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ABSTRACT

Direct numerical simulation (DNS) of a fully developed tur-

bulent channel flow for very low Reynods numbers has been

executed with larger computational box-sizes than those of

common DNS. The present Reynolds number is decreased

down to Reτ = 64, where Reτ is based on the friction veloc-

ity and the channel half width δ. For Reτ =80 with using the

largest box of 51.2δ×2δ×22.5δ, the periodic weak-turbulence

regions are observed. This type of locally disordered flow is

similar to a turbulent puff observed in a transitional pipe

flow. Various turbulence statistics such as turbulent inten-

sities, vorticity fluctuations, Reynolds stresses are provided.

Especially, their near-wall asymptotic behavior and budget

terms of turbulence kinetic energy are obtained and discussed

with respect to Reynolds number dependence and an influence

of the comptational box-size. In addition, two-point correla-

tion coefficients, visualized instantaneous flow fields and the

pre-multiplied energy spectra are presented in order to exam-

ine turbulence structures.

INTRODUCTION

A low Reynolds number flow in a channel is of practical

importance with respect to a high temperature gas-cooled nu-

clear reactor, in which the low Reynolds number is employed to

obtain a high outlet gas temperature. Direct numerical simu-

lations (DNS, hereafter) of a fully developed turbulent channel

flow have been increasingly performed for higher Reynolds

numbers with an aid of recent development of computers.

A DNS provides various information, such as velocity and

pressure. Special attention has been paid to their near-wall

asymptotic behavior and their derivatives at any time and

point in the instantaneous field, which are extremely difficult

to be measured in experiments.

The first DNS of the fully developed turbulent channel flow

was made by Kim et al. (1987). Their Reynolds number was

Reτ=180, which is based on the channel half width δ, the

kinematic viscosity ν and the friction velocity uτ =
p

τw/ρ,

where τw is the statistically averaged wall shear stress and ρ

is the density. Kuroda et al. (1989) carried out the DNS for a

slightly lower Reynolds number of Reτ=150. The author’s

group (Kawamura et al. , 1998; Abe et al. , 2004a, 2004b)

Table 1: Reynolds numbers of the present DNS; i.e.,

Reτ=uτ δ/ν, Rem=um2δ/ν, Rec=ucδ/ν. MB, medium box-

size; SB, semi-large box-size; LB, large box-size, cf., Table 2.

Reτ 180 150 110 80 80 70 64

Rem 5730 4620 3290 2290 2320 2020 1860

Rec 3360 2720 1960 1400 1430 1270 1200

Box size MB MB MB MB LB SB SB

performed the DNS with respect to Reynolds number and

Prandtl number dependences for Reτ=180-1020. As for the

low Reynolds number, several research groups carried out the

DNS down to Reτ=80 in order to study a control of tur-

bulence (Bewley et al. , 2001; Chang et al. , 2002; Högberg

et al. , 2003). Iwamoto et al. (2002) have executed the DNS

for Reτ=110-650; their published results of Reτ=110 and 150

are also included in this paper for comparison. These stud-

ies often employed rather small computational boxes because

of limited calculation resources. A great deal of effort has

been conducted to experimental studies of the turbulent chan-

nel flow. Laufer (1951) first obtained the detailed turbulence

statistics in the channel flow. Patel and Head (1969) mea-

sured skin friction and mean velocity profiles over the Rem

range 1, 000-10, 000 that includes the transition from laminar

to turbulent flow, where Rem based on the bulk mean veloc-

ity um and the channel width. Later, Kreplin and Eckelmann

(1979) made their experiments for low Reynolds numbers of

Rec=2, 800-3, 850, based on the centerline velocity uc and δ.

The measurements of the turbulent channel flow at Rec=2, 850

or 3, 220 were executed by Niederschulte et al. (1990).

Recently, much attention is paid to a large-scale structure

(LSS) in the turbulent channel flow (Jiménez, 1998; Liu et

al. , 2001; Abe et al. , 2004a, 2004b). For the lower Reynolds

number, the near-wall streak structure is so elongated that its

length exceeds the usual computational box-size. Thus DNS

of the low Reynolds number flow requires a larger box-size to

capture the near-wall streak structure and the LSS.

