and one-dimensional input

features into two-dimensional features (channels) so that all features

(including the ones already in 2D) are in two-dimension and can be

viewed as separate channels. While scalar features like sequence

length are duplicated to form a two-dimensional matrix (one chan-

nel), each one-dimensional feature like solvent accessibility predic-

tion is duplicated across the row and across the column to generate

two channels. The size of the channels for a protein is decided by the

length of the protein. By having all features in separate input chan-

nels in the input volume, each filter in a convolutional layer convolv-

ing through the input volume, has access to all the input features,

and can learn the relationships across the channels. Compared to

the input volumes of images that have three channels, our input vol-

umes have 56 channels.

We use a total of six CNNs, i.e. five in the first level to predict

preliminary contact probabilities at 6, 7.5, 8, 8.5 and 10 Å distance

thresholds separately by using an input volume of a protein as input,

and one in the second level that take both the input volume and the

2D contact probabilities predicted in the first level to make final pre-

dictions (Fig. 1A). Each of the six CNN networks have the same

architecture, which has six hidden convolutional layers and one out-

put layer consisting of 16 filters of 5 by 5 size and one output layer

(Fig. 1B). In the hidden layers, the batch normalization is applied,

and ‘Rectified Linear Unit’ (Nair and Hinton, 2010) is used as the

activation function. The last output layer consists of one 5 by 5 filter

with ‘sigmoid’ as the activation function to predict final contact

probabilities. Hence, our deep network can accept a protein of any

length and predict a contact map of the same size. We use the

Nesterov Adam (nadam) method (Sutskever et al., 2013) as the opti-

mization function to train the network.

We train each CNN for a total of 1600 epochs with each epoch

of training taking around 2min. After training, we rank and select

best model using the mean precision of top L/5 long-range contacts

calculated on the validation dataset of 196 proteins. Our raw feature

files for all 1426 training proteins use 8 GigaBytes (GB) of disk

space and are expanded to around 35 GB when all features are

translated to 2D format. To minimize disk input/output, we trans-

late our scalar features and 1D features into 2D, at runtime, in CPU

memory. We used the Keras library (http://keras.io/) along with

Tensorflow (www.tensorflow.org) to implement our deep CNN net-

works. Our training was conducted on Tesla K20 Nvidia GPUs each

having 5 GB of GPU memory, on which, training one model took

around 12h. Finally, we use an ensemble of 20 trained deep models

to make final predictions for testing on the CASP datasets.

3 Results

3.1 Using contact predictions at 6, 7.5, 8, 8.5 and 10 Å

distance thresholds as features improves precision

A contact map is a binary version of the distance map of a protein

structure according to a distance threshold, which usually is 8 Å.

This threshold of 8 Å, although widely used, can be viewed as an

arbitrary and rigid criterion to decide if a pair of residue is a contact

or non-contact, considering the flexibility of protein structures. For

instance, a pair separated by 8.1 Å distance is, by definition, a non-

contact, but by 7.9 Å is a contact. And using one distance threshold

causes the loss of some distance information. In order to account for

uncertainty and flexibility in residue–residue distance, in a first

round of prediction, using all the features and true contact maps at

6, 7.5, 8, 8.5 and 10 Å distance thresholds, we trained five CNN

models to predict contact probabilities at these five distance thresh-

olds. Then, in the second round of prediction, we added these pre-

dictions as new 2D features into the feature list and trained a sixth

CNN model to predict contacts at 8 Å distance threshold.

On the 196 proteins in the validation dataset, the CNN model in

the second level achieves a precision of up to 73.5% higher than

70.7% in the first level, when top L/5 long-range contacts are eval-

uated. To verify if the improvement comes from the predictions at

different distance thresholds or from the iterative two-level training,

in a separate experiment, we trained a second level model with only

the contact prediction at 8 Å distance threshold as additional fea-

ture. In this case, a precision of 72.2% is achieved, higher than

70.7% of using one level prediction, but lower than 73.5% of using

both two-level prediction and multiple thresholds, indicating that

both two-level training and multiple thresholds contribute to the

improvement. The results summarized in Figure 2 show similar

results when top L/2 contacts are evaluated. In addition to these

experiments, we tested adding more predictions at higher distance

thresholds of 12, 14, 16 and 18 Å as features, and found that they

did not significantly improve the performance. As an additional vali-

dation, we used the ensemble of the models trained with five dis-

tance thresholds in the first level to predict the contacts for the

proteins in the validation dataset, similar to a traditional neural

network ensemble in (Jones et al., 2014). Such a multi-distance

ensemble has a precision of 72.8% slightly higher than the 72.6%

precision achieved by an ensemble of all five models trained at the

same 8 Å distance threshold, but lower than 73.5% of using predic-

tions of multiple thresholds with two-level networks in DNCON2.
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3.2 Comparison between deep belief networks in

