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Abstract—This contribution aims at speech model-based speech
enhancement by exploiting the source-filter model of human speech
production. The proposed method enhances the excitation signal
in the cepstral domain by making use of a deep neural network
(DNN). We investigate two types of target representations along
with the significant effects of their normalization. The new ap-
proach exceeds the performance of a formerly introduced classical
signal processing-based cepstral excitation manipulation (CEM)
method in terms of noise attenuation by about 1.5 dB. We show
that this gain also holds true when comparing serial combinations
of envelope and excitation enhancement. In the important low-SNR
conditions, no significant trade-off for speech component quality
or speech intelligibility is induced, while allowing for substantially
higher noise attenuation. In total, a traditional purely statistical
state-of-the-art speech enhancement system is outperformed by
more than 3 dB noise attenuation.

Index Terms—Speech enhancement, deep learning, cepstrum, a
priori SNR.

I. INTRODUCTION

S
PEECH enhancement is still a very important and active

field of research. Its primary aim is to improve speech qual-

ity and intelligibility, to facilitate the most natural way of com-

munication. Speech signals might be corrupted by, e.g., band-

width limitation, coupling of noise, echo, and reverberation. In

order to combat such problems, various algorithms have been

developed and improved over time.

Single-channel noise reduction is still a challenging task,

which is addressed here. Even though traditional systems might

be still considered as state of the art, recent advances in speech

enhancement make more and more use of modern deep learn-

ing technologies and often end-to-end solutions are presented

(e.g., [1]–[3]). As mentioned in [3], one issue of conventional

DNN-based enhancement models is the discontinuity of the

enhanced signals when processed in a frame-based manner.

The authors resolve the problem by enhancing whole utterances

on waveform level which requires the availability of complete

recordings or at least a very large buffer. This is not applicable for

telephony applications, where delay has to be as low as possible

and frame-wise processing is essential. In the following, more

recent advances will be presented briefly.
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A sketch of less holistic approaches, that in parts still respect

traditional and statistical speech enhancement is shown in [4].

The publication nicely shows various levels of granularity that

allow to move away from end-to-end solutions towards more

traditional structures, still being able to benefit from modern

technology. Following this, DNN-based learning of spectral

weighting rules has been evaluated, e.g., for ideal binary masks

and ideal ratio masks in [5], [6].

The spectral envelope codebook-based work by Srinivasan

et al. [9]–[11] was brought from an autoregressive (AR) model

to the cepstral domain by Rosenkranz et al. [12], and it has been

picked up again recently in [13] and [14]. In [13], the authors

combine the existing auto regressive-based approach with a

noise estimator [15] to circumvent the dependency on a noise

codebook. Additionally, they introduce an SPP estimator [16]

to combat the lack of noise suppression between the harmonics,

which is naturally not possible when only spectral envelopes

are used for the estimation of the clean speech. This issue

has been further addressed in our previous work [7] and is

also investigated together with the preservation of harmonics

in this publication by analyzing the effects of the normalization

of targets during the training process. The authors in [14] aim

to replace both codebooks by estimating the parameters of the

AR models for speech and noise simultaneously with a single

network that predicts line spectral pairs. In order to combat the

inability to reduce noise between the harmonics, they also use

the SPP estimator from [16]. In both cases the estimated entities

are used to create a Wiener filter and for the latter approach

it depicts a further step towards a more modular integration of

DNNs into a statistical speech enhancement framework.

The a priori SNR represents a more generic entity, as it can

be easily plugged into various statistical systems, also being a

key factor in noise reduction. It has been subject to research not

only through the past decades [17]–[19], but particularly in the

recent past with quite some success [7], [8], [20]–[25]. While

most approaches work in the frequency domain, Breithaupt et al.

originally pioneered the way for a priori SNR estimation in the

cepstral domain [20]. Stahl et al. pick up the original decision-

directed (DD) approach by Ephraim and Malah [17] and propose

to smooth the a priori SNR not over isolated frequency bins but

with respect to harmonic trajectories [24]. This leads to higher

noise attenuation without further speech distortion. Xu et al.

make use of discriminative non-negative matrix factorization

(DNMF) for a priori SNR estimation and present two different

approaches [25]. One approach uses DNMF to estimate speech

and noise power to directly calculate the a priori SNR, while
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Fig. 1. Schematic of the speech enhancement framework with either cepstral excitation manipulation (CEM) [7] (switches S1 and S2 as shown) or cepstral
envelope estimation (CEE) [8] (switches S1 and S2 in lower position) a priori SNR estimation. The CEM block is depicted in more detail in Fig. 2, as its
replacement by a deep neural network is core novelty of this work.

the other uses DNMF to only estimate the noise power which is

then used together with the DD approach. Both methods obtain

better results than DNMF approaches that are commonly used to

directly estimate the clean speech. However, they rely on noise

codebooks which might limit the capability of generalization.

