
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002 589

DNS Performance and the Effectiveness of Caching
Jaeyeon Jung, Emil Sit, Hari Balakrishnan, Member, IEEE, and Robert Morris

Abstract—This paper presents a detailed analysis of traces of
domain name system (DNS) and associated TCP traffic collected
on the Internet links of the MIT Laboratory for Computer Sci-
ence and the Korea Advanced Institute of Science and Technology
(KAIST). The first part of the analysis details how clients at these
institutions interact with the wide-area domain name system, fo-
cusing on client-perceived performance and the prevalence of fail-
ures and errors. The second part evaluates the effectiveness of DNS
caching.

In the most recent MIT trace, 23% of lookups receive no answer;
these lookups account for more than half of all traced DNS packets
since query packets are retransmitted overly persistently. About
13% of all lookups result in an answer that indicates an error con-
dition. Many of these errors appear to be caused by missing in-
verse (IP-to-name) mappings orNS records that point to nonex-
istent or inappropriate hosts. 27% of the queries sent to the root
name servers result in such errors.

The paper also presents the results of trace-driven simulations
that explore the effect of varying TTLs and varying degrees of
cache sharing on DNS cache hit rates. Due to the heavy-tailed na-
ture of name accesses, reducing the TTLs of address (A) records
to as low as a few hundred seconds has little adverse effect on
hit rates, and little benefit is obtained from sharing a forwarding
DNS cache among more than 10 or 20 clients. These results sug-
gest that client latency is not as dependent on aggressive caching
as is commonly believed, and that the widespread use of dynamic
low-TTL A-record bindings should not greatly increase DNS re-
lated wide-area network traffic.

Index Terms—Caching, DNS, Internet, measurement, perfor-
mance.

I. INTRODUCTION

T HE domain name system (DNS) is a globally distributed
database that maps names to network locations, thus, pro-

viding information critical to the operation of most Internet ap-
plications and services. As a global service, DNS must be highly
scalable and offer good performance under high load. In partic-
ular, the system must operate efficiently to provide low latency
responses to users while minimizing the use of wide-area net-
work (WAN) resources.

It is widely believed that two factors contribute to the scala-
bility of DNS: hierarchical design around administratively dele-
gated name spaces, and the aggressive use of caching. Both fac-
tors seek to reduce the load on the root servers at the top of the
name space hierarchy, while successful caching hopes to limit

Manuscript received January 9, 2002; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor J. Rexford. This work was sup-
ported by the Defense Advanced Research Projects Agency and the Space and
Naval Warfare Systems Center San Diego under Contract N66001-00-1-8933.

The authors are with the MIT Laboratory for Computer Science, Mass-
achusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
jyjung@lcs.mit.edu; sit@lcs.mit.edu; hari@lcs.mit.edu; rtm@lcs.mit.edu).

Digital Object Identifier 10.1109/TNET.2002.803905.

client-perceived delays and WAN bandwidth usage. How effec-
tive are these factors? In this paper, we carefully analyze three
network traces to study this question.

Prior to the year 2000, the only large-scale published study
of DNS performance was by Danziget al. in 1992 [1]. Danzig’s
study found that a large number of implementation errors caused
DNS to consume about 20 times more WAN bandwidth than
necessary. However, since then, DNS implementations and DNS
usage pattern have changed. For example, the World Wide Web
now causes the bulk of traffic. Content distribution networks
(CDNs) and popular Web sites now use DNS as a level of indi-
rection to balance load across servers, provide fault tolerance, or
route client requests to servers topologically close to the clients.
Because cached DNS records limit the efficacy of such tech-
niques, many of these multiple-server systems use time-to-live
(TTL) values as small as a few seconds or minutes. Another ex-
ample is in mobile networking, where dynamic DNS together
with low-TTL bindings can provide the basis for host mobility
support in the Internet [2]. These uses of DNS all conflict with
caching.

One concrete way to estimate the effectiveness of DNS
caching is to observe the amount of DNS traffic in the
wide-area Internet. Danziget al. report that 14% of all
wide-area packets were DNS packets in 1990, compared to 8%
in 1992. In 1995, the corresponding number from a study of
the NSFNET by Frazer was 5% [3]; a 1997 study of the MCI
backbone by Thompsonet al. reported that 3% of wide-area
packets were DNS related [4]. This downward trend might
suggest that DNS caching is working well.

