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Abstract—We propose a training method for deep neural
network (DNN)-based source enhancement to increase objective
sound quality assessment (OSQA) scores such as the perceptual
evaluation of speech quality (PESQ). In many conventional
studies, DNNs have been used as a mapping function to estimate
time-frequency masks and trained to minimize an analytically
tractable objective function such as the mean squared error
(MSE). Since OSQA scores have been used widely for sound-
quality evaluation, constructing DNNs to increase OSQA scores
would be better than using the minimum-MSE to create high-
quality output signals. However, since most OSQA scores are not
analytically tractable, i.e., they are black boxes, the gradient of
the objective function cannot be calculated by simply applying
back-propagation. To calculate the gradient of the OSQA-based
objective function, we formulated a DNN optimization scheme
on the basis of black-box optimization, which is used for training
a computer that plays a game. For a black-box-optimization
scheme, we adopt the policy gradient method for calculating
the gradient on the basis of a sampling algorithm. To simulate
output signals using the sampling algorithm, DNNs are used to
estimate the probability-density function of the output signals
that maximize OSQA scores. The OSQA scores are calculated
from the simulated output signals, and the DNNs are trained
to increase the probability of generating the simulated output
signals that achieve high OSQA scores. Through several exper-
iments, we found that OSQA scores significantly increased by
applying the proposed method, even though the MSE was not
minimized.

Index Terms—Sound-source enhancement, time-frequency
mask, deep learning, objective sound quality assessment (OSQA)
score.

I. INTRODUCTION

SOUND-source enhancement has been studied for many

years [1]–[6] because of the high demand for its use

for various practical applications such as automatic speech

recognition [7]–[9], hands-free telecommunication [10], [11],

hearing aids [12]–[15], and immersive audio field represen-

tation [16], [17]. In this study, we aimed at generating an

enhanced target source with high listening quality because the

processed sounds are assumed perceived by humans.
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Recently, deep learning [18] has been successfully used for

sound-source enhancement [8], [15], [19]–[35] . In many of

these conventional studies, deep neural networks (DNNs) were

used as a regression function to estimate time-frequency (T-F)

masks [19]–[22] and/or amplitude-spectra of the target source

[23]–[31]. The parameters of the DNNs were trained using

back-propagation [36] to minimize an analytically tractable

objective function such as the mean squared error (MSE)

between supervised outputs and DNN outputs. In recent stud-

ies, advanced analytical objective functions were used such

as the maximum-likelihood (ML) [31], [32], the combination

of multi-types of MSE [25]–[27], the Kullback-Leibler and/or

Itakura-Saito divergence [33], the modified short-time intelli-

gibility measure (STOI) [22], the clustering cost [34], and the

discriminative cost of a clean target source and output signal

using a generative adversarial network (GAN) [35].

When output sound is perceived by humans, the objective

function that reflects human perception may not be analytically

tractable, i.e., it is a black-box function. In the past few years,

objective sound quality assessment (OSQA) scores, such as

the perceptual evaluation of speech quality (PESQ) [37] and

STOI [38], have been commonly used to evaluate output sound

quality. Thus, it might be better to construct DNNs to increase

OSQA scores directly. However, since typical OSQA scores

are not analytically defined (i.e., they are black-box functions),

the gradient of the objective function cannot be calculated by

simply applying back-propagation.

We previously proposed a DNN training method to estimate

T-F masks and increase OSQA scores [39]. To overcome the

problem that the objective function to maximize the OSQA

scores is not analytically tractable, we developed a DNN-

training method on the basis of the black-box optimization

framework [40], as used in predicting the winning percentage

of the game Go [41]. The basic idea of block-box optimization

is estimating a gradient from randomly simulated output.

For example, in the training of a DNN for the Go-playing

computer, the computer determines a “move” (where to put

a Go-stone) depending on the DNN output. Then, when the

computer won the game, a gradient is calculated to increase the

selection probability of the selected “moves”. We adopt this

strategy to increase the OSQA scores; some output signals

are randomly simulated and a DNN is trained to increase

the generation probability of the simulated output signals that

achieved high OSQA scores. For the first trial, we prepared

a finite number of T-F mask templates and trained DNNs

to select the best template that maximizes the OSQA score.

Although we found that the OSQA scores increased using this
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Fig. 1. Concept of proposed method

method, the output performances would improve by extending

the method to a more flexible T-F mask design scheme from

the template-selection scheme.

In this study, to arbitrarily estimate T-F masks, we modified

the DNN source enhancement architecture to estimate the

latent parameters in a continuous probability density function

(PDF) of the T-F mask processing output signals, as shown

in Fig. 1. To calculate the gradient of the objective function,

we adopt the policy gradient method [42] as a black-box

optimization scheme. With our method, the estimated latent

parameters construct a continuous PDF as the “policy” of T-

F-mask estimation to increase OSQA scores. On the basis

of this policy, the output signals are directly simulated using

the sampling algorithm. Then, the gradient of the DNN is

estimated to increase/decrease the generation probability of

output signals with high/low OSQA scores, respectively. The

sampling from continuous PDF causes the estimate of the

gradient to fluctuate, resulting in unstable training behavior.

To avoid this problem, we additionally formulate two tricks:

i) score normalization to reduce the variance in the estimated

gradient, and ii) a sampling algorithm to simulate output

signals to satisfy the constraint of T-F mask processing.

The rest of this paper is organized as follows. Section

II introduces DNN source enhancement based on the ML

approach. In Section III, we propose our DNN training

method to increase OSQA scores on the basis of the black-

box optimization. After investigating the sound quality of

output signals through several experiments in Section IV, we

conclude this paper in Section V.

II. CONVENTIONAL METHOD

A. Sound source enhancement with time-frequency mask

Let us consider the problem of estimating a target source

S ω,τ ∈ C, which is surrounded by ambient noise Nω,τ ∈ C. A

signal observed with a single microphone Xω,τ ∈ C is assumed

to be modeled as

Xω,τ = S ω,τ + Nω,τ, (1)

where ω = {1, 2, ...,Ω} and τ = {1, 2, ..., T } denote the

frequency and time indices, respectively.

In sound-source enhancement using T-F masks, the output

signal Ŝ ω,τ is obtained by multiplying a T-F mask by Xω,τ as

Ŝ ω,τ = Gω,τXω,τ, (2)

where 0 ≤ Gω,τ ≤ 1 is a T-F mask. The IRM GIRM
ω,τ [8] is an

implementation of T-F mask, which is defined by

GIRM
ω,τ =

|S ω,τ|

|S ω,τ| + |Nω,τ|
. (3)

The IRM maximizes the signal-to-noise-ratio (SNR) when the

phase spectrum of S ω,τ coincides with that of Nω,τ. However,

this assumption is almost never satisfied in most practical

cases. To compensate for this mismatch, the phase sensitive

spectrum approximation (PSA) [19], [20] was proposed

GPSA
ω,τ = min

(

1,max

(

0,
|S ω,τ|

|Xω,τ|
cos

(

θ(S )
ω,τ − θ

(X)
ω,τ

)

))

, (4)

where θ
(S )
ω,τ and θ

(X)
ω,τ are the phase spectra of S ω,τ and Xω,τ,

respectively. Since the PSA GPSA
ω,τ is a T-F mask that minimizes

the squared error between S ω,τ and Ŝ ω,τ on the complex plane,

we use this as a T-F masking scheme.

