
Constructive Approximation (2022) 55:3–71
https://doi.org/10.1007/s00365-021-09541-6

DNN Expression Rate Analysis of High-Dimensional PDEs:
Application to Option Pricing

Dennis Elbrächter1 · Philipp Grohs2,3 · Arnulf Jentzen4,5 · Christoph Schwab4

Received: 20 September 2018 / Accepted: 13 November 2020 / Published online: 6 May 2021
© The Author(s) 2021

Abstract
We analyze approximation rates by deep ReLU networks of a class of multivari-
ate solutions of Kolmogorov equations which arise in option pricing. Key technical
devices are deep ReLU architectures capable of efficiently approximating tensor prod-
ucts. Combining this with results concerning the approximation of well-behaved (i.e.,
fulfilling some smoothness properties) univariate functions, this provides insights into
rates of deep ReLU approximation of multivariate functions with tensor structures.
We apply this in particular to the model problem given by the price of a European
maximum option on a basket of d assets within the Black–Scholes model for European
maximum option pricing. We prove that the solution to the d-variate option pricing
problem can be approximated up to an ε-error by a deep ReLU network with depth

O(ln(d) ln(ε−1) + ln(d)2
)
and O(d2+ 1

n ε− 1
n
)
nonzero weights, where n ∈ N is arbi-

trary (with the constant implied in O(·) depending on n). The techniques developed

Communicated by Wolfgang Dahmen, Ronald A. Devore, and Philipp Grohs.

This work was performed during visits of PG at the Seminar for Applied Mathematics and the FIM of
ETH Zürich, and completed during the thematic term “Numerical Analysis of Complex PDE Models in
the Sciences” at the Erwin Schrödinger Institute, Vienna, from June-August, 2018. AJ acknowledges
support by the Swiss National Science Foundation under grant No. 175699 DE and PhG are supported in
part by the Austrian Science Fund (FWF) under project number P 30148.

B Dennis Elbrächter
dennis.elbraechter@univie.ac.at

1 Faculty of Mathematics, University of Vienna, Vienna, Austria

2 Faculty of Mathematics and Research Network Data Science, University of Vienna, Vienna,
Austria

3 Johann Radon Institute of Computational and Applied Mathematics, Austrian Academy of
Sciences, Linz, Austria

4 SAM, Department of Mathematics, ETH Zurich, Zurich, Switzerland

5 Institute for Analysis and Numerics, Faculty of Mathematics and Computer Science, University of
Muenster, Muenster, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00365-021-09541-6&domain=pdf

4 Constructive Approximation (2022) 55:3–71

in the constructive proof are of independent interest in the analysis of the expressive
power of deep neural networks for solution manifolds of PDEs in high dimension.

Keywords Neural network approximation · Low-rank approximation · Option
pricing · High-dimensional PDEs

Mathematics Subject Classification 41Axx · 35Kxx · 65-XX · 65D30

1 Introduction

1.1 Motivation

The development of new classification and regression algorithms based on deep neural
networks—coined “deep learning”—revolutionized the area of artificial intelligence,
machine learning and data analysis [15]. More recently, these methods have been
applied to the numerical solution of partial differential equations (PDEs for short)
[3,12,21,22,27,32,39,41,42]. In theseworks, it has been empirically observed that deep
learning-basedmethods work exceptionally well when used for the numerical solution
of high-dimensional problems arising in option pricing. The numerical experiments
carried out in [2,3,21,42] in particular suggest that deep learning-based methods may
not suffer from the curse of dimensionality for these problems, but only few theoretical
results exist which support this claim: In [38], a first theoretical result on rates of
expression of infinite-variate generalized polynomial chaos expansions for solution
manifolds of certain classes of parametric PDEs has been obtained. Furthermore,
recent work [4,18] shows that the algorithms introduced in [2] for the numerical
solution of Kolmogorov PDEs are free of the curse of dimensionality in terms of
network size and training sample complexity.

Neural networks constitute a parametrized class of functions constructed by suc-
cessive applications of affine mappings and coordinatewise nonlinearities; see [35] for
a mathematical introduction. As in [34], we introduce a neural network via a tuple of
matrix-vector pairs

� = (((A1
i, j)

N1,N0
i, j=1 , (b1i)

N1
i=1), . . . , ((A

L
i, j)

NL ,NL−1
i, j=1 , (bLi)

NL
i=1))

∈ ×L
l=1

(
R

Nl×Nl−1 × R
Nl
)

for given hyperparameters L ∈ N, N0, N1, . . . , NL ∈ N. Given an “activation
function” � ∈ C(R,R), a neural network � then describes a function R�(�) ∈
C(RN0 ,RNL) that can be evaluated by the recursion

xl = �(Al xl−1 + b1), l = 1, . . . , L − 1,
[
R�(�)

]
(x0) = ALxL−1 + bL . (1.1)

The number of nonzero values in the matrix-vector tuples defining � describes the
size of � which will be denoted by M(�) and the depth of the network �, i.e., its
number of affine transformations, will be denoted byL(�). We refer to Setting 5.1 for

123

Constructive Approximation (2022) 55:3–71 5

a more detailed description. A popular activation function � is the so-called rectified
linear unit ReLU(x) = max{x, 0} [15].

An increasing body of research addresses the approximation properties (or “expres-
sive power”) of deep neural networks, where by “approximation properties” we mean
the study of the optimal trade-off between the sizeM(�) and the approximation error
‖u − R�(�)‖ of neural networks approximating functions u from a given function
class. Classical references include [1,7,8,23] as well as the summary [35] and the ref-
erences therein. In these works, it is shown that deep neural networks provide optimal
approximation rates for classical smoothness spaces such as Sobolev spaces or Besov
spaces.More recently, these results have been extended to Shearlet andRidgelet spaces
[5], modulation spaces [33], piecewise smooth functions [34] and polynomial chaos
expansions [38]. All these results indicate that all classical approximation methods
based on sparse expansions can be emulated by neural networks.

1.2 Contributions andMain Result

As a first main contribution of this work, we show in Proposition 6.4 that low-rank
functions of the form

(x1, . . . , xd) ∈ R
d �→

R∑

s=1

cs

d∏

j=1

hsj (x j), (1.2)

with hsj ∈ C(R,R) sufficiently regular and (cs)Rs=1 ⊆ R can be approximated to a

given relative precision by deep ReLU neural networks of size scaling like Rd2. In
particular, we obtain a dependence on the dimension d that is only polynomial and
not exponential, i.e., we avoid the curse of dimensionality. In other words, we show
that in addition all classical approximation methods based on sparse expansions and
on more general low-rank structures, can be emulated by neural networks. Since the
solutions of several classes of high-dimensional PDEs are precisely of this form (see,
e.g., [38]), our approximation results can be directly applied to these problems to
establish approximation rates for neural network approximations that do not suffer
from the curse of dimensionality. Note that approximation results for functions of the
form (1.2) have previously been considered in [37] in the context of statistical bounds
for nonparametric regression.

Moreover, we remark that the networks realizing the product in (1.2) itself have
a connectivity scaling which is logarithmic in the accuracy ε−1. While we will, for

our concrete example, only obtain a spectral connectivity scaling, i.e., like ε− 1
n for

any n ∈ N with the implicit constant depending on n, this tensor construction may be
used to obtain logarithmic scaling (w.r.t. the accuracy) for d-variate functions in cases
where the univariate hsj can be approximated with a logarithmic scaling.

As a particular application of the tools developed in the present paper, we provide
a mathematical analysis of the rates of expressive power of neural networks for a
particular, high-dimensional PDE which arises in mathematical finance, namely the
pricing of a so-called European maximum option (see, e.g., [43]).

123

6 Constructive Approximation (2022) 55:3–71

We consider the particular (and not quite realistic) situation that the log-returns of
these d assets are uncorrelated, i.e., their log-returns evolve according to d uncorrelated
drifted scalar diffusion processes.

The price of the European maximum option on this basket of d assets can then be
obtained as solution of the multivariate Black–Scholes equation which reads, for the
presently considered case of uncorrelated assets, as

(∂
∂t u)(t, x) + μ

2

d∑

i=1
xi
(

∂
∂xi

u
)
(t, x) + σ 2

2

d∑

i=1
|xi |2

(
∂2

∂x2i
u
)
(t, x) = 0 . (1.3)

For the European maximum option, (1.3) is completed with the terminal condition

u(T , x) = ϕ(x) = max{x1 − K1, x2 − K2, . . . , xd − Kd , 0} (1.4)

for x = (x1, . . . , xd) ∈ (0,∞)d . It is well known (see, e.g., [11,20] and the references
therein) that there exists a unique solutionof (1.3)–(1.4). This solution canbe expressed
as conditional expectation of the function ϕ(x) in (1.4) over suitable sample paths of
a d-dimensional diffusion.

Onemain result of this paper is the following result (stated with completely detailed
assumptions as Theorem 7.3), on expression rates of deep neural networks for the
basket option price u(0, x) for x ∈ [a, b]d for some 0 < a < b < ∞. To render
their dependence on the number d of assets in the basket explicit, we write ud in the
statement of the theorem.

Theorem 1.1 Let n ∈ N, μ ∈ R, T , σ, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0, Kmax),
and let ud : (0,∞) × [a, b]d → R, d ∈ N, be the functions which satisfy for every
d ∈ N, and for every (t, x) ∈ [0, T] × (0,∞)d the equation (1.3) with terminal
condition (1.4).

Then there exist neural networks (�d,ε)ε∈(0,1],d∈N which satisfy

(i) sup
ε∈(0,1],d∈N

[L(�d,ε)

max{1, ln(d)} (| ln(ε)| + ln(d) + 1)

]
< ∞,

(ii) sup
ε∈(0,1],d∈N

[M(�d,ε)

d2+ 1
n ε− 1

n

]
< ∞, and

(iii) for every ε ∈ (0, 1], d ∈ N,

sup
x∈[a,b]d

∣∣ud(0, x) − [
RReLU(�d,ε)

]
(x)
∣∣ ≤ ε. (1.5)

Informally speaking, the previous result states that the price of a d-dimensional Euro-
pean maximum option can, for every n ∈ N, be expressed on cubes [a, b]d by
deep neural networks to pointwise accuracy ε > 0 with network size bounded as
O(d2+1/nε−1/n) for arbitrary, fixed n ∈ N and with the constant implied inO(·) inde-
pendent of d and of ε (but depending on n). In other words, the price of a European
maximum option on a basket of d assets can be approximated (or “expressed”) by
deep ReLU networks with spectral accuracy and without curse of dimensionality.

123

Constructive Approximation (2022) 55:3–71 7

The proof of this result is based on a near explicit expression for the function
ud(0, x) (see Sect. 2). It uses this expression in conjunction with regularity estimates
in Sect. 3 and a neural network quadrature calculus and corresponding error estimates
(which is of independent interest) in Sect. 4 to show that the functionud (0, x)possesses
an approximate low-rank representation consisting of tensor products of cumulative
normal distribution functions (Lemma 4.3) towhich the low-rank approximation result
mentioned above can be applied.

Related results have been shown in the recent work [18] which proves (by com-
pletely different methods) that solutions to general Kolmogorov equations with affine
drift and diffusion terms can be approximated by neural networks of a size that scales
polynomially in the dimension and the reciprocal of the desired accuracy as measured
by the L p norm with respect to a given probability measure. The approximation esti-
mates developed in the present paper only apply to the European maximum option
pricing problem for uncorrelated assets but hold with respect to the much stronger L∞
norm and provide spectral accuracy in ε (as opposed to a low-order polynomial rate
obtained in [18]), which is a considerable improvement. In summary, compared to [18],
the present paper treats a more restricted problem but achieves stronger approximation
results.

In order to give some context to our approximation results, we remark that solu-
tions to Kolmogorov PDEs may, under reasonable assumptions, be approximated by
empirical risk minimization over a neural network hypothesis class. The key here is
the Feynman–Kac formula which allows to write the solution to the PDE as the expec-
tation of an associated stochastic process. This expectation can be approximated by
Monte Carlo integration, i.e., one can view it as a neural network training problem
where the data are generated byMonte Carlo sampling methods which, under suitable
conditions, are capable of avoiding the curse of dimensionality. For more information
on this, we refer to [4].

While we admit that the European maximum option pricing problem for uncor-
related assets constitutes a rather special problem, the proofs in this paper develop
several novel deep neural network approximation results of independent interest that
can be applied to more general settings where a low-rank structure is implicit in high-
dimensional problems. For mostly numerical results on machine learning for pricing
American options, we refer to [16]. Lastly we note that after a first preprint of the
present paper was submitted, a number of research articles related to this work have
appeared [13,14,17,19,24–26,28,36].

1.3 Outline

The structure of this article is as follows. Section 2 provides a derivation of the semi-
explicit formula for the price of European maximum options in a standard Black–
Scholes setting. This formula consists of an integral of a tensor product function.
In Sect. 3, we develop some auxiliary regularity results for the cumulative normal
distribution that are of independent interest which will be used later on. In Sect.
4, we show that the integral appearing in the formula of Sect. 2 can be efficiently
approximated by numerical quadrature. Section 5 introduces some basic facts related

123

8 Constructive Approximation (2022) 55:3–71

to deep ReLU networks, and Sect. 6 develops basic approximation results for the
approximation of functions which possess a tensor product structure. Finally, in Sect. 7
we showourmain result, namely a spectral approximation rate for the approximation of
European maximum options by deep ReLU networks without curse of dimensionality.
In Appendix A, we collect some auxiliary proofs.

2 High-Dimensional Derivative Pricing

In this section, we briefly review the Black–Scholes differential equation (1.3) which
arises, among others, as Kolmogorov equation for multivariate geometric Brownian
Motion. This linear, parabolic equation is for one particular type of financial contracts
(so-called European maximum option on a basket of d stocks whose log-returns are
assumed for simplicity as mutually uncorrelated) endowed with the terminal condition
(1.4) and solved for (t, x) ∈ [0, T] × (0,∞)d .

Proposition 2.1 Let d ∈ N, μ ∈ R, σ, T , K1, . . . , Kd , ξ1, . . . , ξd ∈ (0,∞), let
(
,F ,P) be a probability space, and let W = (W (1), . . . ,W (d)) : [0, T] ×
 → R

d

be a standard Brownian motion and let u ∈ C([0, T] × (0,∞)d) satisfy (1.3) and
(1.4). Then for x = (ξ1, . . . , ξd) ∈ (0,∞)d it holds that

u(0, x) =E

[
max

i∈{1,2,...,d}

(
max

{
exp

([
μ − σ 2

2

]
T + σW (i)

T

)
ξi − Ki , 0

})]

=
∫ ∞

0
1 −

[
d∏

i=1

(
∫ 1

σ
√
T

[
ln
(
y+Ki

ξi

)
−
(
μ−[σ2/2]

)
T
]

−∞ 1√
2π

exp
(
− r2

2

)
dr

)]

dy.

(2.1)

For the proof of this Proposition, we require the following well-known result.

Lemma 2.2 (Complementary distribution function formula) Let μ : B([0,∞)) →
[0,∞] be a sigma-finite measure. Then

∫ ∞

0
x μ(dx) =

∫ ∞

0
μ([x,∞)) dx . (2.2)

We are now in position to provide a proof of Proposition 2.1.

Proof of Proposition 2.1 The first equality follows directly from the Feynman–Kac for-
mula [20, Corollary 4.17].We proceedwith a proof of the second equality. Throughout
this proof, let Xi :
 → R, i ∈ {1, 2, . . . , d}, be random variables which satisfy for
every i ∈ {1, 2, . . . , d}

Xi = exp
([

μ − σ 2

2

]
T + σW (i)

T

)
ξi (2.3)

and let Y :
 → R be the random variable given by

Y = max{X1 − K1, . . . , Xd − Kd , 0}. (2.4)

123

Constructive Approximation (2022) 55:3–71 9

Observe that for every y ∈ (0,∞) it holds

P(Y ≥ y) = 1 − P(Y < y) = 1 − P

(
max

i∈{1,2,...,d} (Xi − Ki) < y

)

= 1 − P
(∩i∈{1,2,...,d} {Xi − Ki < y}) = 1 −

d∏

i=1
P(Xi − Ki < y)

= 1 −
d∏

i=1
P(Xi < y + Ki)

= 1 −
d∏

i=1
P

(
exp

([
μ − σ 2

2

]
T + σW (i)

T

)
ξi < y + Ki

)
. (2.5)

Hence, we obtain that for every y ∈ (0,∞) it holds

P(Y ≥ y) = 1 −
d∏

i=1
P

(
exp

([
μ − σ 2

2

]
T + σW (i)

T

)
<

y+Ki
ξi

)

= 1 −
d∏

i=1
P

(
σW (i)

T < ln
(
y+Ki

ξi

)
− [

μ − σ 2

2

]
T
)

= 1 −
d∏

i=1
P

(
1√
T
W (i)

T < 1
σ
√
T

[
ln
(
y+Ki

ξi

)
− [

μ − σ 2

2

]
T
])

.

(2.6)

This shows that for every y ∈ (0,∞) it holds

P(Y ≥ y) = 1 −
[

d∏

i=1

(
∫ 1

σ
√
T

[
ln
(
y+Ki

ξi

)
−
(
μ−[σ2/2]

)
T
]

−∞ 1√
2π

exp
(
− r2

2

)
dr

)]

. (2.7)

Combining this with Lemma 2.2 completes the proof of Proposition 2.1. �

With Lemma 2.2 and Proposition 2.1, we may write

u(0, x) = E

[
ϕ
(
exp

([
μ − σ2/2

]
T + σW (1)

T

)
x1, . . . , exp

([
μ − σ2/2

]
T + σW (d)

T

)
xd
)]

(2.8)

(“semi-explicit” formula). Let us consider the case μ = σ 2/2, T = σ = 1 and
K1 = . . . = Kd = K ∈ (0,∞). Then for every x = (x1, . . . , xd) ∈ (0,∞)d

u(0, x) = E

[
ϕ
(
eW

(1)
T x1, . . . , e

W (d)
T xd

)]
= E

[
ϕ
(
eW

(1)
1 x1, . . . , e

W (d)
1 xd

)]

= E

[
max

{
eW

(1)
1 x1 − K , . . . , eW

(d)
1 xd − K , 0

}]

=
∫ ∞

0
1 −

[
d∏

i=1

∫ ln(K+c
xi

)

−∞
1√
2π

exp
(
− r2

2

)
dr

]

dc.

(2.9)

123

10 Constructive Approximation (2022) 55:3–71

3 Regularity of the Cumulative Normal Distribution

Now that we have derived an semi-explicit formula for the solution, we establish
regularity properties of the integrand function in (2.9). This will be required in order to
approximate themultivariate integrals by quadratures (which are subsequently realized
by neural networks) in Sect. 4 and to apply the neural network results from Sect. 6
to our problem. To this end, we analyze the derivatives of the factors in the tensor
product, which essentially are compositions of the cumulative normal distribution
with the natural logarithm. As this function appears in numerous closed-form option
pricing formulae (see, e.g., [29]), the (Gevrey) type regularity estimates obtained in
this section are of independent interest. (They may, for example, also be used in the
analysis of deep network expression rates and of spectral methods for option pricing).

Lemma 3.1 Let f : (0,∞) → R be the function which satisfies for every t ∈ (0,∞)

that

f (t) = 1√
2π

∫ ln(t)

−∞
e− 1

2 r
2
dr , (3.1)

let gn,k : (0,∞) → R, n, k ∈ N0, be the functions which satisfy for every n, k ∈ N0,
t ∈ (0,∞) that

gn,k(t) = t−ne− 1
2 [ln(t)]2 [ln(t)]k, (3.2)

and let (γn,k)n,k∈Z ⊆ Z be the integers which satisfy for every n, k ∈ Z that

γn,k =

⎧
⎪⎨

⎪⎩

1 : n = 1, k = 0

−γn−1,k−1 − (n − 1)γn−1,k + (k + 1)γn−1,k+1 : n > 1, 0 ≤ k < n

0 : else
.

(3.3)

Then it holds for every n ∈ N that

(i) we have that f is n times continuously differentiable and
(ii) we have for every t ∈ (0,∞) that

f (n)(t) = 1√
2π

[
n−1∑

k=0

γn,k gn,k(t)

]

. (3.4)

Proof of Lemma 3.1 We prove (i) and (ii) by induction on n ∈ N. For the base case

n = 1 note that (3.1), (3.2), (3.3), the fact that the function R � r �→ e− 1
2 r

2 ∈ (0,∞)

is continuous, the fundamental theorem of calculus and the chain rule yield

(A) that f is differentiable and

123

Constructive Approximation (2022) 55:3–71 11

(B) that for every t ∈ (0,∞) it holds

f ′(t) = 1√
2π

e− 1
2 [ln(t)]2 t−1 = 1√

2π
g1,0(t) = 1√

2π
γ1,0 g1,0(t). (3.5)

This establishes (i) and (ii) in the base case n = 1. For the induction step
N � n → n + 1 ∈ {2, 3, 4, . . . }, note that for every t ∈ (0,∞) we have

d
dt

[
e− 1

2 [ln(t)]2] = −t−1e− 1
2 [ln(t)]2 ln(t). (3.6)

Combining this and (3.2) with the product rule establishes for every n ∈ N, k ∈
{0, 1, . . . , n − 1}, t ∈ (0,∞) that

(gn,k)
′(t) = d

dt

[
t−ne− 1

2 [ln(t)]2 [ln(t)]k
]

= −nt−(n+1)e− 1
2 [ln(t)]2 [ln(t)]k − t−(n+1)e− 1

2 [ln(t)]2 [ln(t)]k+1

+ t−(n+1)e− 1
2 [ln(t)]2k[ln(t)]max{k−1,0}

= −gn+1,k+1(t) − ngn+1,k(t) + kgn+1,max{k−1,0}(t).

(3.7)

Hence, we obtain that for every n ∈ N, t ∈ (0,∞) it holds

n−1∑

k=0

γn,k(gn,k)
′(t)

=
n−1∑

k=0

[
γn,k

(−gn+1,k+1(t) − ngn+1,k(t) + kgn+1,max{k−1,0}(t)
)]

=
n−1∑

k=0

−γn,k gn+1,k+1(t) +
n−1∑

k=0

−nγn,k gn+1,k(t) +
n−1∑

k=1

kγn,k gn+1,max{k−1,0}(t)

=
n∑

k=1

−γn,k−1 gn+1,k(t) +
n−1∑

k=0

−nγn,k gn+1,k(t) +
n−2∑

k=0

(k + 1)γn,k+1 gn+1,k(t).

(3.8)

The fact that for every n ∈ N it holds that γn,−1 = γn,n = γn,n+1 = 0 and (3.3)
therefore ensure that for every n ∈ N, t ∈ (0,∞) we have

n−1∑

k=0

γn,k(gn,k)
′(t) =

n∑

k=0

[(−γn,k−1 − nγn,k + (k + 1)γn,k+1
)
gn+1,k(t)

]

=
n∑

k=0

γn+1,k gn+1,k(t).

(3.9)

Induction thus establishes (i) and (ii). The proof of Lemma 3.1 is thus completed. �

123

12 Constructive Approximation (2022) 55:3–71

Using the recursive formula from the above, we can now bound the derivatives of f .
Note that the supremum of f (n) is actually attained on the interval [e−4n, 1] and scales
with n like e(cn2) for some c ∈ (0,∞). This can directly be seen by calculating the
maximum of the gn,k from (3.2). For our purposes, however, it is sufficient to establish
that all derivatives of f are bounded on (0,∞).

