
DNEmu: Design and Implementation

of Distributed Network Emulation for Smooth

Experimentation Control

Hajime Tazaki1 and Hitoshi Asaeda2

1 National Institute of Information and Communications Technology (NICT), Japan
2 Keio University, Japan

Abstract. Conducting a realistic network experiment involving globally
distributed physical nodes under heterogeneous environment introduces
a requirement of experimentation control between the real world net-
work and emulated/simulated networks. However, there is a gap between
them to deploy network experiments. In this paper, we propose the Dis-

tributed Network Emulator (DNEmu) to fill the gap for the requirements
of a planetary-scale network experiment. DNEmu addresses the issue of
real-time execution with message synchronization through distributed
processes, and enables us to evaluate protocols with actual background
traffic using a fully controlled distributed environment. Through evalua-
tion with micro-benchmarks, we find that our DNEmu prototype imple-
mentation is similar in terms of packet delivery delay and throughput to
the existing non-virtualized environment. We also present a use-case of
our proposed architecture for a large distributed virtual machine service
in a simple control scenario involving actual background traffic on the
global Internet. DNEmu will contribute to research in protocol evalu-
ation and operation in a huge network experiment without interfering
with the existing infrastructure.

Keywords: distributed emulation, real-time simulation, ns-3.

1 Introduction

Designing novel network protocols aiming to replace the current Internet archi-
tecture (i.e., clean-slate designs [6]) requires showing feasibility on the existing
network before replacing it. Alternatively, analyzing the vulnerability of current
protocols or unrevealed incidents (such as an outage for the popular site YouTube
caused by inappropriate route announcement from Pakistan Telecom [1]) is im-
portant to avoid the accident happening in the future. As the demand for meth-
ods of studying communication is growing, a variety of network environments
is necessary to be produced for the purpose of evaluating current and future
protocols or architectures.

Network simulators greatly facilitate various network experiments. Researchers
can create experimental scenarios and evaluate network architectures or protocols
on simulated networks, without preparing large-scale and global wide network in-
frastructures or complex communication environments such asmobile andwireless

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 162–177, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

DNEmu: Design and Implementation of Distributed Network Emulation 163

Controllability

R
e

a
lit

y Network

Testbed

(e.g.

Planetlab)

Network
Simulator

)) Distributed
Network
Emulator

Integrated Operation

A
c
tu

a
l
E

n
v
ir
o
n
m

e
n
t

 C
o
o
p
e
ra

ti
o
n

Real-time
Simulation

Distributed

Simulation

Distributed
Network
Emulator

Fig. 1. Our work aims to fill the gap between network testbed and network simulator
(left), and the gap between real-time simulation and distributed simulation (right).
Both gaps are caused by lack of smooth experimentation control.

network experiments. However, as network simulators work with pre-defined com-
municationmodels, it is impossible to evaluate protocolswith unpredictable active
traffic that occurs in the actual global Internet. This condition often precludes re-
alistic evaluation and reduces the evaluation quality.

As an alternative solution, a planetary-scale network testbed such as Planet-
Lab [15] has recently been used for experimenting with active traffic on the global
Internet. The scale of the number of nodes in the experiment, however, is limited
to the number of physical nodes in the testbed. Moreover, the cost of the experi-
ment controlling multiple nodes is regrettably high, especially when the number
of nodes and complexity of the experimental scenario in the experiment grow.

More realistic experimental results have been gained by using ns-3, which is a
novel network simulator [9]. Thanks to numerous contributions by researchers,
ns-3 now has capabilities such as the ability to import actual traffic with a
real-time scheduler, parallel distributed network simulation by Message Passing
Interface (MPI) [7] for synchronized operation under a distributed environment,
and Direct Code Execution (DCE) [11] to execute active running code in the
simulation. Such functionalities help researchers conduct a realistic experiment
for the evaluation of network protocols in a single toolset of software. However,
it still lacks the key functionality for satisfying the requirements: the implemen-
tation of current distributed simulation in ns-3 cannot carry out simultaneous
execution with the real-time simulation. It was impossible to perform an inte-
grated operation by distributed simulation and cooperate with external traffic
by real-time simulation simultaneously.

By considering the current picture of network experiments without smooth

experimentation control as illustrated in Figure 1, our motivation for this work
is filling the gaps in order to conduct planetary-scale network experiments. We
introduce a novel distributed, real-time network emulation architecture, called
DNEmu (Distributed Network Emulator), to satisfy the following requirements
for the network experiment.