B. Maximum-likelihood-based DNN training for T-F mask

estimation

In many conventional studies of DNN-based source en-

hancement, DNNs were used as a mapping function to es-

timate T-F masks. In this section, we explain DNN training

based on ML estimation, on which the proposed method is

based. Since the ML-based approach explicitly models the

PDF of the target source, it becomes possible to simulate

output signals by generating random numbers from the PDF.

In ML-based training, the DNNs are constructed to estimate

the parameters of the conditional PDF of the target source

providing the observation is given by p(Sτ|Xτ,Θ). Here, Θ

denotes the DNN parameters. Its example on a fully connected

DNN is described later (after (16)). The target and observation

source are assumed to be vectorized for all frequency bins as

Sτ := (S 1,τ, ..., SΩ,τ)
⊤, (5)

Xτ := (X1,τ, ..., XΩ,τ)
⊤, (6)

where ⊤ is transposition. Then Θ is trained to maximize the

expectation of the log-likelihood as

Θ← arg max
Θ

JML(Θ), (7)

where the objective function JML(Θ) is defined by

JML(Θ) = ES,X

[

ln p(S|X,Θ)
]

, (8)

and Ex[·] denotes the expectation operator for x. However,

since (8) is difficult to analytically calculate, the expectation

calculation is replaced with the average of the training dataset

as

JML(Θ) ≈
1

T

T
∑

τ=1

ln p(Sτ|Xτ,Θ). (9)

The back-propagation algorithm [36] is used in training Θ to

maximize (9). When p(Sτ|Xτ,Θ) is composed of differentiable

functions with respect to Θ, the gradient is calculated as

∂ΘJ
ML(Θ) ≈

1

T

T
∑

τ=1

∂Θ ln p(Sτ|Xτ,Θ), (10)
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Fig. 2. ML-based DNN architecture used in T-F mask estimation

where ∂x is a partial differential operator with respect to x.

To calculate (10), p(Sτ|Xτ,Θ) is modeled by assuming that

the estimation error of S ω,τ is independent for all frequency

bins and follows the zero-mean complex Gaussian distribution

with the variance σ2
ω,τ. The assumption is based on state-of-

the-art methods, which train DNNs to minimize the MSE be-

tween S ω,τ and Ĝω,τXω,τ on the complex plane [19], [20]. The

minimum-MSE (MMSE) on the complex plane is equivalent

to assuming that the errors are independent for all frequency

bins and follow the zero-mean complex Gaussian distribution

with variance 1. Our assumption relaxes the assumption of

the conventional methods; the variances of each frequency bin

vary according to the error values to maximize the likelihood.

Thus, since Ŝ ω,τ is given by Ĝω,τXω,τ, p(Sτ|Xτ,Θ) is modeled

by the following complex Gaussian distribution as

p(Sτ|Xτ,Θ) =

Ω
∏

ω=1

1

2πσ2
ω,τ

exp



















−

∣

∣

∣S ω,τ − Ĝω,τXω,τ
∣

∣

∣

2

2σ2
ω,τ



















. (11)

In this model, it can be regarded that the MSE between S ω,τ
and Ŝ ω,τ on the complex plane is extended to the likelihood

of S ω,τ defined on the complex Gaussian distribution, the

mean and variance parameters of which are Ŝ ω,τ and σ2
ω,τ,

respectively. (11) includes unknown parameters: the T-F mask

Ĝω,τ and error variance σ2
ω,τ. Thus, we construct DNNs to

estimate Ĝω,τ and σ2
ω,τ from Xτ, as shown in Fig. 2. The

vectorized T-F masks and error variances for all frequency

bins are defined as

G(xτ) :=
(

Ĝ1,τ, ..., ĜΩ,τ
)⊤
, (12)

σ(xτ) :=
(

σ2
1,τ, ..., σ

2
Ω,τ

)⊤
. (13)

Here xτ is the input vector of DNNs that is prepared by

concatenating several frames of observations to account for

previous and future Q frames as xτ = (Xτ−Q, ..., Xτ, ..., Xτ+Q)⊤,

and G(xτ) and σ(xτ) are estimated by

G(xτ)← ϕg
{

W(µ) z(L−1)
τ + b(µ)

}

, (14)

σ(xτ)← ϕσ
{

W(σ) z(L−1)
τ + b(σ)

}

+Cσ, (15)

z(l)
τ = ϕh

{

W(l) z(l−1)
τ + b(l)

}

, (16)

where Cσ is a small positive constant value to prevent the

variance from being very small. Here, l, L, W(l), and b(·) are

the layer index, number of layers, weight matrix, and bias

vector, respectively. W(µ),W(σ) are the weight matrices and

b(µ),b(σ) are the bias vectors to estimate the T-F mask and

variance, respectively. The DNN parameters are composed

of Θ = {W(µ),b(µ),W(σ),b(σ),W(l),b(l)|l ∈ (2, ..., L − 1)}. The

functions ϕg, ϕσ, and ϕh are nonlinear activation functions,

and in conventional studies, sigmoid and exponential functions

were used as an implementation of ϕg [19], [20] and ϕσ [32],

respectively. The input vector xτ is passed to the first layer of

the network as z
(1)
τ = xτ.

III. PROPOSED METHOD

Our proposed DNN-training method increases OSQA

scores. With the proposed method, the policy gradient method

[42] is used to statistically calculate the gradient with respect

to Θ by using a sampling algorithm, even though the objec-

tive function is not differentiable. However, sampling-based

gradient estimation would frequently make the DNN training

behavior become unstable. To avoid this problem, we introduce

two tricks: i) score normalization that reduces the variance

in the estimated gradient (in Sec. III-B), and ii) a sampling

algorithm to simulate output signals to satisfy the constraint

of T-F mask processing (in Sec. III-C). Finally, the overall

training procedure of the proposed method is summarized in

Sec. III-D.

A. Policy gradient-based DNN training for T-F mask estima-

tion

Let B(Ŝ, X) be a scoring function that quantifies the sound

quality of the estimated sound signal Ŝ := (Ŝ 1, ..., ŜΩ)⊤

defined by (2). To implement B(Ŝ, X), subjective evaluation

is simple. However, it would be difficult to use in practical

implementation because DNN training requires a massive

amount of listening-test results. Thus, B(Ŝ, X) quantifies the

sound quality based on OSQA scores, as shown in Fig. 1, and

the details of its implementation are discussed in Sec. III-B.

We assume B(Ŝ, X) is non-differentiable with respect to Θ,

because most OSQA scores are black-box functions.