In this contribution, we aim to exploit the potential of the

cepstral excitation manipulation (CEM) approach further, as

the current state-of-the-art CEM solution [7] offers room for

improvement, in terms of speech quality, speech intelligibility,

and also noise attenuation. To do so, we incorporate deep neural

network (DNN) models to enhance the residual signal for the

purpose of a priori SNR estimation for speech enhancement. A

particular aspect is that the explicit F0 estimator as required

by state-of-the-art CEM is not needed anymore for the core

functionality of CEM in our new approach. We investigate two

different lines of research for the a priori SNR numerator. The

first aims to restore the clean speech residual signal from a noisy

observation. The second is to restore the clean speech signal

itself by estimating a residual signal which is also considering

and compensating the degeneration of the spectral envelope in

noisy conditions. The performance of the a priori SNR estimator

is evaluated in a speech enhancement task—although its appli-

cation is not limited to that—and measured by renowned metrics

such as the PESQ score [26], [27], the short-time objective

intelligibility measure (STOI) [28], and also the segmental noise

attenuation (NAseg) [29].

This paper is structured as follows. We briefly describe the

signal model and speech enhancement framework in Section II,

followed by the introduction of the baseline approaches in

Section III. Next, we present the new DNN-based CEM ap-

proach in Section IV, and subsequently depict our experimental

setup in Section V. Finally, we evaluate, discuss, and conclude

the paper in Section VI and Section VII, respectively.

II. SIGNAL MODEL AND SPEECH ENHANCEMENT FRAMEWORK

In this section we briefly introduce our signal model and

the speech enhancement framework which is used for some

preliminary experiments and for the evaluation.

A. Signal Model

We model the noisy time-domain microphone observation as

y(n) = s(n) + d(n), (1)

where s(n) is the clean speech component, d(n) the noise com-

ponent, and n the discrete-time sample index. Both components

are superimposed to obtain the microphone signal y(n). We

apply a K-point discrete Fourier transform (DFT) to obtain the

corresponding frequency domain representation as

Yℓ(k) = Sℓ(k) +Dℓ(k), (2)

with frequency bin index 0≤k≤K−1 and frame index ℓ.

Furthermore, we assume zero-mean speech and noise signals.

B. Speech Enhancement Framework

The speech enhancement framework we are utilizing is de-

picted in Fig. 1. It is starting with a preliminary noise reduction

which is intended to process the noisy microphone signal Yℓ(k)
in a first stage to provide a more suitable input signal Ȳℓ(k)
for the following processing. This first noise reduction stage is

not restricted to any specific configuration, however, one should

assure matched conditions with any potential training algorithms

that might be required for subsequent processing stages. We use

the minimum statistics (MS) [30] noise power estimator together

with decision-directed (DD) [17] a priori SNR estimation and

as spectral weighting rule the minimum mean squared error

log-spectral amplitude estimator (MMSE-LSA) [31]. This stage

is followed by a linear predictive coding (LPC) analysis block

which subsequently allows for separate enhancement of the

excitation signalRℓ(k) (upper path) and of the spectral envelope

Hℓ(k) (lower path). Both enhancement methods are explained

further in more detail in Sections III-A and III-B, respectively.

The enhanced signals’ spectral amplitudes (|R̂ℓ(k)| or |Ĥℓ(k)|)
are then mixed with the respective counterpart (|Hℓ(k)| or

|Rℓ(k)|), to obtain an intermediate clean speech spectral am-

plitude estimate |Ŝ ′
ℓ(k)|. It is important to note that—along with

the noise power estimate σ̂D
ℓ (k)2 from the preliminary noise

reduction—this estimate is only used as the numerator for the a
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Fig. 2. Block diagram of the CEM baseline approach [7] and the new proposed CEM-DNN approach which is using a deep neural network (DNN). Here,
switch S3 determines the used algorithm. The CEM-DNN method is investigated with and without applied start/end decay which is determined by the position of
switch S4.

priori SNR estimate as

ξ̂ℓ(k) =
|Ŝ ′

ℓ(k)|
2

σ̂D
ℓ (k)2

. (3)

It is then used jointly with the a posteriori SNR estimate γ̂ℓ(k)
to calculate a spectral weighting rule

Gℓ(k) = f(ξ̂ℓ(k), γ̂ℓ(k)), (4)

which is in our case again the MMSE-LSA estimator [31] for all

traditional statistical-based approaches. Finally, the clean speech

estimate Ŝℓ(k) is obtained by multiplying the real-valued gain

function Gℓ(k), which is limited to Gmin = −15 dB, with the

microphone signal Yℓ(k) as

Ŝℓ(k) = Yℓ(k) ·Gℓ(k). (5)

III. BASELINE APPROACHES

As the proposed method builds upon the originally pub-

lished CEM approach [7], we briefly revisit CEM as it has

already shown to improve over common speech enhancement

approaches. Among them are traditional statistical-based sys-

tems using e.g., the decision-directed a priori SNR estimator by

Ephraim and Malah [17], the harmonic regeneration approach

by Plapous et al. [19], and also the selective cepstro-temporal

smoothing method proposed by Breithaupt et al. [20]. The su-

periority of CEM over these [7] is the reason why—for the sake

of conciseness—we mostly concentrate on CEM as baseline

in this work except for the final results, where we also present

the results of a traditional speech enhancement system using

the DD approach as a priori SNR estimator. As a more recent

approach we also test against a DNN-based ideal ratio mask

(IRM) solution. Furthermore, our recently proposed method

[8], dealing with the enhancement of the spectral envelope,

dubbed cepstral envelope estimation (CEE), is now also used

as a baseline. It is the counterpart of the CEM approach and

has shown to further improve CEM, when combined in a serial

manner, where first CEE is applied followed by CEM. For more

details we kindly refer to [8], where we also show that the

baselines are able to compete with modern end-to-end speech

enhancement techniques such as the ideal ratio mask [2], [5].

