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DNN-Supported Speech Enhancement With Cepstral

Estimation of Both Excitation and Envelope
Samy Elshamy, Nilesh Madhu , Wouter Tirry, and Tim Fingscheidt , Senior Member, IEEE

Abstract—In this paper, we propose and compare various tech-
niques for the estimation of clean spectral envelopes in noisy con-
ditions. The source-filter model of human speech production is em-
ployed in combination with a hidden Markov model and/or a deep
neural network approach to estimate clean envelope-representing
coefficients in the cepstral domain. The cepstral estimators for
speech spectral envelope-based noise reduction are both evaluated
alone and also in combination with the recently introduced cep-
stral excitation manipulation (CEM) technique for a priori SNR
estimation in a noise reduction framework. Relative to the clas-
sical MMSE short time spectral amplitude estimator, we obtain
more than 2 dB higher noise attenuation, and relative to our recent
CEM technique still 0.5 dB more, in both cases maintaining the
quality of the speech component and obtaining considerable SNR
improvement.

Index Terms—a priori SNR, speech enhancement.

I. INTRODUCTION

S
PEECH enhancement is an important field of research to

aid the most natural way of communication for human

beings. It comprises a variety of applications among them dere-

verberation, acoustic echo cancellation, artificial bandwidth ex-

tension, voice activity detection, speech presence probability

estimation, and also noise reduction algorithms. Many of these

applications require the estimation of an a priori SNR which

we are investigating in this publication in the context of a noise

reduction framework. Furthermore, we focus on approaches ex-

ploiting the cepstral domain, since its properties and advantages

have gained considerable attention in the recent past. For each

component of a common noise reduction scheme, such as noise

power estimator, a priori SNR estimator, and spectral weighting

rule, approaches have been developed that exploit the cepstral

domain.
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A noise power estimation algorithm based on minimum

mean-square error (MMSE) estimation originally proposed in

[1] has been further improved by Gerkmann et al. in [2] by a

bias compensation which is required due to the necessity of es-

timating intermediate entities and therewith arising aberrations.

Finally, the estimator has been augmented with temporal cep-

strum smoothing [3] to enhance the speech power estimation,

resulting in higher noise attenuation and thus improving the

signal-to-noise ratio (SNR) [4].

A cepstral a priori SNR estimation technique has been pro-

posed in [5], where the ability to easily address the fine structure

and the envelope of a speech power spectral density separately,

has been successfully exploited by applying different smooth-

ing factors to the corresponding regions in the cepstral domain.

Here, also an improved bias compensation [6] can be employed

to further increase the performance.

We presented a cepstral excitation manipulation (CEM)

method in [7], [8] that benefits from the direct modeling of

the excitation signal. It is obtained via linear predictive cod-

ing (LPC) analysis and is subsequently replaced by a pitch-

dependent excitation template which has been extracted from

clean speech prior to its application. The approach successfully

conquers an often reported issue with low-order models consid-

ering the shortcomings of noise suppression between the spec-

tral harmonics [9], [10]. Furthermore, it renders means such as

a voicing-sensitive postfilter, spectral mask, or speech presence

probability estimation [9], [11], needless.

The last component of common noise reduction schemes,

a spectral weighting rule, has been published by Breithaupt

et al. in [3], performing smoothing in the cepstral domain to

finally suppress the noise in a noisy signal. It allows to suc-

cessfully suppress spectral outliers that otherwise would cause

musical tones. It is to say that the general concept of temporal

cepstrum smoothing has found various applications in speech

enhancement.

The source-filter model of human speech production, sepa-

rating a speech signal into its excitation and envelope has also

found its applications in speech enhancement and is used in var-

ious degrees. The usage of speech and noise spectral shapes as a

priori information for speech enhancement has been suggested

by Srinivasan et al. in [12]–[14] and was developed further over

time. Two low-rank codebooks trained on speech and noise

spectral shapes are employed and a maximum-likelihood (ML)

estimate of the corresponding parameters, two indices for the

codebook entries and two corresponding gain factors, given the

noisy observation, are calculated. The obtained parameters are
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used to estimate the spectra of speech and noise, and are finally

used in a Wiener filter to calculate spectral weighting gains. A

continuation of this work has been published by Rosenkranz

et al. where cepstral modeling is preferred over autoregressive

(AR) modeling [15].

A non-negative matrix factorization approach representing a

source-filter system where separate dictionaries for the excita-

tion and the envelopes are trained is proposed in [16]. During

test it also requires a preliminary denoised signal as the algo-

rithm needs additional information from the signal such as a

pitch estimate. It seems to be quite complex and it is not entirely

clear, whether it is a realtime-capable algorithm or not, at least

the used pitch estimator [17] indicates that it is not suitable for

telephony applications.

The approaches exploiting cepstro-temporal smoothing [3]

address the source-filter model in a fashion that the cepstral

coefficients are assigned to either part of the model, depending

on their position in the cepstrum, and are treated differently.

Please note that this kind of model is not subject to specific

constraints as in LPC analysis, where a given order strictly

defines the number of poles in the z-transform of the model.

A hidden Markov model (HMM) has been used for speech

enhancement in [18], [19]. Therein, two HMMs are utilized

to model the clean speech and the noise signal separately by

AR processes. In both references, a Wiener filter is derived

by incorporating the estimated spectral prototypes provided by

the HMMs. Different from [18], [19] decouples the gain fac-

tors from the prototypes and introduces an explicit modeling of

the gains, leading to a consistent improvement. The low-order

modeling of the speech HMM suggests that the approaches also

suffer from the same incapability to model the fine structure

appropriately and thus leaves room for improvement.

With deep learning strategies on the rise, deep neural net-

works (DNNs) also find their way into speech enhancement and

allow for a very broad variety of applications. Approaches range

from directly estimating clean time-domain signals from the

noisy observation [20] to mapping functions for extracted noisy

features to clean features [21]. Those DNN techniques have in

common that they completely disregard statistical speech en-

hancement approaches, which still are commonly utilized, and

instead highly depend on their training material. However, it is

also possible to incorporate DNNs into well-known statistical

frameworks as, e.g., it has been shown in [22] that incorporating

DNNs into a common noise reduction scheme and replacing cer-

tain estimators of the system yields better results than employing

a simple regression DNN to estimate the clean speech directly.

Source-filter model approaches for artificial speech bandwidth

extension have been very successfully shown to take profit from

DNN envelope modeling with or even without HMM [23]–[25].

Also, as known from automatic speech recognition, Gaussian

mixture models (GMMs) have been successfully replaced by

DNNs for the acoustic modeling [26].

In this publication, we investigate various approaches for the

estimation of clean spectral envelopes based on noisy obser-

vations. In all cases, the actual estimation domain is the real-

valued cepstrum, since it advantageously allows the minimum

mean squared error (MMSE) as cost function. We evaluate the

performance with respect to their application in a priori SNR

estimation for a noise reduction framework, as we expect quite

some benefit from envelope enhancement in this field. We start

with utilizing a classical HMM driven by GMMs, which are

subsequently replaced by a DNN. Furthermore, we also inves-

tigate the replacement of the entire HMM by a single DNN,

which is providing posterior probabilities instead of likelihoods

for the HMM, or the use of a DNN to estimate clean coefficients

directly in regression mode. Finally, we combine the enhanced

spectral envelope with our recently proposed CEM approach

and incorporate it into the a priori SNR estimator from [8].

Note, however, that the field of application for the proposed

spectral envelope estimators is not limited to these specific use

cases.

