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Abstract 

Background: The non-local module has been primarily used in literature to capturing long-range dependencies. 
However, it suffers from prohibitive computational complexity and lacks the interactions among positions across the 
channels.

Methods: We present a deformed non-local neural network (DNL-Net) for medical image segmentation, which has 
two prominent components; deformed non-local module (DNL) and multi-scale feature fusion. The former optimizes 
the structure of the non-local block (NL), hence, reduces the problem of excessive computation and memory usage, 
significantly. The latter is derived from the attention mechanisms to fuse the features of different levels and improve 
the ability to exchange information across channels. In addition, we introduce a residual squeeze and excitation pyra-
mid pooling (RSEP) module that is like spatial pyramid pooling to effectively resample the features at different scales 
and improve the network receptive field.

Results: The proposed method achieved 96.63% and 92.93% for Dice coefficient and mean intersection over union, 
respectively, on the intracranial blood vessel dataset. Also, DNL-Net attained 86.64%, 96.10%, and 98.37% for sensitiv-
ity, accuracy and area under receiver operation characteristic curve, respectively, on the DRIVE dataset.

Conclusions: The overall performance of DNL-Net outperforms other current state-of-the-art vessel segmentation 
methods, which indicates that the proposed network is more suitable for blood vessel segmentation, and is of great 
clinical significance.

Keywords: Blood vessel segmentation, Deep learning, Non-local neural network, Attention mechanisms, Spatial 
pyramid pooling
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Background
Many diseases result from lesions in blood vessels. For 
example, cerebral thrombosis is caused by blockage of 
blood vessels in the intracranial arteries. Therefore, the 
vascular segmentation is critical to the diagnosis and 
treatment of vascular diseases [1, 2].

With the rapid development of deep learning in the 
field of medical images [3–6], many deep learning 

model algorithms have been applied in the medical 
image segmentation tasks, primarily based on convo-
lutional neural networks (CNN), have been proposed 
in recent years [7–14]. Due to its simple structure and 
excellent performance, U-Net [15] has become the 
backbone of many different vascular segmentation net-
works. DEU-Net [16] utilizes the dual encoding U-Net 
to capture more semantic information with multiscale 
convolution block. CE-Net [17], which designed a 
dense atrous convolution block and a residual multi-
kernel pooling for further context information with 
multi-scale pooling operations. Although these U-Net-
based architectures perform well, the weight shar-
ing mechanism of the CNN induces these networks to 
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extract primarily local features while ignoring global 
features.

To address this problem, researchers began to 
introduce different network structures. For example, 
attentional mechanism [18, 19] are introduced to cap-
ture rich contextual dependencies. Linsley et  al. [20] 
extended the squeeze-and-excitation (SE) module [21] 
with a novel global-and-local attention module for 
visual recognition. Furthermore, spatial pyramid pool-
ing [22, 23] and more complex backbone networks like 
ResNet101 [24] were introduced to improve segmenta-
tion accuracy. However, such strategies require large 
computation and memory resources, thus they are not 
very effective. Consequently, people began to use alter-
native strategies like long dependencies. The non-local 
(NL) network computes the pairwise relations between 
the query position and all positions to form an atten-
tion map for each query position, and can effectively 
extract long dependencies features. Wang et  al. [25] 
combined CNN and the traditional non-local means 
to capture the long range dependencies in an image. 
Zhu et  al. [26] present asymmetric non-local neu-
ral network to semantic segmentation. In the medical 
image segmentation task, Wang et al. [27] proposed the 

non-local U-Nets structure, which are equipped with 
flexible global aggregation blocks.

Based on the above discussion, in the standard NL 
network, shown in Fig.  1a, to calculate the similarity 
between each location, the computational complexity is 
O(CH2W2). We observe that the complexity of NL is pri-
marily determined by the product of the value and key 
branch. As long as capturing the attentional feature map 
in a NL network, the multiplication operation cannot be 
avoided. Since multiplication operation is very similar 
to the multiplication operation in positional attention, 
it is possible to have an operation that satisfies both the 
acquisition of an attentional feature map and the cross-
channel communication of information. We know that 
in the attention mechanism, the calculation amount 
and memory occupation of channel attention are greatly 
reduced compared to positional attention. Thus, we can 
use channel attention mechanisms instead of positional 
attention mechanisms. In this view, the time complexity 
and memory occupation can be significantly decreased 
without sacrificing the performance.