164 H. Tazaki and H. Asaeda

– R1: The experiment should incorporate live traffic with the simulated back-
ground traffic.

– R2: We should have fully control of the experiment in a distributed environ-
ment.

Our design choice for DNEmu involves exploiting the existing MPI-based net-
work simulation of ns-3, while considering the issue of real-time execution in-
volving live traffic.

The contributions of this paper are two-fold. First, we have designed a dis-
tributed real-time emulation on a novel network simulator, ns-3, to achieve a
global-scale network experiment with easier operation in a single toolset of the
software. In the design phase of this study, we identified the issue of distributed
simulation in real-time execution. Second, we have implemented a prototype of
our proposed design and evaluated the similarity of basic network performance
between the proposed architecture and a non-virtualized environment. To the
best of our knowledge, no such architecture exists based on the combination of
these two distinct simulation algorithms.

2 Background

This section briefly introduces two important functionalities of network simula-
tion: real-time simulation and distributed simulation. Both help users of network
simulators conduct network experiments in the distributed environment, but
they are mutually exclusive, which motivates the pursuit of a solution in this
paper.

2.1 Real-Time Simulation

In contrast to traditional discrete event simulation, simulation synchronized with
wallclock time of a computation node (called real-time simulation) was proposed
by Fall [5] and implemented on the ns-2 network simulator, which is the primary
network simulator of ns-3. As depicted in Figure 2, instead of conventional dis-
crete event scheduling, real-time scheduling allows us to wait for the next pend-
ing event until wallclock time corresponds to time in the simulator, and thus
the clock inside the simulation is synchronized with the outside the simulator,
allowing communication. By using this enhanced scheduler, the application in
the simulator is able to include live traffic from the outside (e.g., the Internet).

While real-time scheduling provides external interoperability to the network
simulator, it does not schedule events in real time. When a large number of
events attempt to execute at the same time t, the next pending event will be
delayed and the clock will then be desynchronized. Performance improvement in
the simulation core will help us to ensure that the event scheduling meets these
deadlines [13].

DNEmu: Design and Implementation of Distributed Network Emulation 165

E

t=1

E

t=2

E

t=2.1

E

t=50

E

t=100

wall clock

E

t=1

E

t=2

E

t=2.1

E

t=50

E

t=100

Discrete
Event Simulation

Realtime
Simulation

(wait)

execution time

execution time
sync

Fig. 2. Real-time simulation. The event at simulation time t waits until the wallclock
time reaches t.

2.2 Parallel and Distributed Simulation

Parallel and distributed network simulation [18] has been studied with the re-
quirement of rapid execution of complex and large-scale network simulation. By
utilizing multiple logical processes (LPs) distributed to multiple nodes, the sim-
ulation has accelerated execution time, while ensuring the same results with a
synchronized clock among the distributed processors.

Simulation Core

Model

Processor

Simulation Core

Model

Processor

Bus
(e.g.MPI)

Boundary

Fig. 3. Parallel and distributed simulation. Using several processors or physical nodes
distributes the load of simulation processes and accelerates execution with coordination
of time synchronization.

As shown in Figure 3, the topology on the simulated model could be shared
among the different processors or physical nodes. When the message (or event)
goes across the simulation boundary in the shared topology, a time-stamped
message is exchanged via the message bus between the different simulation cores
and processed at the second processor. The result then goes back to the original
simulation core without adding to the original processor’s workload and the final
execution time of the simulation will be thereby shortened.

Though the previous studies in the distributed simulation have focused on
the performance improvement of the network simulation, it is also necessary to
study the environmental synchronization among the distributed nodes, for an
integrated network experiment with simple operation.

166 H. Tazaki and H. Asaeda

Processor

Simulator Core

Data Chan Ctrl Chan

Simulator Model

Processor

Simulator Core

Data Chan Ctrl Chan

Simulator Model

Experimental Network Topology

master LP slave LPs

Event
Dispatcher

raw-socket

channel

IPC channel

if: dest=other node

if: dest=same node

Fig. 4. The DNEmu architecture for distributed real-time emulation

2.3 What Is Missing?

Although the above two simulation algorithms are distinct, both of these algo-
rithms will contribute to the execution of a network experiment at distributed
locations. Controlling a complex experimental topology in a single scenario script
allows for easier deployment of the network experiment into hundreds of nodes,
and actual traffic generated by actual applications improves the quality of the
simulation.