Lemma 3.2 Let f : (0,∞) → R be the function which satisfies for every t ∈ (0,∞)

that

f (t) = 1√
2π

∫ ln(t)

−∞
e− 1

2 r
2
dr . (3.10)

Then it holds for every n ∈ N that

sup
t∈(0,∞)

∣∣∣ f (n)(t)
∣∣∣ ≤ max

{

(n − 1)! 2n−2 , sup
t∈[e−4n ,1]

∣∣∣ f (n)(t)
∣∣∣

}

< ∞. (3.11)

Proof of Lemma 3.2 Throughout this proof, let gn,k : (0,∞) → R, n, k ∈ N0, be the
functions introduced in (3.2) and let (γn,k)n,k∈Z ⊆ Z be the integers introduced in
(3.3). Then Lemma 3.1 shows for every n ∈ N that

(a) we have that f is n times continuously differentiable and
(b) we have for every t ∈ (0,∞) that

f (n)(t) = 1√
2π

[
n−1∑

k=0

γn,k gn,k(t)

]

. (3.12)

In addition, observe that for every m ∈ N, t ∈ (0, e−2m] holds 1
2 ln(t) ≤ −m. This

ensures that for every m ∈ N, t ∈ (0, e−2m] ⊆ (0, 1] we have

e− 1
2 [ln(t)]2 =e

[
ln(t)(− 1

2 ln(t))
]

=
[
eln(t)

]− 1
2 ln(t) = t−

1
2 ln(t) =(1t

) 1
2 ln(t) ≤ (1

t

)−m = tm . (3.13)

Moreover, note that the fundamental theorem of calculus implies for every t ∈ (0, 1]
that

|ln(t)| = |ln(t) − ln(1)| = |ln(1) − ln(t)| =
∣∣
∣∣

∫ 1

t

1

s
ds

∣∣
∣∣ ≤

∣∣
∣∣
1

t
(1 − t)

∣∣
∣∣ ≤ t−1.

(3.14)

123

Constructive Approximation (2022) 55:3–71 13

Combining (3.2), (3.12) and (3.13) therefore establishes that for every n ∈ N,
t ∈ (0, e−4n)⊆ (0, 1] it holds

∣∣∣ f (n)(t)
∣∣∣ = 1√

2π

∣∣∣∣∣

n−1∑

k=0

γn,k gn,k(t)

∣∣∣∣∣
= 1√

2π

∣∣∣∣∣

n−1∑

k=0

γn,k t
−ne− 1

2 [ln(t)]2 [ln(t)]k
∣∣∣∣∣

≤ 1√
2π

[
n−1∑

k=0

∣
∣γn,k

∣
∣ tn−k

]

≤ 1√
2π

[
n−1∑

k=0

∣
∣γn,k

∣
∣
]

.

(3.15)

In addition, observe that the fundamental theorem of calculus ensures that for every
t ∈ [1,∞) we have

|ln(t)| = |ln(t) − ln(1)| =
∣∣∣
∣

∫ t

1

1

s
ds

∣∣∣
∣ ≤ |t − 1| ≤ t . (3.16)

This, (3.2), (3.12) and the fact that for every t ∈ (0,∞) it holds |e− 1
2 [ln(t)]2 | ≤ 1 imply

that for every n ∈ N, t ∈ (1,∞) we have

∣∣
∣ f (n)(t)

∣∣
∣ = 1√

2π

∣∣∣
∣∣

n−1∑

k=0

γn,k gn,k(t)

∣∣∣
∣∣
= 1√

2π

∣∣∣
∣∣

n−1∑

k=0

γn,k t
−ne− 1

2 [ln(t)]2 [ln(t)]k
∣∣∣
∣∣

≤ 1√
2π

[
n−1∑

k=0

∣∣γn,k
∣∣ t−n |ln(t)|k

]

≤ 1√
2π

[
n−1∑

k=0

∣∣γn,k
∣∣ t−ntk

]

= 1√
2π

[
n−1∑

k=0

∣
∣γn,k

∣
∣ t−n+k

]

≤ 1√
2π

[
n−1∑

k=0

∣
∣γn,k

∣
∣
]

.

(3.17)

Moreover, observe that (a) assures that for every n ∈ N it holds that the function f (n) is
continuous. This and the boundedness of the set [e−4n, 1] ensure that for every n ∈ N

we have

sup
t∈[e−4n ,1]

∣∣∣ f (n)(t)
∣∣∣ < ∞. (3.18)

Combining this with (3.15) and (3.17) establishes that for every n ∈ N we have

sup
t∈(0,∞)

∣∣∣ f (n)(t)
∣∣∣ ≤ max

{
1√
2π

[
n−1∑

k=0

∣∣γn,k
∣∣
]

, sup
t∈[e−4n ,1]

∣∣∣ f (n)(t)
∣∣∣

}

< ∞. (3.19)

123

14 Constructive Approximation (2022) 55:3–71

Furthermore, note that (3.3) implies that for every n ∈ {2, 3, 4, . . . } it holds

n−1∑

k=0

∣∣γn,k
∣∣ =

n−1∑

k=0

∣∣−γn−1,k−1 − (n − 1)γn−1,k + (k + 1)γn−1,k+1
∣∣

≤
[
n−1∑

k=0

∣
∣γn−1,k−1

∣
∣
]

+
[
n−1∑

k=0

(n − 1)
∣
∣γn−1,k

∣
∣
]

+
[
n−1∑

k=0

(k + 1)
∣
∣γn−1,k+1

∣
∣
]

=
[

n−2∑

k=−1

∣∣γn−1,k
∣∣
]

+
[
n−1∑

k=0

(n − 1)
∣∣γn−1,k

∣∣
]

+
[

n∑

k=1

k
∣∣γn−1,k

∣∣
]

.

(3.20)

Combining this with the fact that for every n ∈ {2, 3, 4, . . . }, k ∈ Z\{0, 1, . . . , n− 2}
we have γn−1,k = 0 implies that for every n ∈ {2, 3, 4, . . . } it holds

n−1∑

k=0

∣∣γn,k
∣∣ =

n−2∑

k=0

[
(1 + (n − 1) + k)

∣∣γn−1,k
∣∣] ≤ (2n − 2)

[
n−2∑

k=0

∣∣γn−1,k
∣∣
]

= 2(n − 1)

[
n−2∑

k=0

∣∣γn−1,k
∣∣
]

. (3.21)

The fact that γ1,0 = 1 hence implies that for every n ∈ N we have

n−1∑

k=0

∣∣γn,k
∣∣ ≤ (n − 1)! 2n−1

[
0∑

k=0

∣∣γ1,k
∣∣
]

= (n − 1)! 2n−1. (3.22)

Combining this and (3.19) ensures that for every n ∈ N it holds

sup
t∈(0,∞)

∣∣∣ f (n)(t)
∣∣∣ ≤ max

{
1√
2π

(n − 1)! 2n−1 , sup
t∈[e−4n ,1]

∣∣∣ f (n)(t)
∣∣∣

}

< ∞. (3.23)

The proof of Lemma 3.2 is thus completed. �
In the following corollary, we estimate the derivatives of the function x → f (K+c

x)

required to approximate this function by neural networks.

Corollary 3.3 Let n ∈ N, K ∈ [0,∞), c, a ∈ (0,∞), b ∈ (a,∞), let f : (0,∞) → R

be the function which satisfies for every t ∈ (0,∞) that

f (t) = 1√
2π

∫ ln(t)

−∞
e− 1

2 r
2
dr , (3.24)

and let h : [a, b] → R be the function which satisfies for every x ∈ [a, b] that

h(x) = f
(K+c

x

)
. (3.25)

123

Constructive Approximation (2022) 55:3–71 15

Then it holds

(i) that f and h are infinitely often differentiable and
(ii) that

max
k∈{0,1,...,n} sup

x∈[a,b]

∣∣∣h(k)(x)
∣∣∣

≤ n2n−1n!
⎡

⎣ max
k∈{0,1,...,n} sup

t∈[K+c
b , K+c

a]

∣
∣∣ f (k)(t)

∣
∣∣

⎤

⎦max{a−2n, 1}max{(K + c)n, 1}.

(3.26)

Proof of Corollary 3.3 Throughout this proof, let αm, j ∈ Z, m, j ∈ Z, be the integers
which satisfy that for every m, j ∈ Z it holds

αm, j =

⎧
⎪⎨

⎪⎩

−1 : m = j = 1

−(m − 1 + j)αm−1, j − αm−1, j−1 : m > 1, 1 ≤ j ≤ m

0 : else
. (3.27)

Note that Lemma 3.1 and the chain rule ensure that the functions f and h are infinitely
often differentiable. Next we claim that for every m ∈ N, x ∈ [a, b] it holds

h(m)(x) = dm
dxm

(
f
(K+c

x

)) =
m∑

j=1

αm, j (K + c) j x−(m+ j)(f (j)(K+c
x)

)
. (3.28)

We prove (3.28) by induction on m ∈ N. To prove the base case m = 1 we note that
the chain rule ensures that for every x ∈ [a, b] we have

d
dx

(
f
(K+c

x

)) = −(K + c)x−2(f ′(K+c
x

)) = α1,1(K + c)x−2(f ′(K+c
x

))
. (3.29)

123

16 Constructive Approximation (2022) 55:3–71

This establishes (3.28) in the base case m = 1. For the induction step N � m →
m + 1 ∈ N observe that the chain rule implies for every m ∈ N, x ∈ [a, b] that

d
dx

⎡

⎣
m∑

j=1

αm, j (K + c) j x−(m+ j)
(
f (j)(K+c

x

))
⎤

⎦

= −
⎡

⎣
m∑

j=1

αm, j (K + c) j+1x−(m+ j+2)
(
f (j+1)(K+c

x

))
⎤

⎦

−
⎡

⎣
m∑

j=1

αm, j (K + c) j (m + j)x−(m+ j+1)
(
f (j)(K+c

x

))
⎤

⎦

= −
⎡

⎣
m+1∑

j=2

αm, j−1(K + c) j x−(m+ j+1)
(
f (j)(K+c

x

))
⎤

⎦

−
⎡

⎣
m∑

j=1

αm, j (K + c) j (m + j)x−(m+ j+1)
(
f (j)(K+c

x

))
⎤

⎦

=
m+1∑

j=1

(−(m + j)αm, j − αm, j−1)(K + c) j x−(m+1+ j)
(
f (j)(K+c

x

))
.

(3.30)

Induction thus establishes (3.28). Next note that (3.27) ensures that for every m ∈
{2, 3, . . . } it holds

max
j∈{1,2,...,m}

∣
∣αm, j

∣
∣

= max
j∈{1,2,...,m}

∣
∣−(m − 1 + j)αm−1, j − αm−1, j−1

∣
∣

≤
[

max
j∈{1,2,...,m−1}

∣∣(m − 1 + j)αm−1, j
∣∣
]

+
[

max
j∈{1,2,...,m−1}

∣∣αm−1, j
∣∣
]

≤ (2m − 1)

[
max

j∈{1,2,...,m−1}
∣∣αm−1, j

∣∣
]

≤ 2m

[
max

j∈{1,2,...,m−1}
∣∣αm−1, j

∣∣
]

.

(3.31)

Induction hence proves that for every m ∈ N we have max j∈{1,2,...,m}
∣∣αm, j

∣∣ ≤
2m−1m!. Combining this with (3.28) implies that for every m ∈ {1, 2, . . . , n},
x ∈ [a, b] we have

∣∣
∣h(m)(x)

∣∣
∣

=
∣∣
∣∣
∣∣

m∑

j=1

αm, j (K + c) j x−(m+ j)(f (j)(K+c
x

))
∣∣
∣∣
∣∣

123

Constructive Approximation (2022) 55:3–71 17

≤ 2m−1m!
⎡

⎢
⎣ max

j∈{1,2,...,m} sup
t∈
[
K+c
b , K+c

a

]

∣∣
∣ f (j)(t)

∣∣
∣

⎤

⎥
⎦max{x−2m , 1}

⎡

⎣
m∑

j=1

(K + c) j

⎤

⎦

≤ m2m−1m!
⎡

⎢
⎣ max

j∈{1,2,...,m} sup
t∈
[
K+c
b , K+c

a

]

∣∣∣ f (j)(t)
∣∣∣

⎤

⎥
⎦max{x−2m , 1}max{(K + c)m , 1}.

(3.32)

Combining this with the fact that supx∈[a,b] |h(x)| = supt∈[K+c
b , K+c

a] | f (t)| establishes
that it holds

max
k∈{0,1,...,n} sup

x∈[a,b]

∣∣
∣h(k)(x)

∣∣
∣

≤ n2n−1n!
⎡

⎢
⎣ max
k∈{0,1,...,n} sup

t∈
[
K+c
b , K+c

a

]

∣∣
∣ f (k)(t)

∣∣
∣

⎤

⎥
⎦max{a−2n, 1}max{(K + c)n, 1}.

(3.33)

This completes the proof of Corollary 3.3. �

Next we consider the derivatives of the functions c �→ f (K+c
xi

), i ∈ {1, 2, . . . , d},
and their tensor product, which will be needed in order to approximate the outer
integral in (2.9) by composite Gaussian quadrature.

Corollary 3.4 Let n ∈ N, K ∈ [0,∞), x ∈ (0,∞), let f : (0,∞) → R be the function
which satisfies for every t ∈ (0,∞) that

f (t) = 1√
2π

∫ ln(t)

−∞
e− 1

2 r
2
dr , (3.34)

and let g : (0,∞) → R be the function which satisfies for every t ∈ (0,∞) that

g(t) = f
(K+t

x

)
. (3.35)

Then it holds

(i) that f and g are infinitely often differentiable and
(ii) that

sup
t∈(0,∞)

∣∣
∣g(n)(t)

∣∣
∣ ≤

[

sup
t∈(0,∞)

∣∣
∣ f (n)(t)

∣∣
∣

]

|x |−n < ∞. (3.36)

123

18 Constructive Approximation (2022) 55:3–71

Proof of Corollary 3.4 Combining Lemma 3.2 with the chain rule implies that for every
t ∈ (0,∞) it holds

∣
∣∣g(n)(t)

∣
∣∣ =

∣
∣∣ d

n

dtn
(
f (K+t

x)
)∣∣∣ =

∣
∣∣ f (n)

(K+t
x

) 1
xn

∣
∣∣ ≤

[

sup
t∈(0,∞)

∣
∣∣ f (n)(t)

∣
∣∣

]

|x |−n < ∞.

(3.37)

This completes the proof of Corollary 3.4. �
Lemma 3.5 Let d, n ∈ N, a ∈ (0,∞), b ∈ (a,∞), K = (K1, . . . , Kd) ∈ [0,∞)d ,
x = (x1, . . . , xd) ∈ [a, b]d , let f : (0,∞) → R be the function which satisfies for
every t ∈ (0,∞) that

f (t) = 1√
2π

∫ ln(t)

−∞
e− 1

2 r
2
dr , (3.38)

and let F : (0,∞) → R be the function which satisfies for every c ∈ (0,∞) that

F(c) = 1 −
[

d∏

i=1
f
(
Ki+c
xi

)]
. (3.39)

Then it holds

(i) that f and F are infinitely often differentiable and
(ii) that

sup
c∈(0,∞)

∣∣
∣F (n)(c)

∣∣
∣ ≤

[

max
k∈{0,1,...,n} sup

t∈(0,∞)

∣∣
∣ f (k)(t)

∣∣
∣

]n
dna−n < ∞. (3.40)

Proof of Lemma 3.5 Note that Lemma 3.1 ensures that f and F are infinitely often
differentiable. Moreover, observe that (3.39) and the general Leibniz rule imply for
every c ∈ (0,∞) that

F (n)(c) = − dn
dcn

[
d∏

i=1
f
(
Ki+c
xi

)]

= −
∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

[(
n

l1, l2, . . . , ld

)
d∏

i=1

(
dli
dcli

[
f
(
Ki+c
xi

)])]
.

(3.41)

Next note that the fact that for every r ∈ R it holds that e− 1
2 r

2 ≥ 0 ensures that

sup
t∈(0,∞)

| f (t)| = sup
t∈(0,∞)

∣∣∣
∣∣

1√
2π

∫ ln(t)

−∞
e− 1

2 r
2
dr

∣∣∣
∣∣
=
∣∣
∣∣

1√
2π

∫ ∞

−∞
e− 1

2 r
2
dr

∣∣
∣∣ = 1. (3.42)

123

Constructive Approximation (2022) 55:3–71 19

Corollary 3.4 hence establishes that for every c ∈ [0,∞), l1, . . . , ld ∈ N0 with∑d
i=1 li = n it holds

∣∣∣∣
d∏

i=1

(
dli
dcli

[
f
(
Ki+c
xi

)])∣∣∣∣

≤
d∏

i=1

([

sup
t∈(0,∞)

∣∣∣ f (li)(t)
∣∣∣

]

|xi |−li

)

=
[

d∏

i=1
|xi |−li

][
d∏

i=1

(

sup
t∈(0,∞)

∣∣
∣ f (li)(t)

∣∣
∣

)]

≤
[

d∏

i=1
|xi |−li

]
⎡

⎢
⎣

∏

i∈{1,2,...,d},
li>0

(

max
k∈{1,2,...,n} sup

t∈(0,∞)

∣∣∣ f (k)(t)
∣∣∣

)⎤

⎥
⎦

≤
[

d∏

i=1
|xi |−li

]
⎡

⎢
⎣

∏

i∈{1,2,...,d},
li>0

max

{

1, max
k∈{1,2,...,n} sup

t∈(0,∞)

∣∣
∣ f (k)(t)

∣∣
∣

}⎤

⎥
⎦

≤
[

d∏

i=1
|xi |−li

][

max

{

1, max
k∈{1,2,...,n} sup

t∈(0,∞)

∣∣∣ f (k)(t)
∣∣∣

}](l1+...+ld)

=
[

d∏

i=1
|xi |−li

][

max
k∈{0,1,...,n} sup

t∈(0,∞)

∣
∣∣ f (k)(t)

∣
∣∣

]n
.

(3.43)

Moreover, note that the multinomial theorem ensures that

dn =
[

d∑

i=1

1

]n

=
∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

[(
n

l1, l2, . . . , ld

)
d∏

i=1
1li
]

=
∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

[(
n

l1, l2, . . . , ld

)]
.

(3.44)

Combining this with (3.41), (3.43) and the assumption that x ∈ [a, b]d implies that
for every c ∈ (0,∞) we have

∣∣∣F (n)(c)
∣∣∣

≤

∣∣
∣∣∣∣∣∣
∣

∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

[(
n

l1, l2, . . . , ld

)[
d∏

i=1
|xi |−li

][

max
k∈{0,1,...,n} sup

t∈(0,∞)

∣∣∣ f (k)(t)
∣∣∣

]n]
∣∣
∣∣∣∣∣∣
∣

123

20 Constructive Approximation (2022) 55:3–71

≤ a−n

[

max
k∈{0,1,...,n} sup

t∈(0,∞)

∣∣∣ f (k)(t)
∣∣∣

]n
∣∣
∣∣∣∣∣∣
∣

∑

l1,l2,...,ld∈N0,∑d
i=1 li=n

(
n

l1, l2, . . . , ld

)

∣∣
∣∣∣∣∣∣
∣

= a−n

[

max
k∈{0,1,...,n} sup

t∈(0,∞)

∣
∣∣ f (k)(t)

∣
∣∣

]n
dn . (3.45)

This completes the proof of Lemma 3.5. �

4 Quadrature

To approximate the function x �→ u(0, x) from (2.9) by a neural network, we need
to evaluate, for arbitrary, given x , an expression of the form

∫∞
0 Fx (c)dc with Fx as

defined in Lemma 4.2. We achieve this by proving in Lemma 4.2 that the functions Fx
decay sufficiently fast for c → ∞, and then employ numerical integration to show that
the definite integral

∫ N
0 Fx (c)dc can be sufficiently well approximated by a weighted

sum of Fx (c j) for suitable quadrature points c j ∈ (0, N). The representation of such a
sum can be realized by neural networks. We show in Sects. 6 and 7 how the functions
x �→ Fx (c j) for (c j) ∈ (0, N) can be realized efficiently due to their tensor product
structure. We start by recalling an error bound for composite Gaussian quadrature
which is explicit in the step size and quadrature order.

Lemma 4.1 Let n, M ∈ N, N ∈ (0,∞). Then there exist real numbers (c j)nMj=1 ⊆
(0, N) and (w j)

nM
j=1 ⊆ (0,∞) such that for every h ∈ C2n([0, N],R) it holds

∣∣∣∣
∣∣

∫ N

0
h(t) dt −

nM∑

j=1

w j h(c j)

∣∣∣∣
∣∣
≤ 1

(2n)!N
2n+1M−2n

[

sup
ξ∈[0,N]

∣∣∣h(2n)(ξ)

∣∣∣

]

. (4.1)

Proof of Lemma 4.1 Throughout this proof, let h ∈ C2n([0, N],R) and αk ∈ [0, N],
k ∈ {0, 1, . . . , M}, such that for every k ∈ {0, 1, . . . , M} it holds αk = kN

M . Observe
that [30, Theorems 4.17, 6.11 and 6.12] ensure that for every k ∈ {0, 1, . . . , M − 1}
there exist (γ k

i)ni=1 ⊆ (αk, αk+1), (ωk
i)

n
i=1 ⊆ (0,∞) and ξ k ∈ [αk, αk+1] such that

∫ αk+1

αk

h(t) dt −
n∑

i=1

ωk
i h(γ k

i) = h(2n)(ξ k)

(2n)!
∫ αk+1

αk

[
n∏

i=1
(t − γ k

i)2
]
dt . (4.2)

Next note that for every k ∈ {0, 1, . . . , M − 1} it holds
∫ αk+1

αk

[
n∏

i=1
(t − γ k

i)2
]
dt ≤

∫ αk+1

αk

[
n∏

i=1
(αk − αk+1)

2
]
dt = [N

M

]2n+1
. (4.3)

123

Constructive Approximation (2022) 55:3–71 21

Combining this with (4.2) yields that for every k ∈ {0, 1, . . . , M} we have
∣∣∣∣∣

∫ αk+1

αk

h(t) dt −
n∑

i=1

ωk
i h(γ k

i)

∣∣∣∣∣

≤
∣∣h(2n)(ξ k)

∣∣

(2n)!
[N
M

]2n+1 ≤ 1
(2n)!

[N
M

]2n+1

[

sup
ξ∈[0,N]

∣∣∣h(2n)(ξ)

∣∣∣

]

.

(4.4)

Hence, we obtain

∣∣∣
∣∣

∫ N

0
h(t) dt−

M−1∑

k=0

n∑

i=1

ωk
i h(γ k

i)

∣∣∣
∣∣
=
∣∣∣
∣∣

M−1∑

k=0

[∫ αk+1

αk

h(t) dt −
n∑

i=1

ωk
i h(γ k

i)

]∣∣∣
∣∣

≤
M−1∑

k=0

(
1

(2n)!
(N
M

)2n+1

[

sup
ξ∈[0,N]

∣∣∣h(2n)(ξ)

∣∣∣

])

= 1
(2n)!N

2n+1M−2n

[

sup
ξ∈[0,N]

∣
∣∣h(2n)(ξ)

∣
∣∣

]

.

(4.5)

Let (c j)nMj=1 ⊆ (0, N), (w j)
nM
j=1 ⊆ (0,∞) such that for every i ∈ {1, 2, . . . , n},

k ∈ {0, 1, . . . , M − 1} it holds

ckn+i = γ k
i and wkn+i = ωk

i . (4.6)

Next observe that

∣∣
∣∣∣∣

∫ N

0
h(t) dt −

nM∑

j=1

w j h(c j)

∣∣
∣∣∣∣
=
∣
∣∣∣∣

∫ N

0
h(t) dt−

M−1∑

k=0

n∑

i=1

ωk
i h(γ k

i)

∣
∣∣∣∣
. (4.7)

This completes the proof of Lemma 4.1. �

In the following, we bound the error due to truncating the domain of integration.