The main contributions of this paper are as follows. 
(1) we propose a simple NL module, as shown in Fig. 1b, 
to reduce the complexity of the standard non-local 

Fig. 1 Architecture of non-local block (Embedded Gaussian) (a) and its simplified version (b). The dimensions of the input feature maps are 
C × H ×W , ⊗ is the matrix multiplication, and ⊕ is the broadcast element-wise addition
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module. Motivated by the attention mechanism strat-
egy, we embed an SE module as shown in Fig.  2a into 
a simplified non-local block, which can enhance the 
features by aggregating them from different positions 
as shown in Fig.  2bWe name the new block called 
deformed non-local module (DNL). (2) At each stage of 
the decoder, we replace the vanilla skip connection of 
the classic U-Net model with multi-scale feature fusion 
(MFF) module, which can largely boost the efficiency 
and allow shallow features to be combined with high-
level features. (3) In order to increase the receptive field 
of the model to adapt the variant scale of vessels by fig-
uring out the importance of different scales, we adopt 

an RSEP to fuse the features of different stages of the 
deep network.

The rest of the paper is organized as follows: “Related 
work” section describes related work. “Methods” sec-
tion describes our proposed segmentation method in 
detail. “Experiments” section discusses our experimental 
results. Finally, the conclusions are presented in “Conclu-
sions” section.

Related work
In this Section, we review the related works about 
semantic segmentation. Ideally, semantic segmentation 
methods that are based on deep learning mainly can 

Fig. 2 Architecture of the main blocks; (a) SE block and (b) DNL block. The dimensions of the input feature maps are C × H ×W . ⊗ denotes matrix 
multiplication and ⊙ denotes broadcast element-wise multiplication
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be roughly categorized into four directions: Encoder-
Decoder, Different module, Attention mechanism, and 
long dependencies, which are not the relationship of 
sequential iterations, but the relationship of parallel coex-
istence. They can be applied independently to semantic 
segmentation or applied to semantic segmentation in a 
combined manner.

Encoder–decoder
The encoder-decoder structure is a classical structure in 
semantic segmentation, where the encoder part is used to 
extract features, while the decoder part is used to restore 
features. DeconvNet [28] used multiple deconvolutions 
to perform the decoding pass. Following that, U-Net 
[15] introduced skip-connections to connect the encod-
ing and decoding layers, which proved quite successful 
in semantic segmentation of many medical image seg-
mentation tasks. Inspired by U-Net, many semantic seg-
mentation networks have been proposed with different 
coding and decoding structures [7, 29–31].

Different module
Researchers have introduced many modules such as con-
ditional random field (CRF) to improve segmentation 
accuracy of the network. For example, CNN-CRF [32] 
combined the fully convolutional networks (FCN) and 
CRF for semantic segmentation. Although this method 
can improve the accuracy of semantic segmentation, it 
has only a limited improvement. With the introduction of 
U-Net, various connection modules had been proposed 
to improve the segmentation accuracy [22, 29, 33–36]. 
One of the best-known methods is the DeepLab [29] 
which combined many different module such as atrous 
spatial pyramid pooling (ASPP) [37], dilated convolution 
[38], and encoder-decoder [28, 34].

Attention mechanism
Inspired by the success of the SE [21], several studies 
adopted attention mechanisms into semantic segmenta-
tion [39–42]. The convolutional block attention module 
(CBAM) method [43] introduced two attention mecha-
nisms (channel attention and spatial attention). The 
PARSENET [18] used the global features and a learning 
normalization method which improved the segmenta-
tion accuracy. Dual attention via spatial and channel 
attentions to capture rich contextual dependencies was 
also proposed in [44]. The SANet [45] introduced a novel 
squeeze-and-attention network architecture for obtain-
ing an enhanced pixel-wise prediction. On the other 
hand, HMANet [46] used a novel attention-based frame-
work to adaptively capture global correlations from the 
perspective of space, channel, and category. Also, Zhao 

et al. [23] proposed a pyramid feature attention network 
to focus on the high-level and low-level features.