However, these results should be put in perspective by con-
sidering them relative to network traffic as a whole. Thompson’s
study also showed that DNS accounts for 18% of all flows
(where a flow is defined as aunidirectionaltraffic stream with
unique source and destination IP addresses, port numbers, and
IP protocol fields). If one assumes that applications typically
precede each TCP connection with a call to the local DNS
resolver library, this suggests a DNS cache miss rate of a little
less than 25%. However, by 1997, most TCP traffic consisted
of Web traffic, which tends to produce groups of about four
connections to the same server [5]; if one assumes one DNS
lookup for every four TCP connections, the “session-level”
DNS cache miss rate appears to be closer to 100%. While an
accurate evaluation requires more precise consideration of the
number of TCP connections per session and the number of
DNS packets per lookup, this quick calculation suggests that
DNS caching is not very effective at suppressing wide-area
traffic.

These considerations make a thorough analysis of the ef-
fectiveness of DNS caching is especially important. Thus, this

1063-6692/02$17.00 © 2002 IEEE

590 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

paper has two goals. First, it seeks to understand the perfor-
mance and behavior of DNS from the point of view of clients
and, second, it evaluates the effectiveness of caching.

A. Summary of Results

In exploring DNS performance and scalability, we focus on
the following questions.

1) What performance, in terms of latency and failures, do
DNS clients perceive?

2) How does varying the TTL and degree of cache sharing
impact caching effectiveness?

These questions are answered using a novel method of ana-
lyzing traces of TCP traffic along with the related DNS traffic.
To facilitate this, we captured all DNS packets and TCPSYN,
FIN , andRSTpackets at two different locations on the Internet.
The first is at the link that connects the Massachusetts Institute
of Technology (MIT) Laboratory for Computer Science (LCS)
and Artificial Intelligence Laboratory (AI) to the rest of the In-
ternet. The second is at a link that connects the Korea Advanced
Institute of Science and Technology (KAIST) to the rest of the
Internet. We analyze two different MIT data sets, collected in
January and December 2000, and one KAIST data set collected
in May 2001.

One surprising result is that over a third of all lookups are not
successfully answered. 23% of all client lookups in the most
recent MIT trace fail to elicit any answer. In the same trace,
13% of lookups result in an answer that indicates an error. Most
of these errors indicate that the desired name does not exist.
While no single cause seems to predominate, inverse lookups
(translating IP addresses to names) often cause errors, as doNS
records that point to nonexistent servers.

DNS servers also appear to retransmit overly aggressively.
The query packets for these unanswered lookups, including re-
transmissions, account for more than half of all DNS query
packets in the trace. Loops in name server resolution are par-
ticularly bad, causing an average of ten query packets sent to
the wide area for each (unanswered) lookup. In contrast, the av-
erage answered lookup sends about 1.3 query packets. Loops
account for 3% of all unanswered lookups.

We have also been able to observe changes in DNS usage
patterns and performance. For example, the percentage of TCP
connections made to names with low TTL values increased from
12% to 25% between January and December 2000, probably due
to the increased deployment of DNS-based server selection for
popular sites. Also, while median name resolution latency was
less than 100 ms, the latency of the worst 10% grew substantially
between January and December 2000.

The other portion of our study concerns caching effective-
ness. The relationship between numbers of TCP connections
and numbers of DNS lookups in the MIT traces suggests that
the hit rate of DNS caches inside MIT is between 80% and 86%.
Since this estimate includes the effects of web browsers opening
multiple TCP connections to the same server, DNSA-record
caching does not seem particularly effective; the observed cache
hit rate could easily decrease should fewer parallel TCP connec-
tions be used, for example. Moreover, we find that the distribu-

tion of names is Zipf-like, which immediately limits even the
theoretical effectiveness of caching.

The captured TCP traffic helps us perform trace-driven sim-
ulations to investigate two important factors that affect caching
effectiveness: 1) the TTL values on name bindings, and 2) the
degree of aggregation due to shared client caching. Our simu-
lations show thatA records with 10-min TTLs yield almost the
same hit rates as substantially longer TTLs. Furthermore, we
find that a cache shared by as few as ten clients has essentially
the same hit rate as a cache shared by the full traced population
of over 1000 clients. This is consistent with the Zipf-like distri-
bution of names.