In the present work, the DNS of fully developed turbulent

channel flow has been carried out with the use of larger compu-

tational boxes than existing works. The purpose of this study

is to obtain the turbulence statistics and characteristics of the

turbulent channel flow at the very low Reynolds numbers.



Table 2: Computational domain size; Li, Ni and ∆i are a box

length, a grid number and a spatial resolution of i-direction.

Box size MB SB LB

L∗
x, L∗

z 12.8, 6.4 25.6, 12.8 51.2, 22.5

Nx, Nz 256, 256 256, 256 1024, 512

Ny 128 128 96

∆x∗, ∆z∗ 0.05, 0.025 0.10, 0.05 0.05, 0.044

∆y∗
min,max

0.0011-0.033 0.0011-0.033 0.0014-0.045

NUMERICAL PROCEDURE

The mean flow is driven by the uniform pressure gradi-

ent. It is assumed to be fully developed in streamwise (x-)

and spanwize (z-) directions. The coordinates and the flow

variables are normalized by uτ , ν and δ. Periodic boundary

conditons are imposed in the x- and z- directions and the non-

slip is applied on the walls. The fundamental equations are

the continuity and the Navier-Stokes equations. For the spa-

tial discretization, the finite difference method is adopted. The

numerical scheme with the 4th-order accuracy is employed in

the streamwise and spanwize directions, while the one with

the 2nd-order is applied in the wall-normal direction. Time

advancement is executed by the semi-implicit scheme: the

2nd-order Crank-Nicolson for the viscous terms (wall-normal

direction) and the 2nd-order Adams-Bashforth methods for

the other terms.

In the present work, a series of DNS has been made for

Reτ=64-180 (see Table 1). For the lower Reynolds numbers

of Reτ=64-80, the larger boxes than those of common DNS

are adopted. The computational conditions are shown in Ta-

ble 2. The nonuniform meshes are applied in the wall-normal

direction. Note that quantities with the superscript of ∗ indi-

cate those normalized by the outer variables, e.g., y∗ = y/δ.

In the present DNS, the pressure gradient is decreased step-

wisely down to an estimated level for the aimed Reynolds

number. The fully developed flow field at higher Reynolds

number is successively used as the initial condition for the one-

step lower Reynolds number, e.g., Reτ=180→150, 150→110,

110→80 and so on. Note that various statistical data are ob-

tained after the flow has reached a statistical-steady state.

RESULTS AND DISCUSSION

Mean velocity profile

Figure 1 shows the vertical profile of the dimensionless

mean velocity in wall units, where quantities with the super-

script of + indicate those normalized by the wall variables, e.g.,

y+ = yuτ /ν. Statistics are denoted by a overline of ( ), that

are the spatial (in the horizontal directions) and temporal av-

eraging. The obtained data from the experiments of Patel and

Head (1969) and the DNS by Iwamoto et al. (2002) using the

spectral method are also shown for comparison. The present

results for Reτ =110-180 are in good agreement with the DNS

of Iwamoto et al. . In these low Reynolds number flows, the

mean velocity distributions do not indicate the logarithmic re-

gion clearly. For the lower Reynolds numbers of Reτ ≤ 110,

von Kármán constant (not shown here) does not exhibit any

constant range at all. In the outer region (y+ > 10), a signifi-

cant Reynolds number dependence is found when normalized

by the inner variables. Mean flow variables such as the bulk

mean velocity u+
m and the mean centerline velocity u+

c are
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Figure 2: Reynolds number versus (a) centerline velocity u+
c

and bulk mean velocity u+
m, (b) friction coefficient Cf . In (a),

dotted lines (– – – –, — · —) show the laminar flow relations

of uc = Reτ /2 and um = Reτ /3, respectively.

given in Fig. 2(a) for each Reynolds number. It is interesting

to note that the values of u+
c and u+

m increases with decreasing

Reynolds number, if Reτ <80. The reason will be discussed

later. Both u+
c and u+

m are expected to approach gradually to

laminar values.