This serial combination is also used as further baseline, named

CEE → CEM.

Both solo approaches, CEE and CEM, are depicted in Fig. 1,

where switches S1 and S2, both in upper position, represent

the CEM approach, and both in lower position, represent the

CEE approach1. As can be seen in Fig. 1, both methods share

a common pipeline up to the LPC analysis, where it branches

to facilitate the enhancement of each component, excitation and

envelope, separately. The use of the source-filter model allows

to split the enhancement task into two sub-problems which are

briefly revised as follows.

A. Cepstral Excitation Manipulation (CEM)

The baseline configuration of the CEM approach [7] is de-

picted in more detail in Fig. 2 with switch S3 in upper position.

The first block (Feature Conversion) represents a feature trans-

formation from the spectral domain to the cepstral domain by ap-

plying a discrete cosine transform of type II (DCT-II), followed

by a simple pitch estimation algorithm [32]. The quefrency bin

index mF0
corresponding to the pitch frequency is estimated

by selecting the quefrency bin in a certain range of fundamental

frequency-representing bins, that exposes the highest amplitude.

Following, a pretrained clean speech excitation template cR̂ℓ (m)
that depends on the estimated fundamental frequency is selected

from a storage and used further. The following processing aims

to adjust the energy of the synthesized excitation signal by re-

placing the amplitude of the template’s zeroth coefficient cR̂ℓ (0)
by the amplitude representing the energy of the preliminary

enhanced residual signal cRℓ (m) by

cR̂ℓ (0) = cRℓ (0). (6)

1As a further option it is possible to apply CEM and CEE in parallel, when
switch S1 is in upper, and switch S2 is in lower position. This parallel approach
has been evaluated in [8] and shown to improve the noise attenuation. However,
it also affects the speech component quality compared to the solo approaches
CEM or CEE, and thus is disregarded here.
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A further step to enhance the excitation signal is that the incom-

ing amplitude of the quefrency bin that represents the funda-

mental frequency cRℓ (mF0
) is overestimated by a factor α > 1

in order to boost the harmonic structure and simultaneously

lower the energy between the harmonics to obtain a higher noise

attenuation. It is then also inserted into the template as

cR̂ℓ (mF0
) = α · cRℓ (mF0

). (7)

After these manipulation steps, the cepstral vector is transformed

back into the spectral domain by an inverse DCT-II, yielding

the manipulated residual spectral amplitude |R̂ℓ(k)|. By using

a cepstral representation of the excitation signal, one is able to

address and manipulate all harmonics in the signal’s spectral

representation at a single cepstral bin.

Employing theF0 estimate, finally some start/end decay to the

spectral representation is applied, as this ensures a somewhat

more natural rise and decay of the harmonic structure which

might have been corrupted by the manipulations or is erroneous

in the templates itself. The start decay is a simple linear con-

tinuation of the rising edge for the first harmonic while the end

decay is applied in the same manner to the last fully representable

harmonic, but in this case to the declining edge. Both measures

lead to an attenuation of spectral content prior to the first and

after the last harmonic, where no speech content is expected

(further details in [7]).

B. Cepstral Envelope Estimation (CEE)

The counterpart of CEM is the enhancement of the spec-

tral envelope which has been extensively investigated in [8],

dubbed cepstral envelope estimation (CEE). We will briefly

introduce the optimal solution in the following. The general

idea (see also [33]–[35]) is to find a mapping between the

spectral envelope of the preliminary denoised signal and a lin-

ear combination of pretrained N -dimensional prototypes c̃Hi =
[c̃Hi (1), . . . , c̃Hi (m), . . . , c̃Hi (N)]T, obtained from clean speech

recordings which are stored in a codebookC = {c̃Hi }. The proto-

types are indexed by i ∈ NS = {0, 1, 2, . . . , NS}, where i = 0
represents a prototype for non-speech frames. The advantages of

a cepstral representation are used once more, with the difference

that not the DCT-II is used, but the LPC coefficients aℓ(m)
are transformed directly by the recursive formula from [36], to

obtain the cepstral representation cHℓ (m). This allows to work

safely with the coefficients without risking any instabilities of

the filter as would be the case when working on LPC coefficients

directly. A codebook size of NS + 1 = 65 has proven to be

optimal with dimensionality N = 10 and a simple feedforward

classification DNN consisting of six hidden layers and 58 nodes

each. It was shown, that the sigmoid activation functions have

lead to slightly higher accuracies than rectified linear units and

a softmax output layer. The network’s input is the cepstral

representation cHℓ (m) and the output can be understood as a

probability distribution over the prototypes in the codebook as

P(sℓ= i|x=oℓ). (8)

Hereby, sℓ represents a hidden state which is a proxy for the

unknown truth behind the observation, i.e., the true clean spec-

tral envelope, while the corresponding observation is defined

as oℓ=
[

cHℓ (1), . . . , cHℓ (N)
]

. Having obtained the probability

distribution, MMSE estimation is performed by

cĤℓ (m) =
∑

i∈NS

P(sℓ = i|x = oℓ) · c̃
H
i (m), (9)

and the estimated cepstral vector cĤℓ is converted back to the

estimated envelope spectral amplitudes |Ĥℓ(k)| by applying an

IDCT-II. Further details can be found in [8].