However, the current implementation of the distributed simulation in ns-3

does not allow external traffic to be imported via a real-time scheduler. Further,
designing additional functionality for real-time execution in the distributed sim-
ulation is also not straightforward, because of the timescale differences within
the simulation. The following sections detail a framework for filling the gap of
the current simulation architecture.

3 The Architecture

In this section, we present our proposed architecture, DNEmu for distributed
real-time network emulation satisfying the above requirements.

3.1 Overview

As stated in Section 1, the goal of this paper is to provide a network exper-
iment framework, which both involves live traffic, and also uses a distributed
environment.

Our design choice to accomplish this goal is to extend existing frameworks of
distributed simulation and real-time simulation, and be able to utilize them simul-
taneously. Current distributed simulations require time synchronization between
distributed processors (or systems), but our proposed architecturedoes not require
any such synchronization, since the time should “walk along” with the wallclock
time of each system in the real-time scheduler (details are discussed in Section 3.3).

DNEmu: Design and Implementation of Distributed Network Emulation 167

In addition, we do not use MPI as an inter-connect for data transfer between
logical processes. Instead, we use the usual raw-socket based communication via
the usual network interface cards (or tunnels in some physical network environ-
ment cases). We do this because the buffering strategy of MPI for optimized
message synchronization does not allow the exchange of real-time messages be-
tween the LPs (details are discussed in Section 3.3). This separation of control
channel and data channel allows us to use a distributed real-time scheduler in a
network simulator.

Figure 4 shows the overview of theDNEmu architecture. While MPI is used as
a control channel between distributed logical processes, the real-time scheduler
handles external traffic coming from outside the simulator, and also appropri-
ately schedules the traffic on the data channel at the simulation boundary (i.e.,
the link between logical processes). A simulation scenario among the distributed
nodes can be shared, and execution is handled only at the master node and
synchronized with all of the distributed slave nodes.

3.2 Principles

During the design phase of our architecture, the following principles for design
choice, from several directions, were considered.

Less Dependency on Hardware Environment: The architecture and its
implementation should not be restricted to any particular hardware environment
(e.g., dedicated cluster computers for distributed simulation) in order to allow
distribution all over the world. It should use standard hardware with a common
operating system.

Less Dependency on External Toolsets: Dependency on external toolsets
is minimized to reduce the complexity of the operation of network experiments.
Since the architecture is a framework for any network experiments, and could be
utilized in many different ways, it should be able to tolerate for future extensions
of the architecture.

3.3 Functional Components

This section explains the functional components required for the DNEmu archi-
tecture.

Event Dispatcher: We introduce a new simulated event dispatcher for dis-
tributed real-time emulation. Existing distributed simulation transfers events
(i.e., packets) to the other endpoints via the MPI library if the events cross the
simulation boundary. Instead, in our architecture, the events are translated and
transferred to an emulated raw-socket (or tap device), and delivered to the other
endpoints over a connected network when distributed emulation is defined in the
simulation scenario. If the destination node of an event transfer is the same as
the original node, it conducts inter-process communication (IPC) for the event
transfer instead of raw-socket based communication.

168 H. Tazaki and H. Asaeda

 1300

 1350

 1400

 1450

 1500

 1550

1379 1300 1350 1400 1450 1500

T
h
e
 a

rr
iv

a
l
o
rd

e
r

o
f
IC

M
P

 e
c
h
o
 r

e
p
ly

Transmitted sequence number of ICMP echo request

mis-ordered!

Fig. 5. The order of the arrival of echo reply packets at Tx (in Figure 7). The protruded
point presents mis-ordered arrival of echo reply packets. The buffering effect of the MPI
library reveals mis-ordered ping results.