Although the skin friction coefficient is one of the most

fundamental turbulence characteristics, the one in the transi-

tional region of the channel flow has not been examined yet

through the DNS owing to the lack of the low Reynolds num-

ber simulations. Figure 2(b) shows a variation of the skin

friction coefficient Cf=2τw/(ρ · u2
m) in comparison with the

empirical correlations proposed by Dean (1978) for a channel

flow, and by Blasius for a pipe flow. The present results are

in good agreement with them for Rem > 3000. It is worth

noting that, for Rem < 3000, Cf tends to be smaller than the

empirical correlations with the decreasing Reynolds number,

and it agrees well with the experimental data from Patel and

Head (1969). It is found that the present Reynolds number is

close to the laminarization. The lowest Reynolds number of

Rem =1860 in the present DNS lays still in the transitional

region. The lower limit cannot be clealy defined by the calcu-

lation up to now.

Turbulence intensity

The root-mean-square (r.m.s.) of the streamwise velocity

fluctuation normalized by uτ is given in Fig. 3. If u′+
rms is plot-

ted against y/δ, it increases remarkably in the central region

of the channel for Reτ < 80. The value of the local maximum

near the wall decreases remarkably at Reτ ≤ 70.

With respect to the computational box-size, a significant

influence of the box-size upon u′+
rms can be seen for Reτ =80

at the central region. With extending box size, u′+
rms is en-

hanced, with a deviation of about 12% at the channel center.

This is because the turbulence structure is confined by a short

box length in the case of Reτ=80(MB). This tendency is also



Table 3: Near-wall expansion coefficient

Reτ b1 c2 b3 b1c2
180 0.360 8.70 × 10−3 0.189 7.30 × 10−4

180† 0.356 8.5 × 10−3 0.190 7.0 × 10−4

150 0.354 8.60 × 10−3 0.172 7.10 × 10−4

110 0.336 6.75 × 10−3 0.145 5.45 × 10−4

80(MB) 0.302 4.55 × 10−3 0.105 3.45 × 10−4

80(LB) 0.333 6.85 × 10−3 0.144 4.45 × 10−4

70 0.291 4.65 × 10−3 0.101 3.10 × 10−4

64 0.268 3.90 × 10−3 0.086 2.45 × 10−4

† Antonia and Kim (1994)
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Figure 3: R.m.s. of the streamwise velocity fluctuation u′
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Figure 4: R.m.s. of the wall-normal fluctuation v′ (a) and the

spanwise fluctuation w′ (b).

seen for spanwise fluctuations in the whole channel (Fig. 4(b)),

with a deviation of 7-27%. The influence upon the wall-normal

component is small (Fig. 4(a)). Moreover, the influence of the

box-size on the mean flow variables and other turbulence quan-

tities, such as u+, vorticity fluctuations (shown later), are also

significant at very low Reynolds number of Reτ=80, whereas

the those of the box-size on the tubulence statistics are rather

small for the moderate Reynolds number of Reτ =180-640 as

shown by Abe et al. (2004a).

Effect of Reynolds number is significant in the ui
′+
rms of both

spanwise and wall-normal directions. All component values

decrease with the decrease of Reynolds number. Antonia et

al. (1992) indicated that the Reynolds number dependence of

w′+
rms is more significant compared to that of u′+

rms and v′+
rms.

In the present work, both v′+
rms and w′+

rms decrease remarkably

with the decreasing Reτ . This is because the production term

of u′+
rms and redistribution for v′+

rms and w′+
rms are reduced with

the decreasing Reτ as discussed later.

To analyse the near-wall asymptotic behaviour, the velocity

fluctuations can be expanded in Taylor series about-the-wall

value as follows:

8

<

:

u′+ = b1y+ + c1y+2 + · · ·

v′+ = c2y+2 + · · ·

w′+ = b3y+ + c3y+2 + · · · .

(1)

The r.m.s. values of the vorticity fluctuations are shown

in Fig. 5. The streamwise and spanwise vorticity fluctu-

ations, ω′+
x (=b3) and ω′+

z (=b1), decrease with decreasing
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Reynolds number. However, the influence of insufficient box

size for Reτ=110 and 80(MB) cannot be neglected. The ratio

ω′+
y /y+(=b1,3 − b3,1) tends to become constant in the near-

wall region as reported by Antonia and Kim (1994).