C. Decision-Directed Approach (DD)

Originally proposed by Ephraim and Malah in [31], the

decision-directed (DD) approach is still considered as an impor-

tant baseline. Even though the previously mentioned baselines

already outperform the DD approach, many researchers are

also interested to see improvement vs. a speech enhancement

system using the DD a priori SNR estimator. We use the DD

estimator with βDD = 0.975 and ξmin = −15 dB to prevent too

many musical tones.

D. Ideal Ratio Mask (IRM)

As a more recent approach we also test against an IRM

approach based on a feedforward DNN which is in line with

[2], [5]. The network consists of three hidden layers with 1024

nodes each and rectified linear units as activation functions.

The total amount of parameters is 2,364,545. We are using

log-spectral amplitude input features and calculate the target

gains for training as

GIRM
ℓ (k) =

(

|Sℓ(k)|2

|Sℓ(k)|2 + |Dℓ(k)|2

)β

, (10)

with β = 1.0. In fact, this spectral weighting rule (β = 1.0) has

been used for learning a lookup table with spectral gains based

on the a priori and a posteriori SNR before [29].

IV. DNN-SUPPORTED CEPSTRAL EXCITATION MANIPULATION

Incorporating the novel opportunities of deep learning we

want to explore the potential of the CEM idea when it is realized

by a neural network instead of the classical signal processing

measures that have been applied until now (see Section III-A).

We show both approaches in Fig. 2, where the classical baseline

CEM is depicted in the upper path (switch S3 in upper position)

and the new proposed approach, dubbed CEM-DNN, in the

lower path (switch S3 in lower position). As further option a

smooth start and end decay can be applied to the manipulated

amplitude spectrum of the residual signal (S4 in upper posi-

tion), to ensure smooth transitions which was necessary for the

template-based CEM approach. The start and end decay function

still relies on the simpleF0 estimator proposed by [32], however,

this is a less critical application compared to the former selection

of templates based on the same estimate in state-of-the-art CEM.

Following Fig. 2, the feature conversion block (see also Fig. 3)

transforms the log-spectral amplitudes of the residual signal
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Fig. 3. Block diagram of the processing pipeline for two different representa-
tions of training targets for the CEM-DNN and CEM-DNN+ approaches.

Rℓ(k) into the cepstrum by applying the DCT-II, resulting in

cRℓ (m). When we apply normalization, all data is processed

by bin-wise cepstral mean and variance normalization in order

to remove potential channel mismatches. Note that the core

difference to the classical CEM approach is the replacement of

the excitation templates c̃Hi and MMSE estimation (9), as well

as of the two manipulations (6) and (7) by a regression DNN. In

consequence, the core of CEM-DNN also does not need an F0

estimator any more.

The output cR̂ℓ (m) of the DNN is rescaled if necessary and

subsequently transformed back into the spectral domain by the

IDCT-II and optionally the start/end decay is applied. We finally

obtain the estimated spectral amplitudes of the residual signal

|R̂ℓ(k)|. Rescaling of the DNN output is performed by using

the mean and variance obtained from the respective data set.

This translates to a practical system, as noise reduction is an

uplink feature, which allows to calculate the required mean and

variance of the signals after the preliminary noise reduction and

LPC analysis for the input of the DNN, or during good SNR

conditions to rescale the output of the DNN. In the following we

will introduce our general setup for the DNN training and two

different kinds of target representations.

A. DNN Training

The general setup of our DNN training process is based on

the KERAS toolkit [37] together with the TensorFlow [38]

backend. We normalize all input features by cepstral mean and

variance normalization and in some cases we also normalize the

target representation. The normalization is important to provide

similar data ranges to the network which can ensure convergence

and stability during training [39]. A similar argument holds for

target normalization when regression networks are used: We

explore the benefits of target normalization in more detail in

Section VI-B2, however, it is not always applicable. Each input

layer has the same amount of nodes as the input feature dimen-

sionN = 256. The subsequentNH hidden layers each haveNN

nodes. As we have experienced before, the difference between

sigmoid and rectified linear units as activation function can be

very marginal [8]. Since we did not encounter any problems with

vanishing gradients so far, but obtained slightly better results

with sigmoid activation functions, we decided to only investigate

sigmoid activation functions in this case. The final output layer

has also N = 256 nodes and uses linear activation functions

since we only investigate regression DNNs. The parameters

of the network, the biases and weights, are all initialized as

proposed by Glorot et al. [40]. We employ the mean squared

error (MSE) loss function in order to make the network learn the

mapping between input and output representations. The training

data is randomly accessed by the sequencing mechanism and

provides batches of L = 2048 input and target frames at a time.