Long dependencies
Since the global features have showed great importance 
for semantic segmentation, researchers began to study 
the long dependencies features. Wang et al. [27] propose 
the non-local U-Nets, which are equipped with flexible 
global aggregation blocks, for biomedical image segmen-
tation. Yu et  al. [8] developed a network with context 
prior and feature aggregation to distinguish the intra-
class and interclass contextual information. Also, Huang 
et  al. [47] proposed criss-cross attention for semantic 
segmentation. Yue et al. [48] designed a generalized NL 
module that utilizes the positions of any two channels.

Different from these works, our network incorporates 
the channel attention and deformed non-local blocks 
to capture the semantic segmentation feature, while the 
computation time and memory are greatly reduced with-
out compromising the segmentation accuracy.

Methods
DNL-Net is a classical encoding–decoding structure 
network, as shown in Fig. 3. We choose the convolution 
and batch normalization (“Conv + BN”) to form the fea-
ture coding stage. The reason is that, medical image data 
usually do not contain as much information as natural 
images as shown in Fig. 4. In the figure, we can see that 
the region of interest of medical images is about 0.3% 
compared to the whole image, while the large region of 
interest of natural images is about 18.7%. When a com-
plex network structure is used as a backbone, it is easy 
to lose some feature information, thereby affecting the 
accuracy of segmentation. We also demonstrate this con-
clusion in the ablation study. After feature coding stage, 
we use the RSEP module to increase the network’s recep-
tive field and adjust the channel information of the fea-
ture. Then, in the feature decoding phase, we use DNL 
and MFF to combine the shallow and high-level features.

Non‑local block
The basic NL block is shown in Fig. 1a. The way to long-
range dependencies for non-locals is the self-attention 
mechanisms. We denote x ∈ RH×W×C and y ∈ RH×W×C 
as the input and output feature maps, respectively. 
Where, H and W  indicate feature map height and width 
and C indicate the feature map channel number. Math-
ematically, the NL block can be formulated as:

(1)yi =
1

C(x)

∑

∀j

f
(

xi, xj
)

g
(

xj
)

,
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where i is the index of an output position and j is the 
index that enumerates all possible positions. The function 
f  computes the representing relationship while function 
g computes the representation of the input signal at the 
position j . The factor C(x) indicates the normalization 
term.

The function g can be a linear embedding such as 
g
(

xj
)

= Wgxj , where Wg is a weight matrix while the func-
tion f  can have many different forms (embedded Gaussian, 
dot product, and concatenation). For example, in embed-
ded Gaussian form the function f  is defined as:

(2)f
(

xi, xj
)

= eθ(xi)
Tφ(xj),

where θ(xi) = Wθxi and φ
(

xj
)

= Wφ

(

xj
)

 . Similar to Wg , 
Wθ and Wφ are also weight matrices. When 
C(x) is used as

∑

∀j

f (xi, xj).

We note that the self-attention module is a special case 
of non-local operations in the embedded Gaussian ver-
sion. This can be seen from the fact that for a given i , the 
1

C(x) f
(

xi,xj
)

 becomes the softmax function. Finally, the NL 
block becomes:

(3)y = softmax
(

xTWT
θ Wφx

)

Wgx.

Fig. 3 Overview of the proposed DNL-Net

Fig. 4 Differences between medical images and natural images
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In addition, to simplify network computing, the dot 
product is generally used. Hence, the function f  can be 
defined as:

For gradient simplified calculations, the normaliza-
tion term is defined as C(x) = N  , N  is the number of the 
position in the feature map. Here, the θ(∗)andφ(∗) can 
be implemented as1 × 1 or 1 × 1 × 1 convolutions. Finally, 
NL can be defined as follows:

where “ + ”operation denotes the residual connection.