Lemma 4.2 Let d, n ∈ N, a ∈ (0,∞), b ∈ (a,∞), K = (K1, K2, . . . , Kd) ∈
[0,∞)d , let Fx : (0,∞) → R, x ∈ [a, b]d , be the functions which satisfy for every
x = (x1, x2, . . . , xd) ∈ [a, b]d , c ∈ (0,∞) that

Fx (c) = 1 −
d∏

i=1

[
1√
2π

∫ ln(
Ki+c
xi

)

−∞
e− 1

2 r
2
dr

]

, (4.8)

123

22 Constructive Approximation (2022) 55:3–71

and for every ε ∈ (0, 1] let Nε ∈ R be given by Nε = 2e2(n+1)(b + 1)1+ 1
n d

1
n ε− 1

n .
Then it holds for every ε ∈ (0, 1] that

sup
x∈[a,b]d

∣∣
∣∣

∫ ∞

Nε

Fx (c) dc

∣∣
∣∣ ≤ ε. (4.9)

Proof of Lemma 4.2 Throughout this proof, let g : (0,∞) → (0, 1) be the function
given by

g(t) = 1 − 1√
2π

∫ ln(t)

−∞
e− 1

2 r
2
dr . (4.10)

Note that [6, Eq.(5)] ensures that for every y ∈ [0,∞)wehave 2√
π

∫∞
y e−r2dr ≤ e−y2 .

This implies for every t ∈ [1,∞) that

0 < g(t) = 1 − 1√
2π

∫ ln(t)

−∞
e− 1

2 r
2
dr = 1√

2π

∫ ∞

ln(t)
e− 1

2 r
2
dr

= 1√
π

∫ ∞
ln(t)√

2

e−r2dr ≤ 1
2e

− 1
2 [ln(t)]2 .

(4.11)

Furthermore, observe that for every t ∈ [e2(n+1),∞) it holds

e− 1
2 [ln(t)]2 = e

[
ln(t)(− 1

2 ln(t))
]

=
[
eln(t)

]− 1
2 ln(t) = t−

1
2 ln(t) ≤ t−(n+1). (4.12)

This, (4.11) and the fact that for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d , i ∈
{1, 2, . . . , d} we have Ki+c

xi
≥ c

b ≥ e2(n+1) ≥ 1 imply that for every ε ∈ (0, 1],
c ∈ [Nε,∞), x ∈ [a, b]d it holds

|Fx (c)| =
∣∣∣∣∣∣
1 −

d∏

i=1

⎡

⎣ 1√
2π

∫ ln
(
Ki+c
xi

)

−∞
e− 1

2 r
2
dr

⎤

⎦

∣∣∣∣∣∣
=
∣∣∣∣∣
1 −

d∏

i=1

[
1 − g

(
Ki+c
xi

)]
∣∣∣∣∣

≤
∣∣∣∣∣
1 −

d∏

i=1

[
1 − 1

2

[
Ki+c
xi

]−(n+1)
]∣∣∣∣∣

≤
∣∣∣∣∣
1 −

d∏

i=1

[
1 − 1

2

[c
b

]−(n+1)
]
∣∣∣∣∣
.

(4.13)

Combining this with the binomial theorem and the fact that for every i ∈ {1, 2, . . . , d}
we have

(d
i

) ≤ di
i ! ≤ di

exp(i ln(i)−i+1) ≤ (de)i

i i
establishes that for every ε ∈ (0, 1],

123

Constructive Approximation (2022) 55:3–71 23

c ∈ [Nε,∞), x ∈ [a, b]d it holds

|Fx (c)| ≤
∣∣∣∣1 −

(
1 − 1

2

[c
b

]−(n+1)
)d ∣∣∣∣ =

∣∣∣∣∣
1 −

d∑

i=0

[(
d

i

)[
− 1

2

[c
b

]−(n+1)
]i]
∣∣∣∣∣

≤
d∑

i=1

[(
d

i

) [1
2

]i [b
c

](n+1)i
]

≤
d∑

i=1

[de
2i

]i [b
c

](n+1)i

=
d∑

i=1

[e
2i

]i [
d
[b
c

]n+1
]i ≤ 2d

[b
c

]n+1

[
d∑

i=1

[
d
[b
c

]n+1
]i−1

]

= 2d
[b
c

]n+1

[
d−1∑

i=0

[
d
[b
c

]n+1
]i
]

≤ 2d
[b
c

]n+1

[∞∑

i=0

[
d
[b
c

]n+1
]i
]

.

(4.14)

This, the geometric sum formula and the fact that for every ε ∈ (0, 1] it holds that
Nε ≥ 2bd

1
n imply that for every ε ∈ (0, 1], c ∈ [Nε,∞), x ∈ [a, b]d we have

|Fx (c)| ≤ 2d
[b
c

]n+1

[
1

1 − d
[b
c

]n+1

]

≤ 4d
[b
c

]n+1
. (4.15)

Hence, we obtain for every ε ∈ (0, 1], x ∈ [a, b]d that

∣
∣∣∣

∫ ∞

Nε

Fx (c) dc

∣
∣∣∣ ≤ 4dbn+1

∣
∣∣∣

∫ ∞

Nε

c−(n+1)dc

∣
∣∣∣ = 4dbn+1 1

n (Nε)
−n

= 4
n db

n+1
[
2e2(n+1)(b + 1)1+

1
n d

1
n ε− 1

n

]−n

= 4
n db

n+12−ne−(2n2+2n)(b + 1)−(n+1)d−1ε

= 4
n 2

−ne−(2n2+n)
[

b
b+1

]n+1
ε ≤ ε.

(4.16)

This completes the proof of Lemma 4.2. �
Next we combine the above result with Lemma 4.1 in order to derive the number

of terms needed in order to approximate the integral by a sum to within a prescribed
error bound ε.

Lemma 4.3 Let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0,∞), let
Fd
x : (0,∞) → R, x ∈ [a, b]d , d ∈ N, be the functions which satisfy for every

d ∈ N, x = (x1, x2, . . . , xd) ∈ [a, b]d , c ∈ (0,∞) that

Fd
x (c) = 1 −

d∏

i=1

[
1√
2π

∫ ln(
Ki+c
xi

)

−∞
e− 1

2 r
2
dr

]

, (4.17)

123

24 Constructive Approximation (2022) 55:3–71

and for every d ∈ N, ε ∈ (0, 1] let Nd,ε ∈ R be given by

Nd,ε = 2e2(n+1)(b + 1)1+
1
n d

1
n
[

ε
2

]− 1
n . (4.18)

Then there exist Qd,ε ∈ N, cdε, j ∈ (0, Nd,ε), wd
ε, j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε},

d ∈ N, ε ∈ (0, 1], such
(i) that

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+ 2
n ε− 2

n

]
< ∞ (4.19)

and
(ii) that for every d ∈ N, ε ∈ (0, 1] it holds∑Qd,ε

j=1 wd
ε, j = Nd,ε and

sup
x∈[a,b]d

∣∣∣∣∣
∣

∫ ∞

0
Fd
x (c) dc −

Qd,ε∑

j=1

wd
ε, j F

d
x (cdε, j)

∣∣∣∣∣
∣
≤ ε. (4.20)

Proof of Lemma 4.3 Note that Lemma 3.5 ensures the existence of Sm ∈ R, m ∈ N,
such that for every d,m ∈ N, x ∈ [a, b]d it holds

sup
c∈(0,∞)

∣∣∣(Fd
x)(m)(c)

∣∣∣ ≤ Smd
m . (4.21)

Let Qd,ε ∈ R, d ∈ N, ε ∈ (0, 1], be given by

Qd,ε = n

⌈[
1

(2n)! (Nd,ε)
2n+1S2nd

2n 2
ε

] 1
2n
⌉

. (4.22)

Next observe that Lemma 4.1 (with N ↔ Nd,ε in the notation of Lemma 4.1)
establishes the existence of cdε, j ∈ (0, Nd,ε), wd

ε, j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε},
d ∈ N, ε ∈ (0, 1], such that for every d ∈ N, ε ∈ (0,∞), x ∈ [a, b]d we have
∑Qd,ε

j=1 wd
ε, j = Nd,ε and

∣∣
∣∣
∣
∣

∫ Nd,ε

0
Fd
x (c)dc −

Qd,ε∑

j=1

wd
ε, j F

d
x (cdε, j)

∣∣
∣∣
∣
∣
≤ 1

(2n)! (Nd,ε)
2n+1

[
Qd,ε

n

]−2n
S2nd

2n

≤ 1
(2n)! (Nd,ε)

2n+1
[

1
(2n)! (Nd,ε)

2n+1S2nd
2n 2

ε

]−1
S2nd

2n

= ε
2 .

(4.23)

123

Constructive Approximation (2022) 55:3–71 25

Moreover, note that Lemma 4.2 (with Nd, ε
2

↔ Nd,ε in the notation of Lemma 4.2)

and (4.23) imply for every d ∈ N, ε ∈ (0, 1], x ∈ [a, b]d that

∣∣∣
∣∣∣

∫ ∞

0
Fd
x (c) dc −

Qd,ε∑

j=1

wd
ε, j F

d
x (cdε, j)

∣∣∣
∣∣∣

≤
∣∣∣∣
∣∣

∫ Nd,ε

0
Fd
x (c) dc −

Qd,ε∑

j=1

wd
ε, j F

d
x (cdε, j)

∣∣∣∣
∣∣
+
∣∣∣
∣∣

∫ ∞

Nd,ε

Fd
x (c) dc

∣∣∣
∣∣

≤ ε
2 + ε

2 = ε.

(4.24)

Furthermore, we have for every d ∈ N, ε ∈ (0, 1] that

Qd,ε ≤ n

(
1 +

[
1

(2n)! (Nd,ε)
2n+1S2nd

2n 2
ε

] 1
2n
)

= n + n
[
2S2n
(2n)!

] 1
2n
dε− 1

2n (Nd,ε)
1+ 1

2n

≤ n + n
[
2S2n
(2n)!

] 1
2n
dε− 1

2n

[
4e2(n+1)(b + 1)1+

1
n d

1
n ε− 1

n

]1+ 1
2n

= n + 4n
[
8S2n
(2n)!

] 1
2n
e2n+3+ 1

n [b + 1]
1+ 3

2n + 1
2n2 d

1+ 1
n + 1

2n2 ε
− 3

2n − 1
2n2

≤ nd1+
2
n ε− 2

n + 4n
[
8S2n
(2n)!

] 1
2n
e2n+3+ 1

n [b + 1]
1+ 3

2n + 1
2n2 d1+

2
n ε− 2

n .

(4.25)

This implies

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+ 2
n ε− 2

n

]
≤ n + 4n

[
8S2n
(2n)!

] 1
2n
e2n+3+ 1

n [b + 1]
1+ 3

2n + 1
2n2 < ∞.

(4.26)

The proof of Lemma 4.3 is thus completed. �

5 Basic ReLU DNN Calculus

In order to talk about neural networks we will, up to some minor changes and addi-
tions, adopt the notation of P. Petersen and F. Voigtlaender from [34]. This allows
us to differentiate between a neural network, defined as a structured set of weights,
and its realization, which is a function on R

d . Note that this is almost necessary in
order to talk about the complexity of neural networks, since notions like depth, size
or architecture do not make sense for general functions onRd . Even if we know that a
given function “is” a neural network, i.e., can be written a series of affine transforma-
tions and componentwise nonlinearities, there are, in general, multiple non-trivially
different ways to do so.

123

26 Constructive Approximation (2022) 55:3–71

Each of these structured sets we consider does, however, define a unique function.
This enables us to explicitly and unambiguously construct complex neural networks
from simple ones, and subsequently relate the approximation capability of a given
network to its complexity. Further note that since the realization of neural network is
unique we can still speak of a neural network approximating a given function when
its realization does so.

Specifically, a neural network will be given by its architecture, i.e., number of
layers L and layer dimensions1N0, N1, . . . , NL , as well as the weights determining
the affine transformations used to compute each layer from the previous one. Note that
our notion of neural networks does not attach the architecture and weights to a fixed
activation function, but instead considers the realization of such a neural network with
respect to a given activation function. This choice is a purely technical one here, as
we always consider networks with ReLU activation function.

Setting 5.1 (Neural networks) For every L ∈ N, N0, N1, . . . , NL ∈ N let
N N0,N1,...,NL

L be the set given by

N N0,N1,...,NL
L = ×L

l=1

(
R

Nl×Nl−1 × R
Nl
)

, (5.1)

letN be the set given by

N =
⋃

L∈N,
N0,N1,...,NL∈N

N N0,N1,...,NL
L , (5.2)

let L,M,Ml , dimin, dimout : N → N, l ∈ {1, 2, . . . , L}, be the functions which sat-
isfy for every L ∈ Nandevery N0, N1, . . . , NL ∈ N,� = (((A1

i, j)
N1,N0
i, j=1 , (b1i)

N1
i=1), . . . ,

((AL
i, j)

NL ,NL−1
i, j=1 , (bLi)

NL
i=1)) ∈ N N0,N1,...,NL

L , l ∈ {1, 2, . . . , L} L(�) = L, dimin(�) =
N0, dimout(�) = NL,

1 Often phrased as input dimension N0 and output dimension NL with Nl , l ∈ {1, 2, . . . , L − 1} many
neurons in the lth layer.

123

Constructive Approximation (2022) 55:3–71 27

Ml(�) =
Nl∑

i=1

⎡

⎣1R\{0}(bli) +
Nl−1∑

j=1

1R\{0}(Al
i, j)

⎤

⎦ , (5.3)

and

M(�) =
L∑

l=1

Ml(�). (5.4)

For every � ∈ C(R,R) let �∗ : ∪d∈NRd → ∪d∈NRd be the function which satisfies
for every d ∈ N, x = (x1, x2, . . . , xd) ∈ R

d that �∗(x) = (�(x1), �(x2), . . . , �(xd)),
and for every � ∈ C(R,R) denote by R� : N → ∪a,b∈N C(Ra,Rb) the func-
tion which satisfies for every L ∈ N, N0, N1, . . . , NL ∈ N, x0 ∈ R

N0 , and
� = ((A1, b1), (A2, b2), . . . , (AL , bL)) ∈ N N0,N1,...,NL

L , with x1 ∈ R
N1 , . . . , xL−1 ∈

R
NL−1 given by

xl = �∗(Al xl−1 + bl) , l = 1, ..., L − 1 , (5.5)

that

[
R�(�)

]
(x0) = ALxL−1 + bL . (5.6)

The quantity M(�) simply denotes the number of nonzero entries of the network
�, which together with its depth L(�) will be how we measure the “size” of a given
neural network�. One could instead consider the number of all weights, i.e., including
zeroes, of a neural network. Note, however, that for any non-degenerate neural network
� the total number of weights is bounded from above by M(�)2 + M(�). Here,
the terminology “degenerate” refers to a neural network which has neurons that can
be removed without changing the realization of the NN. This implies for any neural
network there also exists a non-degenerate one of smaller or equal size, which has the
exact same realization. Since our primary goal is to approximate d-variate functions
by networks the size of which only depends polynomially on the dimension, the above
means that the qualitatively same results hold regardless of which notion of “size” is
used.

We start by introducing two basic tools for constructing new neural networks from
known ones and, in Lemma 5.3 and Lemma 5.4, consider how the properties of a
derived network depend on its parts. Note that techniques like these have already been
used in [34] and [37].

The first tool will be the “composition” of neural networks in (5.7), which takes
two networks and provides a new network whose realization is the composition of the
realizations of the two constituent functions.

The second tool will be the “parallelization” of neural networks in (5.12), which
will be useful when considering linear combinations or tensor products of functions
which we can already approximate. While parallelization of same depth networks
(5.10) works with arbitrary activation functions, we use for the general case that any

123

28 Constructive Approximation (2022) 55:3–71

ReLU network can easily be extended (5.11) to an arbitrary depth without changing
its realization.

Setting 5.2 Assume Setting 5.1, for every L1, L2 ∈ N, �i =(
(Ai

1, b
i
1), (A

i
2, b

i
2), . . . , (A

i
Li

, biLi
)
)

∈ N, i ∈ {1, 2}, with dimin(�
1) = dimout(�

2)

let �1 � �2 ∈ N be the neural network given by

�1 � �2 =
(

(A2
1, b

2
1), . . . , (A

2
L2−1, b

2
L2−1),

((
A2
L2−A2
L2

)
,

(
b2L2−b2L2

))
,
((
A1
1 −A1

1

)
, b11

)
,

(A1
2, b

1
2), . . . , (A

1
L1

, b1L1
)
)
, (5.7)

for every d ∈ N, L ∈ N ∩ [2,∞) let �Id
d,L ∈ N be the neural network given by

�Id
d,L =

⎛

⎝
((

IdRd

−IdRd

)
, 0

)
, (IdR2d , 0), . . . , (IdR2d , 0)
︸ ︷︷ ︸

L-2 times

,
((
IdRd −IdRd

)
, 0
)
⎞

⎠ , (5.8)

for every d ∈ N let �Id
d,1 ∈ N be the neural network given by

�Id
d,1 = ((IdRd , 0)), (5.9)

for every n, L ∈ N,� j = ((A j
1, b

j
1), (A

j
2, b

j
2), . . . , (A

j
L , b j

L)) ∈ N, j ∈ {1, 2, . . . , n},
let Ps(�

1,�2, . . . , �n) ∈ N be the neural network which satisfies

Ps (�
1, �2, . . . , �n) =

⎛

⎜
⎜⎜⎜
⎝

⎛

⎜
⎜⎜⎜
⎝

⎛

⎜
⎜⎜⎜
⎝

A11
A21

. . .

An1

⎞

⎟
⎟⎟⎟
⎠

,

⎛

⎜
⎜⎜⎜
⎝

b11
b21
.
.
.

bn1

⎞

⎟
⎟⎟⎟
⎠

⎞

⎟
⎟⎟⎟
⎠

, . . . ,

⎛

⎜
⎜⎜⎜
⎝

⎛

⎜
⎜⎜⎜
⎝

A1L
A2L

. . .

AnL

⎞

⎟
⎟⎟⎟
⎠

,

⎛

⎜
⎜⎜⎜
⎝

b1L
b2L
.
.
.

bnL

⎞

⎟
⎟⎟⎟
⎠

⎞

⎟
⎟⎟⎟
⎠

⎞

⎟
⎟⎟⎟
⎠

,

(5.10)

for every L, d ∈ N, � ∈ N with L(�) ≤ L, dimout(�) = d, let EL(�) ∈ N be the
neural network given by

EL(�) =
{

�Id
d,L−L(�)

� � : L(�) < L

� : L(�) = L
, (5.11)

and for every n, L ∈ N, � j ∈ N, j ∈ {1, 2, . . . , n} with max j∈{1,2,...,n} L(� j) = L,
let P(�1,�2, . . . , �n) ∈ N denote the neural network given by

P(�1,�2, . . . , �n) =Ps(EL(�1), EL(�2), . . . , EL(�n)). (5.12)

Lemma 5.3 Assume Setting 5.2, let �1,�2 ∈ N and let � : R → R be the function
which satisfies for every t ∈ R that �(t) = max{0, t}. Then

123

Constructive Approximation (2022) 55:3–71 29

(i) for every x ∈ R
dimin(�

2) it holds

[R�(�1 � �2)](x) = ([R�(�1)] ◦ [R�(�2)])(x) = [R�(�1)]([R�(�2)](x)),
(5.13)

(ii) L(�1 � �2) = L(�1) + L(�2),
(iii) M(�1��2) ≤ M(�1)+M(�2)+M1(�

1)+ML(�2)(�
2) ≤ 2(M(�1)+

M(�2)),
(iv) M1(�

1 � �2) = M1(�
2),

(v) ML(�1��2)(�
1 � �2) = ML(�1)(�

1),
(vi) dimin(�

1 � �2) = dimin(�
2),

(vii) dimout(�
1 � �2) = dimout(�

1),
(viii) for every d, L ∈ N, x ∈ R

d it holds that [R�(�Id
d,L)](x) = x and

(ix) for every L ∈ N, � ∈ N with L(�) ≤ L, x ∈ R
dimin(�) it holds that

[R�(EL(�))](x) = [R�(�)](x).
Proof of Lemma 5.3 For every i ∈ {1, 2} let Li ∈ N, Ni

1, N
i
2, . . . , N

i
Li
, (Ai

l , b
i
l)

∈ R
Ni
l ×Ni

l−1 × R
Ni
l , l ∈ {1, 2, . . . , Li } such that �i = ((Ai

1, b
i
1), . . . , (A

i
Li

, biLi
)).

Furthermore, let (Al , bl) ∈ R
Nl×Nl−1 × R

Nl , l ∈ {1, 2, . . . , L1 + L2}, be the matrix-
vector tuples which satisfy �1 � �2 = ((A1, b1), . . . , (AL1+L2 , bL1+L2)) and let
rl : RN0 → R

Nl , l ∈ {1, 2, . . . , L1 + L2}, be the functions which satisfy for every
x ∈ R

N0 that

rl(x) =
⎧
⎨

⎩

�∗(A1x + b1) : l = 1
�∗(Alrl−1(x) + bl) : 1 < l < L1 + L2
Alrl−1(x) + bl : l = L1 + L2

. (5.14)

Observe that for every l ∈ {1, 2, . . . , L2 − 1} holds (Al , bl) = (A2
l , b

2
l). This implies

that for every x ∈ R
N0 holds

A2
L2
rL2−1(x) + b2L2

= [R�(�2)](x). (5.15)

Combining this with (5.7) implies for every x ∈ R
N0 that

rL2(x) = �∗(AL2rL2−1(x) + bL2) = �∗
((

A2
L2−A2
L2

)
rL2−1(x) +

(
b2L2−b2L2

))

= �∗
((

A2
L2
rl−1(x) + b2L2−A2

L2
rl−1(x) − b2L2

))
=
(

�∗([R�(�2)](x))
�∗(−[R�(�2)](x))

) (5.16)

In addition, for every d ∈ N, y = (y1, y2, . . . , yd) ∈ R
d holds

�∗(y) − �∗(−y) = (�(y1) − �(−y1), �(y2) − �(−y2), . . . , �(yd) − �(−yd)) = y.
(5.17)

123

30 Constructive Approximation (2022) 55:3–71

This, (5.7) and (5.16) ensure that for every x ∈ R
N0 holds

rL2+1(x) = AL2+1

(
�∗([R�(�2)](x))

�∗(−[R�(�2)](x))
)

+ bL2+1

= A1
1�

∗([R�(�2)](x)) − A1
1�

∗(−[R�(�2)](x)) + bL2+1

= A1
1[R�(�2)](x) + b11.

(5.18)

Combining this with (5.14) establishes (i). Moreover, (ii)-(vii) follow directly from
(5.7). Furthermore, (5.8), (5.9) and (5.17) imply (viii). Finally, (ix) follows from (5.11)
and (viii). This completes the proof of Lemma 5.3. �
Lemma 5.4 Assume Setting 5.2, let � : R → R be the function which satisfies for every
t ∈ R that �(t) = max{0, t}, let n ∈ N, let ϕ j ∈ N, j ∈ {1, 2, . . . , n}, let d j ∈ N,
j ∈ {1, 2, . . . , n}, be given by d j = dimin(ϕ

j), let D ∈ N be given by D = ∑n
j=1 d j

and let � ∈ N be given by � = P(ϕ1, ϕ2, . . . , ϕn). Then

(i) for every x ∈ R
D it holds

[R�(�)](x) = ([R�(ϕ1)](x1, . . . , xd1), [R�(ϕ2)](xd1+1, . . . , xd1+d2), . . . ,

[R�(ϕn)](xD−dn+1, . . . , xD)
)
, (5.19)

(ii) L(�) = max j∈{1,2,...,n} L(ϕ j),

(iii) M(�) ≤ 2
(∑n

j=1M(ϕ j)
)

+ 4
(∑n

j=1 dimout(ϕ
j)
)
max j∈{1,2,...,n} L(ϕ j),

(iv) M(�) = ∑n
j=1M(ϕ j)provided for every j, j ′ ∈ {1, 2, . . . , n}holdsL(ϕ j) =

L(ϕ j ′),
(v) ML(�)(�) ≤ ∑n

j=1 max{2 dimout(ϕ
j),ML(ϕ j)(ϕ

j)},
(vi) M1(�) = ∑n

j=1M1(ϕ
j),

(vii) dimin(�) = ∑n
j=1 dimin(ϕ

j) and

(viii) dimout(�) = ∑n
j=1 dimout(ϕ

j).