For the gradient-based optimization we use the adaptive moment

estimator (Adam) [41] with default parameterization, including

a learning rate of η = 0.001. The networks are trained straight

for 300 epochs from which the best model on some development

set is selected and used further. In the following, we describe

the two types of target representations and their advantages and

disadvantages.

B. Target Representations

Since we aim to improve the excitation signal, the intuitive

way is to simply extract excitation signals RS
ℓ (k) from clean

speech data Sℓ(k) as targets for the training process of the DNN.

The corresponding input features are the noisy, or in our case

the already preliminary denoised, residual signals obtained from

multiple simulated SNR and noise conditions. The pipeline for

the target extraction is shown in Fig. 3 at the top. The frequency-

domain representation of the clean speech data Sℓ(k) is used for

LPC analysis and subsequently filtered with the corresponding

analysis filter 1−AS
ℓ (k). The resulting spectral representation

of the residual signalRS
ℓ (k) is then subject to feature conversion,

i.e., conversion to the log-amplitude spectrum, followed by the

DCT-II to obtain the cepstral coefficients cSℓ (m). The advantage

of this target representation is that it is possible to obtain mean

and variance data of cSℓ (m) for the rescaling of the DNN output

during inference (it is sufficient to collect these statistics from

time to time during good SNR conditions), even in a practical

application. Note that in such a practical implementation the

input Sℓ(k) for both the LPC analysis and the LPC analysis

filtering in the upper path of Fig. 3 would have to be replaced

by Ȳℓ(k). In Fig. 1 it can be seen that the estimated amplitudes

of the residual signal |R̂ℓ(k)| are mixed with the envelope of the

preliminary denoised signal |Hℓ(k)| (switches S1, S2 in upper

positions). Thus, there will be still some mismatch between

residual and envelope. We refer to the CEM method trained

with these particular targets in the following as CEM-DNN.

Better targets for the training can be obtained by also con-

sidering the preliminary denoised signal’s envelope. This is

shown in Fig. 3 at the bottom, where the LPC coefficients

are obtained from the preliminary denoised signal Ȳℓ(k). The

clean speech signal Sℓ(k) is then filtered with the corresponding

analysis filter 1−AȲ
ℓ (k) which yields, after the usual feature

conversion, the cepstral coefficients cS+
ℓ (m) of our other target

features. Those features allow, theoretically, the reconstruction

of the clean speech signal even with a preliminary denoised

signal’s envelope during inference. However, the required mean

and variance data of cS+
ℓ (m) for the rescaling of the network’s

output can only be obtained in lab conditions, since the core

idea of this approach consists of the discrimination between

Sℓ(k) and Ȳℓ(k), and the use of both. This prohibits target
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normalization in practice, or target normalization is done on

some static precalculated mean and variance from, e.g., the

training data. The corresponding CEM approach, using mean

and variance obtained in lab conditions, is dubbed CEM-DNN+.

V. EXPERIMENTAL SETUP

In the following, we describe the used databases for the

development process of our system and also the instrumental

quality measures which are used for the final evaluation of the

baselines and the proposed approach.

A. Databases

In order to ease comparison to our earlier works [8], we use the

same database setup for training, development, and testing. The

training and development sets are based on the TIMIT database

[42], where the training set is used as training set and the test set

of the TIMIT database as development set for our experiments.

We finally report results on the NTT super wideband database

[43] (only British and American English speakers) which serves

as a test set and allows us to also report cross-database results.

The clean databases are corrupted by noises from the QUT

[44] and the ETSI [45] databases. Please note that all data is

downsampled to 8 kHz for our experiments. Except for the male

single voice distractor noise file from the ETSI database, all files

are used. Among them we find, e.g., babble, road, car, office,

aircraft, and also kitchen noise. Four noise files are reserved for

a special test set with unseen noise files, which is important to

show how well results of data-driven algorithms generalize to

unseen data. We generate noisy data at 8 kHz sample rate for six

SNR conditions, i.e., –5 dB to 20 dB in steps of 5 dB. The noise

files are split up into non-overlapping sections, where 60% are

used for training, 20% for development, and the remaining 20%

for testing. Each file from the two speech databases is mixed

with a random part of each noise file’s respective section (four

noise files held out for test with unseen noise files, as said above).

To accomplish this, both clean speech signal and noise part, are

level-adjusted according to ITU-T P.56 [46] and subsequently

superimposed. In total we generate 6 (SNRs) × 53 (noise files)

= 318 conditions, represented by 318 × 4620 = 1,469,160

(training set) and 318 × 1680 = 534,240 (development set)

noisy speech files2. Last, our framing setup is using a periodic

square root Hann window, along with a frame shift of 50% and

a frame length of K = 256 samples.

2This is a multitude of files that forces us to develop strategies to successfully
cope with a huge amount of data for the training, and also the development
process. Due to the large amount of data, i.e., the input features cR

ℓ
(m) and the

targets cS+

ℓ
(m) for all 318 conditions, consuming together around 532 GB of

disk space when stored as single-precision floating-point values, we decided to
take two measures: First, we store all data as half-precision floating-point values
resulting in a reduction to 266 GB and second, for our development process of the
network structure, we optimize on the −5 dB SNR condition for all noise types
only which reduces the amount of data further to roughly 44 GB. This allows us
to be more flexible and we finally show that the loss-optimized topology found
by single SNR condition training is also optimal for the multi-condition training
which takes much more time.