In the following, we briefly introduce the signal model in

Section II and revisit the cepstral excitation manipulation tech-

nique in Section III, followed by the investigation of our various

methods for clean spectral envelope estimation based on a pre-

liminary denoised signal in Section IV, where we gradually

replace the HMM by a DNN. We describe our experimental

setup in Section V-A and subsequently provide our simulations

and evaluation in Section VI. We finally conclude this article in

Section VII.

II. SIGNAL MODEL

To model the microphone signal y(n) we assume that the

speech signal s(n) and the noise signal d(n) are superimposed

in the time domain as

y(n) = s(n) + d(n), (1)

where n is the discrete-time sample index. A corresponding fre-

quency domain representation after a K-point discrete Fourier

transform (DFT) is obtained as

Yℓ(k) = Sℓ(k) + Dℓ(k), (2)

with frame index ℓ and frequency bin index 0 ≤ k ≤ K − 1.

Also, we assume statistical independence of the speech and

noise signal, and that they have zero mean.

III. CEPSTRAL EXCITATION MANIPULATION BASELINE

We choose to utilize our recently published a priori SNR

estimation and noise reduction framework [8], as its modularity

allows us to easily integrate the proposed estimators and evaluate

their performance either alone (dubbed “solo”) or in interaction

with the CEM approach (called “duo”).

As depicted in Fig. 1, a preliminary noise reduction stage

is employed to get a more suitable signal for the proposed

methods. This first noise reduction stage is a common noise

reduction scheme with a noise power estimator such as mini-

mum statistics (MS) [27], improved minima controlled averag-

ing [28], or a more recent approach, the unbiased MMSE-based

estimator [2]. Subsequently, it is followed by an a priori SNR

estimator, e.g., the decision-directed (DD) approach [29], and

finally, a spectral weighting rule to calculate the real-valued

gain factors in the frequency domain for the noise suppression.

Some quite often used spectral weighting rules are, e.g., the
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Fig. 1. High-level block diagram of the cepstral excitation manipulation (CEM) noise reduction baseline, incoporating a CEM-based a priori SNR estimator
[8]. The proposed cepstral estimators for the spectral envelope are later on embedded into this approach (see Figs. 2 and 3).

MMSE log-spectral amplitude (MMSE-LSA) estimator [29], a

more advanced gain function under a super-Gaussian assump-

tion namely the super-Gaussian joint maximum a posteriori am-

plitude estimator [30], [31], or a simple Wiener filter [32]. In

general, we do not restrict ourselves to a specific configura-

tion, but have found a setup using MS noise power estimation

along with the DD a priori SNR estimator and the MMSE-LSA

spectral weighting rule as suitable for our method.

The preliminary denoised signal Ȳℓ(k) is subsequently sub-

ject to a source-filter decomposition block where LPC analysis is

utilized to obtain an excitation signal Rℓ(k) and the correspond-

ing envelope Hℓ(k), separately. They relate to the preliminary

denoised signal as

Ȳℓ(k) = Rℓ(k) · Hℓ(k). (3)

The CEM baseline as presented in [8] deals only with the

enhancement of the excitation signal (Fig. 1, LPC analysis,

upper path). As a first step of the CEM algorithm, the log-

spectrum of the excitation signal is transformed into the cepstral

domain by a discrete cosine transform of type II (DCT-II). Next,

a (surprisingly) robust pitch estimation algorithm based on [33]

provides the system with the corresponding cepstral pitch bin

mF0
by picking the maximum cepstral value within a quefrency

bin range representing typical pitch frequencies.

Consequently, a pitch bin-dependent cepstral excitation tem-

plate cR̂
ℓ (m), with m being the cepstral bin index, is selected

from a template codebook that has been trained on clean speech

residual signals. The designated template vector is subject to

two major manipulations: First, the template’s cepstral energy

coefficient cR̂
ℓ (0) is replaced by the corresponding value of the

preliminary denoised signal’s residual cR
ℓ (0) as

cR̂
ℓ (0) = cR

ℓ (0) (4)

in order to receive a signal with a similar power level as the input

signal. Second, the cepstral amplitude of the pitch bin cR
ℓ (mF0

)
is also transferred into the already power-adjusted excitation

template and subsequently overestimated by a factor α > 1 as

cR̂
ℓ (mF0

) = α · cR
ℓ (mF0

). (5)

Thereby, the harmonic structure of the excitation signal is

overemphasized in both directions: The positive and also the

negative half waves experience a boost or an attenuation, re-

spectively. As a result, the algorithm is able to retain weak

harmonics which might have been corrupted by the preliminary

denoising stage and additionally, achieve a higher noise attenu-

ation between the harmonics. Both characteristics are depicting

the core features of the CEM algorithm. Until now, the manip-

ulated template is transformed back into the spectral domain by

an inverse DCT-II and used further with the spectral amplitudes

of the preliminary denoised signal’s envelope |Hℓ(k)| to pro-

vide an improved clean speech amplitude estimate |Ŝ ′
ℓ(k)| by

mixing the two components as

|Ŝ ′
ℓ(k)| = |R̂ℓ(k)| · |Hℓ(k)|. (6)

Finally, it is used as the numerator for a refined a priori SNR

estimate along with the obtained noise power estimate from the

preliminary noise reduction

ξ̂CEM
ℓ (k) =

|Ŝ ′
ℓ(k)|2

σ̂D
ℓ (k)2

. (7)

For more details about the CEM-based a priori SNR estimator,

the interested reader may consult [8]. In this work, this estimator

is embedded into a noise reduction framework as shown in Fig. 1,

comprising also the computation of an a posteriori SNR

γℓ(k) =
|Yℓ(k)|2

σD
ℓ (k)2

, (8)

as many gain functions Gℓ(k) require either or both of the two

SNRs for their calculation as

Gℓ(k) = f (ξℓ(k), γℓ(k)) . (9)

IV. CEPSTRAL ESTIMATION OF THE ENVELOPE

In this section we will now present our new methods of cep-

stral estimation to obtain speech spectral envelopes under noisy

conditions. As outlined in Section I, we will embed these esti-

mators into a noise reduction baseline which already performs

cepstral estimation of the speech residual (see Fig. 1). Note that
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Fig. 2. High-level block diagram of the proposed cepstral envelope estimation (CEE) noise reduction, incorporating the new CEE-based a priori SNR
estimator. For details of the CEE block please refer to Fig. 3.

this is only one of the many possibilities to employ our cep-

stral estimators of the speech spectral envelope. Our general

approach advantageously uses a preliminary noise reduction,

which provides an improved SNR for the subsequent envelope

estimation. The spectral envelope of the preliminary denoised

signal still suffers from distortions which tend to impede the

speech quality, thus leaving room for further improvement. To

our understanding it is reasonable to break down the noise reduc-

tion task for speech enhancement into smaller parts where pos-

sible. This is in line with divide-and-conquer strategies which

have resulted in many useful solutions for various problems. As

the production of speech can be modeled by two components,

i.e., the source and the filter, it appears logical to attend each at

a time which also has been done in, e.g., [13].

As a general framework we decided to employ a hidden

Markov model (HMM) in order to estimate a clean spectral

envelope, given the preliminary denoised observation. The mo-

tivation behind this is that we want to move from a bin-individual

a priori SNR estimation (e.g., as the DD approach provides) to

a more coherent and inter-frequency-dependent solution. Given

the limited DFT length, this should be closer to the actual re-

lationship between frequencies in speech, since they are not

completely independent [34]. When dealing with spectral en-

velopes, this inter-frequency dependence becomes even more

obvious. The application of a codebook that has been trained

on clean speech spectral envelopes should be able to provide

envelopes with a more realistic dependency between the fre-

quency bins. In addition to that, we expect the HMM to capture

the temporal context of envelopes which are usually smooth in

transition.