Message Passing between LPs: In addition, the function of the message
passing in a time-stamped order at the boundary of LPs is removed since we do
not have to synchronize the simulation clocks, as the real-time scheduler uses
wallclock instead. However, we still use the MPI library, because it easily enables
to control distributed nodes by providing the initial rendezvous, bootstrapping,
and to assign of MPI rank, which is the unique number of each logical process. We
then utilize existing raw-socket based communication at the simulation boundary
for data transfer between simulated nodes. During the implementation of our
prototype, we found that using MPI as a data channel of the inter-connect is not
suitable since the buffering behavior of the MPI message transfer prevents real-
time traffic delivery to another node. For example, the order of arrival of ICMP
echo request packets at a destination is different from the order of transmitted
packets. Figure 5 shows the order of arrival of ICMP Echo reply packets in
function of the transmitted sequence number from our prototype implementation
based on an MPI-based inter-connects. We can see that the packet transmitted
with sequence number 1379 was echoed backed in 1465th place. Such a non-
negligible effect for real-time simulation should be removed. One possible solution
to this issue is using a high-performance cluster computer with remote direct
memory access (RDMA) to reduce the delay on the inter-connect. However,
such hardware environments are not commonly available and restrict the use of
our architecture. We therefore do not use it in our design principles.

Figure 6 depicts the bootstrap sequence of distributed real-time emulation
with a pseudo-scenario script. When the simulation is executed at a node, the
node is the master LP (rank = 0), others are slave LPs, then:

(1) The MPI handles the execution of the program at remote (i.e., slave LPs),
and assigns rank using a static configuration for the MPI executable as usual.

DNEmu: Design and Implementation of Distributed Network Emulation 169

Master LP

Simulation Core

MPI DP

Slave LPs

Simulation Core

MPI DP

(2) (1) (2)

(3)

rank=0
rank=1

rank=2 rank=N
1: main () {

2: MPI_Init (); // (1)
3: (use of Real-time scheduler)
4: if (rank == 0) { // master

5: (configuration of AS1) // (2)
6: (establish inter-connect) // (3)

7: }
8: else { // slaves

9: (configuration of ASN) // (2)
10: (establish inter-connect) // (3)
11: }

12: return;
13: }

Fig. 6. The sequence of bootstrapping using DNEmu

(2) Decide the behavior of each simulated node based on their assigned ranks

(e.g., each AS (Autonomous System) setup in the network).
(3) Configure the inter-connect link between simulation boundaries at each LP.

When a packet in the simulation reaches the boundary node of eachLP, and is going
to forward to another LP, this inter-connect is used for the data channel between
distributed emulation. The sequence of (1) and (2) is the same as in the standard
distributed simulation, while (3) is introduced by our DNEmu architecture.

In the architecture ofDNEmu, the separation of the control and data channels
allows the real-time execution of the distributed simulation. While the MPI
only takes care of control messages for distributed logical processes as a control

channel, raw-socket based inter-connects work as a data channel. Such a design
choice fulfills our requirement of distributed real-time emulation.

4 Evaluation

In this section, based on our prototype implementation of DNEmu on ns-3, we
present a performance measurement using micro-benchmarks on our proposed
architecture, with the Linux container-based CORE (Common Open Research
Emulator) distributed network emulator [2] as an alternative. The objectives of
this evaluation are to show the proof of the concept ofDNEmu and the similarity
of our approach in terms of packet delivery with alternative network emulators.
We then give a possible use-case of DNEmu over globally distributed virtual
machines.

4.1 Setup

All of our experiments were conducted on two Linux systems, Node A and B as
shown in Figure 7, which were equipped with an Intel Core i7-2600 (3.4GHz) and
an AMD Opteron 6128 (2.0 GHz) processor. Two distributed nodes were located
in Tokyo and Kanagawa in Japan respectively, with nine hops between them.
Both systems ran with Ubuntu 10.04 64-bit with kernel versions 2.6.32.29 and

170 H. Tazaki and H. Asaeda

Node B

VN
Local TapGRE Tap

NIC

Rx

Node B

VN
Local Tap GRE Tap

NIC

Tokyo Kanagawa

9hops

GRE Tunnel
(IPv4 endpoints)

Tx

(1)

(2), (3)

VN: CORE, ns-3-dce

Tx/Rx: iperf/ping6

Node A

Simulated

Topology

Logical

Configuration

BGP

bgpd bgpd

Fig. 7. Experimental setup of micro-benchmark

2.6.39.4. We then installed the modified version of ns-3-dce-quagga-umip1 with
our distributed real-time emulation extension. We also used a CORE network
emulator version 4.2svn2 (20110919) on both systems.