B. Instrumental Quality Measures

As basis for our evaluation we employ the white-box approach

[47], which allows us to assess the speech and noise component

quality separately (see also ITU-T P.1100 Section 8 [48]). This

is achieved by applying the gain function Gℓ(k) not only to

the microphone signal Yℓ(k), in order to obtain the enhanced

signal Ŝℓ(k), but also to the separate components. This yields

the filtered clean speech component S̃ℓ(k) = Sℓ(k) ·Gℓ(k), and

the filtered noise component D̃ℓ(k) = Dℓ(k) ·Gℓ(k).
Both are subsequently transformed into the time domain by

applying an inverse DFT followed by overlap-add synthesis,

resulting in s̃(n) and d̃(n), respectively.

For the instrumental evaluation of the approaches, we use

measures of two different categories in order to assess the

amount of noise attenuation on the one hand and speech quality

and intelligibility on the other hand. For the first, we use the

segmental noise attenuation (NAseg) measure [29] which can be

obtained as

NAseg = 10 log10

[

1

|L|

∑

ℓ∈L

NA(ℓ)

]

, (11)

with

NA(ℓ) =

∑N−1
ν=0 d(ν + ℓN)2

∑N−1
ν=0 d̃(ν + ℓN +∆)2

.

The measure depicts the logarithmic average over the noise

attenuation of all frames ℓ ∈ L. Each frame contains N = 256
samples and ∆ compensates potential processing delay. A high

value indicates good performance.

As additional measure to assess the SNR improvement on a

global level we introduce the delta SNR which is calculated as

∆SNR = SNRout − SNRin. (12)

SNRout represents the SNR of the filtered speech and noise

component after processing and SNRin the corresponding SNR

of the clean speech and noise signals.

The speech quality of the filtered speech component s̃(n) is

measured by the PESQ score (mean opinion score, listening

quality objective (MOS-LQO)) [26], [27] with s(n) as the

reference signal.

As fourth measure, we use the short-time objective intelli-

gibility measure (STOI) [49] to rate the intelligibility of the

enhanced speech signal ŝ(n) compared to the clean speech signal

s(n). The closer the value is to unity, the better.

VI. EVALUATION AND DISCUSSION

A. Oracle Experiments and Motivation

First of all, we conduct two oracle experiments which serve as

motivation for our research. In Figs. 4 and 5, both oracle exper-

iments show the performance of an a priori SNR estimator with

different use of partial oracle knowledge, set in the context of the

noise reduction framework as described in Section II-B. They

use the same noise power estimate obtained by MS, along with

an adjusted numerator as follows: The oracle excitation exper-

iment (solid purple line, diamond markers) mixes the denoised
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Fig. 4. Two oracle experiments showing the motivation and the unexhausted
potential of the baseline CEM approach in terms of NAseg and speech component
quality measured by speech component MOS-LQO. All results are obtained on
the development set.

Fig. 5. Two oracle experiments showing the motivation and the unexhausted
potential of the baseline CEM approach in terms of NAseg and speech intelligi-
bility measured by STOI. All results are obtained on the development set.

envelope |Hℓ(k)| (see Fig. 1) with the oracle excitation signal

obtained from clean speech. A more advanced oracle experiment

(dashed red line, diamond markers) uses the oracle clean speech

in the numerator for the a priori SNR, which assumes to know

not only the clean speech excitation but also the corresponding

clean speech envelope. The results show quite expected behav-

ior, as with increasing oracle knowledge the potential gain in

NAseg, MOS-LQO, and also STOI increases, compared to the

baseline CEM approach (solid blue line, asterisk markers). In

the figures, each marker depicts a certain SNR condition from

−5 dB at the bottom, in steps of 5 dB, up to 20 dB at the top.

Using the oracle excitation signal shows less potential in terms

of NAseg compared to using the oracle clean speech signal.

However, the potential gain in speech component quality and

intelligibility (the vertical in both figures) is still worth pursuing,

especially when considering the low-SNR conditions.

TABLE I
EVALUATION OF THE MSE LOSS FOR VARIOUS NETWORK TOPOLOGIES BASED

ON THE −5 DB SNR CONDITION WITH cS
ℓ
(m) TARGETS FOR THE

DEVELOPMENT SET

TABLE II
EVALUATION OF THE MSE LOSS FOR VARIOUS NETWORK TOPOLOGIES BASED

ON ALL SNR CONDITIONS WITH c
S

ℓ
(m) TARGETS FOR THE

DEVELOPMENT SET

B. Cepstral Excitation Manipulation With DNN

In order to tap the potential of the cepstral excitation ma-

nipulation approach we decide to integrate a regression DNN.