Let us consider the expectation maximization of B(Ŝ, X) as

a metric of performance of the sound-source enhancement that

increases OSQA scores as

EŜ,X

[

B(Ŝ, X)
]

=

"
B(Ŝ, X)p(Ŝ, X)dŜdX. (17)

Since the output signal Ŝ is calculated from the observation

X, we decompose the joint PDF p(Ŝ, X) into the conditional

PDF of the output signal given the observation p(Ŝ|X) and

the marginal PDF of the observation p(X) as p(Ŝ, X) =

p(Ŝ|X)p(X). Then, (17) can be reformed as

EŜ,X

[

B(Ŝ, X)
]

=

∫

p(X)

∫

B(Ŝ, X)p(Ŝ|X)dŜdX. (18)

We use DNNs to estimate the parameters of the conditional

PDF of the output signal p(Ŝ|X,Θ), as with the case of ML-

based training. For example, the complex Gaussian distribution

in (11) can be used as p(Ŝ|X,Θ). To train Θ, EŜ,X[B(Ŝ, X)] is

used as an objective function by replacing the conditional PDF

p(Ŝ|X) with p(Ŝ|X,Θ) as

J(Θ) = EŜ,X

[

B(Ŝ, X)
]

, (19)

=

∫

p(X)

∫

B(Ŝ, X)p(Ŝ|X,Θ)dŜdX. (20)
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Since B(Ŝ, X) is non-differentiable with respect to Θ, the

gradient of (20) cannot be analytically obtained by simply ap-

plying back-propagation. Hence, we apply the policy-gradient

method [42], which can statistically calculate the gradient of

a black-box objective function. By assuming that the function

form of B(Ŝ, X) is smooth, B(Ŝ, X) is a continuous function

and its derivative exists. In addition, we assume p(Ŝ|X,Θ)

is composed with differentiable functions with respect to Θ.

Then, the gradient of (20) can be calculated using a log-

derivative trick [42] ∂x p(x) = p(x)∂x ln p(x) as

∂ΘJ(Θ) =

∫

p(X)

∫

B(Ŝ, X)∂Θp(Ŝ|X,Θ)dŜdX, (21)

= EX

[

EŜ|X

[

B(Ŝ, X)∂Θ ln p(Ŝ|X,Θ)
]]

. (22)

Since the expectation in (22) cannot be analytically calculated,

the expectation with respect to X is approximated by averaging

the training data, and the average of Ŝ is calculated using the

sampling algorithm as

∂ΘJ(Θ) ≈
1

T

T
∑

τ=1

1

K

K
∑

k=1

B(Ŝ(k)
τ , Xτ)∂Θ ln p(Ŝ(k)

τ |Xτ,Θ), (23)

Ŝ(k)
τ ∼ p(Ŝ|Xτ,Θ), (24)

where Ŝ
(k)
τ is the k-th simulated output signal and K is the

number of samplings, which is assumed to be sufficiently

large. The superscript (k) represents the variable of the k-th

sampling, and ∼ is a sampling operator from the right-side

distribution. The details of the sampling process for (24) are

described in Sec. III-C.

Most OSQA scores, such as PESQ, are designed for their

scores to be calculated using several time frames such as one

utterance of a speech sentence. Since B(Ŝ
(k)
τ , Xτ) of every time

frame τ cannot be obtained, the gradient cannot be calculated

by (23). Thus, instead of using the average of τ, we use the

average of I utterances. We define the observation of the i-th

utterance as X(i) := (X
(i)

1
, ..., X

(i)

T (i) ), and the k-th output signal of

the i-th utterance as Ŝ
(i,k)

:= (Ŝ
(i,k)

1
, ..., Ŝ

(i,k)

T (i) ). Then the gradient

can be calculated as

∂ΘJ(Θ) ≈
1

I

I
∑

i=1

∂ΘJ
(i)(Θ), (25)

∂ΘJ
(i)(Θ) ≈

K
∑

k=1

B

(

Ŝ
(i,k)
,X(i)

)

KT (i)

T (i)
∑

τ=1

∂Θ ln p(Ŝ(i,k)
τ |X

(i)
τ ,Θ), (26)

where T (i) is the frame length of the i-th utterance, and

we assume that the output signal of each time frame is

calculated independently. The details of the deviation of (25)

are described in the Appendix A.

B. Scoring-function design for stable training

We now introduce a design of a scoring function B(Ŝ,X)

to stabilize the training process. Because the expectation for

the gradient calculation in (22) is approximated using the

sampling algorithm, the training may become unstable. One

reason for unstable training behavior is that the variance in

the estimated gradient becomes large in accordance with the
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Fig. 3. T-F mask sampling procedure of proposed method on complex plane.

The black, red, blue, and green points represent X
(i)
ω,τ, Ĝ

(i)
ω,τX

(i)
ω,τ, S̃

(i,k)
ω,τ , and

Ĝ
(i,k)
ω,τ X

(i)
ω,τ, respectively. First, the parameters of p(Ŝω,τ |X

(i)
ω,τ,Θ), i.e., the T-

F mask Ĝ
(i)
ω,τ and the variance are estimated using a DNN. Then, S̃

(i,k)
ω,τ is

sampled from p(Ŝω,τ |X
(i)
ω,τ,Θ) by using a typical sampling algorithm; which

is shown as arrow-(i). Finally, the simulated T-F mask Ĝ
(i,k)
ω,τ is calculated to

minimize the MSE between S̃
(i,k)
ω,τ and the simulated output signal Ĝ

(i,k)
ω,τ X

(i)
ω,τ

by (29); which is shown as arrow-(ii).

large variance in the scoring-function output [42]. To stabilize

the training, instead of directly using a raw OSQA score

as B(Ŝ,X), a normalized OSQA score is used to reduce its

variance. Hereafter, a raw OSQA score calculated from S,

X and Ŝ is written as Z(Ŝ,X) to distinguish between a raw

OSQA score Z(Ŝ,X) and normalized OSQA score B(Ŝ,X).

From (25) and (26), the total gradient ∂ΘJ(Θ) is a weighted

sum of the i-th gradient of the log-likelihood function, and

B(Ŝ,X) is used as its weight. Since typical OSQA scores

vary not only by the performance of source enhancement but

also by the SNRs of each input signal X(1,...,I), ∂ΘJ(Θ) also

varies by the OSQA scores and SNRs of X(1,...,I). To reduce the

variance in the estimate of the gradient, it would be better to

remove such external factors according to the input conditions

of each input signal, e.g., input SNRs. As a possible solution,

the external factors involved in the OSQA score would be

estimated by calculating the expectation of the OSQA score of

the input signal. Thus, subtracting the conditional expectation

of Z(Ŝ,X) given by each input signal EŜ|X[Z(Ŝ,X)] from

Z(Ŝ,X) might be effective in reducing the variance as

B
(

Ŝ,X
)

= Z(Ŝ,X) − EŜ|X

[

Z(Ŝ,X)
]

. (27)

This implementation is known as “baseline-subtraction” [42],

[43]. Here, EŜ|X[Z(Ŝ,X)] cannot be analytically calculated, so

we replace the expectation with the average of OSQA scores.