Proof of Lemma 5.4 Observe that Lemma 5.3 implies that for every j ∈ {1, 2, . . . , n}
holds

R�(EL(�)(ϕ
j)) = R�(ϕ j). (5.20)

Combining this with (5.10) and (5.12) establishes (i). Furthermore, note that (ii),
(vi), (vii) and (viii) follow directly from (5.10) and (5.12). Moreover, (5.10) demon-
strates that for every m ∈ N, ψi ∈ N, i ∈ {1, 2, . . . ,m}, with ∀i, i ′ ∈
{1, 2, . . . ,m} : L(ψ i) = L(ψ i ′) holds

M(Ps(ψ
1, ψ2, . . . , ψm)) =

m∑

i=1

M(ψ i). (5.21)

123

Constructive Approximation (2022) 55:3–71 31

This establishes (iv). Next, observe that Lemma 5.3, (5.11) and the fact that for every
d ∈, L ∈ N holds M(�Id

d,L) ≤ 2dL imply that for every j ∈ {1, 2, . . . , n} we have

M(EL(�)(ϕ
j)) ≤ 2M(�Id

dimout(ϕ j),L(�)−L(ϕ j)
) + 2M(ϕ j)

≤ 4 dimout(ϕ
j)L(�) + 2M(ϕ j).

(5.22)

Combining this with (5.21) establishes (iii). In addition, note that (5.8), (5.9) and
(5.11) ensure for every j ∈ {1, 2, . . . , n} that

ML(�)(EL(�)(ϕ
j)) ≤ max{2 dimout(ϕ

j),ML(ϕ j)(ϕ
j)}. (5.23)

Combining this with (5.10) establishes (v). The proof of Lemma 5.4 is thus completed.
�

6 Basic Expression Rate Results

Here, we begin by establishing an expression rate result for a very simple function,
namely x �→ x2 on [0, 1]. Our approach is based on the observation by M. Telgarsky
[40] that neural networks with ReLU activation function can efficiently compute high-
frequency sawtooth functions and the idea of D. Yarotsky in [44] to use this in order
to approximate the function x �→ x2 by networks computing its linear interpolations.
This can then be used to derive networks capable of efficiently approximating (x, y) �→
xy, which leads to tensor products as well as polynomials and subsequently smooth
function. Note that [44] uses a slightly different notion of neural networks, where
connections between non-adjacent layers are permitted. This does, however, only
require a technical modification of the proof, which does not significantly change the
result. Nonetheless, the respective proofs are provided in appendix for completeness.

Lemma 6.1 Assume Setting 5.1 and let � : R → R be the ReLU activation function
given by �(t) = max{0, t}. Then there exist neural networks (σε)ε∈(0,∞) ⊆ N such
that for every ε ∈ (0,∞)

(i) L(σε) ≤
{

1
2

∣∣log2(ε)
∣∣+ 1 : ε < 1

1 : ε ≥ 1
,

(ii) M(σε) ≤
{
15(12

∣∣log2(ε)
∣∣+ 1) : ε < 1

0 : ε ≥ 1
,

(iii) supt∈[0,1]
∣∣t2 − [

R�(σε)
]
(t)
∣∣ ≤ ε,

(iv) [R�(σε)](0) = 0.

We can now derive the following result on approximate multiplication by neural
networks, by observing that xy = 2B2(|(x+ y)/2B|2−|x/2B|2−|y/2B|2) for every
B ∈ (0,∞), x, y ∈ R.

Lemma 6.2 Assume Setting 5.1, let B ∈ (0,∞) and let � : R → R be the ReLU
activation function given by �(t) = max{0, t}. Then there exist neural networks
(με)ε∈(0,∞) ⊆ N which satisfy for every ε ∈ (0,∞) that

123

32 Constructive Approximation (2022) 55:3–71

(i) L(με) ≤
{

1
2 log2(

1
ε
) + log2(B) + 6 : ε < B2

1 : ε ≥ B2 ,

(ii) M(με) ≤
{
45 log2(

1
ε
) + 90 log2(B) + 259 : ε < B2

0 : ε ≥ B2 ,

(iii) sup(x,y)∈[−B,B]2
∣
∣xy − [

R�(με)
]
(x, y)

∣
∣ ≤ ε,

(iv) M1(με) = 8, ML(με)(με) = 3 and
(v) for every x ∈ R it holds that R�[με](0, x) = R�[με](x, 0) = 0.

Nextwe extend this result to products of anynumber of factors byhierarchical, pairwise
multiplication.

Theorem 6.3 Assume Setting 5.1, let � : R → R be the ReLUactivation function given
by �(t) = max{0, t}, let m ∈ N ∩ [2,∞) and let B ∈ [1,∞). Then there exists a
constant C ∈ R (which is independent of m, B) and neural networks (�ε)ε∈(0,∞) ⊆ N
which satisfy

(i) L(�ε) ≤ C ln(m) (|ln(ε)| + m ln(B) + ln(m)),
(ii) M(�ε) ≤ Cm (|ln(ε)| + m ln(B) + ln(m)),

(iii) sup
x∈[−B,B]m

∣
∣∣∣∣∣

⎡

⎣
m∏

j=1

x j

⎤

⎦− [
R�(�ε)

]
(x)

∣
∣∣∣∣∣
≤ ε and

(iv) R� [�ε] (x1, x2, . . . , xm) = 0, if there exists i ∈ {1, 2, . . . ,m} with xi = 0.

Proof of Theorem 6.3 Throughout this proof, assume Setting 5.2, let l = �log2 m� and
let θ ∈ N 1,1

1 be the neural network given by θ = (0, 0), let (A, b) ∈ R
l×m × R

l be
the matrix-vector tuple given by

Ai, j =
{
1 : i = j, j ≤ m

0 : else and bi =
{
0 : i ≤ m

1 : i > m
. (6.1)

Let furtherω ∈ Nm,2l

2 be the neural network given byω = ((A, b)). Note that Lemma
6.2 (with Bm as B in the notation of Lemma 6.2) ensures that there exist neural
networks (μη)η∈(0,∞) ⊆ N such that for every η ∈ (0,

[
Bm
]2

) it holds

(A) L(μη) ≤ 1
2 log2(

1
η
) + log2(B

m) + 6,

(B) M(μη) ≤ 45 log2(
1
η
) + 90 log2(B

m) + 259,

(C) sup
x,y∈[−Bm ,Bm]

∣
∣xy − [

R�(μη)
]
(x, y)

∣
∣ ≤ η,

(D) M1(μη) = 8, ML(μη)(μη) = 3 and
(E) for every x ∈ R it holds that R�[μη](0, x) = R�[μη](x, 0) = 0.

Let (νε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for every ε ∈ (0,∞)

νε = μm−2B−2mε. (6.2)

123

Constructive Approximation (2022) 55:3–71 33

Observe that (A) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m) it holds

L(νε) ≤ 1
2 log2

(
1

m−2B−2mε

)
+ log2(B

m) + 6

= 1
2

(
log2

(1
ε

)+ 2 log2(m) + 2m log2(B)
)+ m log2(B) + 6

= 1
2 log2

(1
ε

)+ 2m log2(B) + log2(m) + 6.

(6.3)

In addition, note that (B) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m)

M(νε) ≤ 45 log2
(

1
m−2B−2mε

)
+ 90 log2(B

m) + 259

= 45 log2
(1

ε

)+ 180m log2(B) + 90 log2(m) + 259.
(6.4)

Furthermore, (C) implies that for every ε ∈ (0, Bm) ⊆ (0,m2B4m) holds

sup
x,y∈[−Bm ,Bm]

∣∣xy − [
R�(νη)

]
(x, y)

∣∣ ≤ m−2B−2mε. (6.5)

Let πk,ε ∈ N, ε ∈ (0,∞), k ∈ N, be the neural networks which satisfy for every
ε ∈ (0,∞), k ∈ N

πk,ε =
{

νε : k = 1

νε � P(πk−1,ε, πk−1,ε) : k > 1
(6.6)

and let (�ε)ε∈(0,∞) ⊆ N be neural networks given by

�ε =
{

πl,ε � ω : ε < Bm

θ : ε ≥ Bm . (6.7)

Note that for every ε ∈ (Bm,∞) it holds

sup
x∈[−B,B]m

∣
∣∣∣∣

[
m∏

j=1
x j

]

− [
R�(�ε)

]
(x)

∣
∣∣∣∣
= sup

x∈[−B,B]m

∣
∣∣∣∣

[
m∏

j=1
x j

]

− [
R�(θ)

]
(x)

∣
∣∣∣∣

= sup
x∈[−B,B]m

∣∣∣
∣∣

[
m∏

j=1
x j

]

− 0

∣∣∣
∣∣
= Bm ≤ ε.

(6.8)

We claim that for every k ∈ {1, 2, . . . , l}, ε ∈ (0, Bm) it holds

(a) that

sup
x∈[−B,B](2k)

∣∣∣∣∣

[
2k∏

j=1
x j

]

− [R�(πk,ε)](x)
∣∣∣∣∣
≤ 4k−1m−2B(2k−2m)ε, (6.9)

123

34 Constructive Approximation (2022) 55:3–71

(b) that L(πk,ε) ≤ kL(νε) and
(c) that M(πk,ε) ≤ (2k − 1)M(νε) + (2k−1 − 1)20.

We prove (a), (b) and (c) by induction on k ∈ {1, 2, . . . , l}. Observe that (6.5) and the
fact that B ∈ [1,∞) establishes (a) for k = 1. Moreover, note that (6.6) establishes
(b) and (c) in the base case k = 1.

For the induction step {1, 2, . . . , l − 1} � k → k + 1 ∈ {2, 3, . . . , l} note that
Lemma 5.3, Lemma 5.4, (6.5) and (6.6) imply that for every k ∈ {1, 2, . . . , l − 1},
ε ∈ (0, Bm)

sup
x∈[−B,B](2k+1)

∣∣
∣∣∣∣

⎡

⎣
2k+1∏

j=1

x j

⎤

⎦− [R�(πk+1,ε)](x)
∣∣
∣∣∣∣

= sup
x,x ′∈[−B,B](2k)

∣∣
∣∣∣∣

⎡

⎣
2k∏

j=1

x j

⎤

⎦

⎡

⎣
2k∏

j=1

x ′
j

⎤

⎦− [R�(πk+1,ε)]
(
(x, x ′)

)
∣∣
∣∣∣∣

= sup
x,x ′∈[−B,B](2k)

∣∣∣
∣∣∣

⎡

⎣
2k∏

j=1

x j

⎤

⎦

⎡

⎣
2k∏

j=1

x ′
j

⎤

⎦− [R�(νε)]
([R�(πk,ε)](x), [R�(πk,ε)](x ′)

)
∣∣∣
∣∣∣

≤ sup
x,x ′∈[−B,B](2k)

∣∣∣
∣∣∣

⎡

⎣
2k∏

j=1

x j

⎤

⎦

⎡

⎣
2k∏

j=1

x ′
j

⎤

⎦− ([R�(πk,ε)](x)
) ([R�(πk,ε)](x ′)

)
∣∣∣
∣∣∣

+ sup
x,x ′∈[−B,B](2k)

∣∣([R�(πk,ε)](x)
) ([R�(πk,ε)](x ′)

)

−[R�(νε)]
([R�(πk,ε)](x), [R�(πk,ε)](x ′)

)∣∣

≤ sup
x,x ′∈[−B,B](2k)

∣∣
∣∣∣∣

⎡

⎣
2k∏

j=1

x j

⎤

⎦

⎡

⎣
2k∏

j=1

x ′
j

⎤

⎦− ([R�(πk,ε)](x)
) ([R�(πk,ε)](x ′)

)
∣∣
∣∣∣∣

+ m−2B−2mε.

(6.10)

Next, for every c, δ ∈ (0,∞), y, z ∈ [−c, c], ỹ, z̃ ∈ R with |y − ỹ| , |z − z̃| ≤ δ it
holds

|yz − ỹ z̃| ≤ 2(|y| + |z|)δ + δ2 ≤ 2cδ + δ2. (6.11)

Moreover, for every k ∈ {1, 2, . . . , l}

4k−1 ≤ 4l−1 = 4�log2 m�−1 ≤ 4log2 m = m2. (6.12)

123

Constructive Approximation (2022) 55:3–71 35

The fact that B ∈ [1,∞) therefore ensures that for every k ∈ {1, 2, . . . , l − 1},
ε ∈ (0, Bm)

[
4k−1m−2B(2k−2m)ε

]2 =
[
4k−1m−2B(2k+1−2m)ε

] [
4k−1m−2B−2mε

]

≤
[
4k−1m−2B(2k+1−2m)ε

]
.

(6.13)

This and (6.11) imply that for every k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm), x, x ′ ∈
[−B, B](2k)

∣
∣∣∣∣

[
2k∏

j=1
x j

][
2k∏

j=1
x ′
j

]

− ([R�(πk,ε)](x)
) ([R�(πk,ε)](x ′)

)
∣
∣∣∣∣

≤ 2B(2k)4k−1m−2B(2k−2m)ε +
[
4k−1m−2B(2k−2m)ε

]2

≤ 3
[
4k−1m−2B(2k+1−2m)ε

]
.

(6.14)

Combining this, (6.10) and the fact that B ∈ [1,∞) demonstrates that for every
k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm)

sup
x∈[−B,B](2k+1)

∣∣∣∣
∣

[
2k+1∏

j=1
x j

]

− [R�(πk+1,ε)](x)
∣∣∣∣
∣

≤ 3
[
4k−1m−2B(2k+1−2m)ε

]
+ m−2B−2mε

≤ 4km−2B(2k+1−2m)ε.

(6.15)

This establishes the claim (a). Moreover, Lemma 5.3 and Lemma 5.4 imply for every
k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm) with L(πk,ε) ≤ kL(νε) holds

L(πk+1,ε) = L(νε) + max{L(πk,ε),L(πk,ε)}
≤ L(νε) + kL(νε) = (k + 1)L(νε).

(6.16)

This establishes the claim (b). Furthermore, Lemma 5.3, Lemma 5.4, (B) and (D)
imply for every k ∈ {1, 2, . . . , l − 1}, ε ∈ (0, Bm)withM(πk,ε) ≤ (2k −1)M(νε)+
(2k−1 − 1)20 holds

M(πk+1,ε) ≤ M(νε) + (M(πk,ε) + M(πk,ε)) + M1(νε) + ML(P(πk,ε ,πk,ε))(P(πk,ε, πk,ε))

≤ M(νε) + 2M(πk,ε) + 14 + 2ML(νε)(νε) ≤ M(νε) + 2M(πk,ε) + 20

≤ M(νε) + 2((2k − 1)M(νε) + (2k−1 − 1)20) + 20

= (2k+1 − 1)M(νε) + (2k − 1)20.
(6.17)

This establishes the claim (c).

123

36 Constructive Approximation (2022) 55:3–71

Combining (a) with Lemma 5.3 and (6.7) implies for every ε ∈ (0, Bm) the bound

sup
x∈[−B,B]m

∣
∣∣∣∣∣

⎡

⎣
m∏

j=1

x j

⎤

⎦− [
R�(�ε)

]
(x)

∣
∣∣∣∣∣
≤ sup
x∈[−B,B](2l)

∣
∣∣∣∣∣

⎡

⎣
2l∏

j=1

x j

⎤

⎦− [
R�(πl,ε)

]
(x)

∣
∣∣∣∣∣

≤ 4l−1m−2B(2l−2m)ε

≤ 4�log2(m)�−1m−2B(2�log2(m)�−2m)ε

≤ 4log2(m)m−2B(2log2(m)+1−2m)ε

≤
[
2log2(m)

]2
m−2B(2m−2m)ε ≤ ε.

(6.18)

This and (6.8) establish that the neural networks (�ε)ε∈(0,∞) satisfy (iii). Combining
(b) with Lemma 5.3, (6.3) and (6.7) ensures that for every ε ∈ (0, Bm)

L(�ε) = L(πl,ε) + L(ω) ≤ lL(νε) + 1 ≤ (log2(m) + 1)L(νε) + 1

≤ log2(m) log2
(
1
ε

)
+ 4 log2(m)m log2(B) + 2[log2(m)]2 + 12 log2(m) + 1

(6.19)

and that for every ε ∈ (Bm,∞) it holds L(�ε) = L(θ) = 1. This establishes that the
neural networks (�ε)ε∈(0,∞) satisfy (i). Furthermore, note that (c), Lemma 5.3, (6.3)
and (6.7) demonstrate that for every ε ∈ (0, Bm)

M(�ε) ≤ 2(M(πl,ε) + M(ω)) ≤ 2
[
(2l − 1)M(νε) + (2l−1 − 1)20

]
+ 4m

≤ 2l+1M(νε) + (2l)20 + 4m ≤ 4mM(νε) + 44m

≤ 180m log2
(1

ε

)+ 720m2 log2(B) + 360m log2(m) + 1080m
(6.20)

and that for every ε ∈ (Bm,∞) holds M(�ε) = M(θ) = 0. This establishes
that the neural networks (�ε)ε∈(0,∞) satisfy (ii). Note that (iv) follows from (E) by
construction. The proof of Theorem 6.3 is thus completed. �

With the above established, it is quite straightforward to get the following result
for the approximation of tensor products. Note that the exponential term Bm−1 in (iii)
is unavoidable as result from multiplying m many inaccurate values of magnitude B.
For our purposes, this will not be an issue since the functions we consider are bounded
in absolute value by B = 1. This is further not an issue in cases, where the h j can be
approximated by networks whose size scales logarithmically with ε.

Proposition 6.4 Assume Setting 5.2, let � : R → R be the ReLU activation function
given by �(t) = max{0, t}, let B ∈ [1,∞), m ∈ N, for every j ∈ {1, 2, . . . ,m} let
d j ∈ N,
 j ⊆ R

d j , and h j :
 j → [−B, B], let (� j
ε)ε∈(0,∞) ∈ N, j ∈ {1, 2, . . . ,m},

be neural networks which satisfy for every ε ∈ (0,∞), j ∈ {1, 2, . . . ,m}

sup
t∈
 j

∣∣∣h j (x) −
[
R�(� j

ε)
]
(x)
∣∣∣ ≤ ε, (6.21)

123

Constructive Approximation (2022) 55:3–71 37

let �P
ε ∈ N, ε ∈ (0,∞) be given by �P

ε = P(�1
ε,�

2
ε, . . . , �

m
ε), and let Lε ∈ N,

ε ∈ (0,∞) be given by Lε = max j∈{1,2,...,m} L(�
j
ε).

Then there exists a constant C ∈ R (which is independent of m, B, ε) and neural
networks (�ε)ε∈(0,∞) ⊆ N which satisfy

(i) L(�ε) ≤ C ln(m) (|ln(ε)| + m ln(B) + ln(m)) + Lε,
(ii) M(�ε) ≤ Cm (|ln(ε)| + m ln(B) + ln(m)) + M(�P

ε) + MLε (�
P
ε) and

(iii) sup
t=(t1,t2,...,tm)∈×m

j=1
 j

∣∣∣∣∣

[
m∏

j=1
h j (t j)

]

− [
R�(�ε)

]
(t)

∣∣∣∣∣
≤ 3mBm−1ε.

Proof of Proposition 6.4 In the case of m = 1, the neural networks (�1
ε)ε∈(0,∞) ∈ N

satisfy (i), (ii) and (iii) by assumption. Throughout the remainder of this proof, assume
m ≥ 2, and let θ ∈ N 1,1

1 denote the trivial neural network θ = (0, 0). Observe that
Theorem 6.3 (with ε ↔ η, C ′ ↔ C in the notation Theorem 6.3) ensures that there
existC ′ ∈ R andneural networks (�η)η∈(0,∞) ⊆ Nwhich satisfy for everyη ∈ (0,∞)

that

(a) L(�η) ≤ C ′ ln(m) (|ln(η)| + m ln(B) + ln(m)),
(b) M(�η) ≤ C ′m (|ln(η)| + m ln(B) + ln(m)) and

(c) sup
x∈[−B,B]m

∣∣∣∣
∣∣

⎡

⎣
m∏

j=1

x j

⎤

⎦− [
R�(�η)

]
(x)

∣∣∣∣
∣∣
≤ η.

Let (�ε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for every ε ∈ (0,∞) that

�ε =
{

�ε � P(�1
ε,�

2
ε, . . . , �

m
ε) : ε < B

2m

θ : ε ≥ B
2m

. (6.22)

Note that for every ε ∈ (0, B
2m)

max
x∈[−B,B]m ,x ′∈Rm

‖x ′−x‖∞≤ε

∣
∣
∣∣
∣∣

m∏

j=1

x ′
j −

m∏

j=1

x j

∣
∣
∣∣
∣∣
= (B + ε)m − Bm =

m∑

k=1

(
m

k

)
Bm−kεk ≤ ε

m∑

k=1

mk

k! Bm−kεk−1

≤ ε

m∑

k=1

mk

k! Bm−k
(

B

2m

)k−1

= mBm−1ε

m∑

k=1

1

2k−1k!
≤ 2mBm−1ε.

(6.23)

Combining this with Lemma 5.3, Lemma 5.4, (6.21) and (c) implies that for every
ε ∈ (0, B

2m), t = (t1, t2, . . . , tm) ∈
 it holds

123

38 Constructive Approximation (2022) 55:3–71

∣∣∣∣∣

[
m∏

j=1
h j (t j)

]

− [
R�(�ε)

]
(t)

∣∣∣∣∣
=
∣∣∣∣∣

[
m∏

j=1
h j (t j)

]

− [
R�(�ε � P(�1

ε ,�
2
ε , . . . , �

m
ε))

]
(t)

∣∣∣∣∣

≤
∣∣∣
∣∣

[
m∏

j=1
h j (t j)

]

−
[

m∏

j=1

[
R�(�

j
ε)
]
(t j)

]∣∣∣
∣∣

+
∣∣∣∣∣

[
m∏

j=1

[
R�(�

j
ε)
]
(t j)

]

− [
R�(�ε)

] ([R�(�1
ε)](t1), . . . , [R�(�m

ε)](t j)
)
∣∣∣∣∣

≤ 2mBm−1ε + ε ≤ 3mBm−1ε.

(6.24)

Moreover, for every ε ∈ [B
2m ,∞), t = (t1, t2, . . . , tm) ∈
 it holds that

∣∣∣∣∣

[
m∏

j=1
h j (t j)

]

− [
R�(�ε)

]
(t)

∣∣∣∣∣
=
∣∣∣∣∣

[
m∏

j=1
h j (t j)

]

− [
R�(θ)

]
(t)

∣∣∣∣∣

=
∣∣
∣∣∣

[
m∏

j=1
h j (t j)

]∣∣
∣∣∣
≤ Bm ≤ 2mBm−1ε.

(6.25)

This and (6.24) establish that the neural networks (�ε)ε,c∈(0,∞) satisfy (iii). Next
observe that Lemma 5.3, Lemma 5.4 and (a) demonstrate that for every ε ∈ (0, B

2m)

L(�ε) = L(�ε � P(�1
ε,�

2
ε, . . . , �

m
ε)) = L(�ε) + max

j∈{1,2,...,m}L(� j
ε)

≤ C ′ ln(m) (|ln(ε)| + m ln(B) + ln(m)) + Lε.

(6.26)

This and the fact that for every ε ∈ [B
2m ,∞) it holds that L(�ε) = L(θ) = 1 establish

that the neural networks (�ε)ε,c∈(0,∞) satisfy (i). Furthermore, note that Lemma 5.3,
Lemma 5.4 and (b) ensure that for every ε ∈ (0, B

2m)

M(�ε) = M(�ε � P(�1
ε,�

2
ε, . . . , �

m
ε))

≤ 2M(�ε) + M(P(�1
ε,�

2
ε, . . . , �

m
ε))

+ ML(P(�1
ε,�

2
ε ,...,�

m
ε))(P(�1

ε,�
2
ε, . . . , �

m
ε))

≤ 2C ′m (|ln(ε)| + m ln(B) + ln(m)) + M(�P
ε) + MLε (�

P
ε).