By using two distributed nodes, we configured the experimental network as
illustrated in Figure 7. In the case of ns-3, we set up one simulated node in
each distributed physical node and configured Zebra BGP routing, based on
Direct Code Execution (DCE) [11], to exchange their owned route information
at the virtual node (VN), as shown in Figure 7. The forwarding processes in ns-3

were also configured with the modified version of DCE, Linux kernel integration
(i.e., ns-3-linux2), and DlmLoader. Each simulated node was connected via
a tun/tap interface (i.e., Local Tap) configured in the underlying operating
system in order to inject traffic from outside the simulation. The simulated node
was also configured with a GRE tunnel via a gretap interface (i.e., GRE Tap) for
the inter-connection of distributed nodes. The entire configuration is described
in a single simulation script of ns-3 with DNEmu.

In this experimental network, we used ping6 and iperf to measure the ex-
perimental traffic. All traffic was generated by Node A’s underlying operating
system (i.e., Tx), directed to the VN via Local Tap, and forwarded to Node B’s
VN according to the routing information exchanged by BGP, then delivered to
Node B’s underlying operating system (i.e., Rx) via Local Tap.

In the case of CORE network emulation, we also configured the same network
topology and VN as configured in ns-3 above.

4.2 Micro-benchmark

By using the previous setup, we conducted round-trip time (RTT) and available
throughput measurements. We first measured the performance of direct commu-
nication between Node A and B (as shown in (1) in Figure 7) without involving

1 Original version is downloaded from
http://code.nsnam.org/thehajime/ns-3-dce-quagga-umip/

2 Original version is downloaded from
http://code.nsnam.org/mathieu/ns-3-linux/

http://code.nsnam.org/thehajime/ns-3-dce-quagga-umip/
http://code.nsnam.org/mathieu/ns-3-linux/

DNEmu: Design and Implementation of Distributed Network Emulation 171

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s
e
c
)

Packet Size (bytes)

(1) Direct Communication
(2) DNEmu on ns-3

(3) LXC (CORE)

Fig. 8. Packet delivery delay in function of packet size with standard deviation, from
5000 replications

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200 1400

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Packet Size (bytes)

(1) Direct Communication
(2) DNEmu on ns-3

(3) LXC (CORE)

Fig. 9. Throughput (TCP) in function of packet size

any virtualized node, in order to show the performance baseline of the network
environment. We then measured the performance via our DNEmu architecture
(2) and the CORE network emulator (3).

Figure 8 represents the RTT between two endpoints with an interval of 10
milliseconds in function of the size of packets (64, 128, 256, 512, 1024, and 1452
bytes) with standard deviation, from 5000 repetitions of the ping6 command. As
shown in the result of direct communication, the base RTT in this network en-
vironment in this experiment was around 2.5 milliseconds. The CORE emulator
based on Linux Containers (LXCs) scored with an additional 0.1−0.2 millisecond
delay on which to the base RTT. This minimum amount of overhead is achieved

172 H. Tazaki and H. Asaeda

by lightweight virtualization of LXC. On the other hand, ns-3 with distributed
real-time emulation added considerable delay to the base performance: almost
twice as much as direct communication in the case of 1452 bytes packet.

Figure 9 also represents the result of measuring bandwidth by the iperf

command using the TCP Reno algorithm between two endpoints. We recorded
the bandwidth every second for 10 times and plotted the standard deviation
from repetitions.

We can see the performance disadvantage of DNEmu in delivery delay and
throughput. This comes from the packet processing delay inside ns-3 via raw-

sockets and tap-devices. Performance improvement of such functionality is re-
quired to obtain accurate results although it is beyond the scope of this paper.
However, the trend of packet size growth is similar to that in direct communi-
cation and other emulators (i.e., CORE).

4.3 Use-Case: Experiment Using a Globally Distributed Virtual

Machine Service

One possible use-case of DNEmu is that of network experiments in a distributed
network testbed based on a virtual machine service provider. Due to the limita-
tion of the number of nodes in the network experiment with such a virtual node,
a network simulator contributes to increasing the number of experimental nodes
on the testbed with a simple and controllable scenario description. This section
presents a NEtwork MObility (NEMO) handoff experiment involving distributed
located home agents maintained by BGP and OSPFv3.

Figure 10 depicts our experimental network configuration for this use case
using three different sites. MR is a mobile router operated with NEMO software,
MNN is a mobile network node moving with the MR, BS0 and BS1 are base
stations equipped with IPv6 router functionality, HA is a home agent, ARs
are access routers bridging three distributed networks via a tunnel, and CN
is a correspondent node. Access routers, which are located at the boundary of
each site, operate using the BGP routing protocol of Zebra to exchange route
information in the network. In addition to the experiment shown in Section 4.2,
we used a globally distributed virtual machine operated by the WIDE cloud
service, which is organized by the WIDE project3 and composed of Kernel-based
virtual machines (KVM) [10] located at nine distributed sites. We used a single
KVM node located in San Francisco and configured with a GRE tunnel and an
IP6-in-IP6 tunnel as inter-connects between each distributed sites.