Then the scoring function is designed as

B

(

Ŝ
(i,k)
,X(i)

)

= Z(Ŝ
(i,k)
,X(i)) −

1

K

K
∑

j=1

Z(Ŝ
(i, j)
,X(i)). (28)

C. Sampling-algorithm to simulate T-F-mask-processed out-

put signal

The sampling operator used in (24) is an intuitive method

that uses a typical pseudo random number generator such as

the Mersenne-Twister [44]. However, this sampling operator

would in fact be difficult to use because typical sampling

algorithms simulate output signals that do not satisfy the
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constraint of real-valued T-F-mask processing defined by (2).

To avoid this problem, we calculate the T-F mask Ĝ
(i,k)
ω,τ and

output signal Ŝ
(i,k)
ω,τ from the simulated output signal by using

a typical sampling algorithm S̃
(i,k)
ω,τ , so that Ĝ

(i,k)
ω,τ and Ŝ

(i,k)
ω,τ

satisfy the constraint of T-F-mask processing and minimize

the squared error between Ŝ
(i,k)
ω,τ and S̃

(i,k)
ω,τ .

Figure 3 illustrates the overview of the problem and the

proposed solution on the complex plane. In this study, we use

the real-value T-F mask within the range of 0 ≤ Gω,τ ≤ 1.

Thus, the output signal is constrained to exist on the dotted

line in Fig. 3, i.e., T-F mask processing affects only the norm

of Ŝ
(i,k)
ω,τ . However, since p(Ŝ|X,Θ) is modeled by a continuous

PDF such as the complex Gaussian distribution in (11), a

typical sampling algorithm possibly generates output signals

that do not satisfy the T-F-mask constraint, i.e., the phase

spectrum of S̃
(i,k)
ω,τ does not coincide with that of X

(i)
ω,τ. To

solve this problem, we formulate the PSA-based T-F-mask re-

calculation. First, a temporary output signal S̃
(i,k)
ω,τ is sampled

using a sampling algorithm (Fig. 3 arrow-(i)). Then, the T-F

mask Ĝ
(i,k)
ω,τ that minimizes the squared error between S̃

(i,k)
ω,τ and

Ĝ
(i,k)
ω,τ X

(i)
ω,τ is calculated using the PSA equation as

Ĝ(i,k)
ω,τ = min















1,max















0,
|S̃

(i,k)
ω,τ |

|X
(i)
ω,τ|

cos
(

θ(S̃
(i,k))

ω,τ − θ(X
(i))

ω,τ

)





























, (29)

where θ
(S̃ (i,k))
ω,τ and θ

(X(i))
ω,τ are the phase spectra of S̃

(i,k)
ω,τ and X

(i)
ω,τ,

respectively. Then, the output signal is calculated by

Ŝ (i,k)
ω,τ = Ĝ(i,k)

ω,τ X(i)
ω,τ, (30)

as shown with arrow-(ii) in Fig. 3.

D. Training procedure

We describe the overall training procedure of the proposed

method, as shown in Fig. 4. Hereafter, to simplify the sam-

pling algorithm, we use the complex Gaussian distribution as

p(Ŝ|X,Θ) described in (11)–(16).

First, the i-th observation utterance X(i) is simulated by (1)

using a randomly selected target-source file and a noise source

with equal frame size from the training dataset. Next, the T-F

mask G(x
(i)
τ ) and variance σ(x

(i)
τ ) are estimated by (11)–(16).

Then, to simulate the k-th output signal Ŝ
(i,k)

, the temporary

output signal S̃
(i,k)′

ω,τ is sampled from the complex Gaussian

distribution using a pseudo random number generator, such as

the Mersenne-Twister [44], as














ℜ
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, (31)

where I is the 2 × 2 identity matrix, and ℜ and ℑ denote

the real and imaginary parts of the complex number, respec-

tively. After that, T-F mask Ĝ
(i,k)
ω,τ is calculated using (29). To

accelerate the algorithm convergence, we additionally use the

ϵ-greedy algorithm to calculate Ĝ
(i,k)
ω,τ . With probability 1 − ϵ

applied to each time-frequency bin, the maximum a posteriori

(MAP) T-F mask Ĝ
(i)
ω,τ estimated using DNNs is used instead

of Ĝ
(i,k)
ω,τ as

Ĝ(i,k)
ω,τ ←















Ĝ
(i,k)
ω,τ (with prob. ϵ)

Ĝ
(i)
ω,τ (otherwise)

. (32)

In addition, a large gradient value ∂ΘJ(Θ) leads to unstable

training. One reason for the large gradient is that the log-

likelihood ∂Θ ln p(Ŝ
(i,k)
τ |X

(i)
τ ,Θ) in (26) becomes large. To re-

duce the gradient of the log-likelihood, the difference between

the mean T-F mask Ĝ
(i)
ω,τ and simulated T-F mask Ĝ

(i,k)
ω,τ is

truncated to confine it within the range of [−λ, λ] as

∆Ĝ(i,k)
ω,τ ← Ĝ(i,k)

ω,τ − Ĝ(i)
ω,τ (33)

∆Ĝ(i,k)
ω,τ ←



























λ (∆Ĝ
(i,k)
ω,τ > λ)

∆Ĝ
(i,k)
ω,τ (−λ ≤ ∆Ĝ

(i,k)
ω,τ ≤ λ)

−λ (∆Ĝ
(i,k)
ω,τ < −λ)

, (34)

Ĝ(i,k)
ω,τ ← Ĝ(i)

ω,τ + ∆Ĝ(i,k)
ω,τ . (35)

Then, the output signal Ŝ
(i,k)

is calculated by T-F-mask

processing (30), and the OSQA scores Z(Ŝ
(i,k)
,X(i)) and

B(Ŝ
(i,k)
,X(i)) are calculated by (28). After applying these

procedures for I utterances, Θ is updated using the back-

propagation algorithm using the gradient calculated by (25).

IV. EXPERIMENTS

We conducted objective experiments to evaluate the perfor-

mance of the proposed method. The experimental conditions

are described in Sec. IV-A. To investigate whether a DNN

source-enhancement function can be trained to increase OSQA

scores, we first investigated the relationship between the

number of updates and OSQA scores (Sec. IV-B). Second,

the source enhancement performance of the proposed method

was compared with those of conventional methods by using

several objective measurements (Sec. IV-C). Finally, subjective

evaluations for sound quality and ineligibility were conducted

(Sec. IV-D). For comparison methods, we used four DNN

source-enhancement methods; two T-F-mask mapping func-

tions trained using an MMSE-based objective function [19]

and the ML-based objective function described in Sec. II-B,

and two T-F-mask selection functions trained for increasing

the PESQ and STOI [39].