We briefly scanned on the development set through various

parameters and ended up with the configuration as given in

Section IV-A, as results stayed quite comparable. However, the

topology of the network had quite some impact on the quality

of the network’s output. In Table I we show the MSE loss for

several configurations of hidden layers NH and their number

of nodes NN for the −5 dB SNR condition of the development

set. It was necessary to make optimizations on a small set of

data as the training process with all SNR conditions is quite

time-consuming. In Table II (all SNR conditions), the MSE

loss appears to be comparable for NN ∈ {512, 1024}, which

is natural since due to mean and variance normalization of the

targets the number range of the loss also decreases. Solving

the tie in Table II, we feel comfortable to put focus on the

−5 dB condition (Table I) and decide for a configuration of

NH = 6 andNN = 512 resulting in a total amount of 1,576,192

parameters. It might be possible that with increasing number of

hidden layers the loss would drop further, which we expect to

be rather marginal in this case. Note that the trainings have been

conducted with cSℓ (m) targets and we assume that the results

translate also to cS+
ℓ (m) targets without significant aberrations.

Now, we investigate the influence of the applied start and end

decay as depicted in Fig. 2, the effects of target normalization,

and the two different types of target representations as shown in

Fig. 3.

1) Influence of Start and End Decay Function: In Figs. 6 and

7, we depict the CEM-DNN approach (square markers) which

aims at estimating the clean excitation signal and the CEM-

DNN+ approach (plus markers) which aims at compensating

also for the denoised spectral envelope, and thus to obtain the
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Fig. 6. The effect of applying start and end decay to either CEM-DNN or
CEM-DNN+ measured by NAseg and speech component MOS-LQO on the
development set.

Fig. 7. The effect of applying start and end decay to either CEM-DNN or
CEM-DNN+ measured by NAseg and STOI on the development set.

Fig. 8. Spectrograms of an enhanced microphone signal from the develop-
ment set at 10 dB SNR with CAFE-CAFE-1 noise processed by CEM-DNN
trained without (left) and with mean/variance normalization (right) of the
targets.

clean speech signal. Both approaches are depicted with applied

start and end decay (solid green lines) and without (dashed green

lines). The results show that the start and end decay has only

an effect on CEM-DNN while the effect on CEM-DNN+ is

Fig. 9. Showing the performance (NAseg and speech component MOS-LQO)
on the development set for the baseline approaches, the new CEM-DNN method
with applied decay, its serial concatenation with CEE, and the oracle experiment
depicting the upper limit of the CEM approach.

Fig. 10. Showing the performance (NAseg and STOI) on the development set
for the baseline approaches, the new CEM-DNN method with applied decay, its
serial concatenation with CEE, and the oracle experiment depicting the upper
limit of the CEM approach.

negligible. This is quite interesting, as it indicates that the ap-

plication of the start and end decay might be naturally attributed

to the envelope and is automatically compensated for by the

DNN. Furthermore, the results show that CEM-DNN is able to

benefit from the application of the start and end decay as NAseg is

consistently improved without significant impact on MOS-LQO

and STOI. From here on all experiments are shown with applied

start and end decay function.

2) Influence of Target Normalization: Next, we investigate

the effect of target normalization in Fig. 8, showing the spectro-

grams of an enhanced microphone signal from the development

set with CAFE-CAFE-1 noise and 10 dB SNR condition. The

microphone signal is then processed by CEM-DNN with applied

start and end decay, once for a network trained without (left

spectrogram), and once for a network trained with (right spec-

trogram) target normalization. The richness of the spectrogram
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Fig. 11. Showing the performance (NAseg and speech component MOS-

LQO) on the test set for the baseline approaches, the new CEM-DNN method
with applied decay, and its serial concatenation with CEE.

Fig. 12. Showing the performance (NAseg and STOI) on the test set for the
baseline approaches, the new CEM-DNN method with applied decay, and its
serial concatenation with CEE.

on the right shows the importance of target normalization which

results in a much better preservation, especially in the lower

frequency regions, of harmonic structures compared to the left

spectrogram. This is a problem for the CEM-DNN+ approach,

as rescaling of the DNN output, as mentioned in Section IV-

B, during inference would only be possible with pre-trained

statistics, without any possibility of adaptation. Hence, we will

continue only with CEM-DNN, with start and end decay, and

with target normalization.

3) Results for the Development Set: In Figs. 9 and 10 we

show the performance of the baselines CEM (solid blue line,

asterisk markers), CEE (solid orange line, circle markers), and

the serial concatenation of the former two approaches CEE →
CEM (dashed green line, triangle markers) on the development

set. Furthermore, we show the upper limit of the CEM approach

by using the oracle excitation (solid purple line, diamond mark-

ers), the new approach CEM-DNN with start and end decay,

Fig. 13. Showing the performance (∆SNR and speech component MOS-
LQO) on the test set for the baseline approaches, the new CEM-DNN method
with applied decay, and its serial concatenation with CEE.

and its serial concatenation with the baseline CEE, labelled as

CEE → CEM-DNN (solid green line, triangle markers). The

noise attenuation of CEM-DNN improves over CEM by up to

1 dB for the−5 dB SNR condition, while increasing MOS-LQO

by more than 0.1 points and also slightly improving STOI. This

is an absolute improvement for the worst and most important

SNR condition. The approach is even able to outperform CEE

→ CEM consistently up to and including the 5 dB SNR condi-

tion. The CEE approach still shows superior speech component

quality measured by MOS-LQO, however, it is unable to remove

noise between the harmonics and falls behind in most conditions

for NAseg and also slightly for STOI. Surprisingly, compared

to the oracle excitation experiment, CEM-DNN obtains higher

NAseg, and in some cases comparable MOS-LQO, but does not

match in speech intelligibility. In serial combination with the

CEE approach, CEE → CEM-DNN yields further absolute

improvement in terms of NAseg by up to more than 0.5 dB with

comparable MOS-LQO and STOI values.