These results suggest that DNS works as well as it does de-
spite ineffectiveA-record caching, and that the current trend to-
ward more dynamic use of DNS (and lower TTLs) is not likely
to be harmful. On the other hand, we find thatNS-record caching
is critical to DNS scalability by reducing load on the root and
generic top-level domain (gTLD) servers.

The rest of this paper presents our findings and substantiates
these conclusions. Section II presents an overview of DNS and
surveys previous work in analyzing its performance. Section III
describes our traffic collection methodology and some salient
features of our data. Section IV analyzes the client-perceived
performance of DNS, while Section V analyzes the effective-
ness of caching using trace-driven simulation. We conclude with
a discussion of our findings in Section VI.

II. BACKGROUND

In this section, we present an overview of DNS and survey-
related work.

A. DNS Overview

The design of the Internet DNS is specified in [6]–[8]. We
summarize the important terminology and basic concepts here.

The basic function of DNS is to provide a distributed
database that maps between human-readable host names
(such aschive.lcs.mit.edu) and IP addresses (such as
18.31.0.35). It also provides other important information
about the domain or host, including reverse maps from IP
addresses to host names and mail-routing information. Clients
(or resolvers) routinely query name servers for values in the
database.

The DNS name space is hierarchically organized so that sub-
domains can be locally administered. The root of the hierarchy
is centrally administered and served from a collection of 13
(in mid-2001)root servers. Subdomains aredelegatedto other
servers that areauthoritativefor their portion of the name space.
This process may be repeated recursively.

At the beginning of our study, most of the root servers also
served the top-level domains, such as.com . At the end, the
top-level domains were largely served by a separate set of about
a dozen dedicated gTLD servers.

Mappings in the DNS name space are calledresource
records. Two common types of resource records are address
records (A records) and name server records (NS records). An
A record specifies a name’s IP address; anNSrecord specifies

JUNGet al.: DNS PERFORMANCE AND THE EFFECTIVENESS OF CACHING 591

Fig. 1. Example of a DNS lookup sequence.

the name of a DNS server that is authoritative for a name. Thus,
NSrecords are used to handle delegation paths.

Since achieving good performance is an important goal of
DNS, it makes extensive use of caching to reduce server load
and client latency. It is believed that caches work well because
DNS data changes slowly and a small amount of staleness is
tolerable. On this premise, many servers are not authoritative
for most data they serve, but merely cache responses and serve
as local proxies for resolvers. Such proxy servers may conduct
further queries on behalf of a resolver to complete a queryre-
cursively. Clients that make recursive queries are known asstub
resolversin the DNS specification. On the other hand, a query
that requests only what the server knows authoritatively or out
of cache is called aniterativequery.

Fig. 1 illustrates these two resolution mechanisms. The client
application uses a stub resolver and queries a local nearby server
for a name (say,www.mit.edu). If this server knows abso-
lutely nothing else, it will follow the steps in the figure to arrive
at the addresses forwww.mit.edu . Requests will begin at a
well-known root of the DNS hierarchy. If the queried server has
delegated responsibility for a particular name, it returns are-
ferral response, which is composed of name server records. The
records are the set of servers that have been delegated responsi-
bility for the name in question. The local server will choose one
of these servers and repeat its question. This process typically
proceeds until a server returns an answer.

Caches in DNS are typically not size limited since the objects
being cached are small, consisting usually of no more than 100
bytes per entry. Each resource record is expired according to the
time set by the originator of the name. These expiration times are
called TTL values. Expired records must be fetched afresh from
the authoritative origin server on query. The administrator of a
domain can control how long the domain’s records are cached
and, thus, how long changes will be delayed, by adjusting TTLs.
Rapidly changing data will have a short TTL, trading off latency
and server load for fresh data.

To avoid confusion, the remainder of this paper uses the terms
“lookup,” “query,” “response,” and “answer” in specific ways.
A lookup refers to the entire process of translating a domain
name for a client application. Aqueryrefers to a DNS request
packet sent to a DNS server. Aresponserefers to a packet sent by
a DNS server in reply to a query packet. Anansweris a response
from a DNS server that terminates the lookup, by returning ei-

ther the requested name-to-record mapping or an error indica-
tion. Valid responses that are not answers must be referrals.