A. Experimental conditions

1) Dataset: The ATR Japanese speech database [45] was

used as the training dataset of the target source. The dataset

consists of 6640 utterances spoken by 11 males and 11

females. The utterances were randomly separated into 5976

for the development set and 664 for the validation set. As

the training dataset of noise, a noise dataset of CHiME-3 was

used that consisted of four types of background noise files

including noise in cafes, street junctions, public transport,

and pedestrian areas [46]. The noisy-mixture dataset was

generated by mixing clean speech utterances with various

noisy and SNR conditions using the following procedure; i) the

noise is randomly selected from noise dataset, ii) the amplitude

of noise is adjusted to be the desired SNR-level, and iii) the

speech and noise source is added in the time-domain. As the

test dataset, a Japanese speech database consisting of 300

utterances spoken by 3 males and 3 females was used for

target-source dataset, and an ambient noise database recorded

at airports (Airp.), amusement parks (Amuse.), offices (Office),
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Fig. 4. Training procedure of proposed method

TABLE I
Experimental conditions

Parameters for signal processing

Sampling rate 16.0 kHz
FFT length 512 pts
FFT shift length 256 pts
# of mel-filterbanks 64
Smoothing parameter β 0.3

Lower threshold Gmin 0.158 (= −16 dB)
Training SNR (dB) -6, 0, 6, 12

DNN architecture

# of hidden layers for DNNs 3
# of hidden units for DNNs 1024
Activation function (T-F mask, ϕg) sigmoid
Activation function (variance, ϕσ) exponential
Activation function (hidden, ϕh) ReLU
Context window size Q 5

Variance regularization parameter Cσ 10−4

Parameters for MMSE and ML-based DNN training

Initial step-size 10−4

Step-size threshold for early-stopping 10−7

Dropout probability (input layer) 0.2
Dropout probability (hidden layer) 0.5

L2 normalization parameter 10−4

Parameters for T-F mask selection

# of T-F mask templates 128
ϵ-greedy parameter ϵ 0.01

Parameters for proposed DNN training

Step-size 10−6

# of utterance I 10
# of T-F mask sampling K 20
Clipping parameter λ 0.05
ϵ-greedy parameter ϵ 0.05

and party rooms (Party) was used as the noisy dataset. All

samples were recorded at the sampling rate of 16 kHz. The

SNR levels of the training/test dataset were -6, 0, 6, and 12

dB.

2) DNN architecture and setup: For the proposed and

all conventional methods, a fully connected DNN was used

that has 3 hidden layers and 1024 hidden units. All input

vectors were mean-and-variance normalized using the training

data statistics. The activation functions for the T-F mask ϕg,

variance ϕσ, and hidden units ϕh were the sigmoid function,

exponential function, and rectified linear unit (ReLU), respec-

tively. The context window size was Q = 5, and the variance

regularization parameter in (15) was Cσ = 10−41 . The Adam

method [47] was used as a gradient method. To avoid over-

fitting, input vectors and DNN outputs, i.e., the T-F masks

and error variances, were compressed using a B = 64 Mel-

transformation matrix, and the estimated T-F masks and error

variances were transformed into a linear frequency domain

using the Mel-transform’s pseudo-inverse [48].

A PSA objective function [19], [20] was used as the MMSE-

based objective function. Since the PSA objective function

does not use the variance parameter σ(xτ), DNNs estimate

only T-F masks G(xτ). For the ML-based objective function,

we used (9) with the complex Gaussian distribution described

in Sec. II-B. To train both methods, the dropout algorithm

was used and initialized by layer-by-layer pre-training [49].

An early-stopping algorithm [17] was used for fine-tuning

with the initial step-size 10−4 and the step-size threshold 10−7,

and L2 normalization with the parameter 10−4 was used as a

regularization algorithm.

For the T-F-mask selection-based method [39], to improve

the flexibility of T-F-mask selection, we used 128 T-F-mask

templates. The DNN architecture, except for the output layer,

is the same as MMSE- and ML-based methods.

For the proposed method, DNN parameters were initialized

by ML-based training, and their step-size was 10−6. To calcu-

late ∂ΘJ(Θ), the iteration parameters I = 10 and K = 20 were

used. The ϵ-greedy parameter ϵ was 0.05, and the clipping

parameter λ was determined as 0.05 according to preliminary

informal experiments2. As the OSQA scores, we used the

PSEQ, which is a speech quality measure, and the STOI, which

is a speech intelligibility measure. To avoid adjusting the step-

size of the gradient method for each OSQA, we normalized

OSQA scores to uniform the range of the each OSQA score.

In this experiments, each OSQA score was normalized so that

its maximum and minimum values were 100 and 0 as

ZPESQ(Ŝ,X) = 20.0 ×
(

PESQ(Ŝ,X) + 0.5
)

,

ZSTOI(Ŝ,X) = 100.0 × STOI(Ŝ,X).

1In preliminary experiments using candidate values Cσ ∈
{10−2, 10−3, 10−4}, there were no distinct differences in training stability and
results. Thus, to eliminate the effect of regularization, we used the minimum
parameter of the candidate values.

2We tested some possible combinations of these parameters by grid-search.
Then, we found that the listed parameters achieved a stable training and
realistic computational time (2 days using an Intel Xeon Processor E5-2630
v3 CPU and a Tesla M-40 GPU).
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The training algorithm was stopped after 10,000 times of

executing the whole parameter update process shown in Fig.

4.

3) Other conditions: It is known that T-F-mask processing

causes artificial distortion, so-called musical noise [50]. For

all methods, to reduce musical noise, flooring [6], [51] and

smoothing [52], [53] were applied to Ĝω,τ before T-F-mask

processing as

Ĝω,τ ← max
(

Gmin, Ĝω,τ
)

, (36)

Ĝω,τ ← βĜω,τ + (1 − β)Ĝω,τ−1, (37)

where we used the lower threshold of the T-F mask Gmin =

0.158 and smoothing parameter β = 0.3. The frame size of

the short-time Fourier transform (STFT) was 512, and the

frame was shifted by 256 samples. All the above-mentioned

conditions are summarized in Table I.

TABLE II
Correlation coefficients betweenMSE and OSQA score improvements

-6 dB 0 dB 6 dB 12 dB Average

PESQ −0.120 −0.081 0.020 0.089 −0.020
STOI 0.756 −0.672 −0.951 −0.980 0.482

B. Investigation of relationship between number of updates

and OSQA score

To investigate whether the DNN source-enhancement func-

tion can be trained to increase OSQA scores, we first inves-

tigated the relationship between the number of updates and

improvement of the OSQA scores. We define “OSQA score

improvement” as the difference in the score value from the

baseline OSQA score. For the baseline, we use the OSQA

score obtained from the observed signal. Since the DNN pa-

rameters of the proposed method were initialized by ML-based

training, each OSQA score was compared with the OSQA
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TABLE III
Evaluation results on three objective measurements. Asterisks indicate scores significantly higher than that of MMSE and ML in paired one-sided t-test. Gray

cells indicate the highest score in same noise and input SNR condition.