The HMM in its classic form is using Gaussian mixture mod-

els (GMMs) to model the emission probabilities. As a second

approach and along with the trend of deep learning we also em-

ploy a deep neural network (DNN) for classification to replace

the GMMs. It has been shown in [26] that DNNs are capable of

providing higher classification rates than GMMs, especially for

acoustic models. A third variant we propose omits the HMM

completely and solely uses the posterior distribution delivered

by the classification DNN. As a fourth option we present a

regression DNN in order to directly estimate clean envelope

coefficients from the preliminary denoised observation.

In the following, we provide a generic recipe for our frame-

work and the required training processes, while distinct param-

eters of our experimental setup will be provided in Section V-A.

A. Feature Conversion

As can be seen in Fig. 2, we also operate on the preliminary

denoised signal Ȳℓ(k), which is decomposed into its source

and filter by means of an LPC analysis. Up to this stage in

the block diagram, both approaches CEM and also the now

introduced cepstral envelope estimation (CEE) share the same

processing structure. Now, the difference is that we operate

on the LPC coefficients modeling the envelope (Fig. 2, LPC

analysis, lower path) and not the excitation signal as before

(Fig. 1, LPC analysis, upper path).

Since some training processes require the averaging of fea-

ture vectors, using the LPC coefficients directly could lead to

instabilities. To obtain a representation of the envelope that

has more suitable mathematical properties (Fig. 3, feature con-

version block), we convert the N LPC coefficients to N + 1
cepstral coefficients by the following two formulae [35], which

have been adjusted to our notation1 of the LP analysis filter, here

and also in (17), as (superscript H stands for the envelope filter)

cH
ℓ (m = 0) = 0 = log(Pp = 1). (10)

The prediction error power Pp is set to an arbitrary fixed value

to have envelopes with equal energy, allowing us to reduce the

feature dimension to N since the zeroth coefficient is always

zero. For 1 ≤ m ≤ N we calculate the cepstral coefficients re-

cursively by

cH
ℓ (m) =

aℓ(m) +
1

m

m−1
∑

µ=1

[

(m − µ) · aℓ(µ) · cH
ℓ (m − µ)

]

.

(11)

We only compute the N + 1 non-redundant cepstral coeffi-

cients to maintain a small dimension, omitting cH
ℓ (m = 0) as

explained and thus work with N features.

1We denote the LPC analysis filter as Hℓ (k) = 1 − Aℓ (k).
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Fig. 3. Block diagram of the four different proposed approaches for cepstral envelope estimation (CEE) using either an HMM in combination with GMMs
(first path) or alternatively a classification DNN to model the emissions (second path), or to model the posterior distribution of a classification DNN directly (third
path). All these three approaches work with an LBG codebook for clean cepstral envelopes. Another option is a DNN trained as regressor (fourth path), estimating
the clean cepstral coefficients directly from the input features. Since each approach yields enhanced cepstral coefficients, a required conversion to the spectral
domain takes place in the spectral conversion (SC) boxes. Any of the four methods shown on the right side of the figure is determined by the setting of the switches
S1 and S2 (shown: C-DNN).

In order to remove channel mismatches, we normalize all

data in a bin-wise manner by cepstral mean subtraction with the

mean obtained from the corresponding data set. In the following,

we aim at estimating the corresponding clean envelope cĤ
ℓ (m)

on basis of the preliminary denoised coefficients cH
ℓ (m) from

(11). Next, we provide our method to obtain a codebook for

clean spectral envelopes, which is the backbone for the first

three classification-based approaches as depicted in Fig. 3.

B. Codebook

The codebook C = {c̃H
i } consists of NS envelope tem-

plates obtained from clean speech. Each template is repre-

sented by an N -dimensional vector of cepstral coefficients c̃H
i =

[c̃H
i (1), . . . , c̃H

i (m), . . . , c̃H
i (N)]T . Each entry of the codebook

is representing a hidden state of the HMM, which is indexed by

i ∈ {1, 2, . . . , NS }. We utilize the unsupervised Linde-Buzo-

Gray (LBG) algorithm [36] to generate the codebook. We use

an unsupervised method, since we are not interested in specific

labels like, e.g., phonemes, but to obtain a good representa-

tion of many different envelopes. For training the codebook,

any clean speech database is suitable. We use zero-mean clean

speech envelope features (see Section IV-A) from frames identi-

fied by a simple energy threshold-based voice activity detection

(VAD) as input to the LBG algorithm. The remainder of the

clean speech training material is assigned an extra index i = 0,

denoting non-speech frames, and is represented by an all-zero

vector c̃H
0 = 0 in the codebook. Accordingly, there are NS + 1

states indexed by i, j ∈ S = {0, 1, . . . , NS }. These states are to

be estimated, e.g., by the HMM, which is introduced in the next

subsection.

C. Hidden Markov Model

For the first two proposed approaches we will utilize a

continuous density HMM to find a sequence of the hidden

states s1 , s2 , . . . , sℓ , with λ = {π,A, bj (x)} being the set of

parameters defining the HMM. Here, π = {πi} denotes the

initial state probability vector, A the state transition probabil-

ity matrix with entries aj,i = P(sℓ = i|sℓ−1 = j) representing

the probability to go from state j ∈ S into state i ∈ S, and

bi(x) the corresponding continuous emission probability den-

sity function for each hidden state. An observation is defined as

oℓ =
[

cH
ℓ (1), . . . , cH

ℓ (N)
]

, with Oℓ = o1 ,o2 , . . . ,oℓ being a

sequence of observations. The posterior distribution of the state

probabilites given all the observations up to the current frame

ℓ, P(sℓ = i|Oℓ), is obtained by applying the forward algorithm

[37] as

αℓ(i) = bi(x = oℓ) ·
∑

j∈S

aj,i · αℓ−1(j), (12)

followed by a normalization

P(sℓ = i|Oℓ) =
αℓ(i)

∑

j∈S αℓ(j)
. (13)

The first frame is initialized with α1(i) = πi · bi(x = o1). In or-

der to stay capable of realtime processing, we use the forward al-

gorithm instead of, e.g., the forward-backward algorithm which

would calculate the posterior distribution with even higher pre-

cision.

Having obtained the posterior distribution, we calculate the

MMSE estimate

cĤ
ℓ (m) =

∑

i∈S

P(sℓ = i|Oℓ) · c̃
H
i (m), (14)

which represents a weighted average over all entries in the clean

envelope codebook according to their respective probabilities.

Alternatively, we use the maximum a posteriori (MAP) estimate

cĤ
ℓ (m) = c̃H

i∗
ℓ
(m) (15)

with

i∗ℓ = arg max
i∈S

αℓ(i), (16)

which simply selects the envelope with the highest posterior

probability from the codebook. Here, the normalization from
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(13) can be omitted, since it does not influence the arg max
operator. Note that for numerical stability we implemented our

algorithms in the logarithmic domain.