This means, for example, that a lookup may involve multiple
query and response packets. The queries of a lookup typically
ask for the same data, but from different DNS servers; all re-
sponses but the last one (the answer) are typically referrals. This
distinction can be seen in Fig. 1; the packets in steps 1–4 are all
part of the same lookup (driven by the request from the appli-
cation); however, each step represents a separate query and re-
sponse.

B. Related Work

In 1992, Danziget al.presented measurements of DNS traffic
at a root name server [1]. Their main conclusion was that the
majority of DNS traffic is caused by bugs and misconfiguration.
They considered the effectiveness of DNS name caching and re-
transmission timeout calculation, and showed how algorithms
to increase resilience led to disastrous behavior when servers
failed or when certain implementation faults were triggered. Im-
plementation issues were subsequently documented by Kumar
et al., who note that many of these problems have been fixed in
more recent DNS servers [9]. Danziget al.also found that one
third of wide-area DNS traffic that traversed the NSFnet was
destined to one of the (at the time) seven root name servers.

In contrast to the work of Danziget al., our work focuses
on analyzing client-side performance characteristics. In the
process, we calculate the fraction of lookups that caused
wide-area DNS packets to be sent, and the fraction that caused
a root or gTLD server to be contacted.

In studies of wide-area traffic in general, DNS is often in-
cluded in the traffic breakdown [3], [4]. As noted in Section I,
the high ratio of DNS to TCP flows in these studies motivated
our investigation of DNS performance.

It is likely that DNS behavior is closely linked to Web traffic
patterns, since most wide-area traffic is Web-related and Web
connections are usually preceded by DNS lookups. One result
of Web traffic studies is that the popularity distribution of Web
pages is heavy tailed [10]–[12]. In particular, Breslauet al.con-
clude that the Zipf-like distribution of Web requests causes low
Web cache hit rates [10]. We find that the popularity distribution
of DNS names is also heavy tailed, probably as a result of the
same underlying user behavior. It is not immediately clear that
DNS caches should suffer in the same way that Web caches do.
For example, DNS caches do not typically incur cache misses
because they run out of capacity. DNS cache misses are instead
driven by the relationship between TTLs selected by the origin
and the interarrival time between requests for each name at the
cache. DNS cache entries are also more likely to be reused be-
cause each component of a hierarchical name is cached sepa-
rately and also because many Web documents are present under
a single DNS name. Despite these differences, we find that DNS
caches are similar to Web caches in their overall effectiveness.

A recent study by Shaikhet al. shows the impact of DNS-
based server selection on DNS [13]. This study finds that ex-
tremely small TTL values (on the order of seconds) are detri-
mental to latency, and that clients are often not close in the net-
work topology to the name servers they use, potentially leading
to suboptimal server selection. In contrast, we believe that the

592 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

number of referrals for a lookup is a more important determiner
for latency.

Wills and Shang studied NLANR proxy logs and found that
DNS lookup time contributed more than 1 s to approximately
20% of retrievals for the Web objects on the home page of
larger servers. They also found that 20% of DNS requests are
not cached locally [14]; this correlates nicely with estimates
given in Section I and corroborates our belief that DNS caching
is not very effective at suppressing wide-area traffic. Cohen
and Kaplan propose proactive caching schemes to alleviate the
latency overheads by synchronously requesting expired DNS
records [15]; their analysis is also derived from NLANR proxy
log workload. Unfortunately, proxy logs do not capture the ac-
tual DNS traffic; thus, any analysis must rely on measurements
taken after the data is collected. This will not accurately reflect
the network conditions at the time of the request, and the DNS
records collected may also be newer. Our data allows us to di-
rectly measure the progress of the DNS lookup as it occurred.
Additionally, our data captures all DNS lookups and their re-
lated TCP connections, not just those associated with HTTP re-
quests.

Huitema and Weerahandi measured DNS latency through the
gethostbyname() interface over a period of 15 months,
starting from April 1999. For their study, 29% of DNS lookups
took longer than 2 s to get an answer [16]. In comparison, our
study shows that between 10% and 24% lookups give this much
latency. These numbers differ because our latency numbers do
not include latency experienced between the client application
and the local name server whichis included in their data. Nat-
urally, DNS latency is also affected by the connectivity and the
performance of the network at the point of measurement.