The use of Eq. (1) in the expression for the Reynolds shear

stress, −u′+v′+, yields

−u′+v′+ = −b1c2y+3 + · · · . (2)

The near-wall values of b1, c2, b3 and b1c2 are extrapolated

up to the wall, and are given in Table 3. The present result

of Reτ=180 agrees well with that of Antonia and Kim (1994).

These coefficients decrease with the decrease of Reynolds num-

ber. This is because the production rate of the turbulent

kinetic energy decreases with decreasing Reynolds number as

discussed later. Especially, the decrease of c2, b3 and b1c2
is significant when the Reynolds number falls to 70; the de-

crease in b1c2 is slightly larger than that for either c2 or b3. In

the case of Reτ ≤ 80(MB), however, the obtained coefficients

could be furtherl influenced by the box-size.

Reynolds shear stress

Figure 6 shows the Reynolds shear stress −u′+v′+ and the

total shear stress τtotal. As the Reynolds number decreases,

the peak value of −u′+v′+ decreases and its position moves

close to the wall, if scaled with the wall unit. When Reτ is

180, the peak of −u′+v′+ reaches 0.72 at y+=32, while, in the

case of Reτ=64, it becomes 0.37 at y+=26.

In the fully depeloped channel flow, the production term of

the turbulent kinetic energy is expressed as

Pk = −u′+v′+
∂u+

∂y+
= −u′+v′+

»

1−
y+

Reτ

−
`

−u′+v′+
´

–

. (3)

Thus the peak value of Pk can be calculated as

Pk =
1

4

»

1 −
y+
max

Reτ

–2

at

j

y+

˛

˛

˛

˛

− u′+v′+ =
∂u+

∂y+

ff

. (4)

Here, the wall-normal position of the peak of Pk is denoted

as y+
max, where the Reynolds shear stress and the viscos stress
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Figure 8: Two-point correlation coefficients Rii of the veloc-

ity fluctuation component at Reτ = 80; (a) streamwise, (b)

spanwise.

are equal to half of the total shear stress. In the present cal-

culation, y+
max is 11 for Reτ=180; while, decreasing Reynolds

number, it moves away from the wall and reaches at y+
max ≈15

for Reτ ≈ 15. In addition, this indicates that the peak value of

Pk decreases with decreasing Reτ (see Fig. 7(a)). Figure 7(b)

shows the peak value of Pk and dissipation rate εk at y+
max for

each Reynolds number. The decrease in Pk,max with decreas-

ing Reτ is clearly more prominent than that of εk. This is

the reason why the turbulent intensities are decreased in the

near-wall region with the decreasing Reτ , as seen in Figs. 3

and 4 and in Table 3.

Turbulence structure: instantaneous flow fields

The effect of the box size can be most clearly observed in

the streamwise and spanwise two-point correlations of velocity

fluctuation Rii, which is shown in Fig. 8. For Reτ =80(MB),

Ruu does not fall down to zero, indicating that the box-size is

not large enough; especially, the streamwise box length is too

short to contain the streak structures in the near-wall region

(Fig. 8(a)). On the other hand, Ruu and Rww fall down to

negative values at the mid box-length for both stream- and

the spanwise directions for the large box-size (LB), while Rvv

falls off to almost zero. It points out that one long wavelength

structure is captured with this large box (LB). In addition,

a significant decrease in the magnitude of the negative maxi-

mum is found at the spanwise separation distance of z+ ≈ 50

which corresponds to the spanwise spacing of the near-wall

streak structures (Fig. 8(b)). These suggest that there exists

an influence of the LSS not only in the channel center but

also in the near-wall region. The spacing of the streak struc-

tures and the LSS has been investigated with the use of the

pre-multiplied energy spectra, which will be discussed later.

The streamwise and spanwise pre-multiplied energy spec-

tra for Reτ =80 are shown in Fig. 9 with reference to Jiménez

(1998). The peak position of the pre-multiplied energy spec-

tra gives the most energetic wavelength (MEW). It is in-
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Figure 10: Instantaneous flow fields; high (gray) and low

(dark-gray) speed regions of u′+ and negative regions (light-

gray) of the second invariant of deformation tensor u′
i,ju′

j,i.