DNCON 1.0 and deep convolutional neural networks in

DNCON2

DNCON 1.0 used an ensemble of deep belief networks (DBN)

trained with windows of seven different fixed sizes and boosting to

predict contacts and achieved an accuracy of 34% on the 196 pro-

teins in the validation dataset. For a fair comparison with DNCON,

we trained one CNN using the same features that DNCON 1.0 used

(excluding new coevolution-based features). Different from the

DNCON 1.0 of using different networks to predict contacts at dif-

ferent ranges, DNCON2 uses a CNN network to predict short-,

medium- and long-range contacts of a protein of arbitrary length.

With the same features as input, a CNN network trained with all

contacts and non-contacts achieves a slightly better precision of

35.4% on top L/5 long-range contacts than DNCON 1.0. So, a sin-

gle CNN model performs better than a boosted and ensembled deep

belief networks, suggesting that the deep convolutional neural net-

work (CNN) is more suitable for contact prediction than the deep

belief network (DBN). Moreover, it is more convenient to train and

test CNN than DBN because CNN can take a full input matrix of

arbitrary size as input to predict full contact maps without generat-

ing the features for each pair of residues, separating contacts at dif-

ferent ranges, and balancing the ratio of contacts and non-contacts

as required by DBN based on fixed size windows.

3.3 Performance of DNCON2 on the validation and

CASP datasets

On the 196 proteins in the validation dataset, DNCON2 yields a mean

precision of 74%, when top L/5 long-range contacts are evaluated. As

summarized in Table 1, the average length, number of sequences in the

alignment, and the number of effective sequences for these proteins are

190, 5351 and 1718 respectively. On this dataset, the three-individual

coevolution-based features generated by CCMpred, FreeContact and

PSICOV can predict contacts with precisions of 51.0, 43.1, 42.1%

respectively, for top L/5 long-range contacts, which is much lower

than 74% of DNCON2. And for 96% of these proteins, DNCON2

performs better than any of the individual coevolution-based features

(see Supplementary Fig. S3). These results indicate that integrating all

the 2D coevolution-based features with the other features can drasti-

cally improve the accuracy of contact prediction.

Since predicted contacts are most useful for ab initio folding of

proteins whose structures cannot be predicted by template-based

modeling, we evaluated our method on the free-modeling protein

datasets in the CASP10, 11 and 12 experiments and compared it

with top CASP methods and a standard coevolution-based method

MetaPSICOV (Jones et al., 2014) (see Table 2). Since our training

and validation datasets were curated before the CASP10 experi-

ment, the CASP datasets are independent test data. For evaluating

Fig. 1. (A) The block diagram of DNCON2’s overall architecture. The 2D volumes representing a protein’s features are used by five convolution neural networks to

predict preliminary contact probabilities at 6, 7.5, 8, 8.5 and 10 Å thresholds at the first level. The preliminary 2D predictions and the input volume are used by a

convolutional neural network to predict final contact probability map at the second level. (B) The structure of one deep convolutional neural network in DNCON2

consisting of six hidden convolutional layers with 16 5x5 filters and an output layer consisting of one 5x5 filter to predict a contact probability map

Fig. 2. The improvement from inclusion of predictions at distance thresholds

of 6, 7.5, 8, 8.5 and 10 Å as additional features, measured using the precision

of top L/5 (left) and top L/2 (right) long-range contacts on the validation data-

set. Box plot of precision for best 30 of 40 models for the level one model

trained only using the original features (pink), the level-two model trained

using only 8 Å prediction as additional feature (green), and the level-two

model trained by adding all five predictions at multiple thresholds as addi-

tional features (blue) (Color version of this figure is available at

Bioinformatics online.)
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our method on the most recent CASP12 dataset, we generated all

features using all programs and databases released before the

CASP12 experiment started, making our results not influenced by

the new releases of protein structures and sequences thereafter. On

the 37 free-modeling CASP12 domains, for which native structures

were available for us to perform the evaluation, DNCON2 outper-

forms all the top methods participating in the CASP12 experiment

such as Raptor-X (Wang et al., 2017) (Table 2), MetaPSICOV

(Jones et al., 2014) (Table 2), iFold_1, and our own method

MULTICOM-CONSTRUCT as well as the baseline method

DNCON 1.0 (see Supplementary Table S4). Specifically, when top

L/5 long-range contacts are evaluated, DNCON2 achieves an aver-

age precision of 53.4% compared to 46.3, 42.9 and 45.7% by

Raptor-X, MetaPSICOV and iFold_1, respectively. A similar per-

formance is observed when top L/2 contacts are evaluated instead of

L/5 (see Supplementary Table S4). The 24.9% precision of DNCON

1.0, which does not use any coevolution-based features, is a bench-

mark for the other methods, and the difference between its accuracy

with the other methods highlights the improvement gained from the

inclusion of the coevolution-based features into the input. The full

evaluation on the complete set of CASP12 domains is presented in

Supplementary Table S5.