Brownlee et al. collected DNS traffic at F.root-
servers.net , and showed that over 14% of the observed
query load was due to bogus queries; their paper provides an
analysis of the load and a taxonomy of the causes of errors
[17]. Errors include repeated queries generated from same
source host, queries for nonexistent top-level domain names,
and malformedA queries. Some of these are observed in our
traces and are listed in Section IV-C. In particular, we found
that between 15% and 27% of the lookups sent to root name
servers resulted in negative responses.

Another study by the same authors show passive measure-
ments of the performance of root and gTLD servers as seen
from their campus network using NeTraMet meters [18]. The
paper presents response time, request rate and request loss rate
of the root and gTLD servers seen at the traced network. Their
response times indicate the latency between a single query and
response, as compared to our latencies which cover the entire
lookup process. Their methodology is also targeted to measure
overall performance. In contrast, our analyses consider the en-
tire DNS packet header and payload to reveal a more compre-
hensive view of DNS behavior.

III. T HE DATA

Our study is based on three separate traces. The first two
were collected in January and December 2000, respectively, at
the link that connects the MIT LCS and AI labs to the rest of
the Internet. At the time of the study, there were 24 internal

(a)

(b)

Fig. 2. Schematic topology of the traced networks. (a) MIT LCS: There
are 24 internal subnetworks sharing the border router. (b) KAIST: The
collection machine is located at a point that captures all DNS traffic, but only
international traffic of other types. This is because the primary KAIST name
server,ns.kaist.ac.kr , forwards all DNS queries through the traced link
to ns.kreonet.re.kr .

subnetworks sharing the router, used by over 500 users and
over 1200 hosts. The third trace was collected in May 2001 at
one of two links connecting KAIST to the rest of the Internet.
At the time of data collection there were over 1000 users and
5000 hosts connected to the KAIST campus network. The trace
includes only international TCP traffic; KAIST sends domestic
traffic on a path that was not traced. However, the trace does
include all external DNS traffic, domestic and international:
the primary name server of the campus,ns.kaist.ac.kr ,
was configured to forward all DNS queries tons.kre-
onet.re.kr along a route that allowed them to be traced.
Fig. 2 shows the configurations of the two networks.

The first trace,mit-jan00 , was collected from 2:00A.M. on
January 3, 2000 to 2:00A.M. on January 10, 2000; the second,
mit-dec00 , was collected from 6:00P.M. on December 4 to
6:00P.M.on December 11, 2000. The third set,kaist-may01 ,
was collected at KAIST from 5:00A.M. on May 18 to 5:00A.M.

on May 24, 2001. All times are EST.

A. Collection Methodology

We filtered the traffic observed at the collection points to
produce a data set useful for our purposes. As many previous
studies have shown, TCP traffic (and in particular, HTTP traffic)
comprises the bulk of wide-area traffic [4]. TCP applications
usually depend on the DNS to provide the rendezvous mecha-
nism between the client and the server. Thus, TCP flows can be
viewed as the major driving workload for DNS lookups.

In our study, we collected both the DNS traffic and its driving
workload. Specifically, we collected:

1) outgoing DNS queries and incoming responses;
2) outgoing TCP connection start (SYN) and end (FIN

andRST) packets for connectionsoriginating inside the
traced networks.

JUNGet al.: DNS PERFORMANCE AND THE EFFECTIVENESS OF CACHING 593

TABLE I
BASIC TRACE STATISTICS. THE PERCENTAGES AREWITH RESPECT TOTOTAL NUMBER OF LOOKUPS INEACH TRACE

In themit-jan00 trace, only the first 128 bytes of each packet
were collected because we were unsure of the space require-
ments. However, because we found that some DNS responses
were longer than this, we captured entire Ethernet packets in
the other traces.

The trace collection points do not captureall client DNS ac-
tivity. Queries answered by caches inside the traced networks do
not appear in the traces. Thus, many of our DNS measurements
reflect only those lookups that required wide-area queries to be
sent. Since we correlate these with the driving workload of TCP
connections, we can still draw conclusions about overall perfor-
mance and caching effectiveness.

In addition to filtering for useful information, we also elimi-
nated information to preserve user (client) privacy. In the MIT
traces, any user who wished to be excluded from the collec-
tion process was allowed to do so, based on an IP address they
provided; only three hosts opted out, and were excluded from
all our traces. We also did not capture packets corresponding
to reverse DNS lookups (PTR queries) for a small number of
names within MIT, once again to preserve privacy. In addition,
all packets were rewritten to anonymize the source IP addresses
of hosts inside the traced network. This was done in a pseudo-
random fashion—each source IP address was mapped using a
keyed MD5 cryptographic hash function [19] to an essentially
unique anonymized one.