(a) Reτ =180, (b) Reτ =80(LB), (c) Reτ =80(MB). All of

the box-size (a)-(c) are scaled by δ. Direction of the mean

flow is from bottom-left to top-right.
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teresting to note that MEW in the wall vicinity stays still

at about λ+
z ≈100 and not much changed from that of the

higher Reynolds numbers even though the Reτ is as low as

80 (Fig. 9(b)). Moving away from the wall, the MEW shifts

slightly to the longer wavelengths. In the central region, on

the other hand, a peak of MEW arises at about λ+
z =180. This

MEW corresponds to about 2.3δ, which shows a significant

deviation from 1.3-1.6δ obtained for the higher Reynolds num-

bers, cf., Abe et al. (2004a). The streamwise MEW arises at

λ+
x ≈ 1, 000 in the near-wall region. With increase in the dis-

tance from the wall, the streamwise MEW moves towards the

shorter wavelength of λ+
x ≈500 (Fig. 9(a)). On the other hand,

in the both directions, another peak appears at the longest

wavelength in the core region, which corresponds to long-

wavelength structures in the visualized flow field (Fig. 10(b)).

Figure 10 shows the high- and low-speed regions and

the second invariant of deformation tensor (II′=∂u′
i/∂xj ×

∂u′
j/∂xi) at Reτ=180, 80(MB) and 80(LB). For Reτ=180,

the high- and low-speed streaks are evenly distributed as seen



0
1

0

-1

2

2

0

-2

-2

(i) (ii) (iii) (iv)

0 5 10

0
0.05

0

-0.05

1

1

0
-1

-1

∆tuτ /δ

(a) y/δ ≈1

(b) y/δ ≈0.5

(c) y+=0.09

(d) y/δ ≈1

(e) y/δ ≈0.5

(f) y+=0.09

Figure 12: Typical time trace of u- and v-fluctuations at

Reτ=80(LB). The measurement points are at various wall-

normal locations at the same position in the (x, z)-plane. (a)-

(c), the streamwise fluctuation u′+; (d)-(f), the wall-normal

fluctuation v′+.

in Fig. 10(a). For Reτ=80(LB), on the contrary, the near-

wall streaks are unevenly distributed and the sparse region

can be observed. The shape of this flow field is so similar to

that of the natural turbulent spot observed in experiments

of the plane channel flow in transitional region, cf., Carl-

son et al. (1982). The well-known vortex structures such as

quasi-streamwise vortices are unevenly distributed near the

wall. In addition, these vortices are associated closely with

the crowded near-wall streaks. The long-wavelength structure

of the weak-turbulent (laminar-like velocity profile) region oc-

curs periodicaly. Its streamwise wavelength occupies almost

the whole box-length. This is a reason why the streamwise

two-point correlations Ruu fall down to a negative value at

the middle of the box as seen in Fig. 8.

The flatness factor of the velocity fluctuation is shown in

Fig. 11. For Reτ =80, comparison of the results with differ-

ent box sizes indicates that the influence of box size upon the

flatness factor is very significant (see 80(MB) and 80(LB)).

If the box size is extended large enough to capture the highly

disordered turbulent region and weak-turbulent regions, inter-

mittency of fluctuation is enhanced. Moreover, an increase of

the flatness factor with decreasing Reynolds number is found

in the near-wall region.

Turbulence structure: puff-like structures

Wygnanski and co-workers (1973, 1975) conducted a study

of the structures and phenomena associated with transitional

and turbulent pipe flow in the range of 1, 000 < Rem <

50, 000. They identified two transitional flow states, the type

observed being dependent on Rem. For 2, 000 < Rem < 2, 700

the transition sturctures were termed ‘turbulent puffs’; the

second state is found at Rem > 3, 500 and consists of struc-

tures termed ‘turbulent slugs’. Both a puff and a slug are

characterized by a distinct trailing edge over which the flow

changes almost discontinuously from turbulent flow to lam-

inar flow. In the channel flow of the present study, the

computational results shown in Fig. 12 are strikingly similar

to experimental velocity traces obtained by Wygnanski and

Champagne (1973) for a pipe flow. It is observed that the

sequence of events as the structure is advected past the mea-

surement point. It can be interpreted as: (i) laminar-like flow,

(ii) a gradual reduction of u, (iii) a highly disordered turbu-

Ruu

(a)