Deformed non‑local (DNL)
Taking the simplest form (dot product) as an exam-
ple, the most time-consuming in part NL block is the 
multiplication operation of function f  and function g , 
which has computational complexity of O

(

CH2W 2
)

 . 
In the semantic segmentation task, the network using 
the encoder-decoder module restores the feature reso-
lution layer by layer (for example in our training phase, 
H × W = 512 × 512 = 262,144). Hence, the product oper-
ation of this matrix takes much time as the feature reso-
lution becomes larger.

Therefore, in order to reduce the running time, it is 
necessary to reduce the complexity of the product of the 
weight matrix. We observe that in the NL block calcula-
tions, the function f cannot be avoided. Regardless of the 
function, basically the product of two weight matrices is 
needed. Therefore, the simplification operation can only 
occur in the step of the product of the function f  and the 
function g . Based on the previous discussion, we adopt 
the most widely-used version, i.e., embedded Gauss-
ian, as the basic NL block. In the basic NL function f  , it 
mainly has three forms and it is defined as follows:

where θ(xi) = Wθxi and φ
(

xj
)

= Wφ

(

xj
)

 . Wg , Wθ and Wφ 
are weight matrices. Here, we get a matrix of CH2W 2 . 
This matrix leads to a tremendous increase in the amount 
of the subsequent operations. Stimulated by the channel 
attention network, we simplify the function f  as follows:

In this way, we get a matrix of C × C size and the com-
putational complexity becomes O(CHW). Thus, when 
the softmax is performed later, the operation is reduced 
by HWC  times. Later, the function f  and the function g are 
then subjected to a product operation to obtain a matrix 
of C ×HW  using:

(4)f
(

xi,xj
)

= θ(xi)
Tφ

(

xj
)

.

(5)Zi = Wzyi + xi,

(6)f
(

xi,xj
)

= eθ(xi)
Tφ(xj)

(7)f
(

xi,xj
)

= eθ(xi)φ(xj)
T

.

where Convx1×1 indicates a 1 × 1 convolution with the 
number of channels is x while C/r denotes the hidden 
representation dimension. “ × ” indicates matrix multipli-
cation operations. Different from the NL block, we add 
an SE module after the non-local operation, where the SE 
is a lightweight module and does not increase the amount 
of computation.

Multi‑scale feature fusion (MFF)
As the success of U-Net is demonstrated in different 
tasks, it is well-known that the feature maps connecting 
different levels are important for semantic segmentation. 
The usual connection method is addition or concatena-
tion. The naive connection is insufficient to consider the 
complementariness between high-level features and low- 
level features. Therefore, we propose a multi-scale feature 
fusion (MFF) module to guide the fusion between adja-
cent layers based on channel attention operation, as illus-
trated in Fig. 5, which can be formulated as:

where MU , add are a pixel-level matrix multiplication 
and addition operation,xhig and xlow represent shallow 
features and high-level features, respectively. AV  is cal-
culated using:

where Conv1×1 denotes the 1 × 1 convolutions, Normal-
ize is the L2-Normalize operation and GAP is the global 
average pooling operation.

Residual squeeze and excitation pyramid pooling (RSEP)
An essential challenging problem in semantic segmen-
tation is that, the resolution of the image gradually 
decreases after multiple convolutions and pooling opera-
tions, and simultaneously, the effective receptive field 
gradually decreases. In this paper, we propose an RSEP 
technique to address this problem, which mainly relies 

(8)y1 = softmax
(

Wθxx
TWT

φ

)

Wgx,

(9)y2 = conv11×1(x)× yT1 ,

(10)y3 = Conv
C
rate
1×1

(

y2
)

,

(11)y4 = ConvC1×1

(

y3
)

(12)y = y4 × (ConvT1×1(x))
T
,

(13)
MFF = add

[

MU
(

AV
(

DNL
(

xhig
))

, xlow
)

,UP
(

xhig
)]

(14)AV = Conv1×1(Normalize(GAP(x)),



Page 7 of 14Ni et al. BMC Medical Imaging          (2022) 22:109  

on multiple effective receptive fields to gather at different 
sizes.