4) Results for the Test Set: On the test set, which evaluates a

different database, shown in Figs. 11–13, the behavior is quite

similar. CEM-DNN and also CEE→CEM-DNN obtain higher

NAseg by more than 1 dB over their corresponding baseline.

Thereby, MOS-LQO is slightly improving for the −5 dB SNR

condition and STOI stays about the same. Only in high-SNR

conditions the proposed approaches drop slightly in speech

component quality, which is, however, uncritical as the quality

still remains very high and STOI also reports no significant loss

of intelligibility.

In addition to that, we also show the IRM baseline (solid sand

line, diamond markers) which shows exceedingly high speech

component quality. However, in terms of NAseg and STOI the

approach falls behind CEE→CEM-DNN with increasing SNR.

In Fig. 13, for low and medium SNRs, the SNR improvement

(∆SNR) of the IRM approach falls far behind the proposed

approach which outperforms all other approaches consistently.

This also indicates that the attenuation characteristic of IRM is
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Fig. 14. Showing the performance (NAseg and speech component MOS-
LQO) on the test set with unseen noise files for the baseline approaches, the
new CEM-DNN method with applied decay, and its serial concatenation with
CEE.

Fig. 15. Showing the performance (NAseg and STOI) on the test set with
unseen noise files for the baseline approaches, the new CEM-DNN method
with applied decay, and its serial concatenation with CEE.

more broadband and thus affecting speech and noise simultane-

ously, which explains the high MOS-LQO as PESQ is internally

adjusting the level. Another issue with the IRM approach is the

mentioned discontinuity problem as detailed in [3], and also

observed in [8, Section VI-B2].

5) Results for the Test Set With Unseen Noise Files: The final

evaluation on the test set with completely unseen noise files3

during training is shown in Figs. 14–16. The results show that the

performance transfers quite nicely to (also non-stationary) noise

files that have not been seen during training, which is closest

to a real-world scenario. Except for the already explained high

speech component MOS-LQO, the proposed approach outper-

forms IRM clearly. Analyzing MOS-LQO and STOI at −5 dB

3Fullsize_Car1_80Kmh, Outside_Traffic_Crossroads, Pub
_Noise_Binaural_V2, Work_Noise_Office_Callcenter

Fig. 16. Showing the performance (∆SNR and speech component MOS-
LQO) on the test set with unseen noise files for the baseline approaches, the
new CEM-DNN method with applied decay, and its serial concatenation with
CEE.

SNR in Figs. 14 and 15, we observe an 1.5 dB NAseg advantage

of CEE → CEM-DNN vs. IRM, which is not the case in

Figs. 11 and 12 (seen noises). This shows that baseline IRM

generalizes not as good w.r.t. background noises. Compared

to the respective baselines, there is no significant trade-off for

speech intelligibility, and for the speech component quality

only minor drawbacks in the high-SNR conditions, where the

absolute speech component quality is already very high (above

4 MOS-LQO points).

For similar MOS-LQO (Fig. 14) and STOI (Fig. 15) we can

also report a gain in NAseg of approximately 1.5 dB for the

−5 dB SNR condition (lowest marker) when comparing the new

CEM-DNN to the baseline CEM, and also when comparing

CEE → CEM-DNN to the baseline CEE → CEM. Compared

to the DD approach, the proposed CEE → CEM-DNN obtains

more than 3 dB NAseg while maintaining comparable speech

component quality and speech intelligibility4.

VII. CONCLUSION

In this work we have investigated the application of a deep

neural network (DNN) to the cepstral excitation manipulation

(CEM) approach for a priori SNR estimation in a speech en-

hancement task. We have investigated two target representations,

where one is not applicable to practical systems and the other

shows convincing performance. Furthermore, we could verify

the benefit of applying some start and end decay to the estimated

residual signal and have shown the importance of target nor-

malization. Thus, we have successfully enhanced the classical

signal processing-based CEM approach by introducing a simple

feedforward DNN which has lead to an improvement on unseen

and non-stationary noise files by up to 1.5 dB of segmental

noise attenuation without sacrificing speech component quality

and speech intelligibility. Compared to a traditional speech

4Audio samples can be found under: https://www.ifn.ing.tu-bs.de/en/
ifn/sp/elshamy/2019-taslp-cem/

https://www.ifn.ing.tu-bs.de/en/ifn/sp/elshamy/2019-taslp-cem/
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enhancement system with the decision-directed a priori SNR ap-

proach, an improvement of even more than 3 dB segmental noise

attenuation with comparable speech intelligibility is achieved

on the same data.
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