(6.27)

This and the fact that for every ε ∈ [B
2m ,∞) it holds that M(�ε) = M(θ) = 0

imply the neural networks (�ε)ε,c∈(0,∞) satisfy (ii). The proof of Proposition 6.4 is
completed. �

Another way to use the multiplication results is to consider the approximation of
smooth functions by polynomials. This can be done for functions of arbitrary dimen-
sion using the multivariate Taylor expansion (see [44] and [31, Thm. 2.3]). Such a
direct approach, however, yields networks whose size depends exponentially on the
dimension of the function. As our goal is to show that high-dimensional functions

123

Constructive Approximation (2022) 55:3–71 39

with a tensor product structure can be approximated by networks with only polyno-
mial dependence on the dimension, we only consider univariate smooth functions here.
In appendix, we present a detailed and explicit construction of this Taylor approxima-
tion by neural networks. In the following results, we employ an auxiliary parameter
r , so that the bounds on the depth and connectivity of the networks may be stated for
all ε ∈ (0,∞). Note that this parameter does not influence the construction of the
networks themselves.

Theorem 6.5 Assume Setting 5.1, let n ∈ N, r ∈ (0,∞), let � : R → R be the ReLU
activation function given by �(t) = max{0, t} and let Bn

1 ⊆ Cn([0, 1],R) be the set
given by

Bn
1 =

{

f ∈ Cn([0, 1],R) : max
k∈{0,1,...,n}

[

sup
t∈[0,1]

∣∣∣ f (k)(t)
∣∣∣

]

≤ 1

}

. (6.28)

Then there exist neural networks (� f ,ε) f ∈Bn
1 ,ε∈(0,∞) ⊆ N which satisfy

(i) sup
f ∈Bn

1 ,ε∈(0,∞)

[L(� f ,ε)

max{r , |ln(ε)|}
]

< ∞,

(ii) sup
f ∈Bn

1 ,ε∈(0,∞)

[
M(� f ,ε)

ε− 1
n max{r , | ln(ε)|}

]

< ∞ and

(iii) for every f ∈ Bn
1 , ε ∈ (0,∞) that

sup
t∈[0,1]

∣∣ f (t) − [
R�(� f ,ε)

]
(t)
∣∣ ≤ ε. (6.29)

For convenience of use, we also provide the following more general corollary.

Corollary 6.6 Assume Setting 5.1, let r ∈ (0,∞) and let � : R → R be the ReLU
activation function given by �(t) = max{0, t}. Let further the set Cn be given by Cn =
∪[a,b]⊆R+C

n([a, b],R), and let ‖·‖n,∞ : Cn → [0,∞) satisfy for every [a, b] ⊆ R+,
f ∈ Cn([a, b],R)

‖ f ‖n,∞ = max
k∈{0,1,...,n}

[

sup
t∈[a,b]

∣∣∣ f (k)(t)
∣∣∣

]

. (6.30)

Then there exist neural networks
(
� f ,ε

)
f ∈Cn ,ε∈(0,∞)

⊆ N which satisfy

(i) sup
f ∈Cn ,ε∈(0,∞)

[
L(� f ,ε)

max{r , | ln(ε
max{1,b−a}‖ f ‖n,∞)|}

]

< ∞,

(ii) sup
f ∈Cn ,ε∈(0,∞)

⎡

⎢
⎣

M(� f ,ε)

max{1, b − a} ‖ f ‖
1
n
n,∞ ε− 1

n max{r , | ln(ε
max{1,b−a}‖ f ‖n,∞)|}

⎤

⎥
⎦

< ∞ and

123

40 Constructive Approximation (2022) 55:3–71

(iii) for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) that

sup
t∈[a,b]

∣∣ f (t) − [
R�(� f ,ε)

]
(t)
∣∣ ≤ ε. (6.31)

7 DNN Expression Rates for High-Dimensional Basket Prices

Now that we have established a number of general expression rate results, we can
apply them to our specific problem. Using the regularity result (3.3), we obtain the
following.

Corollary 7.1 Assume Setting 5.1, let n ∈ N, r ∈ (0,∞), a ∈ (0,∞), b ∈ (a,∞),
let � : R → R be the ReLU activation function given by �(t) = max{0, t}, let
f : (0,∞) → R be as defined in (3.1) and let hc,K : [a, b] → R, c ∈ (0,∞),
K ∈ [0,∞), denote the functions which satisfy for every c ∈ (0,∞), K ∈ [0,∞),
x ∈ [a, b] that

hc,K (x) = f
(K+c

x

)
. (7.1)

Then there exist neural networks
(
�ε,c,K

)
ε,c∈(0,∞),K∈[0,∞)

⊆ N which satisfy

(i) sup
ε,c∈(0,∞),K∈[0,∞)

[L(�ε,c,K)

max{r , | ln(ε)|} + max{0, ln(K + c)}
]

< ∞,

(ii) sup
ε,c∈(0,∞),K∈[0,∞)

[
M(�ε,c,K)

(K + c + 1)
1
n ε

− 1
n2

]

< ∞ and

(iii) for every ε, c ∈ (0,∞), K ∈ [0,∞) that

sup
x∈[a,b]

∣∣hc,K (x) − [
R�(�ε,c,K)

]
(x)
∣∣ ≤ ε. (7.2)

Proof of Corollary 7.1 We observe Corollary 3.3 ensures the existence of a constant
C ∈ R with

max
k≤n

sup
x∈[a,b]

∣∣∣h(k)
c,K (x)

∣∣∣ ≤ C max{(K + c)n, 1}. (7.3)

Moreover, observe for every ε, c ∈ (0,∞), K ∈ [0,∞) it holds

max
{
r , | ln

(
ε

max{1,b−a}C max{(K+c)n ,1}
)

|
}

≤ max{r , |ln(ε)|} + | ln(max{1, b − a})| + ∣
∣ln(C max{(K + c)n, 1})∣∣

≤ max{r , |ln(ε)|} + ln(max{1, b − a}) + |ln(C)| + ∣∣ln(max{(K + c)n, 1})∣∣
≤ max{r , |ln(ε)|} + ln(max{1, b − a}) + |ln(C)| + nmax{ln(K + c), 0}
≤ n(1 + max{1, 1

r }(| ln(C)| + ln(max{1, b − a})))(max{r , |ln(ε)|}
+ max{ln(K + c), 0}).

(7.4)

123

Constructive Approximation (2022) 55:3–71 41

Furthermore, note for every ε, c ∈ (0,∞), K ∈ [0,∞) it holds

[
ε

max{1, b − a}C max{(K + c)n, 1}
]− 1

2n2

= [max{1, b − a}]− 1
2n2 ε

− 1
2n2 C

1
2n2 max{(K + c)

1
2n , 1}

≤ [max{1, b − a}]− 1
2n2 C

1
2n2 (K + c + 1)

1
2n ε

− 1
2n2 .

(7.5)

Combining this, (7.3), (7.4) with Lemma A.1 and Corollary 6.6 (with n ↔ 2n2 in the
notation of Corollary 6.6) completes the proof of Corollary 7.1. �

We can then employ Proposition 6.4 in order to approximate the required tensor
product.

Corollary 7.2 Assume Setting 5.1, let � : R → R be the ReLU activation function
given by �(t) = max{0, t}, let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0, Kmax),
and consider, for hc,K : [a, b] → R, c ∈ (0,∞), K ∈ [0, Kmax), the functions which
are, for every c ∈ (0,∞), K ∈ [0, Kmax), x ∈ [a, b], given by

hc,K (x) = 1√
2π

∫ ln(K+c
x)

−∞
e− 1

2 r
2
dr . (7.6)

For any c ∈ (0,∞), d ∈ N let the function Fd
c (x) : [a, b]d → R be given by

Fd
c (x) = 1 −

[
d∏

i=1
hc,Ki (xi)

]
. (7.7)

Then there exist neural networks (�d
ε,c)ε,c∈(0,∞),d∈N ⊆ N which satisfy

(i) sup
ε,c∈(0,∞),d∈N

[
L(�d

ε,c)

max{1, ln(d)}(|ln(ε)| + ln(d) + 1) + ln(c + 1)

]

< ∞,

(ii) sup
ε,c∈(0,∞),d∈N

[
M(�d

ε,c)

(c + 1)
1
n d1+ 1

n ε− 1
n

]

< ∞ and

(iii) for every ε, c ∈ (0,∞), d ∈ N that

sup
x∈[a,b]d

∣∣∣Fd
c (x) −

[
R�(�d

ε,c)
]
(x)
∣∣∣ ≤ ε. (7.8)

Proof of Corollary 7.2 Throughout this proof, assumeSetting 5.2. Corollary 7.1 ensures

there exist constants bL , bM ∈ (0,∞) and neural networks
(
�i

η,c

)

η,c∈(0,∞)
⊆ N,

i ∈ N such that for every i ∈ N it holds

(a) sup
η,c∈(0,∞)

[
L(�i

η,c)

max{1, | ln(η)|} + max{0, ln(Kmax + c)}

]

< bL ,

123

42 Constructive Approximation (2022) 55:3–71

(b) sup
η,c∈(0,∞)

[
M(�i

η,c)

(Kmax + c + 1)
1
n η

− 1
n2

]

< bM and

(c) for every η, c ∈ (0,∞) that

sup
x∈[a,b]

∣∣∣hc,Ki (x) −
[
R�(�i

η,c)
]
(x)
∣∣∣ ≤ η. (7.9)

Furthermore, for every c ∈ (0,∞), i ∈ N, x ∈ [a, b] holds

∣∣hc,Ki (x)
∣∣ =

∣∣∣
∣∣

1√
2π

∫ ln(
Ki+c
x)

−∞
e− 1

2 r
2
dr

∣∣∣
∣∣
≤ 1√

2π

∣∣∣
∣

∫ ∞

−∞
e− 1

2 r
2
dr

∣∣∣
∣ = 1. (7.10)

Combining this with (a) and Proposition 6.4 and Lemma 5.4 implies there existC ∈ R

and neural networks (ψd
η,c)η∈(0,∞) ⊆ N, c ∈ (0,∞), d ∈ N, such that for every

c ∈ (0,∞), d ∈ N it holds

(A) L(ψd
η,c) ≤ C ln(d) (|ln(η)| + ln(d)) + max

i∈{1,2,...,d}L(�i
η,c),

(B) M(ψd
η,c) ≤ Cd (|ln(η)| + ln(d)) + 4

d∑

i=1

M(�i
η,c) + 8d max

i∈{1,2,...,d}L(�i
η,c) and

(C) for every η ∈ (0,∞) that

sup
x∈[a,b]d

∣∣∣
∣

[
d∏

i=1
hc,Ki (xi)

]
−
[
R�(ψd

η,c)
]
(x)

∣∣∣
∣ ≤ 3dη. (7.11)

Let λ ∈ N 1,1
1 be the neural network given by λ = ((−1, 1)), let θ ∈ N 1,1

1 be the
neural network given by θ = (0, 0) and let (�d

ε,c)ε,c∈(0,∞),d∈N ⊆ N be the neural
networks given by

�d
ε,c =

{
λ � ψd

ε/(3d),c : ε ≤ 2

θ : ε > 2
. (7.12)

Observe that this and (B) imply for every ε ∈ (0, 2], c ∈ (0,∞), d ∈ N, x ∈ [a, b]d
it holds

∣∣∣Fd
c (x) −

[
R�(�d

ε,c)
]
(x)
∣∣∣ =

∣∣∣∣

(
1 −

[
d∏

i=1
hc,Ki (xi)

])
−
(
1 −

[
R�(ψd

ε/(3d),c)
]
(x)
)∣∣∣∣

≤ 3d ε
3d = ε.

(7.13)

Moreover, (7.12) and (7.10) ensure for every ε ∈ (2,∞), c ∈ (0,∞), d ∈ N,
x ∈ [a, b]d it holds

∣∣∣Fd
c (x) −

[
R�(�d

ε,c)
]
(x)
∣∣∣ =

∣∣∣∣

(
1 −

[
d∏

i=1
hc,Ki (xi)

])∣∣∣∣ (7.14)

123

Constructive Approximation (2022) 55:3–71 43

This and (7.13) establish the neural networks (�d
ε,c)ε,c∈(0,∞),d∈N satisfy (iii). Next

observe that for every c ∈ (0,∞) it holds

max{0, ln(Kmax + c)} ≤ max{0, ln(max{1, Kmax} + max{1, Kmax}c)}
= ln(max{1, Kmax}(1 + c)) = ln(max{1, Kmax}) + ln(1 + c)

≤ ln(c + 1) + | ln(Kmax)|.
(7.15)

Hence, we obtain that for every ε, c ∈ (0,∞), d ∈ N it holds

max
{
1, | ln (ε

3d

) |}+ max{0, ln(Kmax + c)}
≤ | ln(ε)| + ln(d) + ln(3) + ln(c + 1) + | ln(Kmax)|
≤ (ln(3) + | ln(Kmax)|) [max{1, ln(d)}(| ln(ε)| + ln(d) + 1) + ln(c + 1)] .

(7.16)

In addition, for every ε, c ∈ (0,∞), d ∈ N it holds

C ln(d)
(∣∣ln

(
ε
3d

)∣∣+ ln(d)
) ≤ 4C [max{1, ln(d)}(| ln(ε)| + ln(d) + 1) + ln(c + 1)] .

(7.17)

Combining this with Lemma 5.3, (a), (A) and (7.16) yields

sup
ε∈(0,2],c∈(0,∞),

d∈N

[
L(�d

ε,c)

max{1, ln(d)}(|ln(ε)| + ln(d) + 1) + ln(c + 1)

]

≤ sup
ε∈(0,2],c∈(0,∞),

d∈N

[
1 + C ln(d)

(∣∣ln(ε
3d)

∣
∣+ ln(d)

)+ maxi∈{1,2,...,d} L(�i
ε/(3d),c)

max{1, ln(d)}(|ln(ε)| + ln(d) + 1) + ln(c + 1)

]

≤ 2 + 4C + (ln(3) + | ln(Kmax)|)bL < ∞.

(7.18)

Moreover, (7.12) shows

sup
ε∈(2,∞),c∈(0,∞),

d∈N

[
L(�d

ε,c)

max{1, ln(d)}(|ln(ε)| + ln(d) + 1) + ln(c + 1)

]

= sup
ε∈(2,∞),c∈(0,∞),

d∈N

[
1

max{1, ln(d)}(|ln(ε)| + ln(d) + 1) + ln(c + 1)

]
< ∞.

(7.19)

This and (7.18) establish that (�d
ε,c)ε,c∈(0,∞),d∈N satisfy (i). Next observe LemmaA.1

implies that

123

44 Constructive Approximation (2022) 55:3–71

• for every ε ∈ (0, 2] it holds

| ln(ε)| ≤
[

sup
δ∈[exp(−2n2),2]

ln(δ)

]

ε− 1
n = 2n2ε− 1

n , (7.20)

• for every d ∈ N it holds

ln(d) ≤
[

max
k∈{1,2,...exp(2n2)}

ln(k)

]
d

1
n = 2n2d

1
n , (7.21)

• and for every c ∈ (0,∞) it holds

ln(c + 1) ≤
[

sup
t∈(0,exp(2n2−1)]

ln(t + 1)

]

(c + 1)
1
n = 2n2(c + 1)

1
n . (7.22)

For every m ∈ N, xi ∈ [1,∞), i ∈ {1, 2, . . . ,m}, it holds
m∑

i=1

xi ≤
m∏

i=1
(xi + 1) ≤ 2m

m∏

i=1
xi . (7.23)

Combining this with (7.20), (7.21) and (7.22) shows for every ε ∈ (0, 2], d ∈ N,
c ∈ (0,∞) it holds

2Cd
(| ln (ε

3d

) | + ln(d)
) ≤ 2Cd(| ln(ε)| + 2 ln(d) + ln(3) + ln(c + 1))

≤ 4n2Cd(2ε− 1
n + 2d

1
n + ln(3) + (c + 1)

1
n)

≤ 1024n2C(c + 1)
1
n d1+

1
n ε− 1

n .

(7.24)

Furthermore, note (7.15), (7.20), (7.21), (7.22) and (7.23) ensure for every ε ∈ (0, 2],
d ∈ N, c ∈ (0,∞) it holds

16d
(
max{1, | ln (ε

3d

) |} + max{0, ln(Kmax + c)})

≤ 16d(| ln(ε)| + ln(d) + ln(3) + ln(c + 1) + | ln(Kmax)|)
≤ 32n2d(2ε− 1

n + d
1
n + (c + 1)

1
n + ln(3) + | ln(Kmax)|)

≤ 2048n2(ln(3) + | ln(Kmax)|)(c + 1)
1
n d1+

1
n ε− 1

n .

(7.25)

In addition, observe that for every ε ∈ (0, 2], d ∈ N, c ∈ (0,∞) it holds

4d(Kmax + c + 1)
1
n
(

ε
3d

)− 1
n2 ≤ 96max{1, Kmax}(c + 1)

1
n d1+

1
n ε− 1

n . (7.26)

123

Constructive Approximation (2022) 55:3–71 45

Combining this with Lemma 5.3, (a), (b), (B), (7.24) and (7.25) yield

sup
ε∈(0,2],c∈(0,∞),

d∈N

[
M(�d

ε,c)

(c + 1)
1
n d1+ 1

n ε− 1
n

]

≤ sup
ε∈(0,2],c∈(0,∞),

d∈N

⎡

⎢
⎢⎢⎢
⎢
⎣

4 + 2Cd
(| ln (ε

3d

) | + ln(d)
)+ 8

d∑

i=1

M
(
�i

ε/(3d),c

)
+ 16d max

i∈{1,2,...,d}L
(
�i

ε/(3d),c

)

(c + 1)
1
n d1+ 1

n ε− 1
n

⎤

⎥
⎥⎥⎥
⎥
⎦

≤ 8 + 1024n2C + 96max{1, Kmax}bM + 2048n2(ln(3) + | ln(Kmax)|)bL < ∞.

(7.27)

Furthermore, note that (7.12) ensures

sup
ε∈(2,∞),c∈(0,∞),

d∈N

[
M(�d

ε,c)

(c + 1)
1
n d1+ 1

n ε− 1
n

]

= sup
ε∈(2,∞),c∈(0,∞),

d∈N

[
M(θ)

(c + 1)
1
n d1+ 1

n ε− 1
n

]

= 0.

(7.28)

This and (7.27) establish that the neural networks (�d
ε,c)ε,c∈(0,∞),d∈N satisfy (ii). Thus

the proof of Corollary 7.2 is completed. �
Finally, we add the quadrature estimates fromSect. 4 to achieve approximationwith

networks whose size only depends polynomially on the dimension of the problem.

Theorem 7.3 Assume Setting 5.1, let � : R → R be the ReLUactivation function given
by �(t) = max{0, t}, let n ∈ N, a ∈ (0,∞), b ∈ (a,∞), (Ki)i∈N ⊆ [0, Kmax) and
let Fd : (0,∞) × [a, b]d → R, d ∈ N, be the functions which satisfy for every d ∈ N,
c ∈ (0,∞), x ∈ [a, b]d

Fd(c, x) = 1 −
d∏

i=1

[
1√
2π

∫ ln(
Ki+c
xi

)

−∞
e− 1

2 r
2
dr

]

. (7.29)

Then there exists neural networks (�d,ε)ε∈(0,1],d∈N ∈ N which satisfy

(i) sup
ε∈(0,1],d∈N

[L(�d,ε)

max{1, ln(d)} (| ln(ε)| + ln(d) + 1)

]
< ∞,

(ii) sup
ε∈(0,1],d∈N

[M(�d,ε)

d2+ 1
n ε− 1

n

]
< ∞ and

(iii) for every ε ∈ (0, 1], d ∈ N that

sup
x∈[a,b]d

∣∣∣
∣

∫ ∞

0
Fd(c, x)dc − [

R�(�d,ε)
]
(x)

∣∣∣
∣ ≤ ε. (7.30)

Proof of Theorem 7.3 Throughout this proof, assume Setting 5.2, let Sb,n ∈ R be given
by

123

46 Constructive Approximation (2022) 55:3–71

Sb,n = 2e2(4n+1)(b + 1)1+
1
4n (7.31)

and let Nd,ε ∈ R, d ∈ N, ε ∈ (0, 1], be given by

Nd,ε = Sb,nd
1
4n
[

ε
4

]− 1
4n . (7.32)

Note Lemma 4.3 (with 4n ↔ n, Fd
x (c) ↔ Fd(x, c), Nd, ε

2
↔ Nd,ε, Qd, ε

2
↔ Qd,ε

in the notation of Lemma 4.3) ensures that there exist Qd,ε ∈ R, cdε, j ∈ (0, Nd,ε),

wd
ε, j ∈ [0,∞), j ∈ {1, 2, . . . , Qd,ε}, d ∈ N, ε ∈ (0, 1] with

sup
ε∈(0,1],d∈N

[
Qd,ε

d1+ 1
2n ε− 1

2n

]
< ∞ (7.33)

and for every d ∈ N, ε ∈ (0, 1] it holds

sup
x∈[a,b]d

∣
∣∣∣∣∣

∫ ∞

0
Fd(c, x)dc −

Qd,ε∑

j=0

wd
ε, j Fd(c

d
ε, j , x)

∣
∣∣∣∣∣
≤ ε

2 (7.34)

and

Qd,ε∑

j=1

wd
ε, j = Nd,ε. (7.35)

Furthermore, Corollary 7.2 (with 4n ↔ n, Fd
cdε, j

(x) ↔ Fd(x, cdε, j)) ensures there exist

neural networks (�d
ε, j)ε∈(0,∞),d∈N, j∈{1,2,...,Qd,ε} ⊆ N which satisfy

(a) sup
ε∈(0,∞),d∈N

⎡

⎣
max j∈{1,2,...,Qd,ε} L(�d

ε, j)

max{1, ln(d)}
(
| ln(ε

2Nd,ε
)| + ln(d) + 1

)
+ ln(Nd,ε + 1)

⎤

⎦ < ∞,

(b) sup
ε∈(0,∞),d∈N

⎡

⎢⎢
⎣

max j∈{1,2,...,Qd,ε} M(�d
ε, j)

(Nd,ε + 1)
1
4n d1+ 1

4n

[
ε

2Nd,ε

]− 1
4n

⎤

⎥⎥
⎦ < ∞ and

(c) for every ε ∈ (0,∞), d ∈ N that

sup
x∈[a,b]d

∣∣∣Fd(cdε, j , x) −
[
R�(�d

ε, j)
]
(x)
∣∣∣ ≤ ε

2Nd,ε
. (7.36)

123

Constructive Approximation (2022) 55:3–71 47

Let IdRd ∈ R
d×d , d ∈ N, be the matrices given by IdRd = diag(1, 1, . . . , 1), let

∇d,q ∈ N d,dq
1 , d, q ∈ N, be the neural networks given by

∇d,q =
⎛

⎜
⎝(

⎛

⎜
⎝

Idd
...

Idd

⎞

⎟
⎠ , 0)

⎞

⎟
⎠ , (7.37)

let �d,ε ∈ N d,1
1 , d ∈ N, ε ∈ (0, 1], be the neural networks given by

�d,ε =
(
(
(
wd

ε,1 wd
ε,2 . . . wd

ε,Qd,ε

)
, 0)
)

, (7.38)

and let (�d,ε)ε∈(0,1],d∈N ∈ N be the neural networks given by

�d,ε = �d,ε � P(�d
ε,1, �

d
ε,2, . . . , �

d
ε,Qd,ε

) � ∇d,Qd,ε
. (7.39)

CombiningLemma5.3, Lemma5.4, (7.34), (7.35) and (c) implies for every ε ∈ (0,∞)

and d ∈ N, x ∈ [a, b]d it holds

∣
∣∣
∣

∫ ∞

0
Fd (c, x)dc − [

R�(�d,ε)
]
(x)

∣
∣∣
∣

≤
∣∣
∣∣
∣∣

∫ ∞

0
Fd (c, x)dc −

Qd,ε∑

j=0

wd
ε, j Fd (c

d
ε, j , x)

∣∣
∣∣
∣∣
+
∣∣
∣∣
∣∣

Qd,ε∑

j=0

wd
ε, j Fd (c

d
ε, j , x) − [

R�(�d,ε)
]
(x)

∣∣
∣∣
∣∣

≤ ε
2 +

∣∣
∣∣
∣∣

Qd,ε∑

j=0

wd
ε, j Fd (c

d
ε, j , x) −

Qd,ε∑

j=0

wd
ε, j

[
R�(�d

ε, j)
]
(x)

∣∣
∣∣
∣∣

≤ ε
2 +

Qd,ε∑

j=0

wd
ε, j

∣∣
∣Fd (cdε, j , x) −

[
R�(�d

ε, j)
]
(x)
∣∣
∣ ≤ ε

2 + Nd,ε
ε

2Nd,ε
= ε.