The resulting zero-mean estimate of the clean envelope is

required to maintain the channel properties, which is resolved

by adding the corresponding cepstral mean. Finally, we calcu-

late the spectral representation of the envelope as depicted by

the SC blocks in Fig. 3. To accomplish this, we transform the

estimated envelope back into N LPC coefficients by applying

the following formula [35]:

âℓ(m) = cĤ
ℓ (m) −

1

m

m−1
∑

µ=0

[

(m − µ) · cĤ
ℓ (m − µ) · âℓ(µ)

]

(17)

for 1 ≤ m ≤ N . Its spectral representation |Ĥℓ(k)| is received

by first applying a K-point DFT to the LPC coefficients, padded

with K − N − 1 zeros. This results in
(

Âℓ(k)
)K−1

k=0
= DFT {(0, âℓ(1), . . . , âℓ(N), 0, . . . , 0)} ,

(18)

followed by

|Ĥℓ(k)| =
1

|1 − Âℓ(k)|
. (19)

The initial state distribution vector π is assuming a uniform

distribution (and is therefore not effective in Fig. 3), while the

required state transition matrix A is generated by counting tran-

sitions between the states in the clean training material followed

by a normalization to calculate the conditional probabilities.

In the following, we will present two different methods to

model the observations in order to obtain emission probabili-

ties bi(x) by using either GMMs, or a classification DNN with

prior division. We further investigate using the posterior distri-

bution from a classification DNN directly, or a regression DNN

(Section IV-E), directly estimating clean coefficients from the

preliminary denoised observations. We then provide a generic

description of the DNN training mechanisms in Section IV-F

and will finally show, how these four CEE schemes can be

combined with CEM, if desired.

D. HMM With GMM or Classification DNNs

Now, with the hidden states obtained from the LBG algorithm

as described in Section IV-B, we generate quite some training

material that represents typical observations for the HMM. To

accomplish that, we simulate various SNR and noise conditions

with the same clean speech data that has been used to retrieve the

hidden states. This noisy speech data is subsequently processed

by a preliminary noise reduction scheme running with the same

parameterization as will be used for testing. It is followed by

source-filter decomposition via LPC analysis, where only the

envelope is used further for the GMM/DNN training. During this

process it is important to keep track of the corresponding hidden

state for each processed frame by knowing the quantization

index i of its equivalent in the clean envelope codebook C. This

is required in order to obtain an assignment between a clean

envelope and all its corresponding denoised observations. With

the aid of this information we are able to train models which

represent the denoised observations for each of the states. We

introduce GMMs and DNNs as such models in the following two

subsections and also show how to replace the HMM completely

by a DNN in the third.

1) GMM-Based HMM (GMM-HMM): For each state i and

its corresponding training material (representing observations)

we use the expectation maximization (EM) algorithm [38] to

train all parameters of a GMM with G modes, separately. The

GMM is representing statistics of the preliminary denoised en-

velope observations which is later on mapped to a hidden state.

In that fashion we receive the required models for the emission

probabilities bi(x), i ∈ S.

The observation probabilities for a certain input bi(x = oℓ)
are obtained by evaluating each GMM as follows

bi(x = oℓ) =
∑

g∈G

ci,g · N (x = oℓ ;µi,g ,Σi,g ), (20)

with g ∈ G = {1, . . . , G} being the mode index, weights ci,g

constrained to
∑

g∈G ci,g = 1, µi,g as mean vectors, and Σi,g

being the (in our case diagonal) covariance matrix for each

corresponding mode g and state i. It plugs directly into (12) and

is representing the GMM block in the upper path (S1 in upper

position) in Fig. 3.

2) DNN-Based HMM (C-DNN-HMM): An alternative to

GMMs as observation models is a feedforward DNN trained

as classifier. The output of the classification DNN, the posterior

probabilities for each of the hidden states given the current ob-

servation, is defined as P(sℓ = i|x = oℓ). To use the output of

the DNN in the HMM framework (12) (Fig. 3, second path from

top, S1 in center position, C-DNN block, and S2 in upper posi-

tion) we actually need to divide it by the prior state probability

to obtain the likelihood as

bi(x = oℓ) = p(x = oℓ |sℓ = i) ∝
P(sℓ = i|x = oℓ)

P(s = i)
, (21)

with P(s = i) = πi . We omit the evidence p(x) as it has only a

normalizing function.

3) DNN Without HMM (C-DNN): A further option to obtain

posterior state probabilities is to use the output of a classification

DNN directly (Fig. 3, third path from top, S1 in center position,

C-DNN block, and S2 in lower position) and to omit the HMM

framework, thereby losing the advantage of the temporal mod-

eling from the HMM. Since we can understand the output of

the DNN as P(sℓ = i|x = oℓ), we can use it directly for either

MMSE estimation as shown in (14) or MAP estimation in (16),

where it is necessary to replace αℓ(i) with the DNN output.

Next, we introduce a solution that is independent of a code-

book or an HMM and estimates the clean envelope representing

coefficients directly.

E. Regression DNN (R-DNN)

Instead of using DNNs as a classifier, it is also possible to

directly estimate enhanced coefficients cĤ
ℓ (m) from a denoised

input vector by means of regression. The output plugs directly
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into the spectral conversion (SC) block in Fig. 3 and renders a

codebook needless (Fig. 3, lowest path, S1 in lower position,

R-DNN block). In this particular case, the temporal context is

also lost, unless the input layer of the DNN supports multiple

input frames.

The coming subsection gives a brief overview of the training

procedures required for the introduced DNN approaches.

F. DNN Training

To maintain comparability, we use the same zero-mean input

features for the DNN as for the GMMs, and for regression also

zero-mean targets. The number of nodes for the input layer is

corresponding to the feature vector dimension N and the num-

ber of nodes for the output layer corresponding either to the

amount of classes NS + 1, or also to the feature dimension N

(regression training). We understand hidden layers as every layer

between the input and the output layer and their number is NH ,

where each hidden layer has NN nodes. The initialization of

the network’s parameter set, comprising the weights and biases,

is done as proposed by Glorot et al. in [39]. In order to obtain

posterior class probabilities we use the negative log-likelihood

(NLL) error criterion during training with the backpropagation

algorithm [40] and a softmax output layer. The difference for a

regression-based DNN is mainly the final layer, which is a linear

output layer in this case. Also, the used error criterion during the

training is the mean squared error (MSE) instead of NLL. As

activation functions in the other layers we employ sigmoid func-

tions or rectified linear units (ReLUs). The latter are resolving

the vanishing gradient issue [41], known to occur with sigmoid

functions. After network initialization, the training material is

randomly assigned to batches containing L input frames each.

Then, according to the error criterion, the gradients of the loss

function between the outputs of the network and the correspond-

ing targets are calculated for each batch, and are subsequently

backpropagated through the network. The deltas of the param-

eters are accumulated and finally the network’s weights and

biases are updated. We train each network with L = 1024 sam-

ples (frames) per batch and a fixed learning rate of η = 0.001
for 100 epochs. Finally, we select the model with the best per-

formance on the development set for speech active frames (H1),

as experiments with adaptive learning rate decay have shown to

perform only as good as but not better. Also, the investigation

of L2 regularization did not lead to improvement, even worse,

we could witness some configurations, where the networks de-

teriorate and classify every input as speech inactive (H0).

Next, we provide instructions on how to apply or combine

some of the introduced approaches.

G. Applications With CEM

The CEE scheme can be combined with CEM in two different

ways: A parallel structure, where CEM and CEE are applied

simultaneously, meaning that the CEE block from Fig. 2 is

placed into the lower path of the LPC analysis in Fig. 1, or a

serial structure where the systems from Fig. 1 and Fig. 2 are

cascaded in either way. Here, cascading means that the output

of the first system (being either ŜCEM
ℓ (k) or ŜCEE

ℓ (k)) is used as

input for the LPC analysis block of the second system, thereby

replacing Ȳℓ(k). Hence, the preliminary noise reduction of the

second system is omitted and the noise power estimate σD
ℓ (k)2

of the first system is used throughout. The final gain function is

also applied to the original microphone signal Yℓ(k).