Our collection software was derived from Min-
shall’s tcpdpriv utility [20]. tcpdpriv anonymizes
libpcap -format traces (generated bytcpdump ’s packet
capture library). It can collect traces directly or postprocess
them after collection using a tool such astcpdump [21]. We
extendedtcpdpriv to support the anonymization scheme
described above for DNS traffic.

B. Analysis Methodology

We analyzed the traces to extract various statistics about
lookups including the number of referrals involved in a typical
lookup and the distribution of lookup latency. To calculate the
latency in resolving a lookup, we maintain a sliding window
of the lookups seen in the last 60 s; an entry is added for
each query packet from an internal host with a DNS query ID

different from any lookup in the window. When an incoming
response packet is seen, the corresponding lookup is found in
the window. If the response packet is an answer (as defined in
Section II-A), the time difference between the original query
packet and the response is the lookup latency. The actual
end-user DNS request latency, however, is slightly longer
than this, since we see packets in midflight. If the response
is not an answer, we increment the number of referrals of the
corresponding lookup by one, and wait until the final answer
arrives. To keep track of the name servers contacted during
a lookup, we maintain a list of all the IP addresses of name
servers involved in the resolution of the lookup.

This method correctly captures the list of servers contacted
for iterative lookups, but not for recursive lookups. Most
lookups in the MIT traces are iterative; we eliminated the small
number of hosts which sent recursive lookups to name servers
outside the traced network. The KAIST traces contain mostly
recursive lookups sent to a forwarding server just outside the
trace point; hence, while we can estimate lower bounds on
name resolution latency, we cannot derive statistics on the
number of referrals or the fraction of accesses to a top-level
server.

C. Data Summary

Table I summarizes the basic characteristics of our data sets.
We categorize lookups based on the DNS code in the response
they elicit, as shown in rows 3–6 of Table I. A lookup that gets
a response with a nonzero response code is classified as aneg-
ative answer,as defined in the DNS specification [7], [22]. A
zero answeris authoritative and indicates no error, but has no
ANSWER, AUTHORITY, or ADDITIONAL records [9]. A zero
answer can arise, for example, when anMXlookup is done for
a name that has noMXrecord, but does have other records. A
lookup isanswered with successif it terminates with a response
that has aNOERRORcode and one or moreANSWERrecords.
All other lookups are consideredunanswered.

DNS queries can be made for a number of reasons: to resolve
host names to IP addresses, to find reverse-mappings between
IP addresses and host names, to find the hosts that handle mail
for a domain, and more. There are 20 query types defined in the

594 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

TABLE II
PERCENTAGE OFDNS LOOKUPS FOR THEPOPULAR QUERY TYPES

DNS specification [7]. Table II lists the four most frequently
requested query types in each of our traces. About 60% of all
lookups were forA records binding host names to addresses and
between 24% and 31% were for the reversePTRbindings from
addresses to host names.

Although most answeredA lookups are followed by a TCP
connection to the host IP address specified in the returned re-
source record, there are some notable exceptions. These fall into
two main categories: first, there are DNSA lookups which are
not driven by TCP connections, and second, there are TCP con-
nections which are not preceded by DNS lookups. We excluded
both of these classes of queries from our analysis and simula-
tions.

Roughly 50% of the DNS lookups at MIT are not associ-
ated with any TCP connection. Approximately, 15% of these
A lookups are for name servers, suggesting perhaps that there
is a disparity between the TTL values people use forA records
as opposed toNSrecords. Also, roughly 10% of all lookups are
the result of anincomingTCP connection: Some systems will
do aPTRlookup for an IP address and then verify that the name
is correct by doing anA lookup for the result of thePTR. Fi-
nally, a small percentage of these lookups are related to reverse
blacklists such asrbl.maps.vix.com . This is a service de-
signed to allow mail servers to refuse mail from known spam-
mers. We suspect that the remaining 20% of these correspond
to UDP flows but, unfortunately, our data does not include any
record of UDP flows.