(7.40)

This establishes that the neural networks (�d,ε)ε∈(0,1],d∈N satisfy (iii). Next, observe
for every ε ∈ (0,∞), d ∈ N

max{1, ln(d)}
(

| ln(ε

2Nd,ε
)| + ln(d) + 1

)
+ ln(Nd,ε + 1)

≤ max{1, ln(d)} (| ln(ε)| + ln(d) + 3 ln(Nd,ε) + ln(2) + 1
)

≤ max{1, ln(d)}
(

| ln(ε)| + ln(d) + 3

(
ln(Sb,n) + 1

4n
ln(d) + 1

4n
| ln(ε)| + 1

4n
ln(4)

)
+ 2

)

≤ max{1, ln(d)} (4| ln(ε)| + 4 ln(d) + 3 ln(Sb,n) + 8
)

≤ (3 ln(Sb,n) + 8)max{1, ln(d)} (| ln(ε)| + ln(d) + 1) .

(7.41)

Combining this with Lemma 5.3, Lemma 5.4 and (a) implies

123

48 Constructive Approximation (2022) 55:3–71

sup
ε∈(0,1],d∈N

[L(�d,ε)

max{1, ln(d)} (| ln(ε)| + ln(d) + 1)

]

≤ sup
ε∈(0,1],d∈N

⎡

⎣
L(�d,ε) + max j∈{1,2,...,Qd,ε} L(�d

ε, j) + L(∇d,Qd,ε
)

max{1, ln(d)} (| ln(ε)| + ln(d) + 1)

⎤

⎦

≤ 2 + sup
ε∈(0,1],d∈N

⎡

⎣
max j∈{1,2,...,Qd,ε} L(�d

ε, j)

max{1, ln(d)} (| ln(ε)| + ln(d) + 1)

⎤

⎦

≤ 2 + (3 ln(Sb,n) + 8) sup
ε∈(0,∞),d∈N

⎡

⎣
max j∈{1,2,...,Qd,ε} L(�d

ε, j)

max{1, ln(d)}
(
| ln(ε

2Nd,ε
)| + ln(d) + 1

)
+ ln(Nd,ε + 1)

⎤

⎦

< ∞.

(7.42)

This establishes (�d,ε)ε∈(0,1],d∈N satisfy (i). In addition, for every ε ∈ (0,∞), d ∈ N

it holds

(Nd,ε + 1)
1
4n d1+

1
4n

[
ε

2Nd,ε

]− 1
4n ≤ 4N

1
2n
d,εd

1+ 1
4n ε− 1

4n

≤ 4

[
Sb,nd

1
4n
[

ε
4

]− 1
4n

] 1
2n

d1+
1
4n ε− 1

4n

≤ 16Sb,nd
1+ 1

4n + 1
4n2 ε

−(1
4n + 1

8n2
)

≤ 16Sb,nd
1+ 1

2n ε− 1
2n .

(7.43)

Combining this with Lemma 5.3, Lemma 5.4, (7.33), (b) and the fact that for every
ψ ∈ N which satisfies minl∈{1,2,...,L(ψ)} Ml(ψ) > 0 it holds L(ψ) ≤ M(ψ) ensures

sup
ε∈(0,1],d∈N

[M(�d,ε)

d(2+ 1
n)ε− 1

n

]

≤ sup
ε∈(0,1],d∈N

⎡

⎢
⎢⎢⎢⎢⎢
⎣

2M(�d,ε) + 4

⎛

⎝2
Qd,ε∑

j=1

M(�d
ε, j) + 4Qd,ε max

j∈{1,2,...,Qd,ε }
L(�d

ε, j)

⎞

⎠+ 4M(∇d,Qd,ε
)

d(2+ 1
n)ε− 1

n

⎤

⎥
⎥⎥⎥⎥⎥
⎦

≤ sup
ε∈(0,1],d∈N

[
24Qd,ε max j∈{1,2,...,Qd,ε } M(�d

ε, j)

d(2+ 1
n)ε− 1

n

]

+ sup
ε∈(0,1],d∈N

[
2Qd,ε + 4dQd,ε

d(2+ 1
n)ε− 1

n

]

≤ 24

(

sup
ε∈(0,1],d∈N

[
Qd,ε

d(1+ 1
2n)ε− 1

2n

])(

sup
ε∈(0,1],d∈N

[
max j∈{1,2,...,Qd,ε} M(�d

ε, j)

d(1+ 1
2n)ε− 1

2n

])

+4 sup
ε∈(0,1],d∈N

[
Qd,ε

d(1+ 1
n)ε− 1

n

]

≤ 24

(

sup
ε∈(0,1],d∈N

[
Qd,ε

d(1+ 1
2n)ε− 1

2n

])
⎛

⎜⎜
⎝1 + 16Sb,n sup

ε∈(0,1],d∈N

⎡

⎢⎢
⎣

max j∈{1,2,...,Qd,ε} M(�d
ε, j)

(Nd,ε + 1)
1
4n d1+ 1

4n

[
ε

2Nd,ε

]− 1
4n

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

< ∞. (7.44)

123

Constructive Approximation (2022) 55:3–71 49

This establishes the neural networks (�d,ε)ε∈(0,1],d∈N satisfy (ii). The proof of The-
orem 7.3 is thus completed. �

8 Discussion

While Theorem 7.3 only establishes formally that the solution of one specific
high-dimensional PDE may be approximated by neural networks without curse of
dimensionality, the constructive approach also serves to illustrate that neural networks
are capable of accomplishing the same for any PDE solution which exhibits a similar
low-rank structure. Note here, that the tensor product construction in Proposition 6.4
only introduces a logarithmic dependency on the approximation accuracy. That we end
up with a spectral rate in this specific case is due to Proposition 6.4 and Lemma 4.3,
i.e., the insufficient regularity of the univariate functions inside the tensor product, as
well as the number of terms required by the Gaussian quadrature used to approximate
the outer integral. In particular, this means that the approach in Sect. 6 might also be
used to produce approximation results with connectivity growing only logarithmically
in the inverse of the approximation error, given that one has a suitably well-behaved
low-rank structure.

The present result is a promising step toward higher-order, numerical solution of
high-dimensional PDEs, which are notoriously troublesome to handle with any of the
classical approaches based on discretization of the domain, or with randomized (a.k.a.
Monte Carlo-based) arguments. Of course, answering the question of approximability
can only ensure that there exist networks with a reasonable size-to-accuracy trade-off,
whereas for any practical purpose it is also necessary to establish whether and how
one can find these networks.

An analysis of the generalization error for linear Kolmogorov equations can be
found in [4], which concludes that, under reasonable assumptions, the number of
required Monte Carlo samples is free of the curse of dimensionality. Moreover, there
are a number of empirical results [2,3,21,39,42], which suggest that the solutions of
various high-dimensional PDEs may be learned efficiently using standard stochastic
gradient descent-based methods. However, a satisfying formal analysis of this training
process does not seem to be available at the present.

Lastly we would like to point out that, even though we had a semi-explicit formula
available, theReLUnetworksweused for approximationwere in noway adapted to use
this knowledge and have been shown to exhibit excellent approximation properties for,
e.g., piecewise smooth functions [34], affine and Gabor systems [10] and even fractal
structures [9]. So, while a spline dictionary-based approach specifically designed for
the approximation of this one PDE solution may have similar rates, it would most
certainly lack the remarkable universality of neural networks.

Funding Open access funding provided by University of Vienna.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123

50 Constructive Approximation (2022) 55:3–71

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Additional Proofs

A.1 Technical Lemma

Lemma A.1 It holds for every r ∈ (0,∞), t ∈ (0, exp(−2r2)] that

|ln(t)| ≤ t−1/r (A.1)

and for every r ∈ (0,∞), t ∈ [exp(2r2),∞) that

ln(t) ≤ t 1/r . (A.2)

Proof of LemmaA.1 First, observe that for every r ∈ (0,∞), y ∈ [2r2,∞) it holds
that

exp
(y
r

)
=

∞∑

k=0

[
yk

k!rk
]

≥ y2

2!r2 = y
[y

2r2

]
≥ y. (A.3)

This implies that for every r ∈ (0,∞), x ∈ [exp(2r2),∞) it holds that

x1/r = exp
(
ln
(
x1/r

))
= exp

(
ln(x)
r

)
≥ ln(x). (A.4)

Hence, we obtain that for every r ∈ (0,∞), t ∈ (0, exp(−2r2)] ⊆ (0, 1] it holds that

t−1/r = [1
t

]1/r ≥ ln
(1
t

) = |ln(t)| . (A.5)

This completes the proof of Lemma A.1. �

A.2 Proof of Lemma 6.1

Proof of Lemma 6.1 The proof follows [44]. We provide it in order to provide values
of constants in the bounds on depth and width, and to reveal the dependence on the
scaling parameter B. Throughout this proof, let θ ∈ N 1,1

1 be the neural network given
by θ = (0, 0), let gs : [0, 1] → [0, 1], s ∈ N, be the functions which satisfy for every
s ∈ N, t ∈ [0, 1] that

gs(t) =

⎧
⎪⎨

⎪⎩

2t : s = 1, t < 1
2

2 − 2t : s = 1, t ≥ 1
2

g1(gs−1(t)) : s ≥ 1

, (A.6)

123

http://creativecommons.org/licenses/by/4.0/

Constructive Approximation (2022) 55:3–71 51

and let fm : [0, 1] → [0, 1], m ∈ N, be the functions which satisfy for every m ∈ N,
k ∈ {0, 1, . . . , 2m}, x ∈ [k

2m , k+1
2m
]
that

fm(x) =
[
2k + 1

2m

]
x − k2 + k

22m
. (A.7)

We claim for every s ∈ N, k ∈ {0, 1, . . . , 2s−1 − 1} it holds

gs(x) =
{
2s(x − 2k

2s) : x ∈ [2k2s , 2k+1
2s
]

2s
(2k+2

2s − x
) : x ∈ [2k+1

2s , 2k+2
2s
] . (A.8)

We now prove (A.8) by induction on s ∈ N. Equation (A.6) establishes (A.8) in the
base case s = 1. For the induction step N � s → s + 1 ∈ {2, 3, . . . } observe that
(A.6) implies for every s ∈ N, l ∈ {0, 1, . . . , 2s−1 − 1} that
(a) it holds for every x ∈

[
2l
2s ,

2l+(1/2)
2s

]

gs+1(x) = g(gs(x)) = g(2s(x − 2l
2s)) = 2

[
2s(x − 2l

2s)
]

= 2s+1(x − 2l
2s) = 2s+1(x − 2(2l)

2s+1).
(A.9)

(b) it holds for every x ∈
[
2l+(1/2)

2s , 2l+1
2s

]

gs+1(x) = g(gs(x)) = g(2s(x − 2l
2s)) = 2 − 2

[
2s(x − 2l

2s)
]

= 2 − 2s+1x + 4l = 2s+1
(
4l+2
2s+1 − x

)

= 2s+1
(
2(2l+1)
2s+1 − x

)
.

(A.10)

(c) it holds for every x ∈
[
2l+1
2s ,

2l+(3/2)
2s

]

gs+1(x) = g(gs(x)) = g
(
2s
(2l+2

2s − x
)) = 2 − 2

[
2s
(2l+2

2s − x
)]

= 2 − 2(2l + 2) + 2s+1x = 2s+1x − 2(2l + 1)

= 2s+1(x − 2(2l+1)
2s+1).

(A.11)

(d) it holds for every x ∈
[
2l+(3/2)

2s , 2l+2
2s

]

gs+1(x) = g(gs(x)) = g
(
2s
(2l+2

2s − x
)) = 2

[
2s
(2l+2

2s − x
)]

= 2s+1 (2l+2
2s − x

) = 2s+1
(
2(2l+2)
2s+1 − x

)
.

(A.12)

123

52 Constructive Approximation (2022) 55:3–71

Next observe that for every s ∈ N, k ∈ {0, 1, . . . , 2s − 1} there exists l ∈
{0, 1, . . . , 2s−1 − 1} such that

[
2k
2s+1 ,

2k+1
2s+1

]
=
[
2l
2s ,

2l+(1/2)
2s

]
or

[
2k
2s+1 ,

2k+1
2s+1

]
=
[
2l+1
2s ,

2l+(3/2)
2s

]
. (A.13)

Furthermore, for every s∈N, k∈{0, 1, . . . , 2s − 1} there exists l∈{0, 1, . . . , 2s−1 − 1}
such that

[
2k+1
2s+1 , 2k+2

2s+1

]
=
[
2l+(1/2)

2s , 2l+1
2s

]
or

[
2k+1
2s+1 , 2k+2

2s+1

]
=
[
2l+(3/2)

2s , 2l+2
2s

]
. (A.14)

Combining this with (A.9), (A.10), (A.11), (A.12) and (A.13) completes the induction
step N � s → s + 1 ∈ {2, 3, . . . } and thus establishes the claim (A.8).

Next, for every m ∈ N, k ∈ {0, 1, . . . , 2m−1} it holds

fm−1
(2k
2m
)− fm

(2k
2m
) = fm−1

(
k

2m−1

)
− fm

(2k
2m
) =

[
k

2m−1

]2 − [2k
2m
]2 = 0.

(A.15)

In addition, note that (A.7) implies that for every m ∈ N, k ∈ {0, 1, . . . , 2m − 1} it
holds

fm−1
(2k+1

2m
) = fm−1

(
k+ 1

2
2m−1

)
=
[
2k + 1

2m−1

]
k + 1

2

2m−1 − k2 + k

22(m−1)

= (2k + 1)(k + 1
2) − (k2 + k)

22m−2 = k2 + k + 1
2

22m−2 = 4k2 + 4k + 2

22m

(A.16)

and

fm
(2k+1

2m
) =

[
2(2k + 1) + 1

2m

]
2k + 1

2m
− (2k + 1)2 + (2k + 1)

22m
= 4k2 + 4k + 1

22m
.

(A.17)

For every m ∈ N, k ∈ {0, 1, . . . , 2m − 1} it holds

fm−1
(2k+1

2m
)− fm

(2k+1
2m

) = 4k2 + 4k + 2

22m
− 4k2 + 4k + 1

22m
= 1

22m
. (A.18)

Combining this with (A.8), (A.7) and (A.15) demonstrates that for every m ∈ N,
x ∈ [0, 1] it holds

fm−1(x) − fm(x) = 2−2mgm(x). (A.19)

123

Constructive Approximation (2022) 55:3–71 53

The fact that for every x ∈ [0, 1] it holds that f0(x) = x therefore implies that for
every m ∈ N0, x ∈ [0, 1] it holds

fm(x) = x −
m∑

s=1

2−2sgs(x). (A.20)

We observe fm is the affine, linear interpolant of the twice continuously differen-
tiable function [0, 1] � x �→ x2 ∈ [0, 1] at the points k

2m , k ∈ {0, 1, . . . , 2m}. This
establishes that for every m ∈ N

sup
x∈[0,1]

∣∣∣x2 − fm(x)
∣∣∣ = max

k∈{0,1,...,2m }

⎛

⎜
⎝ sup

x∈
[

k
2m , k+1

2m

]

∣∣∣x2 − fm(x)
∣∣∣

⎞

⎟
⎠

≤ max
k∈{0,1,...,2m }

⎛

⎝
[k+1
2m − k

2m
]2

8
max

x∈
[

k
2m , k+1

2m

]

∣
∣∣ d

2

dt2

[
x2
]∣∣∣

⎞

⎠

≤ max
k∈{0,1,...,2m }

⎛

⎝ 1
8

[1
2m
]2

max
x∈
[

k
2m , k+1

2m

] |2|
⎞

⎠

= 2−2m−2.

(A.21)

Let (Ak, bk) ∈ R
4×4 ×R

4, k ∈ N, be the matrix-vector tuples which satisfy for every
k ∈ N

Ak =

⎛

⎜
⎜
⎝

2 −4 2 0
2 −4 2 0
2 −4 2 0

−2−2k+3 2−2k+4 −2−2k+3 1

⎞

⎟
⎟
⎠ and bk =

⎛

⎜
⎜
⎝

0
− 1

2−1
0

⎞

⎟
⎟
⎠ , (A.22)

let ϕm ∈ N, m ∈ N, be the neural networks which satisfy ϕ1 = (1, 0) and, for every
m ∈ N,

ϕm =

⎛

⎜⎜⎜
⎝

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

1
1
1
1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
− 1

2−1
0

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠ , (A2, b2), . . . , (Am−1, bm−1),

⎛

⎜⎜⎜
⎝

⎛

⎜⎜
⎝

−2−2m+3

2−2m+4

−2−2m+3

1

⎞

⎟⎟
⎠

T

, 0

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

.

(A.23)

Let further rk : R → R, k ∈ N denote the function which satisfies for every x ∈ R

(r11 (x), r
1
2 (x), r13 (x), r14 (x)) = r1(x) = �∗(x, x − 1

2 , x − 1, x) (A.24)

123

54 Constructive Approximation (2022) 55:3–71

and for every x ∈ R, k ∈ N

(rk1 (x), rk2 (x), rk3 (x), rk4 (x)) = rk(x) = �∗(Akrk−1(x) + bk). (A.25)

We claim that for every k ∈ {1, 2, . . . ,m − 1}, x ∈ [0, 1] it holds
(a)

2rk1 (x) − 4rk2 (x) + 2rk3 (x) = gk(x) (A.26)

and
(b)

rk4 (x) = x −
k−1∑

j=1

2−2 j g j (x). (A.27)

We prove (a) and (b) by induction over k ∈ {1, 2, . . . ,m − 1}. For the base case k = 1
we note that for every x ∈ [0, 1] it holds

g1(x) = 2�(x) − 4�(x − 1
2) + 2�(x − 1). (A.28)

Hence, we obtain that for every x ∈ [0, 1] it holds

2r11 (x) − 4r12 (x) + 2r13 (x) = 2�(x) − 4�(x − 1
2) + 2�(x − 1) = g1(x). (A.29)

Furthermore, note that for every x ∈ [0, 1] it holds that r14 (x) = x . This and (A.29)
establish the base case k = 1. For the induction step {1, 2, . . . ,m − 2} � k−1 → k ∈
{2, 3, . . . ,m−1} observe that (A.28) ensures for every x ∈ [0, 1], k ∈ {2, 3, . . . ,m−
1}, with gk−1(x) = 2rk−1

1 (x) − 4rk−1
2 (x) + 2rk−1

3 (x), it holds

2rk1 (x) − 4rk2 (x) + 2rk3 (x) = 2�(2rk−1
1 (x) − 4rk−1

2 (x) + 2rk−1
3 (x))

−4�(2rk−1
1 (x) − 4rk−1

2 (x) + 2rk−1
3 (x) − 1

2)

+2�(2rk−1
1 (x) − 4rk−1

2 (x) + 2rk−1
3 (x) − 1)

= g1(2r
k−1
1 (x) − 4rk−1

2 (x) + 2rk−1
3 (x))

= g1(gk−1(k)) = gk(x).

(A.30)

Induction thus establishes (a). Moreover note that (A.7) and (A.20) for every k ∈ N,
x ∈ [0, 1] it holds

x −
k−1∑

j=1

2−2 j g j (x) = fk−1(x) ≥ 0. (A.31)

123

Constructive Approximation (2022) 55:3–71 55

Combining this with (A.28) implies that for every x ∈ [0, 1], k ∈ {2, 3, . . . ,m − 1}
with gk−1(x) = 2rk−1

1 (x)−4rk−1
2 (x)+2rk−1

3 (x) and rk−1
4 (x) = x−∑k−2

j=1 2
−2 j g j (x)

it holds

rk4 (x) = �(−2−2k+3rk−1
1 (x) + 2−2k+4rk−1

2 (x) − 2−2k+3rk−1
3 (x) + rk−1

4 (x))

= �(x −
k−2∑

j=1

2−2 j g j (x) − gk−1(x)) = �(x −
k−1∑

j=1

2−2 j g j (x))

= x −
k−1∑

j=1

2−2 j g j (x). (A.32)

Induction thus establishes (b). Next observe that (a) and (b) that for every m ∈ N,
x ∈ [0, 1] it holds

(x) = −2−2m+3rm−1
1 (x) + 2−2m+4rm−1

2 (x) − 2−2m+3rm−1
3 (x) + rm−1

4 (x)

= −2−2(m−1)
(
2rm−1

1 (x) − 4rm−1
2 (x) + 2rm−1

3 (x)
)

+ x −
m−2∑

j=1

2−2 j g j (x)

= x −
⎡

⎣
m−2∑

j=1

2−2 j g j (x)

⎤

⎦− 2−2(m−1)gm−1(x) = x −
m−1∑

j=1

2−2 j g j (x).

(A.33)

Combining this with (A.20) establishes that for every m ∈ N, x ∈ [0, 1] it holds

[R�(ϕm)](x) = fm−1(x). (A.34)

This and (A.21) imply that for every m ∈ N it holds

sup
x∈[0,1]

∣
∣∣x2 − [R�(ϕm)](x)

∣
∣∣ ≤ 2−2m . (A.35)

Furthermore, observe that by construction it holds for every m ∈ N

L(ϕm) = m and M(ϕm) = max{1, 10 + 15(m − 2)} ≤ 15m. (A.36)

Let (σε)ε∈(0,∞) ⊆ N be the neural networks which satisfy for ε ∈ (0, 1)

σε = ϕ⌈ 1
2 |log2(ε)|

⌉ (A.37)

and for every ε ∈ [1,∞) that σε = θ . Observe that for every ε ∈ [1,∞) it holds

sup
x∈[0,1]

∣∣∣x2 − [R�(σε)](x)
∣∣∣ = sup

x∈[0,1]

∣∣∣x2 − [R�(θ)](x)
∣∣∣ ≤ 1 ≤ ε. (A.38)

123

56 Constructive Approximation (2022) 55:3–71

In addition, note for every ε ∈ (0, 1) it holds

sup
x∈[0,1]

∣
∣
∣x2 − [R�(σε)](x)

∣
∣
∣ = sup

x∈[0,1]

∣
∣
∣
∣∣
x2 −

[

R�

(

ϕ⌈ 1
2 |log2(ε)|

⌉

)]

(x)

∣
∣
∣
∣∣

≤ 2
−2
⌈
1
2 |log2(ε)|

⌉

≤ 2
−2
(
1
2 |log2(ε)|

)

= 2log2(ε) = ε.

(A.39)

Moreover, observe that (A.36) implies for every ε ∈ (0, 1) it holds

L(σε) = L(ϕ⌈ 1
2 |log2(ε)|

⌉) = ⌈ 1
2

∣
∣log2(ε)

∣
∣⌉ (A.40)

and

M(σε) = M(ϕ⌈ 1
2 |log2(ε)|

⌉) ≤ 15
⌈ 1
2

∣∣log2(ε)
∣∣⌉ . (A.41)

Furthermore, for every ε ∈ [1,∞) it holdsL(σε) = L(θ) = 1 andM(σε) = M(θ) =
0. This completes the proof of Lemma 6.1. �

A.3 Proof of Lemma 6.2

Proof of Lemma 6.2 Throughout this proof, assume Setting 5.2, let θ ∈ N 1,1
1 be the

neural network given by θ = (0, 0), let α ∈ N 2,6,3
2 be the neural network given by

α1 =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

(

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 1
−1 −1
1 0

−1 0
0 1
0 −1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

,

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0
0
0
0
0
0

⎞

⎟
⎟⎟⎟⎟⎟
⎠

),

⎛

⎝ 1
2B

⎛

⎝
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎞

⎠ ,

⎛

⎝
0
0
0

⎞

⎠

⎞

⎠

⎞

⎟
⎟⎟⎟⎟⎟
⎠

, (A.42)

and let � ∈ N 3,1
1 be the neural network given by � = (

(
(
2B2 −2B2 −2B2

)
, 0)
)
.