It is well-known that the large receptive field plays an 
important role in the semantic image segmentation. Gen-
erally, there are two main ways to increase the receptive 

field. The first is to deepen the network architecture 
while the second is to use the dilated convolution. In this 
paper, we use the structure of the spatial pyramid pool-
ing containing a dilated convolution. The main difference 
from the common ASPP method is that, we combine 
the SE operation into the spatial pyramid pooling block. 
The main reason is that, the SE can re-adjust the channel 
information of the feature, thus, more informative fea-
tures can be obtained.

In this case, the RSEP module has four cascade 
branches with the gradual increment of the number of 
atrous convolution and SE network structure, Fig.  6. 
Since a large receptive field is good for acquiring much 
contextual information, we present 4 dilated convolu-
tions with dilation scales being 1, 6, 12, and 12 in the 
RSEP. In each branch, we apply 1 × 1 convolution for rec-
tified linear activation after every atrous convolution and 
SE network. Finally, we concatenate the original features 
with the features of the four cascaded branches feature 
maps.

Experiments
Datasets
We conduct our experiments on two different datasets: 
Intracranial Blood Vessel (IBV) Dataset and DRIVE 
Dataset. As shown in Table 1 all images are in different 
formats. For convenience, we convert all pictures to JPG 
format.

Fig. 5 Overview of the proposed multi-scale feature fusion (MFF)

Fig. 6 Illustrations of the RSEP module with 4 dilated convolutions
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Intracranial blood vessel (IBV) dataset
The intracranial blood vessel dataset in this study is a 
self-collected dataset from a local hospital in Shenzhen, 
China. The imaging modality of this dataset is computed 
tomography angiography (CTA). There are 4326 CTA 
images (20 patients) of intracranial blood vessels with 
dimension 512 × 512 in the original dataset for training. 
In addition, we used two new patients (480 CTA images) 
that were not included in the training and validation sets 
as the testing set. We further augmented the training 
dataset to increase the number of samples to avoid the 
potential risk of overfitting. Specifically, we performed 
data augmentation in three ways, i.e., affine transforma-
tion, rotation, and vertical flip operations. Each image 
was contrast enhanced before data augmentation. During 
the training process, 20% of training images were used as 
validation set, while the remainder 80% as a training set.

The DRIVE dataset
The images of the DRIVE dataset were obtained from a 
diabetic retinopathy screening program in the Nether-
lands. The screening population consisted of 400 diabetic 
subjects between 25 and 90 years of age, the size of each 
original image is 565 × 584 pixels. A set of 40 images were 
randomly selected. In the data set, these pictures were 
divided into 20 images for training and 20 for testing, in 
order to make a fair comparison with other algorithms, we 
also adopted this division method. In this experiment, we 
performed data augmentation in four ways, including gray-
scale conversion, standardization, contrast-limited adaptive 

histogram equalization (CAHE), and gamma adjustment 
(GA) as shown in Fig. 7. In addition, we used image patches 
for training. Specifically, each 96 × 96 patch was obtained 
by randomly selecting its center inside the full image.

Implementation details
Our implementation is based on the Keras deep learning 
library [49] with TensorFlow [50] as backend running on an 
Ubuntu 16.04 system with CPU Intel Core i7-5960X, GPU 
NVIDIA GeForce Titan XP, and 24 GB of RAM.We use the 
ADAM [51] optimizer with β1 = 0.5, and β2 = 0.999 and 
initial learning rate lr = 1e–3. The lr is updated during the 
training process by multiplying it by 

(

1−
(

epoch−1
totalepoch

)power)

 , 
where power is set to 0.9. The maximum number of epochs 
is set to 200. For DRIVE, we randomly crop out the resolu-
tion patches 96 × 96 from the original images as the inputs 
for training. In addition, in this paper, the loss function is 
based on combination of the Dice loss and the weighted 
cross-entropy loss as suggested in [52].