V. EXPERIMENTAL SETUP

A. CEM and DD Baselines (CEMSI and DD)

As we have already shown in [8], our baseline CEM algo-

rithm outperforms several state of the art a priori SNR estima-

tion algorithms. As motivated before, our experiments aim at

further enhancing the CEM algorithm by employing our vari-

ous envelope estimators, and compare the new approach to the

speaker-independent CEM baseline (CEMSI) and also the DD

estimator (DD) which is parameterized with ξmin = −15 dB

and βDD = 0.975. For a detailed setup of the training for the

CEMSI approach, we kindly refer to [8].

B. Ideal Ratio Mask Baseline (IRM)

In addition, we simulate a data-driven baseline using a feed-

forward neural network that predicts the ideal ratio mask (IRM).

This baseline DNN has 2,364,545 parameters and is mostly in

line with Wang’s work ([42] and [20]). We use non-redundant

amplitude features compressed by the natural logarithm as input

features, while the IRM targets are calculated as

GIRM
ℓ (k) =

(

|Sℓ(k)|2

|Sℓ(k)|2 + |Dℓ(k)|2

)β

, (22)

with β = 1.0. By interpreting the IRM as a gain function, we are

able to integrate this baseline into our evaluation methodology

(we require separately processed speech and noise components,

as will be outlined at the end of this section). As some of our

introduced approaches are based on the CEMSI baseline, and

thus indirectly on the DD baseline, we will first report the per-

formance of our approaches w.r.t. the two baselines for our de-

velopment process. However, for the final evaluation on the test

data, we will also compare our approaches with the data-driven

IRM baseline.

C. Databases and Preprocessing

We evaluate the algorithms in a noise reduction framework

and analyze the performance in a total of 318 different condi-

tions, embracing six different SNRs from −5 dB up to 20 dB in

steps of 5 dB, and 53 different noise files where we use all 20

files from the QUT [43] database and 33 out of 38 files from the

ETSI [44] database. Among them we find noise types such as

babble, car, street, aircraft, train, work, and more. We leave out

the male single voice distractor noise file and hold out four fur-

ther noise files from the ETSI database for an extra test set with

noise files which have not been seen during training. We split

each noise file into three non-overlapping parts, where 60% are

used for training, 20% for the development set, and another 20%

for the test set. As clean speech databases we utilize the TIMIT

[45] and also the NTT super wideband database [46] (Amer-

ican and British English only), both downsampled to 8 kHz.
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The designated training set of the TIMIT database is used for

training while the test set is used as development set and the

NTT database is used for testing only. We decided to utilize the

databases in that way since the training process requires a lot

of data which the TIMIT database delivers and also we are able

to show performance across different databases. For evaluation

of the training and development set with our CEMSI approach,

we use one speaker-independent codebook based on the NTT

database and for the test sets we use the speaker-independent

codebooks as obtained in [8].

The various SNR conditions are obtained by measuring and

adjusting the levels of the randomly selected noise portions and

clean speech files after ITU-T P.56 [47], followed by their super-

position. The framing (analysis and also overlap-add synthesis)

is done with a periodic square root Hann window and a 50%

frame shift, where one frame embraces K = 256 samples. The

LPC analysis calculates N=10 LPC coefficients. Furthermore,

we conduct the DNN training with the Torch toolkit [48] on

CUDA-capable GPUs.

D. Instrumental Quality Assessment

For the quality assessment we employ the white-box approach

[49], which means that we apply the calculated gains Gℓ(k) not

only to the microphone signal Yℓ(k) to obtain the clean speech

estimate Ŝℓ(k), but also to the components Sℓ(k) and Dℓ(k),
separately. We refer to the resulting entities after IDFT and

overlap-add as the filtered clean speech component s̃(n) and the

filtered noise component d̃(n), respectively. As instrumental

measures we use the segmental noise attenuation (NAseg) [50]

which is calculated as

NAseg = 10 log10

[

1

|L|

∑

ℓ∈L

NA(ℓ)

]

, (23)

where

NA(ℓ) =

∑N −1
ν=0 d(ν + ℓN)2

∑N −1
ν=0 d̃(ν + ℓN + ∆)2

,

with ℓ ∈ L defining a segment of N = 256 samples, ∆ being

the compensation term for potential delay due to filtering, and

a normalizing factor 1
|L| , taking into account the number of all

frames. Furthermore, we also evaluate the delta SNR as

∆SNR = SNRout − SNRin. (24)

Here, SNRin depicts the SNR of the clean speech and noise

component while SNRout depicts the SNR of the filtered speech

and noise components, after processing. This measure allows to

draw conclusions on the actual improvement of the SNR, since a

high noise attenuation might also affect the speech component.

We also employ the PESQ score (mean opinion score, lis-

tening quality objective (MOS-LQO)) [51], [52], on the filtered

clean speech component s̃(n) with s(n) as reference. Thereby,

we are able to evaluate the noise and also the speech components

separately. We do not measure PESQ on the enhanced signal

ŝ(n), since PESQ has not been validated for artifacts caused

by noise reduction techniques. In line with P.1100 [53, Sect. 8]

and using [49] to obtain the processed clean speech component,

we instead measure the distortion of the clean speech compo-

Fig. 4. Evaluation of the speech component MOS-LQO and segmental NA
for all noise and SNR conditions of the unquantized and quantized oracle

experiments and the two baseline estimators showing the potential of the
proposed method on the development set.

nent, thereby being also compliant to the intended use case of

P.862 [51]. Since PESQ is somewhat level-agnostic and thus not

penalizing broadband attenuation of a signal, it is important to

report the ∆SNR. This allows to draw conclusions on speech

attenuation which would not be possible otherwise.

In order to assess the intelligibility of the enhanced speech, we

employ the short-time objective intelligibility measure (STOI)

[54]. STOI is an intrusive metric that is operating on the clean

speech signal s(n) which serves as a reference and the enhanced

signal ŝ(n). This metric provides values in the range [0, 1], where

high values represent high intelligibility.

VI. SIMULATIONS AND DISCUSSION

A. Solo: Cepstral Envelope Estimation (CEE)

Number of HMM States: At first, we perform two different

oracle experiments in order to analyze the potential of our ap-

proach and to figure out how many states are providing good

performance. In Fig. 4, we evaluate MOS-LQO by PESQ and

also NAseg, both measured on the separately filtered compo-

nents. Here, each marker depicts a certain SNR condition, with

−5 dB in the lower right and 20 dB in the upper left corner.

The solid purple plot (with diamond markers) shows the per-

formance of the proposed method when instead of the applied

CEE (see Fig. 2, grey box), the oracle envelope from the clean

speech is injected and mixed with the denoised residual signal

(referred to as Oracle Envelope). Accordingly, this plot depicts

the upper performance limit of the CEE technique in our noise

reduction framework. Now, the first choice we need to make is

on the amount of states the HMM should be able to estimate.

Therefore, we train three different codebooks (see Section IV-B)

for NS ∈ {64, 128, 256} with the LBG algorithm [36] on the

extracted envelopes of the TIMIT training set. Subsequently, we

run our framework, again replacing the CEE block by quantiz-

ing the oracle envelopes obtained from the corresponding clean

speech files with our trained LBG codebooks (three dashed

lines, triangle and circle markers). Comparing both oracle exper-

iments to the DD (solid yellow line, plus markers) and CEMSI

(solid blue line, asterisk markers) baselines, shows that there
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TABLE I
ANALYSIS OF THE GMM-HMM APPROACH WITH NS + 1 = 65 STATES, G

BEING THE NUMBER OF MODES: POSTERIOR STATE PROBABILITY ACCURACY

DELIVERED BY THE HMM. SPEECH ACTIVE (H1 ) AND INACTIVE (H0 ) FRAMES

ARE EVALUATED SEPARATELY

is good potential of the approach, especially in terms of speech

component quality. One can also see that the quantization causes

a slightly higher NAseg in the lower SNR conditions compared to

the oracle envelope, where in the other SNR conditions it is more

a loss in speech component quality only. The three dashed lines

representing the different quantization levels show a very similar

performance with only a slight preference for the larger code-

books. However, since it is only a marginal benefit, we decide

to use NS + 1 = 64 + 1, as the trade-off between lower com-

plexity and higher quality clearly favors the former in this case.