Input SNR: -6 dB

SDR [dB] PESQ STOI [%]

Method Airp. Amuse. Office Party Ave. Airp. Amuse. Office Party Ave. Airp. Amuse. Office Party Ave.

OBS −4.28 −6.98 −5.64 −1.50 −4.6 1.24 1.38 1.33 1.14 1.27 72.1 76.7 73.8 69.1 72.9

MMSE 3.22 5.87 4.66 3.77 4.38 1.66 1.89 1.80 1.48 1.71 68.9 73.6 71.0 66.7 70.1

ML 3.31 6.12 4.87 3.63 4.48 1.68 1.95 1.80 1.54 1.74 69.2 74.3 72.0 64.9 70.1

C-PESQ −0.28 1.38 −0.03 1.67 0.69 1.55 1.77 1.64 1.44 1.60 ∗72.2 ∗76.4 ∗73.4 ∗70.4 ∗73.2

C-STOI 0.21 2.02 0.68 2.17 1.27 1.48 1.64 1.56 1.34 1.50 ∗75.0 ∗79.8 ∗76.6 ∗71.1 ∗75.6

P-PESQ 3.13 ∗6.34 4.72 3.50 4.42 ∗1.78 ∗2.07 ∗1.91 ∗1.57 ∗1.83 ∗71.0 ∗76.0 ∗72.4 ∗67.9 ∗71.8

P-STOI 2.18 ∗6.60 3.90 ∗4.15 4.21 1.63 1.93 1.73 ∗1.59 1.72 ∗74.9 ∗80.1 ∗76.6 ∗71.3 ∗75.7

P-MIX 2.93 ∗6.20 4.39 3.49 4.25 ∗1.77 ∗2.08 ∗1.89 ∗1.59 ∗1.83 ∗72.1 ∗77.4 ∗73.8 ∗68.2 ∗72.9

Input SNR: 0 dB

SDR [dB] PESQ STOI [%]

Method Airp. Amuse. Office Party Ave. Airp. Amuse. Office Party Ave. Airp. Amuse. Office Party Ave.

OBS 1.67 −1.19 0.36 4.46 1.32 1.71 1.88 1.81 1.54 1.73 84.5 87.8 85.2 82.9 85.1

MMSE 8.03 10.0 9.55 8.44 9.00 2.17 2.36 2.27 2.09 2.22 80.7 84.7 83.1 80.1 82.1

ML 8.62 10.4 9.97 8.66 9.40 2.20 2.42 2.30 2.14 2.27 82.5 86.4 84.6 79.6 83.3

C-PESQ 6.36 7.08 6.49 7.89 6.95 2.11 2.33 2.23 2.00 2.16 ∗83.7 86.2 84.0 ∗82.7 ∗84.2

C-STOI 7.30 8.07 7.18 8.70 7.81 2.03 2.18 2.10 1.89 2.05 ∗86.8 ∗89.9 ∗87.4 ∗84.7 ∗87.2

P-PESQ 8.40 10.3 9.77 8.28 9.19 ∗2.30 ∗2.55 ∗2.41 ∗2.20 ∗2.37 ∗82.7 86.4 84.1 ∗80.3 ∗83.4

P-STOI 8.45 ∗11.2 9.52 ∗9.74 ∗9.74 2.12 2.36 2.21 2.11 2.20 ∗86.7 ∗90.0 ∗87.5 ∗85.0 ∗87.3

P-MIX 8.09 9.85 9.12 8.11 8.79 ∗2.31 ∗2.57 ∗2.41 ∗2.23 ∗2.38 ∗84.2 ∗87.8 ∗85.5 ∗81.6 ∗84.7

Input SNR: 6 dB

SDR [dB] PESQ STOI [%]

Method Airp. Amuse. Office Party Ave. Airp. Amuse. Office Party Ave. Airp. Amuse. Office Party Ave.

OBS 7.67 4.96 6.29 10.5 7.34 2.18 2.33 2.28 2.02 2.20 92.2 93.8 92.7 91.8 92.6

MMSE 12.1 13.6 13.4 12.6 12.9 2.54 2.68 2.63 2.49 2.58 88.9 91.2 90.4 88.6 89.8

ML 13.1 14.2 14.1 13.5 13.7 2.59 2.77 2.69 2.54 2.65 91.1 93.0 92.2 89.8 91.5

C-PESQ 11.5 11.9 11.4 12.6 11.9 2.54 2.75 2.69 2.45 2.61 90.5 91.8 90.9 89.9 90.8

C-STOI 13.2 13.6 13.1 14.3 13.5 2.50 2.62 2.57 2.38 2.52 ∗93.4 ∗94.8 ∗93.9 ∗92.8 ∗93.8

P-PESQ 12.6 13.8 13.6 12.6 13.2 ∗2.70 ∗2.89 ∗2.80 ∗2.64 ∗2.76 90.2 92.1 91.2 89.1 90.6

P-STOI ∗13.4 ∗15.3 ∗14.3 ∗14.8 ∗14.4 2.49 2.69 2.60 2.45 2.56 ∗93.4 ∗94.9 ∗94.0 ∗92.8 ∗93.8

P-MIX 11.5 12.3 12.1 11.6 11.9 ∗2.69 ∗2.90 ∗2.79 ∗2.66 ∗2.76 ∗91.5 ∗93.1 ∗92.3 ∗90.4 ∗91.8

Input SNR: 12 dB

SDR [dB] PESQ STOI [%]

Method Airp. Amuse. Office Party Ave. Airp. Amuse. Office Party Ave. Airp. Amuse. Office Party Ave.

OBS 13.6 11.0 12.3 16.4 13.3 2.61 2.76 2.72 2.47 2.64 96.1 96.9 96.4 96.2 96.4

MMSE 15.9 16.9 16.8 16.3 16.5 2.84 2.95 2.92 2.77 2.87 93.5 94.7 94.4 93.2 94.0

ML 17.5 18.0 18.0 18.1 17.9 2.95 3.09 3.03 2.88 2.98 95.5 96.3 96.0 94.9 95.7

C-PESQ 15.5 15.8 15.3 16.3 15.7 2.95 ∗3.14 ∗3.08 2.86 ∗3.01 94.2 94.9 94.4 94.0 94.4

C-STOI ∗18.2 ∗18.6 ∗18.2 ∗19.0 ∗18.5 2.94 3.05 3.01 2.81 2.95 ∗96.7 ∗97.4 ∗97.0 ∗96.6 ∗96.9

P-PESQ 16.5 17.2 17.1 16.6 16.8 ∗3.04 ∗3.19 ∗3.12 ∗2.97 ∗3.08 94.4 95.2 94.9 93.8 94.6

P-STOI ∗18.2 ∗19.5 ∗18.8 ∗19.7 ∗19.1 2.85 3.02 2.96 2.78 2.90 ∗96.8 ∗97.5 ∗97.1 ∗96.7 ∗97.0

P-MIX 13.6 13.9 13.9 13.8 13.8 ∗3.01 ∗3.18 ∗3.10 ∗2.97 ∗3.07 95.3 96.0 95.7 94.7 95.4

score that had zero updates. Thus, if DNN parameters were

successfully trained with the proposed method, the OSQA

score improvement would increase in accordance with the

number of updates.