To quantitatively evaluate the proposed method, we 
adopt the Dice coefficient (Dice), the Mean IoU (mean 
of class-wise intersection over union) on the intracranial 
blood vessel dataset. The Dice is defined as follows:

where N is the number of pixels, p(k , i) ∈ [0, 1] , and 
q(k, i) ∈ [0, 1] are, respectively, the predicted probability 
and ground truth labels for class k. On the other hand, 
the mean IoU is calculated using:

where k represents total number of classes,pij are pix-
els whose real pixel class is i are predicted as the total 

(15)Dice =
2
∑N

i p(k , i)q(k , i)
∑N

i p2(k , i)+
∑N

i q2(k , i)
,

(16)MeanIoU =
1

k

k
∑

i=0

pii
∑k

j=0 pij +
∑k

j=0 pji − pii

Table 1 An overview of the two available databases

The total number of images, the training and test split, the image size 
(width × height)

Datasets Quantity Train‑test split Resolution Format

IBV 4806 4326–480 512 × 512 .dcm

DRIVE 40 20–20 565 × 584 .tiff

Fig. 7 Data augmentation. We apply four strategies for data augmentation, including gray-scale conversion, standardization, gamma adjustment 
(GA), and contrast-limited adaptive histogram equalization (CAHE)
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number of classes j , and pii are pixels whose real pixel 
class is i are predicted as the total number of classes i.

For quantitatively analyze the proposed method on the 
DRIVE dataset, several important metrics are utilized, 
including sensitivity (SE), specificity (SP) and accuracy 
(ACC), which are calculated by the following equations:

where TP and FP are the variables of true positive and 
false positive, which represent the number of blood ves-
sel pixels correctly segmented and the number of back-
ground pixels that are incorrectly segmented by the 
model, respectively. Correspondingly, TN is the variable 
of true negative, which represents the number of back-
ground pixels that correctly segmented. FN is the vari-
able of false negative, which represents the blood vessel 
pixel that is incorrectly marked as a background pixel. 
Additionally, the area under curve (AUC) of receiver 
operating characteristic curve (ROC) is also employed, 
which are based on the recall and precision to measure 
the segmentation performance.

Performance evaluation
Performance on the intracranial blood vessel dataset
Though our DNL-Net is based on 2D CT slice images, 
the 3D surface is reconstructed for intuitive visualization 
of the segmented vasculatures, it can be seen that there 
are some noises on the surface as isolated objects, arising 
from the misclassifications. Since the entire intracranial 
arterial vasculature is a 3D topology, there will not be a 
single unconnected vessel as the mis-segmented noise is 
not connected to the entire blood vessel. Therefore, we 
remove some areas or noises, accounting for less than 
0.03% of the entire blood vessel.

Results of other state-of-the-art semantic segmenta-
tion solutions to intracranial blood vessel data are sum-
marized in Table  2. These results were obtained under 
the same experimental conditions and the same data 
pretreatment. The Dice coefficient of segmentation accu-
racy increased from 76.14 to 96.63%, and the accuracy of 
Mean IoU increased from 66.53 to 92.93%. In particular, 
as we can see in Fig. 8, DNL-Net has more details than 
other methods. The main reason for this is that, the DNL, 
MFF the RSEP modules can well-preserve the informa-
tion of medical images.

(17)SE =
|TP|

|TP + FN |

(18)SP =
|TN |

|FP + TN |

(19)ACC =
|TP + TN |

|TP + TN + FN + FP|

Performance on the DRIVE dataset
Here, we report the segmentation results on the DRIVE 
dataset. To compare the performance of the proposed 
method on vessel detection, we adopt the Sen and ACC  
metrics, respectively. We also adopt the area under 
receiver operation characteristic curve (AUC) to measure 
segmentation performance.

Similarly, we compared the proposed DNL-Net with 
the state-of-the-art methods. The results summarized 
in Table  3 clearly demonstrate the superior segmenta-
tion improvements achieved by our method compared 
with competing methods. Note that, all baseline mod-
els are obtained directly from results provided by the 
authors. In this table, the proposed DNL-Net achieved 
98.37%, 86.64%, and 96.10% for AUC, Sen, and Acc met-
rics, respectively, which are better than other methods. 
It can also be seen that, the AUC increased from 86.20 
to 98.37% and Sen score increased from 72.50 to 86.64% 
while the Acc increased from 94.42 to 96.10%. Some 
examples for visual comparison are shown in Fig. 9.