Number of GMM Modes: Next, we investigate the number of

modes G which represent the denoised observations. Therefore,

we train GMMs with G ∈ {4, 8, 16} and evaluate the posterior

state probabilities of the HMM by measuring the accuracy. The

results are shown in Table I and are depicted for speech active

(H1), speech inactive (H0), and both kinds of frames together

(H0 ∪ H1). The H0 /H1 distinction is performed by a simple

VAD on the clean speech material with a dynamic threshold

which tests if a frame’s energy is above the average frame en-

ergy of the corresponding file. The rationale behind this is that

the prior distribution of the state representing speech inactive

frames differs between the three sets, being roughly 25% for the

training and development set, and 50% for the test set. This, if

only regarding the accuracy of all frames jointly, would raise

questions as to why the accuracy on the test set is higher than on

the training and development set. Considering both classes sepa-

rately gives a more consistent view on the performance, showing

an expectedly higher accuracy with increasing number of modes

on the speech active frames. The gain is rather small compared to

the rising complexity with increasing G, making us comfortable

with the choice of G = 16 (grey-shaded), delivering the best ac-

curacy for speech active frames on the development set, without

exploring the effects of more modes which we assume would

lead to overfitting at some point and also to a lack of training

data. Fortunately, this coincides with the best H1 performance

on the test set as well, which is not taken for granted.

GMM-HMM Envelope Estimation: Thus, having found a suit-

able configuration we evaluate the performance of the GMM-

HMM approach with NS + 1 = 65 states each represented by

G = 16 modes with either MAP (16) or MMSE (14) estima-

tion of the clean envelope in Fig. 5. On top, the unquantized

and also quantized oracle experiments with G = 16 are shown.

Compared to the DD baseline (solid yellow line, plus mark-

ers) the MAP approach (dashed green line, square markers) is

able to show consistent improvement in terms of both measures,

MOS-LQO and NAseg. Especially the low-SNR conditions ben-

efit from the enhanced envelope in terms of speech component

Fig. 5. Evaluation of the speech component MOS-LQO and segmental NA
for all noise and SNR conditions of the two optimized GMM-HMM ap-

proaches using MAP and MMSE (NS + 1 = 65, G = 16) compared to the
two corresponding oracle experiments and baseline estimators showing the
performance of the optimized GMM-HMM approaches on the development
set.

TABLE II
ABERRATION OF PARAMETERS FOR SEVERAL NUMBERS OF HIDDEN LAYERS

NH WITH NUMBER OF NODES NN IN EACH LAYER COMPARED TO THE

DESIGNATED GMM CONFIGURATION WITH 21840 PARAMETERS

quality. The proposed approach also exceeds the CEMSI base-

line (solid blue line, asterisk markers) in the SNR conditions

from −5 dB up to 10 dB quite clearly. Only the two best SNR

conditions enable the CEM approach to obtain better speech

component quality, which gives hope that a combination of

both approaches might be able to mitigate the drawbacks of

either method. When evaluated against the corresponding or-

acle envelope experiment (dashed red line, triangle markers)

a more or less constant gap of around 0.05 MOS points re-

mains. To circumvent the limitation of using a single entry of

the codebook only, as done by the MAP estimation, we also cal-

culate the MMSE estimate (solid green line, square markers),

allowing us to consistently exceed the performance of the MAP

approach by up to 0.09 MOS points for the −5 dB SNR condi-

tion. Even the oracle envelope experiment can be outperformed

in terms of NAseg, however, with a slightly lower MOS-LQO.

This depicts nicely the benefit of the MMSE over the MAP esti-

mate, being able to exploit the codebook space to a larger extent.

The experiment using the unquantized oracle envelope performs

clearly better than the GMM-HMM with MMSE estimation in

the 20 dB to 10 dB SNR conditions, while in the remaining

SNR conditions the MMSE approach obtains a much higher

NAseg which might be caused by a less accurate state estimation

due to the SNR, being reflected by the lower MOS-LQO values.

C-DNN Envelope Estimation Approaches: The GMMs with

G = 16 and NS + 1 = 65 embrace a total of 21,840 parame-

ters, which we target also for the training of DNNs to ensure

a fair comparison. In Table II we depict several basic network

configurations with up to six hidden layers, trying to keep a com-

parable amount of parameters as used for GMM training and we
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TABLE III
EVALUATION OF VARIOUS C-DNN TRAININGS WITH COMPARABLE AMOUNT OF PARAMETERS RELATED TO THE BEST GMM CONFIGURATION IN TERMS OF THE

POSTERIOR STATE PROBABILITY ACCURACY DELIVERED BY THE RESPECTIVE DNN. SPEECH ACTIVE (H1 ) AND INACTIVE (H0 ) FRAMES ARE EVALUATED

SEPARATELY. THE EPOCH #E OF THE BEST PERFORMING NETWORK WITH RESPECT TO ACCURACY ON H1 ON THE DEVELOPMENT SET IS ALSO REPORTED

also depict the aberration of parameters in percent. Thereby, we

make sure that we do not use more parameters than the GMM

baseline does. With this setup we are able to analyze the influ-

ence of depth independently. Following, in Table III we present

the posterior state accuracies of the various C-DNN configura-

tions which we have examined. In general, there is to say that the

differences between the configurations are rather small so that

no network performs significantly better than any other. Judging

from the development set, the networks with sigmoid activation

obtain slightly better accuracies on speech active frames than

the ones with ReLUs. Another observation is that with growing

depth we can see a slight but steady increase of the accuracy

on the H1 frames of the development set when the sigmoid

function is employed. For the subsequent C-DNN-HMM and

also C-DNN approaches, we use the network with NH = 6,

NN = 58, and sigmoid activation, as it performs best on speech

active frames on the development set (grey-shaded). Note that

it just does not match the best results on the test set which the

network with NH = 3 and NN = 86 yields. When compared to

the best GMM-HMM result in Table I (43.8%), the superiority

of the DNN (54.7%) becomes obvious, as the accuracy gain on

the development set (H0 ∪ H1) is better than 10% absolute, and

also on the speech active frames the accuracy increases by more

than 6%. For the test set, the overall accuracy is more than 13%

higher, while the gain for speech active frames of the test set

melts down to about 4%.

R-DNN Envelope Estimation: Results of the second training

process for the R-DNN are shown in Table IV. Again, we made

sure that the amount of parameters relates closely to the best per-

forming GMM-HMM configuration. The DNNs trained with

sigmoid activation function slightly outperform the ones with

ReLU activation function, as before. However, the latter tend

to converge a bit faster for some topologies but with a higher

loss. In general, the differences across all configurations are

rather marginal. Nevertheless, we find the best configuration

for NH = 6 and NN = 58 combined with the sigmoid activa-

tion function (grey-shaded). This is the same configuration as

we found to be optimal for the C-DNN approaches. Also, this

network shows only second best performance on the test set.