For evaluating our method on CASP11 and CASP10 free-

modeling datasets, we ran MetaPSICOV locally as a benchmark.

For a fair comparison, we use the same sequence databases for

DNCON2 and MetaPSICOV. For completeness, we also compared

DNCON2 with the best performing groups in the two CASP experi-

ments—CONSIP2 in the CASP11 experiment (Monastyrskyy et al.,

2016), and DNCON 1.0 in the CASP10 experiment (Monastyrskyy

et al., 2014) (Table 2). On the 30 free-modeling domains in the

CASP11 experiment, DNCON2 achieves an average precision of

50% compared to 34.4% by MetaPSICOV and 29.7% by the best

performing method CONSIP2 (Kosciolek and Jones, 2015) in

CASP11, when top L/5 long-range contacts are evaluated. Similarly,

on the 15 free-modeling structural domains in the CASP10 experi-

ment, DNCON2 achieves a mean precision of 35%, compared to

30.6% by MetaPSICOV and 18.1% by the best performing method

DNCON. For both datasets, similar results are observed when

medium-range and short-range contacts are evaluated. Detailed

evaluations of top L/5 and top L/2 contacts, are presented in

Supplementary Tables S6 and S7.

3.4 Hyper-parameters optimization

To obtain the best performance on the validation dataset, we fine-

tuned our network by investigating a range of values/options for the

following hyper-parameters: (i) depth of the network, (ii) filter sizes

in each layer, (iii) number of filters in each layer, (iv) batch normal-

ization, (v) batch size, (vi) optimization function and (vii) activation

function. After many rounds of iterative hyper-parameter selection,

we found that the optimal parameters for number of layers was

seven, filter size was five, number of filters was 16, batch size was

30, and chosen ReLU as the activation function in hidden layers,

applied batch normalization at each layer, and used NAdam as the

optimization function. With the performance of the CNN in a set-

ting as a reference, we tuned each parameter, one-by-one, to study

how they influenced the performance on the training data and vali-

dation data. For the depth of the network we tested networks with

two to nine layers. Similarly, for filter size and number of filters, we

tested filter sizes of 1, 3, 5, 7, 9 and 11, and number of filters as 1,

4, 8, 16 and 24. On the validation dataset, the networks with filter

sizes greater than 3, with �8 filters and �5 hidden layers deliver

around the top performance (see Supplementary Fig. S8). When the

filter size is increased beyond 9, or the number of filters is increased

beyond 24, or the depth of the network is increased beyond 9, the

training was very slow and often failed because of insufficient GPU

memory. In addition, through trials, we found that keeping the filter

size in all seven layers and number of filters in the six hidden layers

the same performs better than having different filter sizes or num-

bers of filters in different layers.

Batch normalization is important for training deep CNN to deal

with the covariate shift problem (Ioffe and Szegedy, 2015). To test

how batch normalization affects the training performance, we tried

applying batch normalization after each layer (a), after every alter-

nate layer (b), or only on the first layer (c) and not using batch-

normalization at all (d). We found that applying batch normaliza-

tion at each layer delivers the best performance compared to any of

the three other settings. While the full batch normalization applied

after each layer delivers a mean precision of 70.8% and the batch

normalization at every alternate layer results in a mean precision of

68.7%, for top L/5 predicted long-range contacts on the validation

dataset. When batch normalization is not used at all, or is applied

only to the first layer, the precision drops to 65.7%. Similarly, after

testing various batch sizes, we found batch sizes of around 30 deliv-

ered the best performance on the validation dataset. For optimiza-

tion methods, we tested (a) ADADELTA, (b) Adagrad, (c) Adam,

(d) Nesterov Adam, (e) RMSprop and (f) stochastic gradient descent

optimizers. The results show that three optimization functions

Adam, Nesterov Adam and RMSprop deliver better performance

than the others, with Nesterov Adam performing best among all (see

Supplementary Fig. S9). Finally, the activation functions sigmoid,

tanh and ReLU can achieve the precisions of 70.4, 69.4 and 70.9%

respectively, when top L/5 long-range contacts are evaluated.