(b)

Figure 13: Contours of two-dimensional two-point correlation

coefficient Ruu in the (x, y)-plane; the referece point is at the

mid-height yref = 0.5δ. The direction of the mean flow is from

left to right. (a) Reτ = 180; (b) Reτ = 80 (LB). ——, positive

correlation; - - - -, negative correlation; the line of Ruu = 0 is

not shown here. Contour interval ∆Ruu:0.05.

lent region, (iv) a sharp interface with laminar-like flow, again

return to (i) laminar-like flow. The intensities of both u′ and

v′ are enhanced periodically with interval of ∆tuτ /δ ≈ 3.5,

so the upstream interface was observed to travel at a speed

close to the bulk mean velocity u+
m ≈ 14.5. With respect to

the present Reynolds number, i.e. Rem=2320, the obtained

structures of co-existing weak-turbulent region as discussed

above are consistent with and remarkably similar to the ‘tur-

bulent puffs’ obserbed in a pipe flow.

The shape of the structures in the wall-normal direction

is clearly illustrated from the two-dimensional correlation for

velocity in the (x, y)-plane. While the region of negative cor-

relation appears in the side of the other wall for Reτ=180

(Fig. 13(a)), the negative region appears in a wide region of

|∆x| > 13δ for Reτ=80(LB). This indicates that a puff-like

structure with a large streamwise wavelength of 52h fills the

entire channel width in the case of Reτ=80(LB).

A typical well-developed structure at Reτ=80(LB) is shown

in the sequence of flow visualization presented in Fig. 14. The

puff-like structure Fig. 14(a) are consist of a laminar-like flow

(region A) and a highly disordered turbulence (region B). Fig-

ures 14(b)-(f) indicate that the stuctures are equilibrium and

self-sustained. Moreover, the both regions propagate with the

same streamwise velocity and are inclined at an angle of 24◦

with respect to the streamwise direction. Therefore, the puff-

like structures are spatially distributed not only in streamwise

but also spanwise, while the puff of a pipe flow is homoge-

neous in azimuthal and intermittent only in the streamwise

direction. Note that the present results, such as visualized

flow fields, two-point correlation (Fig. 8) and energy spectra

(Fig. 9), show signs of being constrained by the periodicity

of the boundary, even when the box-size was extended to

(Lx × Lz)=(51.2δ × 22.5δ); and the numerical box requires

to be enlarged further.

CONCLUSIONS

In the present study, we performed DNS of the turbulent

channel flow with larger computational boxes down to Reτ =64

and investigated the turbulence statistics with respect to low

Reynolds number effect.

• For Rem < 3000 (Reτ ≤ 80), Cf tends to be smaller

than the empirical correlation. Reynolds number depen-

dence of the mean velocity profile is significant in the

outer region when scaled with the wall units.



(a) ∆tuτ /δ = 0
22.5

z/δ

0 x/δ 51.2

(b) ∆tuτ /δ = 0.36 (e) ∆tuτ /δ = 2.52

(c) ∆tuτ /δ = 1.08 (f) ∆tuτ /δ = 3.24

(d) ∆tuτ /δ = 1.80

u′+

-3.0 0.0 +3.0

Figure 14: Contour of streamwise velocity fluctuation u′+ for

a series of consecutive times, in an (x, z)-plane at y/δ ≈ 0.5

for Reτ = 80 (LB). All of the contours (a)-(f) shows the whole

(x, z)-plane of Lx × Lz = 51.2δ × 22.5δ. The direction of the

mean flow is from left to right.

• For Reτ =80, the periodic weak-turbulence region with

the streamwise long-wavelength is observed with using

the largest box of 51.2δ × 2δ × 22.5δ, and is very similar

to a ‘turbulent puff’ observed in a transitional pipe flow.

• The significant effects of the captured puff-like structures

exist upon the turbulence statistics, such as a mean ve-

locity and turbulence intensities.

• The equilibrium puff-like structures observed in the

channel flow inclines against the streamwise direction.

The propagation velocity of the puff-like structure is ap-

proximately equal to the bulk mean velocity.
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