Figure 5 shows the OSQA score improvements evaluated on

the test dataset. Both OSQA score improvements increased

as the number of updates increased for all SNR conditions.

These results suggest that the proposed method is effective

at increasing arbitrary OSQA scores, such as the PESQ and

STOI.

We also investigated the relationship between the number

of updates and MSE using the test dataset. Figure 6 shows

MSE depending on the number of updates. Under most

SNR conditions, MSE did not decrease despite OSQA scores

increasing. Table II shows the correlation coefficients between

OSQA score improvements and MSE values. There was little

correlation between PESQ improvement and MSE, and the

correlation between STOI improvement and MSE depended

TABLE IV
Objective scores of example results shown in Fig. 7.

Performance measurement
Method SDR [dB] PESQ STOI [%]

OBS 2.36 1.79 81.5
MMSE 9.31 2.32 80.0
ML 11.3 2.48 82.1
P-PESQ 10.7 2.55 81.4
P-STOI 11.2 2.40 86.3

P-MIX 11.2 2.55 83.4

on the input SNR condition. Thus, these results suggest that

minimization of MSE does not necessarily maximize OSQA

scores.

C. Objective evaluation

The source-enhancement performance of the proposed

method was compared with those of conventional methods
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Fig. 7. Examples of estimated T-F mask and output signal. Top figures show spectrogram of target source Sω,τ (left) and observed signal Xω,τ (right),
respectively. Middle figures show spectrogram of output signal Ŝω,τ and bottom figures show estimated T-F mask Ĝω,τ, respectively. White dotted box and
circle show larger or less noise reduction areas which modified by training of P-PESQ and P-STOI, respectively. (a) MMSE, (b) ML, (c) P-PESQ, (d) P-STOI,
and (e) P-MIX.

using three objective measurements: the signal-to-distortion

ratio (SDR), PESQ, and STOI. The SDR was defined as

SDR [dB] := 10 log10

∑T
τ=1

∑Ω
ω=1 |S ω,τ|

2

∑T
τ=1

∑Ω
ω=1 |S ω,τ − Ŝ ω,τ|2

, (38)

and calculated using the “BSS-Eval toolbox [54].” These

measurements were evaluated on the observed signal (OBS),

the MMSE- and ML-based DNN training (MMSE and ML), a T-

F-mask selection method to increase the PESQ and STOI [39]

(C-PESQ and C-STOI), and the proposed method to increase

the PESQ and STOI (P-PESQ and P-STOI). To investigate

whether the proposed method enables training of a DNN to

increase a metric that consists of multiple OSQA scores, we

also trained a DNN to increase a mixed-OSQA score (P-MIX).

As the first trial, we mixed the PESQ and the STOI. The

mixed-OSQA is defined as

ZMIX(Ŝ,X) = γZPESQ(Ŝ,X) + (1 − γ)ZSTOI(Ŝ,X).

In this trial, in order to confirm whether multiple OSQA scores

increase simultaneously, the additive coefficient γ = 0.5 was

determined in such a way that both OSQA scores had the same

contribution to ZMIX(Ŝ,X).

Table III lists the evaluation results of each objective

measurement on four noise types and four input SNR con-

ditions. The asterisk indicates that the score was significantly

higher than both MMSE and ML in a paired one-sided t-test

(α = 0.05). The SDRs tended to be higher when using

the conventional MMSE/ML-based objective function than

the proposed method under low SNR conditions. The PESQ

and STOI of P-PESQ and P-STOI were higher than those of

MMSE and ML, respectively. For each method, the PESQ and

STOI improved by around 0.1 and 2–5 %, respectively, and

significant differences were observed for all noise and SNR

conditions. These results suggest that the proposed method

was able to train the DNN source-enhancement function to

directly increase black-box OSQA scores.

In mixed-OSQA experiments, both PESQ and STOI of

P-MIX were higher than those of MMSE and ML under almost all

noise and SNR conditions. In the comparison to the results of

the mixed-OSQA and single-OSQA (i.e. P-PESQ and P-STOI),

P-MIX achieved almost the same or slightly lower PESQ

and STOI scores than P-PESQ and P-STOI, respectively. In

addition, P-MIX outperformed STOI and PESQ scores than

P-PESQ and P-STOI, respectively. These results suggest that

the use of the mixed-OSQA would be an effective way to

increase multiple-perceptual qualities.

In Table III we also show that the proposed method outper-

formed the T-F mask selection-based methods [39] in terms

of the target OSQA under almost all noise types and SNR

conditions. Such favorable experimental results would have

been observed because of the flexibility of the T-F mask esti-

mation achieved by the proposed method. In this experiment,

the number of the T-F mask template (= 128) was larger than

that used in the previous work (= 32) [39]. However, since

the T-F masks were generated by a combination of the finite

number of templates, the patterns of the T-F mask were still
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limited. These results suggested that by adopting the policy-

gradient method to optimize the parameters of a continuous

PDF of the T-F mask processing, the flexibility of the T-F

mask estimation was improved.

Figure 7 shows examples of the estimated T-F masks and

output signal, and Table IV lists its objective scores. The

SNR of the observed signal was adjusted to 0 dB using

amusement parks noise. Figure 7 shows that the estimated T-

F masks reflect the characteristics of each objective function.

In comparison to the results of MMSE and ML that reduced

the distortion of the target source on average, the T-F mask

estimated by P-PESQ strongly reduced the residual noise, even

when it distorted the target sound at a middle/high frequency

(e.g. Fig. 7 white dotted box), and achieved the best PESQ. In

contrast, the T-F mask estimated by P-STOI weakly reduced

noise to avoid distorting the target source, even when the noise

remained in the non-speech frames (e.g. Fig. 7 white dotted

circle), and achieved the best STOI. This may be because the

residual noise degrades the sound quality and the distortion

of the target source degrades speech intelligibility. The T-F

mask estimated by P-MIX involved both characteristics and

relaxed the disadvantage of P-PESQ and P-STOI, and both

OSQA scores were higher than those of ML and MMSE. Namely,

speech distortion at a middle/high frequency was reduced (e.g.

Fig. 7 white dotted box) and residual noise in the non-speech

frames were reduced (e.g. Fig. 7 white dotted circle).

D. Subjective evaluation

1) Sound quality evaluation: To investigate the sound qual-

ity of the output signals, subjective speech-quality tests were

conducted according to ITU-T P.835 [55]. In the tests, the

participants rated three different factors in the samples:

• Speech mean-opinion-score (S-MOS): the speech sam-

ple was rated 5–not distorted, 4–slightly distorted, 3–

somewhat distorted, 2–fairly distorted, or 1–very dis-

torted.