TABLE IV
EVALUATION OF VARIOUS R-DNN TRAININGS WITH COMPARABLE AMOUNT OF

PARAMETERS RELATED TO THE BEST GMM CONFIGURATION IN TERMS OF THE

MSE LOSS. THE EPOCH #E OF THE BEST PERFORMING NETWORK WITH

RESPECT TO THE MINIMAL MSE LOSS ON THE DEVELOPMENT SET IS ALSO

REPORTED

All Approaches: Now, we evaluate the performance of the

optimal networks in our system for the MAP estimation, as

shown in Fig. 6. Comparing the GMM-HMM approach (dashed

green line, square markers) to the C-DNN-HMM configuration

(dashed orange line, triangle markers), results in an unchanged

performance, which is surprising, since the accuracy of the C-

DNN alone is significantly higher. A gain is seen, however,

for the C-DNN (dashed orange line, circle markers), where the

HMM is omitted and the posterior distribution of the network

is used directly. An analysis of the state posterior distribution

accuracy on the development set shows that the reported 54.7%

(H0 ∪ H1) and 43.5% (H1) of the C-DNN (both Table III)

correspond to only 45.2% (H0 ∪ H1) and 38.0% (H1) for the

C-DNN-HMM approach, which is still higher by more than

1% compared to the GMM-HMM method (cf. Table I). How-

ever, this latter only small accuracy improvement explains the

comparable performance of C-DNN-HMM and GMM-HMM

in Fig. 6. The C-DNN consistently outperforms the two HMM-

based systems in both quality dimensions by up to 0.05 MOS
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Fig. 6. Comparing the performance of the GMM-HMM system (NS + 1 =
65, G = 16) and the various DNN-supported approaches with MAP estima-
tion in terms of the speech component quality measured by MOS-LQO and
NAseg on the development set. The upper limit is depicted by the respective
oracle experiment.

Fig. 7. Comparing the performance of the GMM-HMM system (NS + 1 =
65, G = 16) and the various DNN-supported approaches with MMSE esti-
mation in terms of the speech component quality measured by MOS-LQO and
NAseg on the development set. The upper limit is depicted by the respective
oracle experiment.

points and 0.1 dB NA (−5 dB SNR condition), showing im-

proved performance especially in the low-SNR conditions. This

indicates that the HMM seems to be a limiting factor here,

which could be caused by the temporal context, since it is the

remaining factor that is able to overrule the network’s decision.

The results for the MMSE estimation are reported in Fig. 7.

Again, we can see that replacing the GMMs by a DNN (solid

green line, square markers: GMM-HMM vs. solid orange line,

triangle markers: C-DNN-HMM) has very little effect due to

the limiting HMM. The performance of the C-DNN (solid or-

ange line, circle markers) again shows consistent improvement

over the HMM results, which indicates that the overall estima-

tion of the posterior probability distribution is more accurate.

Given the 10% accuracy improvement of C-DNN vs. GMM-

HMM, and the 56.2% accuracy improvement of the oracle vs.

Fig. 8. Comparing the performance of the CEE system, the baselines CEMSI

and DD, and the parallel/serial combinations of both approaches in terms
of the speech component quality measured by MOS-LQO and NAseg on the
development set.

GMM-HMM, C-DNN performs better than expected. This is

visible, e.g., in SNR = −5 dB, where its MOS-LQO is about

half way between GMM-HMM and oracle, while it exceeds the

oracle NAseg by more than 0.5 dB. Finally, the R-DNN (solid

orange line, cross markers) shows an imbalanced behavior as it

exceeds the performance of the C-DNN for the 15 and 20 dB

SNR conditions but deteriorates with decreasing SNR. This re-

sults in the worst performance among the depicted methods for

the two lowest SNR conditions. This is an interesting result as

this shortcoming could not be observed for the classification

DNNs. It could be due to the rather small amount of parameters,

preventing the network to cover all SNR conditions equally as

the regression task is more complex than classification. Con-

sequently, we favor the C-DNN approach with MMSE estima-

tion, as it performs best in the important low-SNR conditions.

The approach still leaves space for improvement, especially

for the higher SNR conditions, when compared to the oracle

experiment.

B. Duo: CEM With Cepstral Envelope Estimation (CEE)

Having successfully identified the best performing envelope

estimator, namely the C-DNN approach with MMSE estima-

tion, which we will simply dub CEE in the following, we will

now combine CEE with CEMSI by replacing the preliminary

denoised envelope in Fig. 1 (lower LPC analysis path, white

box) with the proposed C-DNN cepstral envelope estimation

method. This is referred to as parallel approach (symbol ‖). Al-

ternatively, we will also investigate using either CEMSI or the

C-DNN approach as preliminary noise reduction for the other,

referred to as serial approaches (symbol →).

1) Evaluation on the Development Set: The results are de-

picted in Fig. 8, where the CEMSI (solid blue line, asterisk

markers) benefits especially in the important low-SNR con-

ditions from incorporating the CEE (solid orange line, cir-

cle markers) in a parallel manner (solid green line, diamond

markers) by obtaining a higher NAseg while maintaining a
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Fig. 9. Comparing the performance of the CEE system, the baselines CEMSI,
IRM, and DD, and the parallel/serial combinations of both approaches in
terms of the speech component quality measured by MOS-LQO and NAseg on
the test set.

comparable speech component quality. Also the serial ap-

proaches (green lines, triangle markers) both outperform the

CEMSI baseline consistently in both quality dimensions, gain-

ing up to 0.63 dB higher NAseg and 0.13 MOS points. Applying

CEMSI first (dotted green line, inverted triangle markers) fol-

lowed by the CEE yields a slightly higher speech component

quality at the cost of a little less NAseg compared to the other

serial setup (dashed green line, triangle markers). The CEMSI

approaches, solo and duo, have one important advantage over

the solo CEE approach: They are able to restore harmonics and

to suppress noise between them, where the latter is a shortcom-

ing of all approaches which only estimate the envelope. How-

ever, we expected a more consistent improvement by applying

both techniques in parallel and suspect that some mismatch

between the enhanced excitation and envelope could prevent

further improvement, which could be subject to future research.

This mismatch seems to be eased by the sequential application

of both approaches, where we manipulate one component of the

estimated clean speech amplitude spectrum at a time.

2) Evaluation on the Test Set: Until now, all results and

optimizations have been analyzed and taken out on the devel-

opment set. In Fig. 9 we report the test set performance of the

three baseline approaches, DD (solid yellow line, plus mark-

ers), CEMSI (solid blue line, asterisk markers), and IRM (solid

sand line, square markers). We also report on our best cepstral

envelope estimator C-DNN with MMSE estimation, i.e., CEE

solo (solid orange line, circle markers), and also in conjunction

(green lines) with the CEMSI baseline. When the solo CEE ap-

proach is applied, a consistent improvement of the speech com-

ponent quality over the DD and CEMSI baselines is obtained, but

the NAseg now falls behind the CEMSI method. This probably

reflects the detriment of the CEE approach being a data-driven

technique, since this was not the case on the development set.

Interestingly, the two baseline approaches (DD, CEMSI) yield

lower PESQ scores on the development set than on the test set

(compare Figs. 8 and 9). This is most likely due to the choice

of two different databases which have quite different recording

characteristics and settings. Thus, the one seems to be easier

to be processed by noise reduction algorithms than the other.

Fig. 10. Comparing the performance of the CEE system, the baselines
CEMSI, IRM, and DD, and the parallel/serial combinations of both ap-
proaches in terms of the speech component quality measured by MOS-LQO
and ∆SNR on the test set.

Fig. 11. Comparing the performance of the CEE system, the baselines
CEMSI, IRM, and DD, and the parallel/serial combinations of both ap-
proaches in terms of the speech intelligibility measured by STOI and NAseg on
the test set.