In node A, the HA was operated with an Usagi-patched Mobile IPv6 imple-
mentation (UMIP)4, and Linux kernel5 to provide mobile networks for the MR.
In node B, two base stations served Wi-Fi access points to the MR and created

3 http://www.wide.ad.jp
4 USAGI-patched Mobile IPv6 for Linux: http://umip.linux-ipv6.org/, down-
loaded Jul 7 2010 version.

5 http://git.kernel.org/?p=linux/kernel/git/davem/net-next-2.6.git, down-
loaded Aug 19 2010 version.

http://www.wide.ad.jp
http://umip.linux-ipv6.org/
http://git.kernel.org/?p=linux/kernel/git/davem/net-next-2.6.git

DNEmu: Design and Implementation of Distributed Network Emulation 173

MR

HA

BS0 BS1 CN

MNN

MR

MNN

AR

AR

AR

Node B (Kanagawa)

Visited Network

Node A (Tokyo)

Home Network

Node C (San Francisco, WIDE-Cloud node)

Correspondent Network

eBGP Peering

IP6-IP6

GRE

Handoff

OSPFv3

 (RocketFuel:

AS3967)

NEMO

Wireless

Network

79 nodes

147 links

Fig. 10. Experimental use-case of an all IPv6 mobile network with a WIDE Cloud
(VM cloud) node as a complex network configuration with a single controlled emulation
scenario script

different wireless cells. The MR switched its point of attachment to the base
station and obtained a different network prefixes to change its Care-of-Address,
while the MNN followed and used the same address served by the upper MR.
In node C, the reachability to the CN was managed by the OSPFv3 protocol
executed by the Zebra ospf6d daemon using ns-3 DCE functionality. The oper-
ated network was created by the RocketFuel topology dataset [19] and we used
an Exodus (AS3967) database, which consists of 79 nodes and 147 links.

During this experiment, the MR and the MNN moved around between BS0
and BS1 with re-registration of binding to its home agent, and the MNN con-
tinuously sent ICMPv6 echo requests to the peer node (CN in Figure 10) to
measure the duration of the disrupted communication during a handoff.

All of the above experimental scenarios were configured in a single ns-3 script
and controlled at the master node (node A) with our DNEmu architecture.

Figure 11 shows the result of handoff during this experiment. In this figure,
the MR switched its point of attachment from BS0 to BS1 involving the handoff
procedure with the HA, creating nine-second disruption of the ping6 command.
At around 460 seconds, the MR changed the IP address of the egress interface
of the mobile router, re-registered the binding information to the home agent,
and updated the bidirectional tunnel between the MR and HA. After that, the
ping6 command continuously recovered without changing the MNN’s address
insured by NEMO. We can see longer RTT after the handoff since BS1 adds
a 100-millisecond delay in its simulation scenario. The fluctuating RTT is also
seen because of path characteristics between Tokyo and San Francisco.

174 H. Tazaki and H. Asaeda

Loss 0

 500

 1000

 1500

 2000

 400 420 440 460 480 500

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s
e
c
)

Elapsed Time (sec)

9 secs

Fig. 11. Round trip time value between MNN and CN in function of elapsed time of
the experiment. The RTT value “Loss” represents the disruption of communication
caused by changing the point of attachment at the MR.

Such an experiment could be executed without involving existing environmen-
tal modifications. Neither network configurations (IP address and prefix alloca-
tion) nor operating system and kernel modifications are required.

5 Discussion

This section discusses the results of the above evaluation and future directions
for this work.

From an architectural design point of view, the proposed architecture is not
a simulator, because there is no reproducibility of the experimental result: time
synchronization is not performed among the distributed nodes, un-modeled be-
havior at wallclock based timescales always produces different result, and back-
ground traffic at the inter-connect always changes. However, the fully integrated
control via a network simulator greatly helps the easier operation of network
experiments with our DNEmu architecture. We therefore focused on a network
simulator as a toolset of network experiment.