• Subjective noise MOS (N-MOS): the background of the

sample was 5–not noticeable, 4–slightly noticeable, 3–

noticeable but not intrusive, 2–somewhat intrusive, or 1–

very intrusive.

• Overall MOS (G-MOS): the sound quality of the sample

was 5–excellent, 4–good, 3–fair, 2–poor, or 1–bad.

Sixteen participants evaluated the sound quality of the output

signals of ML, P-PESQ, and P-STOI. The participants evaluated

20 files for each method; the 20 files consisted of five

randomly selected files from the test dataset for each of the

four types of noise. The input SNR was 6 dB.

Figure 8 shows the results of the subjective tests. For

all factors, P-PESQ achieved a higher score than ML, and

statistically significant differences from ML were observed in

a paired one-sided t-test (p-value = 0.05). The reason for

this result suggested that participants may have perceived the

degrade of the speech quality from both the speech distortion

and the residual noise in speech frame in the output signal of

ML. In addition, although there was no statistically significant

difference between P-PESQ and P-STOI in terms of S-MOS

score, N-MOS score of P-STOI was significantly lower than

that of P-PESQ. Thus, G-MOS score of P-STOI was also lower

than that of P-PESQ. It would be because P-STOI weakly

reduced noise to avoid distorting the target source, even when

the noise remained in the non-speech frames as shown in Sec.

IV.C.

2) Speech intelligibility test: We conducted a word-

intelligibility test to investigate speech intelligibility. We se-

lected 50 low familiarity words from familiarity-controlled

word lists 2003 (FW03) [56] as the test dataset of speech.

The selected dataset consisted of Japanese four-mora words

whose accent type was Low-High-High-High. The noisy test

dataset was created by adding a randomly selected noise at

SNR of 6 dB from the noisy dataset, which was used in the

objective evaluation. Sixteen participants attempted to write a
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phonetic transcription for output signals of ML, P-PESQ, and

P-STOI. The percentage of correct answers was used as the

intelligibility score.

Figure 9 shows the intelligibility score of each method.

P-STOI achieved the highest score. In addition, statistically

significant differences from ML were observed in an unpaired

one-sided t-test (p-value = 0.05). From both sound-quality and

speech-intelligibility tests, we found that the proposed method

could improve the specific hearing quality corresponding to the

OSQA score used as the objective function.

V. CONCLUSIONS

We proposed a training method for the DNN-based source-

enhancement function to increase OSQA scores such as the

PESQ. The difficulty is that the gradient of OSQA scores

may not be analytically calculated by simply applying the

back-propagation algorithm because most OSQA scores are

black boxes. To calculate the gradient of the OSQA-based

objective function, we formulated a DNN-optimization scheme

on the basis of the policy-gradient method. In the experiment,

1) it was revealed that the DNN-based source-enhancement

function can be trained using the gradient of the OSQA

obtained with the policy-gradient method. In addition, 2) the

OSQA score and specific hearing quality corresponding to

the OSQA score used as the objective function improved.

Therefore, it can be concluded that this method made it

possible to use not only analytical objective functions but also

black-box functions for the training of the DNN-based source-

enhancement function.

Although we focused on maximization of OSQA in this

study, the proposed method potentially increases other black-

box measurements. In the future, we will aim to adopt the

proposed method to increase other black-box objective mea-

sures such as the subjective score obtained from a “human-in-

the-loop” audio-system [57] and word accuracy of a black-box

automatic-speech-recognition system [58]. We found that both

the PESQ and STOI could increase simultaneously by mixing

multiple OSQA scores as an objective function. In the future,

we will also investigate the optimality of the OSQA score and

its mixing ratio for the proposed method.
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Appendix

A. Deviation of (25)

We describe the deviation of (25). First, as with (19) and

(20), the objective function is defined as the expectation of

B(Ŝ,X) as

J(Θ) = EŜ,X

[

B(Ŝ,X)
]

, (39)

=

∫

p(X)

∫

B(Ŝ,X)p(Ŝ|X,Θ)dŜdX. (40)

Then, the gradient of (40) can be calculated using a log-

derivative trick as

∂ΘJ(Θ) = EX

[

EŜ|X

[

B(Ŝ,X)∂Θ ln p(Ŝ|X,Θ)
]]

. (41)

By approximating the expectation on X by the average on I

utterances and that of Ŝ by the average on K times sampling,

(41) can be calculated as

∂ΘJ(Θ) ≈
1

I

I
∑

τ=1

1

K

K
∑

k=1

B(Ŝ
(i,k)
,X(i))∂Θ ln p(Ŝ

(i,k)
|X(i),Θ).

(42)

We assume that the output signal on each time frame is

calculated independently. Then, ln p(Ŝ|X,Θ) can be reformed

to

ln p(Ŝ|X,Θ) =

T
∑

τ=1

ln p(Ŝτ|Xτ,Θ), (43)

and its gradient can be calculated by

∂Θ ln p

(

Ŝ
(i,k)
|X(i),Θ

)

=

T (i)
∑

τ=1

∂Θ ln p(Ŝ(i,k)
τ |X

(i)
τ ,Θ), (44)

≈
1

T (i)

T (i)
∑

τ=1

∂Θ ln p(Ŝ(i,k)
τ |X

(i)
τ ,Θ). (45)

To normalize the difference in frame length T (i), we multiplied

1/T (i) by the original gradient. The log-likelihood function

ln p(Ŝ
(i,k)
τ |X

(i)
τ ,Θ) can be expanded as

ln p(Ŝ(i,k)
τ |X

(i)
τ ,Θ)

c
=−

Ω
∑

ω=1

ln(σ2
ω,τ)

(i) +
L

(i,k)

ℜ,ω,τ
+L

(i,k)

ℑ,ω,τ

2(σ2
ω,τ)

(i)
, (46)

L
(i,k)

ℜ,ω,τ
=

(

Ĝ(i,k)
ω,τℜ

(

X(i)
ω,τ

)

− Ĝ(i)
ω,τℜ

(

X(i)
ω,τ

))2
, (47)

L
(i,k)

ℑ,ω,τ
=

(

Ĝ(i,k)
ω,τ ℑ

(

X(i)
ω,τ

)

− Ĝ(i)
ω,τℑ

(

X(i)
ω,τ

))2
, (48)

where Ĝ
(i)
ω,τ and (σ2

ω,τ)
(i) can be estimated by forward-

propagation of the DNN as (12)–(16), and Ĝ
(i,k)
ω,τ is given by the

sampling algorithm of the proposed method. By using above

procedure, ∂ΘJ(Θ) can be calculated by simply applying

back-propagation with respect to Ĝ
(i)
ω,τ and (σ2

ω,τ)
(i). Please note

that since the simulated output signal Ŝ
(i,k)
τ deals with the “label

data”, the back-propagation algorithm is not applied for Ĝ
(i,k)
ω,τ .
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