As the other approaches (green lines) are heavily influenced by

the data-driven CEE approach, which has been trained on data

stemming from the same database (but disjoint data sets) as the

development set, the decreasing performance is quite expected

when changing to a different database. However, the combina-

tion with CEMSI seems to mitigate the drawback of the CEE

approach caused by its data dependency to quite some extent. In

parallel with the CEMSI (solid green line, diamond markers) a

gain of up to 0.4 dB NAseg can be obtained, resulting in a slight

shift of the trade-off point for speech component quality and

noise attenuation compared to CEMSI. Both serial approaches

manage to consistently mitigate this drawback, where apply-

ing CEMSI first (dotted green line, inverted triangle markers)

is able to further improve CEMSI by up to 0.15 MOS points at

an additionally slightly higher noise attenuation. Alternatively,

when applying the envelope enhancement first (dashed green

line, triangle markers), the CEMSI baseline can be improved by

an average of 0.4 dB NAseg, while maintaining a comparable

speech component quality.

The data-driven IRM baseline shows a surprisingly high

speech component quality that is exceeding the performance

of all other approaches. However, when further analyzing the
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Fig. 12. Comparing the performance of the CEE system, the baselines
CEMSI, IRM, and DD, and the parallel/serial combinations of both ap-
proaches in terms of the speech component quality measured by MOS-LQO
and NAseg on the test set with unseen noise files.

∆SNR as shown in Fig. 10, the approach shows the lowest

∆SNR improvement, especially in the important low-SNR con-

ditions. This indicates that the IRM approach causes a broad-

band attenuation of noise and speech which is not penalized by

PESQ as mentioned in Section V-D. Only in the (not so impor-

tant) high-SNR conditions the IRM approach outperforms the

other approaches also in terms of ∆SNR. A further issue with

IRM is that the residual background noise shows a fluctuating

temporal evolvement and thus results in an unsettled subjective

listening experience.2 The IRM approach seems to be unable

to generate coherent residual background noise which is not

surprising, as the neural network has no recurrent modules or

any memory which would allow it to produce coherent output

w.r.t. previously processed frames. Even though it obtains high

NAseg results, the CEE approach also shows that the ∆SNR im-

provement is quite limited. Nonetheless, an improvement over

the DD baseline, except for the 20 dB condition, is obtained. The

proposed serial approach (CEE first) takes most profit from the

combination of both methods and shows a small but consistent

improvement over CEMSI.

In Fig. 11 we present the intelligibility results measured with

STOI for the different approaches. All methods perform similar

on STOI, with IRM being best in NAseg—with the known

∆SNR issue and residual noise quality issue2 as discussed

before.

Furthermore, we have investigated the performance of all the

seven depicted approaches on the clean speech data of the test

set without noise. Hence, it is not possible to report NAseg, but

PESQ scores are higher or equal than 4.43 MOS points and

STOI is higher or equal than 0.981 for all approaches. This

shows that the approaches do not significantly degrade speech

quality or intelligibility in clean conditions.

Informal expert listening tests and spectrogram analyses3

have shown that the parallel and serial (CEE first) approaches

2Audio samples for the IRM baseline can be found under:
https://www.ifn.ing.tu-bs.de/en/ifn/sp/elshamy/2018-taslp-cee/

3Audio samples can be found under:
https://www.ifn.ing.tu-bs.de/en/ifn/sp/elshamy/2018-taslp-cee/

Fig. 13. Comparing the performance of the CEE system, the baselines
CEMSI, IRM, and DD, and the parallel/serial combinations of both ap-
proaches in terms of the speech component quality measured by MOS-LQO
and ∆SNR on the test set with unseen noise files.

Fig. 14. Comparing the performance of the CEE system, the baselines
CEMSI, IRM, and DD, and the parallel/serial combinations of both ap-
proaches in terms of the speech intelligibility measured by STOI and NAseg on
the test set with unseen noise files.

result in a much smoother and more natural background noise,

even in babble noise, owing to the introduced CEE method. The

approaches also manage to reduce the noise between harmonics

facilitated by the integration of the CEMSI method.

3) Evaluation on the Test Set with Unseen Noise Files: Fi-

nally, in Fig. 12 we evaluate the performance on the test set with

four unseen noise files, where three are quite non-stationary. The

files4 are taken from the ETSI noise database [44]. Here, the solo

CEE approach (solid orange line, circle markers) obtains up to

1.4 dB higher NAseg, compared to the DD baseline and also

improves the speech component quality significantly. The per-

formance of the parallel approach (solid green line, diamond

markers) is comparable to Fig. 9, where the NAseg is increased

at the cost of a lower speech component quality. This is also a

general difference between Figs. 9 and 12, since the NAseg in

Fig. 12 is consistently lower and thus allows to obtain a higher

PESQ score as the classical trade-off. This can be dedicated to

4Fullsize_Car1_80Kmh, Outside_Traffic_Crossroads, Pub
_Noise_Binaural_V2, Work_Noise_Office_Callcenter

https://www.ifn.ing.tu-bs.de/en/ifn/sp/elshamy/2018-taslp-cee/
https://www.ifn.ing.tu-bs.de/en/ifn/sp/elshamy/2018-taslp-cee/
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the different noise types, as for Fig. 9 more stationary noise files

have been included in the evaluation, which are naturally easier

to process than non-stationary noise types, which are predomi-

nant in the data for Fig. 12.

The IRM baseline shows less improvement w.r.t. NAseg com-

pared to the test set with seen noise files. However, the speech

component quality is still quite high, while showing clear detri-

ments in the SNR improvement, as can be seen in Fig. 13. This

indicates again that there is also quite some speech attenua-

tion, which is also reflected in STOI (Fig. 14). Here, the IRM

baseline is outperformed by our serial approach (CEE first) and

also our parallel approach, where both also show convincing

performance in Fig. 13 by improving the SNR consistently.

The serial approach with CEMSI first (dotted green line, in-

verted triangle markers) also shows only limited improvement

over the CEMSI baseline (solid blue line, asterisk markers),

mainly resulting in an improved speech component quality with

a comparable NAseg. However, when applying CEE first (dashed

green line, triangle markers), we again consistently outperform

the CEMSI baseline by up to more than 0.5 dB NAseg, while

obtaining all its benefits even in non-stationary and unseen noise

files. Thus, from the various schemes we have proposed in this

paper, this is the strongest approach.

VII. CONCLUSIONS

We investigated several methods of spectral envelope esti-

mation in the cepstral domain for a priori SNR estimation

and evaluated their performance in a speech enhancement task

with MMSE spectral amplitude estimation. Replacing a hid-

den Markov model by a deep neural network improves the

state accuracy by more than 13% absolute. Evaluated on non-

stationary and unseen noise files, the cepstral envelope estima-

tion (CEE) approach alone shows significant improvement over

the decision-directed (DD) estimator by up to 1.4 dB noise atten-

uation (NA), also significantly improving the speech component

quality.

The combination with cepstral excitation manipulation (CEM

with CEE first) provides a gain of 0.5 dB over CEM and of up

to 2 dB over DD in terms of NA, without degrading the speech

component quality or intelligibility. The proposed combination

also obtains considerable SNR improvement over the baselines

in the important low-SNR conditions.

There is still some room for improvement, as shown by the

difference in the performance obtained with oracle envelopes

and estimated envelopes. Future work will comprise the investi-

gation of how to further reduce this gap, e.g., by more advanced

topologies of neural networks which could lead to higher clas-

sification accuracies.
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