Computation efficiency
As discussed in “Deformed non-local (DNL)”, the DNL 
is much more efficient than the standard NL block. We 
hereby give a quantitative comparison between our DNL 
and the standard NL blocks in the following aspects: 
number of parameters and GPU computation time (ms). 
In our network, the NL and DNL blocks receive two dif-
ferent patch sizes (96 × 96 and 192 × 192). For fair com-
parison, the testing environment is kept identical for 
these two blocks, that is, two Titan Xp GPU under CUDA 
9.0 without other ongoing programs.

We compare the GPU times of DNL and a standard NL, 
averaging the running time of every epoch. In the subsec-
tion of Deformed Non-Local (DNL), we known that DNL 

Table 2 Comparisons of the proposed methods against state-
of-the-art methods on the intracranial blood vessel dataset

Method Dice coefficient (%) Mean IoU (%)

U-Net 87.32 86.48

SegNet 88.40 81.63

FCN16s 76.14 66.53

DenseASPP 84.38 81.80

Deeplab V3 + 90.70 87.83

RefineNet 91.68 76.72

ENet 85.97 81.72

BiSeNet 92.92 89.33

SA-Net 95.89 91.58

SSCA-Net 96.20 92.70

DNL-Net 96.63 92.93
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is roughly HWC  times less in matrix computation, when 
the H and W the larger the difference between the two 
performance is greater, so when the image resolution of 
96 × 96, the difference is not obvious, and to 192 × 192 
can see the difference. As can be seen from the Table 4, 
In terms of time, DNL is also 2.5 times faster than a non-
local block for a 192 × 192 input on DRIVE dataset.

Ablation study
In this Section, we performed extensive experiments 
to verify the efficacy of the proposed method. We also 

gave several design choices to show their influences on 
the results. Here Baseline is our redesigned U-shaped 
network structure, using the same coding and decod-
ing layers and loss functions of DNL-Net. Therefore, the 
accuracy is significantly improved compared to the origi-
nal U-Net.

Efficacy of the DNL, MFF and RSEP
We designed some experiments to verify the effective-
ness of the two proposed modules. In addition, we also 
used the MFF module. However, we did not indepen-
dently verify the effectiveness of MFF for semantic 
segmentation Since the MFF module is immediately fol-
lowing the DNL in the DNL-Net, we verify the DNL and 
MFF as one big module in our verification. By adding the 
RSEP to the Baseline model, the score of Dic is improved 
from 93.72 to 94.46%, and the score of Mean IoU is 
improved from 90.29 to 91.96%, as shown in Table  5. 
In addition, we added the DNL + MFF structure to the 
Baseline model, the score of Dic coefficient is improved 
from 93.72 to 95.76%. the sore of Mean IoU is improved 
from 90.29 to 91.92%. and added the ASPP with Base-
line + DNL + MFF, the score of Dic is slightly improved 
from 95.76 to 96.01%. the sore of Mean IoU is slightly 
improved from 91.92 to 92.93%. Finally, we replace the 
ASPP with RSEP and find that the segmentation accuracy 
is also improved.

Analysis on pretrained networks
Recent work [59] points out that ImageNet pre-training 
is no better than the original feature encoder in terms 
of model training accuracy. We do ablation learning on 

(a) Images   (b) DeepLabV3+ (c) RefineNet (d) Ours (e) Ground 
Fig. 8 Qualitative comparisons with DeepLab-V3 + and RefineNet. The red, green and blue rectangles mark where our method is particularly 
superior to the others

Table 3 Performance comparisons of the proposed method 
against state-of-the-art methods on DRIVE dataset using 
different performance metrics

Method Sen (%) Acc (%) AUC (%)