Observe that Lemma 6.1 ensures the existence of neural networks (σε)ε∈(0,∞) ⊆ N
which satisfy Lemma 6.1, (i) – (iv). Let (με)ε∈(0,∞) ⊆ N be the neural networks
which satisfy for every ε ∈ (0,∞)

με =
{

� � P (σε/6B2 , σε/6B2 , σε/6B2
)� α : ε < B2

θ : ε ≥ B2 . (A.43)

123

Constructive Approximation (2022) 55:3–71 57

Note first that for every ε ∈ [B2,∞) it holds

sup
x,y∈[−B,B]

∣
∣xy − [

R�(με)
]
(x, y)

∣
∣ = sup

x,y∈[−B,B]
∣
∣xy − [

R�(θ)
]
(x, y)

∣
∣

= sup
x,y∈[−B,B]

|xy − 0| = B2 ≤ ε.
(A.44)

Next observe that for every (x, y) ∈ R
2 it holds

[R�(α)](x, y) = 1
2B

⎛

⎝
�(x + y) + �(−(x + y))

�(x) + �(−x)
�(y) + �(−y)

⎞

⎠ = 1
2B

⎛

⎝
|x + y|

|x |
|y|

⎞

⎠ . (A.45)

Furthermore, for every (x, y, z) ∈ R
3 holds [R�(�)](x, y, z) = 2B2x−2B2y−2B2z.

Combining this with Lemma 5.3, Lemma 5.4, (A.43) and (A.45) establishes that for
every ε ∈ (0, B2), (x, y) ∈ [−B, B]2 it holds

[R�(με)](x, y) = 2B2
(
[R�(σε/6B2)]

(|x+y|
2B

)
− [R�(σε/6B2)]

(|x |
2B

)
− [R�(σε/6B2)]

(|y|
2B

))
.

(A.46)

With Lemma 6.1, Item iv, (A.46) establishes (v). In addition note that Lemma 6.1
demonstrates for every ε ∈ (0,∞) it holds

sup
z∈[−2B,2B]

∣
∣∣ 12 z

2 − 2B2
[
[R�(σε/6B2)]

(|z|
2B

)]∣∣∣

= sup
z∈[−2B,2B]

∣∣∣
∣2B

2
[|z|
2B

]2 − 2B2
[
[R�(σε/6B2)]

(|z|
2B

)]∣∣∣
∣

= 2B2

[

sup
t∈[0,1]

∣∣∣t2 − [[R�(σε/6B2)] (t)
]∣∣∣

]

≤ 2B2
[ε

6B2

]
= ε

3
.

(A.47)

This and (A.46) establish that for every ε ∈ (0, B2) it holds

sup
x,y∈[−B,B]

∣∣xy − [R�(με)](x, y)
∣∣

= sup
x,y∈[−B,B]

∣∣
∣∣
1

2

[
(x + y)2 − x2 − y2

]
− [R�(με)](x, y)

∣∣
∣∣

≤ ε
3 + ε

3 + ε
3 = ε.

(A.48)

123

58 Constructive Approximation (2022) 55:3–71

Next observe that L(α) = 2 and L(�) = 1. Combining this with Lemma 5.3, Lemma
5.4 and Lemma 6.1(i) ensures for every ε ∈ (0, B2)

L(με) = L(�) + L(σε/6B2) + L(α)

≤ 1
2

∣∣
∣log2

(
ε

6B2

)∣∣
∣+ 4 = 1

2 log2
(
6B2

ε

)
+ 4

≤ 1
2

(
log2

(1
ε

)+ 2 log2(B) + 3
)+ 4

= 1
2 log2

(1
ε

)+ log2(B) + 6.

(A.49)

CombiningM(α) = 14 andM(�) = 3 with Lemma 5.3, Lemma 5.4, Lemma 6.1(ii)
and (A.42) demonstrate that for every ε ∈ (0, B2) it holds

M(με) ≤ 2
(M(�) + 3M(σε/6B2) + M(α)

)

≤ 34 + 90
(
1
2 | log2

(
6B2

ε

)
| + 1

)

≤ 45 log2
(1

ε

)+ 90 log2(B) + 259.

(A.50)

Moreover, for every ε ∈ (B2,∞) it holds L(με) = 1 andM(με) = 0. Next, observe
Lemma 5.3 and Lemma 5.4 demonstrate that for every ε ∈ (0,∞) it holds that
M1(με) = M1(α) = 8 and ML(με)(με) = M(�) = 3. This completes the proof
of Lemma 6.2. �

A.4 Proof of Theorem 6.5

Proof of Theorem 6.5 Throughout this proof, assume Setting 5.2, let hN , j : R → R,
N ∈ N, j ∈ {0, 1, . . . , N }, be the functions which satisfy for every N ∈ N, j ∈
{0, 1, . . . , N }, x ∈ R

hN , j (x) =

⎧
⎪⎨

⎪⎩

Nx + 1 − j : j−1
N ≤ x ≤ j

N

−Nx + 1 + j : j
N ≤ x ≤ j+1

N

0 : else
, (A.51)

let T f ,N , j : R → R, f ∈ Bn
1 , N ∈ N, j ∈ {0, 1, . . . , N }, be the functions which

satisfy for every f ∈ Bn
1 , N ∈ N, j ∈ {0, 1, . . . , N }, x ∈ [0, 1]

T f ,N , j (x) =
n−1∑

k=0

f (k)
(

j
N

)

k! (x − j
N)k . (A.52)

For every f ∈ Bn
1 , let fN : R → R, N ∈ N denote functions which satisfy for every

N ∈ N, x ∈ [0, 1]

fN (x) =
N∑

j=0

hN , j (x)T f ,N , j (x). (A.53)

123

Constructive Approximation (2022) 55:3–71 59

Observe that Taylor’s theorem (with Lagrange remainder term) ensures that for every
f ∈ Bn

1 , N ∈ N, j ∈ {0, 1, . . . , N }, x ∈ [max{0, j−1
N },min{1, j+1

N }]
∣∣ f (x) − T f ,N , j (x)

∣∣ ≤ 1
n!
∣
∣∣x − j

N

∣
∣∣
n

sup
ξ∈[max{0, j−1

N },min{1, j+1
N }]

∣
∣∣ f (n)(ξ)

∣
∣∣

≤ 1
n!N

−n max
k∈{0,1,...,n}

[

sup
t∈[0,1]

∣∣∣ f (k)(t)
∣∣∣

]

≤ 1
n!N

−n .

(A.54)

Moreover, for every N ∈ N, x ∈ [0, 1], j /∈ {�Nx�−1, �Nx�} it holds that hN , j (x) =
0. We obtain for every N ∈ N and x ∈ [0, 1]

N∑

j=0

hN , j (x)T f ,N , j (x) = hN ,�Nx�−1(x)T f ,N ,�Nx�−1(x) + hN ,�Nx�(x)T f ,N ,�Nx�(x). (A.55)

Furthermore, (A.51) implies for every N ∈ N, j ∈ {1, . . . , N − 1}, x ∈ [j−1
N ,

j
N]

holds

hN , j−1(x) + hN , j (x) = −Nx + 1 + (j − 1) + Nx + 1 − j = 1. (A.56)

Combining this with (A.53), (A.54) and (A.55) establishes that for every f ∈ Bn
1 ,

N ∈ N, x ∈ [0, 1]
| f (x) − fN (x)|

=
∣∣
∣∣∣∣
f (x) −

N∑

j=0

hN , j (x)T f ,N , j (x)

∣∣
∣∣∣∣

= ∣∣ f (x) − (
hN ,�Nx�−1(x)T f ,N ,�Nx�−1(x) + hN ,�Nx�(x)T f ,N ,�Nx�(x)

)∣∣

≤ ∣∣hN ,�Nx�−1(x) f (x) − hN ,�Nx�−1(x)T f ,N ,�Nx�−1(x)
∣∣

+ ∣
∣hN ,�Nx�(x) f (x) − hN ,�Nx�(x)T f ,N ,�Nx�(x)

∣
∣

= hN ,�Nx�−1(x)
∣∣ f (x) − T f ,N ,�Nx�−1(x)

∣∣+ hN ,�Nx�(x)
∣∣ f (x) − T f ,N ,�Nx�(x)

∣∣

≤ hN ,�Nx�−1(x)
[1
n!N

−n]+ hN ,�Nx�(x)
[1
n!N

−n] = 1
n!N

−n .

(A.57)

We now realize this local Taylor approximation using neural networks. To this end,
note that Theorem6.3 ensures that there existC ∈ R and neural networks (�k

η)η∈(0,∞),
k ∈ N ∩ [2,∞) which satisfy

(A) L(�k
η) ≤ C ln(k) (|ln(η)| + k ln(3) + ln(k)),

(B) M(�k
η) ≤ Ck (|ln(η)| + k ln(3) + ln(k)),

(C) sup
x∈[−3,3]k

∣∣
∣∣∣

[
k∏

i=1

xi

]

−
[
R�(�k

η)
]
(x)

∣∣
∣∣∣
≤ η and

(D) R�

[
�k

η

]
(x1, x2, . . . , xk) = 0, if there exists i ∈ {1, 2, . . . , k} with xi = 0.

123

60 Constructive Approximation (2022) 55:3–71

To complete the proof, we introduce the following neural networks:

• ∇N , j,k ∈ N k,1
1 , N ∈ N, j ∈ {0, 1, . . . , N }, k ∈ {2, 3, . . . , n − 1} given by

∇N , j,k =
⎛

⎜
⎝(

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ ,

⎛

⎜
⎝

− j
N
...

− j
N

⎞

⎟
⎠)

⎞

⎟
⎠ , (A.58)

• ξ kε,N , j ∈ N, ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N }, k ∈ {1, 2, . . . , n − 1}, given
by

ξ kε,N , j =
{

(1, 0) : k = 1

�k
ε/8e � ∇N , j,k : k > 1

, (A.59)

• � f ,N , j ∈ N 1,n−1
1 , f ∈ Bn

1 , N ∈ N, j ∈ {0, 1, . . . , N } given by

� f ,N , j =
(

(

(
f (n−1)

(
j
N

)

(n−1)!
f (n−2)

(
j
N

)

(n−2)! . . .
f (1)

(
j
N

)

(1)!

)
, f
(

j
N

)
)

)
, (A.60)

• τ f ,ε,N , j ∈ N, f ∈ Bn
1 , ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N } given by

τ f ,ε,N , j = � f ,N , j � P(ξn−1
ε,N , j , ξ

n−2
ε,N , j , . . . , ξ

1
ε,N , j) � ∇1,0,n−1, (A.61)

• χN , j ∈ N 1,3,1
2 , N ∈ N, j ∈ {0, 1, . . . , N } given by

χN , j =
⎛

⎝(

⎛

⎝
1
1
1

⎞

⎠ ,

⎛

⎝
−(j−1)/N

− j/N

−(j+1)/N

⎞

⎠), (
(
1 −2 1

)
, 0)

⎞

⎠ (A.62)

• λN ∈ N 1,N+1
1 , N ∈ N given by

λN = (
(
(
1 . . . 1

)
, 0)
)
, (A.63)

• ψ f ,ε,N , j ∈ N, f ∈ Bn
1 , ε ∈ (0,∞), N ∈ N, j ∈ {0, 1, . . . , N } given by

ψ f ,ε,N , j = �2
ε/8 � P(χN , j , τ f ,ε,N , j), (A.64)

• ϕ f ,ε,N ∈ N, f ∈ Bn
1 , N ∈ N, ε ∈ (0,∞) given by

ϕ f ,ε,N = λN � P (ψ f ,ε,N ,1, ψ f ,ε,N ,2, . . . , ψ f ,ε,N ,N
)� ∇1,0,2N+2. (A.65)

123

Constructive Approximation (2022) 55:3–71 61

With these networks, we note Lemma 5.3, Lemma 5.4, (C), (A.58) and (A.59) ensure
that for every N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N }, k ∈ {2, 3, . . . , n − 1}

sup
x∈[0,1]

∣∣∣(x − j
N)k −

[
R�(ξkε,N , j)

]
(x)
∣∣∣

≤ sup
x∈[0,1]

∣
∣∣(x − j

N)k −
[
R�(�k

ε/8e)
]
(
[
R�(∇N , j ,k)

]
(x))

∣
∣∣

≤ sup
x∈[0,1]

∣∣
∣∣∣
∣

⎡

⎣
k∏

i=1

(x − j
N)k

⎤

⎦−
[
R�(�k

ε/8e)
]
(x − j

N , x − j
N , . . . , x − j

N)

∣∣
∣∣∣
∣

≤ sup
x∈[−1,1]k

∣∣∣
∣∣
∣

⎡

⎣
k∏

i=1

xi

⎤

⎦−
[
R�(�k

ε/8e)
]
(x)

∣∣∣
∣∣
∣
≤ ε

8e

(A.66)

and

sup
x∈[0,1]

∣∣∣(x − j
N) −

[
R�(ξ1ε,N , j)

]
(x)
∣∣∣ = 0. (A.67)

Moreover, Lemma 5.3, Lemma 5.4, (A.58), (A.59), (A.60) and (A.61) demonstrate
that for every f ∈ Bn

1 , N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N }, x ∈ [0, 1] it holds

[
R�(τ f ,ε,N , j)

]
(x) =

n−1∑

k=1

⎡

⎣
f (k)

(
j
N

)

k!
[
R�(ξ kε,N , j)

]
(x)

⎤

⎦+ f
(

j
N

)
. (A.68)

Combining this with (A.52), (A.61), (A.66) and (A.66) establishes that for every
f ∈ Bn

1 , N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N }, x ∈ [0, 1] it holds
∣
∣T f ,N , j (x) − [

R�(τ f ,ε,N , j)
]
(x)
∣
∣

=
∣∣
∣∣∣
∣

⎛

⎝
n−1∑

k=0

f (k)
(

j
N

)

k! (x − j
N)k

⎞

⎠−
⎛

⎝
n−1∑

k=1

⎡

⎣
f (k)

(
j
N

)

k!
[
R�(ξkε,N , j)

]
(x)

⎤

⎦+ f
(

j
N

)
⎞

⎠

∣∣
∣∣∣
∣

≤
n−1∑

k=1

⎛

⎝
f (k)

(
j
N

)

k!
∣∣∣
∣
(
x − j

N

)k −
[
R�(ξkε,N , j)

]
(x)

∣∣∣
∣

⎞

⎠

≤ ε

8e

n−1∑

k=1

f (k)
(

j
N

)

k! ≤ ε

8e

⎛

⎝
∞∑

k=1

1

k!

⎞

⎠ ≤ ε

8
.

(A.69)

Next, (A.62) ensures for every N ∈ N, j ∈ {0, 1, . . . , N }, x ∈ [0, 1]
[R�(χN , j)](x) = �(x − j−1

N) − 2�(x − j
N) + �(x − j+1

N) = hN , j (x). (A.70)

Now (A.69) and Taylor’s Theorem imply for every f ∈ Bn
1 , N ∈ N, ε ∈ (0, 1),

j ∈ {0, 1, . . . , N }, x ∈ [0, 1] that
∣
∣[R�(τ f ,ε,N , j)](x)

∣
∣ ≤ ∣

∣[R�(τ f ,ε,N , j)](x) − T f ,N , j (x)
∣
∣+ ∣

∣T f ,N , j (x) − f (x)
∣
∣+ | f (x)|

≤ ε

4(N + 1)
+ 1

n! x
n sup
t∈[0,1]

| f (n)(t)| + sup
t∈[0,1]

| f (t)| ≤ 3.

(A.71)

123

62 Constructive Approximation (2022) 55:3–71

Combining this with Lemma 5.3, Lemma 5.4, (A.51), (C), (A.69) and (A.70) estab-
lishes for every f ∈ Bn

1 , N ∈ N, ε ∈ (0, 1), j ∈ {0, 1, . . . , N }, x ∈ [0, 1] the bound
∣∣hN , j (x)T f ,N , j (x) − [R�(ψ f ,ε,N , j)](x, x)

∣∣

≤ ∣
∣hN , j (x)T f ,N , j (x) − [R�(χN , j)](x)[R�(τN , j)](x)

∣
∣

+
∣
∣
∣[R�(χN , j)](x)[R�(τN , j)](x) − [R�(�2

ε/8 ◦ P(χN , j , τ f ,ε,N , j))](x, x)
∣
∣
∣

≤ ∣∣hN , j (x)T f ,N , j (x) − [R�(τN , j)](x)
∣∣

+
∣∣
∣[R�(χN , j)](x)[R�(τN , j)](x) − [R�(�2

ε/8)]([R�(χN , j](x), [R�(τ f ,ε,N , j)](x))
∣∣
∣

≤ ε
8 + ε

8 = ε
4 .

(A.72)

Furthermore, note that for every N ∈ N, j ∈ {0, 1, . . . , N }, x /∈ [j−1
N ,

j+1
N] it holds

that hN , j (x) = χN , j (x) = 0. Thus (D) ensures that for every f ∈ Bn
1 , N ∈ N,

ε ∈ (0, 1), j ∈ {0, 1, . . . , N }, x ∈ [0, 1] it holds
∣∣hN , j (x)T f ,N , j (x) − [R�(ψ f ,ε,N , j)](x, x)

∣∣ = 0. (A.73)

This, Lemma 5.3, Lemma 5.4, (A.53), (A.65) and (A.72) imply that for every f ∈ Bn
1 ,

N ∈ N, ε ∈ (0, 1), x ∈ [0, 1] it holds

∣∣ fN (x) − [R�(ϕ f ,ε,N)](x)∣∣ =
∣∣
∣∣
∣∣

N∑

j=0

hN , j (x)T f ,N , j (x) −
N∑

j=0

[R�(ψ f ,ε,N , j)](x, x)
∣∣
∣∣
∣∣

≤ 2 max
j∈{0,1,...,N }

∣
∣hN , j (x)T f ,N , j (x) − [R�(ψ f ,ε,N , j)](x, x)

∣
∣

≤ ε
2 .

(A.74)

Combining this with (A.57) establishes that for every f ∈ Bn
1 , N ∈ N, ε ∈ (0, 1),

x ∈ [0, 1] it holds

∣
∣ f (x) − [R�(ϕ f ,ε,N)](x)∣∣ ≤ | f (x) − fN (x)| + ∣

∣ fN (x) − [R�(ϕ f ,ε,N)]∣∣ ≤ 1
n! N

−n + ε
2 .

(A.75)

Let Nε ∈ N satisfy for every ε ∈ (0,∞)

Nε =
⌈[2

n!ε
]1/n⌉

, (A.76)

let θ ∈ N 1,1
1 be given by θ = (0, 0) and let (� f ,ε) f ∈Bn

1 ,ε∈(0,∞) ⊆ N be the neural
networks given by

� f ,ε =
{

ϕ f ,ε,Nε : ε < 1

θ : ε ≥ 1
. (A.77)

123

Constructive Approximation (2022) 55:3–71 63

Observe that (A.75) implies that for every f ∈ Bn
1 , ε ∈ (0, 1), x ∈ [0, 1]

∣
∣ f (x) − [R�(� f ,ε)](x)

∣
∣ = ∣

∣ f (x) − [R�(ϕ f ,ε,Nε)](x)
∣
∣ ≤ 1

n! N
−n
ε + ε

2 ≤ 1
n!
[
n!ε
2

]
+ ε

2 = ε.

(A.78)

Moreover that for every f ∈ Bn
1 , ε ∈ [1,∞), x ∈ [0, 1] it holds

∣∣ f (x) − [R�(� f ,ε)](x)
∣∣ = ∣∣ f (x) − [R�(θ)](x)∣∣ = | f (x)| ≤ 1 ≤ ε. (A.79)

This and (A.78) establish that the neural networks (� f ,ε) f ∈Bn
1 ,ε∈(0,∞) satisfy (iii).

Next, Lemma 5.3, Lemma 5.4, (A), (A.58) and (A.59) imply for every N ∈ N,
ε ∈ (0,∞), j ∈ {0, 1, . . . , N }, k ∈ {1, 2, . . . , n − 1}

L(ξ kε,N , j) ≤ max{1,L(�k
ε/8e) + L(∇N , j,k)} ≤ C ln(k)

(| ln (ε
8e

) | + k ln(3) + ln(k)
)+ 1.

(A.80)

Combining this with Lemma 5.3, Lemma 5.4, (A.58), (A.60), (A.61) shows for every
f ∈ Bn

1 , N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N } the bound

L(τ f ,ε,N , j) ≤ L(� f ,N , j) +
[

max
k∈{1,2,...,n−1}L(ξ kε,N , j)

]
+ L(∇1,0,n−1)

≤ 3 + C ln(n)
(| ln (ε

8e

) | + n ln(3) + ln(n)
)
.

(A.81)

This, Lemma 5.3, Lemma 5.4, (A), (A.62), (A.63), (A.65) and (A.58) ensure for every
f ∈ Bn

1 , N ∈ N, ε ∈ (0,∞) it holds

L(ϕ f ,ε,N) ≤ L(λN) +
[

max
j∈{0,1,...,N }L(ψ f ,ε,N , j)

]
+ L(∇1,0,2N+2)

≤ 2 +
[

max
j∈{0,1,...,N }L(�2

ε/8 � P(χN , j , τ f ,ε,N , j))

]

≤ 2 + [
C ln(2)

(| ln (ε
8

) | + 2 ln(3) + ln(2)
)+ max{3,L(τ f ,ε,N , j)}

]

≤ 5 + C ln(2)
(| ln (ε

8

) | + ln(18)
)+ C ln(n)

(| ln (ε
8e

) | + n ln(3) + ln(n)
)

≤ 5 + C ln(2) (| ln(ε)| + | ln(8)| + ln(18))

+ C ln(n) (| ln(ε)| + | ln(8e)| + n ln(3) + ln(n))

= C ln(2n) |ln(ε)| + C(ln(2) ln(144) + ln(n)(ln(3)n + ln(n) + | ln(8e)|)) + 5.
(A.82)

With the constant C from (A.82), define the term T1 by

T1 = C(ln(2) ln(144) + ln(n)(ln(3)n + ln(n) + | ln(8e)|)) + 5. (A.83)

123

64 Constructive Approximation (2022) 55:3–71

Observe that (A.82) implies for every f ∈ Bn
1 , ε ∈ (0, 1)

L(� f ,ε) = L(ϕ f ,ε,Nε) = C ln(2n) |ln(ε)| + T1. (A.84)

Hence we obtain

sup
f ∈Bn

1 ,ε∈(0,e−r]

[L(� f ,ε)

max{r ,|ln(ε)|}
]

≤ sup
f ∈Bn

1 ,ε∈(0,e−r]

[
C ln(2n)|ln(ε)|+T1|ln(ε)|

]
≤ C ln(2n) + T1

r < ∞. (A.85)

In addition, note that (A.84) ensures that

sup
f ∈Bn

1 ,ε∈(e−r ,1)

[L(� f ,ε)

max{r ,|ln(ε)|}
]

≤ sup
f ∈Bn

1 ,ε∈(e−r ,1)

[
C ln(2n)|ln(ε)|+T1

r

]
≤ C ln(2n) + T1

r < ∞. (A.86)

Furthermore,

sup
f ∈Bn

1 ,ε∈[1,∞)

[L(� f ,ε)

max{r ,|ln(ε)|}
]

= sup
f ∈Bn

1 ,ε∈[1,∞)

[
1

max{r ,|ln(ε)|}
]

< ∞. (A.87)

This, (A.85) and (A.86) establish that the neural networks (� f ,ε)ε∈(0,∞) satisfy (i).
Next, Lemma 5.3, (B), (A.58) and (A.59) imply for every N ∈ N, ε ∈ (0,∞),
j ∈ {0, 1, . . . , N }, k ∈ {1, 2, . . . , n − 1}

M(ξ kε,N , j) ≤ max{1, 2(M(�k
ε/8e) + M(∇N , j,k))} ≤ 2(Ck

(∣∣ln
(

ε
8e

)∣∣+ k ln(3) + ln(k)
)+ 1)

(A.88)

Combining this with Lemma 5.3, Lemma 5.4, (A.58), (A.60) and (A.61) shows for
every f ∈ Bn

1 , N ∈ N, ε ∈ (0,∞), j ∈ {0, 1, . . . , N } it holds

M(τ f ,ε,N , j) ≤ 2
(
M(� f ,N , j) + 2

(
M(P(ξn−1

ε,N , j , . . . , ξ
1
ε,N , j)) + L(∇1,0,n−1)

))

≤ 2n + 4

⎛

⎝2

⎡

⎣
n−1∑

k=1

M(ξkε,N , j)

⎤

⎦+ 4(n − 1) max
k∈{1,2,...,n−1}L(ξkε,N , j)

⎞

⎠+ 8(n − 1)

≤ 10n + 8(n − 1)(2Cn
(
ln
(

ε
(8e)

)
| + n ln(3) + ln(n)

)
+ 2)

+ 16(n − 1)(C ln(n)
(| ln (ε

8e
) | + n ln(3) + ln(n)

)+ 1)

≤ 32n2C
(| ln (ε

8e
) | + n ln(3) + ln(n)

)+ 42n.