Besides the machine learning hyper-parameters, we also tested if

training using only long-range contacts improves the precision of

long-range contact prediction. Interestingly, we find that including

medium-range contacts and short-range contacts into training

Table 1. Performance of DNCON2 on the 196 proteins in the valida-

tion dataset when top L/5 and top L/2 long-range contacts are

evaluated

L N Neff PL/5 PL/2

Average 190 5351 1718 74.0% 64.2%

Median 188 1607 412 88.2% 74.4%

Maximum 299 62889 29547 100.0% 100.0%

Minimum 50 1 1 0.0% 0.0%

Note: L, N and Neff stand for length of a protein, number of sequences in

the alignment, and the number of effective sequences in the alignment. PL/5

and PL/2 are the precisions of top L/5 and L/2 long-range contacts.

Table 2. Summary of the performance of DNCON2 on the CASP10,

CASP11 and CASP12 free-modeling (FM) datasets, measured using

the precision of top L/5 long-range contacts

FM

Dataset

Domain

Count

Precision of top L/5 long-range contacts (%)

Top CASP Group Meta PSICOV DNCON 2

CASP10 15 18.1 (DNCON 1.0) 30.6 35.0

CASP11 30 29.7 (CONSIP2) 34.4 50.0

CASP12 37 46.3 (Raptor-X) 42.9 53.4

Note: The precision of the top method in each CASP experiment and a

standard method MetaPSICOV (run locally) is also included as a reference.

1470 B.Adhikari et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
4
/9

/1
4
6
6
/4

7
0
8
3
0
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddx418#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddx418#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddx418#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddx418#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddx418#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddx418#supplementary-data


improves the performance even when only long-range contacts are

evaluated. However, when all the local contacts are included, i.e.

contacts with sequence separation less than five, we observed a

slight decrease in performance (see Supplementary Fig. S10). In sum-

mary, including all except the local contacts during training yields

better precision. In addition, to test how ensembling improves the

performance, we first ranked the trained models using the average

precision on the validation dataset. Then, we calculated precision of

the averaged predictions of top x models, where x is an integer in

the range [1, 50]. The precision of ensembling increases initially and

then saturates after more than four models are used.

3.5 Importance of features

We removed one or more features at a time and trained the CNN

using the remaining features, to study the contribution of the

removed features towards the overall performance of DNCON2.

We tested by removing (i) multiple sequence alignment (MSA) statis-

tics related features comprising of Shannon entropy sum, mean

contact potential, normalized mutual information and mutual

information, (ii) CCMpred coevolution feature, (iii) FreeContact

coevolution feature, (iv) PSICOV coevolution feature, (v) several

pre-computed statistical potentials, (vi) number of sequences in the

alignment and the number of effective sequences in the alignment,

(vii) PSIPRED and PSISOLV predictions of secondary structures and

solvent accessibility, (viii) PSSM related features comprising of

PSSM sums and PSSM sum cosines, (ix) SCRATCH secondary struc-

ture and solvent accessibility predictions, (x) relative counts of heli-

cal residues, strand residues and buried residues, (xi) sequence

separation related features and (xii) length of the protein. Our

results, summarized in Figure 3, show that the features from

multiple sequence alignment related statistics together are more

important than any single coevolution-based features (CCMpred,

FreeContact, or PSICOV) and other features. But if all three

coevolution-based predictions (CCMpred, FreeContact and

PSICOV) are removed at the same time (not shown in the figure),

the precision drops most (i.e. from 60% to 38%), when top L/2

long-range contacts were evaluated, suggesting the co-evolution

features as a whole have the biggest impact. Among the three

coevolution-based features CCMpred, FreeContact and PSICOV,

the first two (CCMpred and FreeContact) contribute equally to the

overall performance. We find the length feature is unimportant.

Sequence separation related features and relative counts of helical,

strand and buried residues, also do not contribute much to the per-

formance either. Secondary structure predictions from both methods

SCARTCH and PSIPRED are useful, and complement each other to

improve the overall performance.

4 Conclusion

We developed DNCON2—a new two-level deep convolutional neu-

ral network method—to predict the contact map of a protein of any

length by integrating both residue–residue coevolution features and

other features such as secondary structures, solvent accessibility and

pairwise contact potentials. The method can predict all the contacts

in a protein at once from the entire input information of a protein,

which is more effective and easier to train and use than local fixed

window-based approaches such as deep belief networks. By includ-

ing new coevolution features, using CNNs of multiple-distance

thresholds, integrating all the features of all the residue pairs of a

protein through 2D-convolution in a two-level architecture, and

adopting the latest optimization and training techniques,

DNCON2’s accuracy is more than double of that of DNCON 1.0

on the same validation dataset. On the three independent CASP

datasets, DNCON2 outperforms the top methods in CASP10,

CASP11 and CASP12 experiments. The results demonstrate

DNCON2 and its deep convolutional neural network architecture

are useful for protein contact prediction.
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