Azzopadi et al. [53] 76.55 94.42 96.14

Roychowdhury et al. [54] 72.50 95.20 96.72

Zhao et al. [55] 74.20 95.40 86.20

U-Net [15] 73.44 95.23 97.44

DeepVessel [56] 76.03 95.23 97.52

Li et al. [57] 75.69 95.27 97.38

Melinscak et al. [58] – 94.66 97.49

DEU-Net [16] 79.40 95.67 97.72

CE-Net [17] 83.09 95.45 97.79

DenseU-Net [7] 80.40 96.04 97.97

R2U-Net [36] 83.18 95.93 98.11

SA-Net [42] 82.52 95.69 98.22

SSCA-Net [35] 83.52 96.14 98.20

DNL-Net 86.64 96.10 98.37
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Intracranial blood vessel data sets because the data sets 
contain a large amount of data, which can better verify 
the potential of the network. On the intracranial arterial 
blood vessel dataset, comparing with DNL-Net, we can 
see that ResNet50 + DNL + MFF + RSEP has increased 
from 94.72 to 96.63% in Dic and Mean IoU increased 
from 90.65 to 92.93%. The results in Fig. 10 and Table 6 
have demonstrated the effectiveness of without pre-train-
ing weights is no worse than using weights.

Limitations
Currently, we have used 2D images for semantic segmen-
tation, but 3D graphics are usually dominant in medical 
graphics. However, 3D images contain more information 
than 2D images, which commonly happens in medical 
imaging tasks. Therefore, we should pay more attention 
on the 3D images. Moreover, since we were also unable 
to obtain other more effective cerebrovascular datasets to 
validate the robustness of the proposed method. We sub-
sequently applied the DNL-net method to different medi-
cal image segmentation tasks.

To demonstrate the advantage of the proposed method 
in detecting very fine vessels, we further employed fun-
dus vessels data to validate the network’s segmentation 
ability for fine vessels. The proposed DNL-Net is capable 

Fig. 9 Qualitative comparisons of the proposed DNL-Net、U-Net、DenseU-Net and R2U-Net on the DRIVE database

Table 4 Parameters and GPU computation time (s/epoch) 
comparisons between the NL block and our DNL

Batch size is 4. The lower values indicate better performance

Method Input size Time 
(ms/
epoch)

NL 96 × 96 40

DNL 96 × 96 41

NL 192 × 192 154

DNL 192 × 192 48

Table 5 Performance comparisons of context aggregation 
approaches on the intracranial blood vessel dataset

Method Dice coefficient 
(%)

Mean IoU (%)

Baseline 93.72 90.29

Baseline + RSEP 94.46 91.96

Baseline + ASPP 94.17 91.97

Baseline + DNL + MFF 95.76 91.92

Baseline + DNL + MFF + ASPP 96.01 92.42

DNL-Net 96.63 92.93
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of effectively capturing multi-scale contextual informa-
tion and promoting the fusion of the features at different 
levels to obtain more semantic representations. The sta-
tistical results of comparisons among the proposed net-
work and other state-of-the-art methods on the DRIVE 
dataset are as shown in Table 4, which clearly show the 
superiority of the proposed method in achieving better 
segmentation performance for the thin vessels.

Conclusions
This paper presented a novel deep network model for 
medical image segmentation. Our approach mainly used 
two attention mechanisms to analyze the context infor-
mation of the entire network. To obtain global contextual 
information, we introduced a DNL and MFF module to 

obtain the feature information of the image. In addition, 
an RSEP module was devised to increase the size of the 
receptive field of the network while learning more fea-
tures. Finally, we adopted a weighted cross-entropy loss 
function to improve the effectiveness of the training pro-
cess. Moreover, it was demonstrated that, the proposed 
DNL module had a very good speed improvement over 
the original NL module. At the same time, the memory 
usage was greatly reduced. Furthermore, we also tested 
the feature encoder module instead of the ResNet50 pre-
training model which greatly reduced the training time 
and tackled the problem of network overfitting as well. 
We tested the proposed method on 2 medical image 
datasets and performed extensive comparisons against 
various state-of-the-art methods. Our method attained 
better performance in terms of Dice, Mean IoU, Sen, Acc, 
and AUC metrics as well as high speed and low memory 
consumption.
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