Moreover, the architecture only relies on common features of the current op-
erating systems and does not require upgrading the system, which sometimes
would be a constraint in network experiments (e.g., the case of PlanetLab [3]).
Such a design choice will help with global-scale deployment without the obstacle
of software dependency.

The performance of the real-time scheduler plays an important role in this
architecture. If events are not finished before the deadline of the wallclock time,
the clock will be desynchronized, as mentioned in Section 2.1. Performance im-
provement in the simulation core is required, and would be a future direction of
this work.

DNEmu: Design and Implementation of Distributed Network Emulation 175

6 Related Work

The architecture proposed in this paper is related to two areas of work: integrated
emulators and external testbed controllers. This section highlights the relations
with the existing work.

Integrated emulators here refers to the experimental tool that is able to
emulate various environments from operating systems (by virtualization) to net-
work conditions (by, for example, Wi-Fi emulation on a wired link). This enables
researchers to experiment in advance with their proposed protocols, architec-
tures, or operations without wholesale deployment of the environment. CORE
(Common Open Research Emulator) [2] exploits the lightweight virtualization
technology of the operating system (i.e., IMUNES [16], netns [4]) and allows us to
execute existing applications over emulated links. This tool supports describing
the arbitrary topology with a GUI and executing on a distributed environment
from a single controller. While CORE is able to automate the flow of a network
experiment in a realistic environment, it requires the operating system’s support
to execute it. By contrast, the architecture proposed in this paper virtualizes ev-
erything in the user-land application based on ns-3 and requires no extension
to the kernel. PrimoGENI [20] and ROSENET [8] are both integrated network
simulators with an emulation facility via an emulation gateway, and achieving
flexible and scalable network experiments. However, due to the number of com-
ponents involved in an experiment, the potential complexity will increase. Our
DNEmu architecture achieves distributed emulation involving only with a single
toolset of the software and can control everything in a single simulation scenario.
This is the strength of our architecture compared to alternatives.

An external testbed controller is a tool (or toolset) to help the execution
of network experiments allowing easy operation and repeatability of the experi-
ment. OMF (cOntrol and Management Framework) [17] is a toolset of the soft-
ware to control experiments, manage the experimental component, and conduct
measurement via a unified controller. These have been successfully deployed into
an ORBIT testbed [14] to operate on hundreds of physical nodes. NEPI (Net-
work Experiment Programming Interface) [12] has been proposed as a general
framework for network experiments with a python programming interface. It
can operate across multiple types of network testbeds such as PlanetLab, Em-
uLab [21], or ORBIT etc. While these testbed controllers provide an abstract
model of the network experiments, our DNEmu architecture only targets at
a specific network simulator (i.e., ns-3) in order to reduce external software
dependencies of the toolset.

7 Conclusion

In this paper, we have designed the DNEmu architecture based on the combi-
nation of a distributed simulation and real-time simulation. To the best of our
knowledge, there is no other such architecture based on the combination of these
two distinct scheduling algorithms. The architecture has satisfied our require-
ments for a network experiment within a single toolset of software. Through the

176 H. Tazaki and H. Asaeda

prototype implementation of our architecture, micro-benchmarking has shown
similar trends with packet delivery delay and throughput, and a use-case has
been presented on top of a globally distributed cloud service with a distributed
synchronized network experiment. Yet the implementation is at an early stage
and we have already found some performance drawbacks. However, our archi-
tecture will benefit the user who is going to deploy network experiments with
globally distributed nodes, without being concerned about a complex toolset for
the experiment.

The contributions of this paper are two-fold. First, we have designed a dis-
tributed real-time emulation on a novel network simulator ns-3 to achieve a
global-scale network experiment with easier operation in a single toolset of the
software. Second, we have implemented a prototype of DNEmu and evaluated
the similarity of basic network performance between our proposed architecture
and a non-virtualized environment.

Acknowledgment. The authors wish to thank the WIDE Cloud Computing
Working Group of WIDE project for their support of our experiment. We also
thank Clare Horsman for her comments to improve the paper.