(A.89)

Let the term T2 be given by

T2 = 128
(
C + 32n2C + C ln(n)

)
, (A.90)

123

Constructive Approximation (2022) 55:3–71 65

and let the term T3 be given by

T3 = 1556 + 128(C ln(144) + 64n2C(n ln(3) + ln(n)) + 42n. (A.91)

This, Lemma 5.3, Lemma 5.4, (B), (A.58), (A.62), (A.63), (A.65) and the fact that for
every ψ ∈ N with minl∈{1,2,...,L(ψ)} Ml(ψ) > 0 it holds that L(ψ) ≤ M(ψ) ensure
that for every f ∈ Bn

1 , N ∈ N, ε ∈ (0,∞) it holds

M(ϕ f ,ε,N)

≤ 2
(M(λN) + 2

[M(P(ψ f ,ε,N ,1, ψ f ,ε,N ,2, . . . , ψ f ,ε,N ,N)) + M(∇1,0,2N+2)
])

≤ 2(N + 1) + 8

⎡

⎣
N∑

j=0

M(ψ f ,ε,N , j)

⎤

⎦+ 16(N + 1)

[
max

j∈{0,1,...,N }L(ψ f ,ε,N , j)

]
+ 8(N + 1)

≤ 20N + 32(N + 1) max
j∈{1,2,...,N }M(ψ f ,ε,N , j)

≤ 20N + 64N
(
M(�2

ε/8) + M(P(χN ,N , τ f ,ε,N ,N))
)

≤ 20N + 128NC
(∣∣ln

(
ε
8

)∣∣+ 2 ln(3) + ln(2)
)

+ 64N
(
2M(χN ,N) + 2M(τ f ,ε,N ,N) + 4max{L(χN ,N),L(τ f ,ε,N ,N)})

≤ 20N + 128NC
(∣∣ln

(
ε
8

)∣∣+ ln(18)
)+ 1152N

+ 128N
(
32n2C

(| ln (ε
8e

) | + n ln(3) + ln(n)
)+ 42n

)

+ 128N
(
3 + C ln(n)

(| ln (ε
8e

) | + n ln(3) + ln(n)
))

= 128
(
C + 32n2C + C ln(n)

)
N | ln(ε)|

+
(
1556 + 128(C ln(144) + 64n2C(n ln(3) + ln(n)) + 42n

)
N

= T2N | ln(ε)| + T3N .

(A.92)

Combining this with Lemma A.1 demonstrates that for every f ∈ Bn
1 , ε ∈

(0, exp(−2n2)] it holds

M(� f ,ε) = M(ϕ f ,ε,Nε) ≤ T2Nε| ln(ε)| + T3Nε

= T2
⌈[2

n!ε
]1/n⌉ | ln(ε)| + T3

⌈[2
n!ε
]1/n⌉

≤ 3T2ε
− 1

n | ln(ε)| + 3T3ε
− 1

n

≤ 3T2ε
− 1

n max{r , | ln(ε)|} + 3T3ε
− 1

n .

(A.93)

Hence we obtain

sup
f ∈Bn

1 ,ε∈(0,exp(−2n2))

[
M(� f ,ε)

ε− 1
n max{r , | ln(ε)|}

]

≤ 3T2 + 3T3
1

max{r , 2n2} < ∞. (A.94)

123

66 Constructive Approximation (2022) 55:3–71

Combining (A.93) with the fact that continuous function are bounded on compact sets
ensures

sup
f ∈Bn

1 ,ε∈[exp(−2n2),1]

[
M(� f ,ε)

ε− 1
n max{r , | ln(ε)|}

]

≤ sup
f ∈Bn

1 ,ε∈[exp(−2n2),1]

[
T2N (| ln(ε)| + | ln(N)|) + T3N

ε− 1
n max{r , | ln(ε)|}

]

< ∞.

(A.95)

In addition note

sup
f ∈Bn

1 ,ε∈(1,∞)

[
M(� f ,ε)

ε− 1
n max{r , | ln(ε)|}

]

= sup
f ∈Bn

1 ,ε∈(1,∞)

[
M(θ)

ε− 1
n max{r , | ln(ε)|}

]

(A.96)

= sup
f ∈Bn

1 ,ε∈(1,∞)

[
0

ε− 1
n max{r , | ln(ε)|}

]

= 0 < ∞.

(A.97)

This, (A.94) and (A.95) establish that the neural networks (� f ,ε) f ∈Bn
1 ,ε∈(0,∞) satisfy

(ii). The proof of Theorem 6.5 is completed. �

A.5 Proof of Corollary 6.6

Proof of Corollary 6.6 Throughout this proof, assume Setting 5.2, let ca,b ∈ R, [a, b] ⊆
R+, be the real numbers given by ca,b = min{1, (b−a)−n}, let λa,b ∈ N 1,1

1 , [a, b] ⊆
R+, be the neural networks given by λa,b = (1

b−a ,− a
b−a), let α f ∈ N 1,1

1 , f ∈ Cn
be the neural networks given by α f = (1c ‖ f ‖n,∞ , 0), let La,b : [0, 1] → [a, b],
[a, b] ⊆ R+ be the functions which satisfy for every [a, b] ⊆ R+, t ∈ [0, 1]

La,b(t) = (b − a)t + a, (A.98)

and for every f ∈ Cn let f∗ ∈ Cn([0, 1],R) be the function which satisfies for every
t ∈ [0, 1]

f∗(t) = ‖ f ‖−1
n,∞ ca,b(f (La,b(t))). (A.99)

We claim that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R),m ∈ {1, 2, . . . , n}, t ∈ [0, 1]
it holds

f (m)∗ (t) = ‖ f ‖−1
n,∞ ca,b(b − a)m[f (m)(La,b(t))]. (A.100)

123

Constructive Approximation (2022) 55:3–71 67

We now prove (A.100) by induction on m ∈ {1, 2, . . . , n}. For the base case m = 1,
the chain rule implies for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈ [0, 1]

f ′∗(t) = d
dt

[
‖ f ‖−1

n,∞ ca,b f (La,b(t))
]

= ‖ f ‖−1
n,∞ ca,b

[
f ′(La,b(t))L

′
a,b(t)

]

= ‖ f ‖−1
n,∞ ca,b

[
f ′(La,b(t))(b − a)

] = ‖ f ‖−1
n,∞ ca,b(b − a)[f ′(La,b(t))].

(A.101)

This establishes (A.100) in the base case m = 1.
For the induction step {1, 2, . . . , n−1} � m → m+1 ∈ {2, 3, . . . , n} observe that

the chain rule ensures for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), m ∈ N, t ∈ [0, 1]
d
dt

[
‖ f ‖−1

n,∞ ca,b(b − a)m[f (m)(La,b(t))]
]

= ‖ f ‖−1
n,∞ ca,b(b − a)m[f (m+1)(La,b(t))L

′
a,b(t)]

= ‖ f ‖−1
n,∞ ca,b(b − a)m+1[f (m+1)(La,b(t))].

(A.102)

Induction thus establishes (A.100).
In addition, for every [a, b] ⊆ R+, k ∈ {0, 1, . . . , n}

ca,b(b − a)k = min{1, (b − a)−n}(b − a)k = min{(b − a)k, (b − a)−n+k} ≤ 1.
(A.103)

Combining this with (6.30), (A.98) and (A.100) ensures for every [a, b] ⊆ R+, f ∈
Cn([a, b],R)

max
k∈{0,1,...,n}

[

sup
t∈[0,1]

∣
∣∣ f (k)∗ (t)

∣
∣∣

]

= max
k∈{0,1,...,n}

[

sup
t∈[a,b]

∣∣∣‖ f ‖−1
n,∞ ca,b(b − a)k[f (k)(t)]

∣∣∣

]

≤ ‖ f ‖−1
n,∞ max

k∈{0,1,...,n}

[

sup
t∈[a,b]

∣∣∣ f (k)(t)
∣∣∣

]

= 1.

(A.104)

Theorem 6.5 therefore establishes that there exist neural networks (�g,η)g∈Bn
1 ,η∈(0,∞)

⊆ N which satisfy

(a) sup
g∈Bn

1 ,η∈(0,∞)

[L(�g,η)

max{r , |ln(η)|}
]

< ∞,

(b) sup
g∈Bn

1 ,η∈(0,∞)

[
M(�g,η)

η− 1
n max{r , | ln(η)|}

]

< ∞ and

(c) for every g ∈ Bn
1 , η ∈ (0,∞) that

sup
t∈[0,1]

∣∣g(t) − [
R�(�g,η)

]
(t)
∣∣ ≤ η. (A.105)

123

68 Constructive Approximation (2022) 55:3–71

Let
(
� f ,ε

)
f ∈Cn ,ε∈(0,∞)

⊆ N denote neural networks which satisfy for every [a, b] ⊆
R+, f ∈ Cn([a, b],R), ε ∈ (0,∞)

� f ,ε = α f � ϕ f∗,
ca,bε

‖ f ‖n,∞
� λa,b. (A.106)

Observe that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈ [0, 1] it holds

[R�(λa,b)](t) =
[

1
(b−a)

]
t − a

(b−a)
= L−1

a,b(t) and [R�(α f)](t) = ‖ f ‖n,∞
ca,b

t .

(A.107)

Lemma 5.3 therefore demonstrates for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈
(0,∞), t ∈ [0, 1] it holds

[R�(� f ,ε)](t) = [R�(α f � ϕ f∗,
ca,bε

‖ f ‖n,∞
� λa,b)](t)

= [R�(α f) ◦ R�(ϕ f∗,
ca,bε

‖ f ‖n,∞
) ◦ R�(λa,b)](t)

= ‖ f ‖n,∞
ca,b

[R�(ϕ f∗,
ca,bε

‖ f ‖n,∞
)](L−1

a,b(t)).

(A.108)

Moreover, note (A.99) ensures that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), t ∈
[a, b] it holds

f (t) = ‖ f ‖n,∞
ca,b

f∗(L−1
a,b(t)). (A.109)

Combining (c), (A.106) and (A.108) implies for every [a, b] ⊆ R+, f ∈
Cn([a, b],R), ε ∈ (0,∞)

sup
t∈[a,b]

∣∣ f (t) − [
R�(� f ,ε)

]
(t)
∣∣

= sup
t∈[a,b]

∣∣∣∣
‖ f ‖n,∞
ca,b

f∗(L−1
a,b(t)) − ‖ f ‖n,∞

ca,b
[R�(ϕ f∗,

ca,bε

‖ f ‖n,∞
)](L−1

a,b(t))

∣∣∣∣

= ‖ f ‖n,∞
ca,b

[

sup
t∈[0,1]

∣∣∣∣ f∗(t) − [R�(ϕ f∗,
ca,bε

‖ f ‖n,∞
)](t)

∣∣∣∣

]

≤ ‖ f ‖n,∞
ca,b

ca,bε

‖ f ‖n,∞ = ε.

(A.110)

This establishes that the neural networks
(
� f ,ε

)
f ∈Cn ,ε∈(0,∞)

satisfy (iii). Furthermore,
Lemma 5.3 ensures for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) holds

L(� f ,ε) =L(α f � ϕ f∗,
ca,bε

‖ f ‖n,∞
� λa,b)

=L(α f) + L(ϕ f∗,
ca,bε

‖ f ‖n,∞
) + L(λa,b) = L(ϕ f∗,

ca,bε

‖ f ‖n,∞
) + 2.

(A.111)

In addition, for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞) holds

123

Constructive Approximation (2022) 55:3–71 69

max{r , | ln
(

ca,bε

‖ f ‖n,∞
)

|} = max{r , | ln
(
min{1,(b−a)−n }ε

‖ f ‖n,∞
)

|} = max{r , | ln
(

ε
(max{1,(b−a)})n‖ f ‖n,∞

)
|}

≤ nmax{r , | ln
(

ε
(max{1,(b−a)})‖ f ‖n,∞

)
|}.

(A.112)

Combining this with (a) and (A.111) implies that

sup
f ∈Cn ,ε∈(0,∞)

[
L(� f ,ε)

max{r , | ln(ε
max{1,b−a}‖ f ‖n,∞)|}

]

≤ n sup
f ∈Cn ,ε∈(0,∞)

⎡

⎣
L(ϕ f∗,

ca,bε

‖ f ‖n,∞
) + 2

max{r , | ln
(

ca,bε

‖ f ‖n,∞

)
|}

⎤

⎦

= n sup
g∈Bn

1 ,η∈(0,∞)

[L(�g,η) + 2

max{r , |ln(η)|}
]

< ∞.

(A.113)

This establishes that the neural networks
(
� f ,ε

)
f ∈Cn ,ε∈(0,∞)

satisfy (i). Next, Lemma
5.3 implies that for every [a, b] ⊆ R+, f ∈ Cn([a, b],R), ε ∈ (0,∞)

M(� f ,ε) = M(α f � ϕ f∗,
ca,bε

‖ f ‖n,∞
� λa,b) = M(α f) + M(ϕ f∗,

ca,bε

‖ f ‖n,∞
) + M(λa,b)

= M(ϕ f∗,
ca,bε

‖ f ‖n,∞
) + 3.

(A.114)

In addition, note that (A.112) shows for every [a, b] ⊆ R+, f ∈ Cn([a, b],R),
ε ∈ (0,∞)

[
ca,bε

‖ f ‖n,∞

]− 1
n
max{r , | ln

(
ca,bε

‖ f ‖n,∞

)
|}n

≤ max{1, b − a} ‖ f ‖
1
n
n,∞ ε− 1

n max
{
r , | ln

(
ε

max{1,b−a}‖ f ‖n,∞

)
|
}

.

(A.115)

Combining this with (b) and (A.106) therefore ensures

sup
f ∈Cn ,ε∈(0,∞)

⎡

⎢
⎣

M(� f ,ε)

max{1, b − a} ‖ f ‖
1
n
n,∞ ε− 1

n max{r , | ln(ε
max{1,b−a}‖ f ‖n,∞)|}

⎤

⎥
⎦

≤ n sup
f ∈Cn ,ε∈(0,∞)

⎡

⎢⎢
⎣

M(ϕ f∗,
ca,bε

‖ f ‖n,∞
) + 3

[
ca,bε

‖ f ‖n,∞

]− 1
n
max{r , | ln(ca,bε

‖ f ‖n,∞)|}

⎤

⎥⎥
⎦

123

70 Constructive Approximation (2022) 55:3–71

≤ n sup
g∈Bn

1 ,η∈(0,∞)

[
M(�g,η) + 3

η− 1
n max{r , | ln(η)|}

]

< ∞. (A.116)

This establishes that the neural networks
(
� f ,ε

)
f ∈Cn ,ε∈(0,∞)

satisfy (ii) and completes
the proof. �

References

1. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans.
Inf. Theory 39(3), 930–945 (1993)

2. Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and
Kolmogorov equations by means of deep learning. arXiv:1806.00421 (2018)

3. Beck, C., E, W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully
nonlinear partial differential equations and second-order backward stochastic differential equations. J.
Nonlinear Sci. (2017)

4. Berner, J., Grohs, P., Jentzen, A.: Analysis of the generalization error: Empirical riskminimization over
deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation
of Black-Scholes partial differential equations. SIAM J. Math. Data Sci. 2, 631–657 (2020)

5. Bölcskei, H., Grohs, P., Kutyniok, G., Petersen, P.: Optimal approximation with sparsely connected
deep neural networks. SIAM J. Math. Data Sci. 1(1), 8–45 (2019)

6. Chiani,M.,Dardari,D., Simon,M.K.:Newexponential bounds and approximations for the computation
of error probability in fading channels. IEEE Trans. Wireless Commun. 2(4), 840–845 (2003)

7. Chui, C., Li, X., Mhaskar, H.: Neural networks for localized approximation. Math. Comput. 63(208),
607–623 (1994)

8. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.
2(4), 303–314 (1989)

9. Dym, N., Sober, B., Daubechies, I.: Expression of fractals through neural network functions. IEEE J.
Select. Areas Inf. Theory 1(1), 57–66 (2020)

10. Elbrächter, D., Perekrestenko, D., Grohs, P., Bölcskei, H.: Deep neural network approximation theory.
arXiv:1901.02220 (2019)

11. Freidlin,M.: Functional Integration and Partial Differential Equations. Annals ofMathematics Studies,
vol. 109. Princeton University Press, Princeton (1985)

12. Fujii, M., Takahashi, A., Takahashi, M.: Asymptotic expansion as prior knowledge in deep learning
method for high dimensional BSDEs. Asia-Pac. Finan. Mark. 29, 1563–1619 (2017)

13. Gonon, L., Grohs, P., Jentzen, A., Kofler, D., Šiška, D. Uniform error estimates for artificial neural
network approximations for heat equations. arXiv:1911.09647 (2019)

14. Gonon, L., Schwab, C.: Deep ReLU network expression rates for option prices in high-dimensional,
exponential Lévy models. Tech. Rep. 2020-52, Seminar for Applied Mathematics, ETH Zürich, 2020

15. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge
(2016)

16. Goudenège, L., Molent, A., Zanette, A.: Machine learning for pricing American options in high-
dimensional Markovian and non-Markovian models. Quant. Finance 20(4), 573–591 (2020)

17. Grohs, P., Herrmann, L.: Deep neural network approximation for high-dimensional elliptic PDEs with
boundary conditions. arXiv:2007.05384 (2020)

18. Grohs, P., Hornung, F., Jentzen, A., vonWurstemberger, P.A., proof that artificial neural networks over-
come the curse of dimensionality in the numerical approximation of Black–Scholes partial differential
equations. arXiv:1809.02362. Accepted in Mem. Amer. Math, Soc (2019)

19. Grohs, P., Jentzen, A., Salimova, D.: Deep neural network approximations forMonte Carlo algorithms.
arXiv:1908.10828 (2019)

20. Hairer, M., Hutzenthaler, M., Jentzen, A.: Loss of regularity for Kolmogorov equations. Ann. Probab.
43(2), 468–527 (2015)

21. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep
learning. Proc. Natl. Acad. Sci. 115(34), 8505–8510 (2018)

123

http://arxiv.org/abs/1806.00421
http://arxiv.org/abs/1901.02220
http://arxiv.org/abs/1911.09647
http://arxiv.org/abs/2007.05384
http://arxiv.org/abs/1809.02362
http://arxiv.org/abs/1908.10828

Constructive Approximation (2022) 55:3–71 71

22. Henry-Labordere, P.: Deep Primal-Dual Algorithm for BSDEs: Applications of Machine Learning to
CVA and IM. Available at SSRN: https://ssrn.com/abstract=3071506

23. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its
derivatives using multilayer feedforward networks. Neural Netw. 3(5), 551–560 (1990)

24. Hornung, F., Jentzen, A., Salimova, D.: Space-time deep neural network approximations for high-
dimensional partial differential equations. arXiv:2006.02199 (2020)

25. Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A.: A proof that rectified deep neural networks
overcome the curse of dimensionality in the numerical approximation of semilinear heat equations.
SN Partial Differ. Equ. Appl. 1, 10 (2020)

26. Jentzen, A., Salimova, D., Welti, T.: A proof that deep artificial neural networks overcome the curse
of dimensionality in the numerical approximation of Kolmogorov partial differential equations with
constant diffusion and nonlinear drift coefficients. arXiv:1809.07321 (2018)

27. Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. Eur. J.
Appl. Math. (2020)

28. Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks
and parametric PDEs. arXiv:1904.00377 (2019)

29. Kwok, Y.-K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer, Berlin (2008)
30. Levy, D.: Introduction to Numerical Analysis, 2010. Available: https://api.semanticscholar.org/

CorpusID:123255603
31. Mhaskar, H.N.: Neural Networks for optimal approximation of smooth and analytic functions. Neural

Comput. 8, 164–177 (1996)
32. Mishra, S.: A machine learning framework for data driven acceleration of computations of differential

equations. Math. Eng. 1(1), 118–146 (2018)
33. Perekrestenko, D., Grohs, P., Elbrächter, D., Bölcskei, H.: The universal approximation power of

finite-width deep ReLU networks. arXiv:1806.01528 (2018)
34. Petersen, P., Voigtlaender, F.: Optimal approximation of piecewise smooth functions using deep ReLU

neural networks. Neural Netw. 108, 296–330 (2018)
35. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143–195

(1999)
36. Reisinger, C., Zhang, Y.: Rectified deep neural networks overcome the curse of dimensionality for

nonsmooth value functions in zero-sum games of nonlinear stiff systems. arXiv:1903.06652 (2019)
37. Schmidt-Hieber, J.: Nonparametric regression using deep neural networks with ReLU activation func-

tion. Ann. Stat. 48(4), 1875–1897 (2020)
38. Schwab, C., Zech, J.: Deep learning in high dimension: Neural network expression rates for generalized

polynomial chaos expansions in UQ. Anal. App. 17(01), 19–55 (2019)
39. Sirignano, J., Spiliopoulos, K.: DGM: A deep learning algorithm for solving partial differential equa-

tions. J. Comput. Phys. 375, 1339–1364 (2018)
40. Telgarsky, M.: Representation benefits of deep feedforward networks. arXiv:1509.0810 (2015)
41. Weinan, E., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving

variational problems. Commun. Math. Stat. 6(1), 1–12 (2018)
42. Weinan, E., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional

parabolic partial differential equations and backward stochastic differential equations. Commun.Math.
Stat. 5(4), 349–380 (2017)

43. Wilmott, P.: Paul Wilmott Introduces Quantitative Finance, 2nd edn. Wiley, Hoboken (2007)
44. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural Networks 94, 103–

114 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://ssrn.com/abstract=3071506
http://arxiv.org/abs/2006.02199
http://arxiv.org/abs/1809.07321
http://arxiv.org/abs/1904.00377
https://api.semanticscholar.org/CorpusID:123255603
https://api.semanticscholar.org/CorpusID:123255603
http://arxiv.org/abs/1806.01528
http://arxiv.org/abs/1903.06652
http://arxiv.org/abs/1509.0810

	DNN Expression Rate Analysis of High-Dimensional PDEs: Application to Option Pricing
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions and Main Result
	1.3 Outline

	2 High-Dimensional Derivative Pricing
	3 Regularity of the Cumulative Normal Distribution
	4 Quadrature
	5 Basic ReLU DNN Calculus
	6 Basic Expression Rate Results
	7 DNN Expression Rates for High-Dimensional Basket Prices
	8 Discussion
	A Additional Proofs
	A.1 Technical Lemma
	A.2 Proof of Lemma 6.1
	A.3 Proof of Lemma 6.2
	A.4 Proof of Theorem 6.5
	A.5 Proof of Corollary 6.6

	References