References

1. Pakistan hijacks YouTube, http://www.renesys.com/blog/2008/02/
pakistan-hijacks-youtube-1.shtml (accessed October 17, 2011)

2. Ahrenholz, J., Danilov, C., Henderson, T., Kim, J.: CORE: A real-time network em-
ulator. In: Proceedings of Military Communications Conference, pp. 1–7 (November
2008)

3. Bhatia, S., Di Stasi, G., Haddow, T., Bavier, A., Muir, S., Peterson, L.: Vsys:
a programmable sudo. In: Proceedings of the 2011 USENIX Annual Technical
Conference, USENIX ATC 2011, Berkeley, CA, USA. USENIX Association (2011)

4. Bhattiprolu, S., Biederman, E.W., Hallyn, S., Lezcano, D.: Virtual servers and
checkpoint/restart in mainstream linux. SIGOPS Oper. Syst. Rev. 42(5), 104–113
(2008)

5. Fall, K.: Network emulation in the VINT/NS simulator. In: Proceedings of Interna-
tional Symposium on Computers and Communications, pp. 244–250. IEEE (July
1999)

6. Feldmann, A.: Internet clean-slate design: what and why? SIGCOMM Comput.
Commun. Rev. 37(3), 59–64 (2007)

7. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

8. Gu, Y., Fujimoto, R.: Applying parallel and distributed simulation to remote net-
work emulation. In: Proceedings of the Winter Simulation Conference, WSC 2007,
pp. 1328–1336 (December 2007)

9. Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: ns-3 project goals. In: Proceedings
of the 2006 Workshop on ns-2: the IP Network Simulator, WNS2 2006. ACM (2006)

10. Kivity, A.: Kernel Based Virtual Machine, http://www.linux-kvm.org/ (accessed
December 17, 2010)

http://www.renesys.com/blog/2008/02/pakistan-hijacks-youtube-1.shtml
http://www.renesys.com/blog/2008/02/pakistan-hijacks-youtube-1.shtml
http://www.linux-kvm.org/

DNEmu: Design and Implementation of Distributed Network Emulation 177

11. Lacage, M.: Experimentation Tools for Networking Research. PhD thesis, Univer-
site De Nice-Sophia Antipolis (2010)

12. Lacage, M., Ferrari, M., Hansen, M., Turletti, T., Dabbous, W.: NEPI: using in-
dependent simulators, emulators, and testbeds for easy experimentation. ACM
SIGOPS Operating Systems Review 43(4), 60–65 (2010)

13. Mahrenholz, D., Ivanov, S.: Real-Time Network Emulation with ns-2. In: Proceed-
ings of International Symposium on the Distributed Simulation and Real-Time
Applications, DS-RT 2004, pp. 29–36 (October 2004)

14. Ott, M., Seskar, I., Siraccusa, R., Singh, M.: ORBIT testbed software architecture:
supporting experiments as a service. In: Proceedings of the First International Con-
ference on Testbeds and Research Infrastructures for the Development of Networks
and Communities, TridentCom 2005, pp. 136–145 (February 2005)

15. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing
disruptive technology into the Internet. SIGCOMM Comput. Commun. Rev. 33(1),
59–64 (2003)

16. Puljiz, Z., Mikuc, M.: IMUNES Based Distributed Network Emulator. In: Pro-
ceedings of the International Conference on Software in Telecommunications and
Computer Networks, pp. 198–203 (October 2006)

17. Rakotoarivelo, T., Ott, M., Jourjon, G., Seskar, I.: OMF: a control and management
framework for networking testbeds. SIGOPS Oper. Syst. Rev. 43, 54–59 (2010)

18. Riley, G., Fujimoto, R., Ammar, M.: A generic framework for parallelization
of network simulations. In: Proceedings of the 7th International Symposium on
Modeling Analysis and Simulation of Computer and Telecommunication Systems,
pp. 128–135 (October 1999)

19. Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies
with rocketfuel. IEEE/ACM Transactions on Networking (TON) 12(1), 2–16 (2004)

20. Van Vorst, N., Erazo, M., Liu, J.: PrimoGENI: Integrating Real-Time Network
Simulation and Emulation in GENI. In: Proceedings of the Workshop on Principles
of Advanced and Distributed Simulation, PADS 2011, pp. 1–9. IEEE (June 2011)

21. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, OSDI 2002, pp. 255–270 (2002)

	DNEmu: Design and Implementation of Distributed Network Emulation for Smooth Experimentation Control
	Introduction
	Background
	Real-Time Simulation
	Parallel and Distributed Simulation
	What Is Missing?

	The Architecture
	Overview
	Principles
	Functional Components

	Evaluation
	Setup
	Micro-benchmark
	Use-Case: Experiment Using a Globally Distributed Virtual Machine Service

	Discussion
	Related Work
	Conclusion
	References