Approximately 20% of TCP connections fall into the
second class. Here, the dominant cause is the establishment
of ftp-data connections: The LCS network hosts several
popular FTP servers which results in a fairly large number of
outgoing data connections. Other causes include hard-coded
and hand-entered addresses from automated services run within
LCS such asvalidator.w3.org . Finally, mail servers
typically look upMXinstead ofA records.

One of the major motivations for our work was the ratio of
DNS lookups to TCP connections in the wide-area Internet, as
described in Section I. The data in Table I (rows 9 and 15) allow
us to estimate this ratio for the traced traffic, as the ratio of the
number of TCP connections to the number of successfully an-
swered lookups forA records associated with TCP connections.
These numbers are shown for each trace in row 16, suggesting a
DNS cache hit ratio (forA records) between 80% and 87% for all
three traces. As explained in Section I, this hit rate is not partic-
ularly high, since it includes the caching done by Web browsers
when they open multiple connections to the same server.

IV. CLIENT-PERCEIVED PERFORMANCE

This section analyzes several aspects of client-perceived DNS
performance. We start by discussing the distribution of time it

Fig. 3. Cumulative distribution of DNS lookup latency.

took clients to obtain answers. We then discuss the behavior
of the DNS retransmission protocol and the situations in which
client lookups receive no answer. We also study the frequency
and causes of answers that are error indications and the preva-
lence of negative caching. Finally, we look at interactions be-
tween clients and root/gTLD servers.

A. Latency

Fig. 3 shows the cumulative DNS lookup latency distribution
for our data sets. The median is 85 ms formit-jan00 and
97 ms formit-dec00 . Overall, long latency requests became
more common—the latency of the 90th percentile increased
from about 447 ms inmit-jan00 to about 1176 ms inmit-
dec00 . In thekaist-may01 data, about 35% of lookups re-
ceive responses in less than 10 ms and the median is 42 ms. The
KAIST trace has more low-latency lookups than the MIT traces
because the requested resource record is sometimes cached at
ns.kreonet.re.kr , which is close to the primary name
server for the campus [see Fig. 2(b)]. However, the worst 50% of
the KAIST distribution is significantly worse than that of MIT.
Many of these data points correspond to lookups of names out-
side Korea, corresponding naturally to increased flight times for
packets.

However, latency is also likely to be adversely affected by
the number of referrals. Recall that a referral occurs when a
server does not know the answer to a query, but does know (i.e.,
thinks it knows) where the answer can be found. In that case,
it sends a response containing one or moreNSrecords, and the
agent performing the lookup must send a query to one of the
indicated servers. Table III shows the distribution of referrals per
lookup. About 80% of lookups are resolved without any referral,
which means they get an answer directly from the server first
contacted, while only a tiny fraction (0.03%–0.04% for MIT)
of lookups involve four or more referrals.

Fig. 4 shows the latency distribution for different numbers of
referrals for themit-dec00 data set. For lookups with one
referral, 60% of lookups are resolved in less than 100 ms and
only 7.3% of lookups take more than 1 s. However, for lookups
involving two or more referrals, more than 95% take more than
100 ms, and 50% take more than 1 s.

JUNGet al.: DNS PERFORMANCE AND THE EFFECTIVENESS OF CACHING 595

TABLE III
PERCENTAGE OFLOOKUPSINVOLVING VARIOUS NUMBERS OFREFERRALS.
THE NUMBER OF LOOKUPSUSED IN THIS ANALYSIS FOR EACH TRACE IS

SHOWN IN ROW 8 OF TABLE I. THE AVERAGE NUMBER OF QUERIES

TO OBTAIN AN ANSWER WAS1.27, 1.2,AND 1.2, RESPECTIVELY, NOT

COUNTING RETRANSMISSIONS

Fig. 4. Latency distribution versus number of referrals for themit-dec00
trace.

Fig. 5. Distribution of latencies for lookups that do and do not involve
querying root servers.

To illustrate the latency benefits of cachedNS records, we
classify each traced lookup as either ahit or a missbased on
the first server contacted. We assume amissif the first query
packet is sent to one of the root or gTLD servers and elicits
a referral. Otherwise, we assume that there is ahit for an NS
record in a local DNS cache. About 70% of lookups in the MIT
traces are hits in this sense. Fig. 5 shows the latency distribution
for each case. It shows that cachingNS records substantially
reduces the DNS lookup latency even though it may involve
some referrals to complete the lookup. CachedNS records are

TABLE IV
UNANSWEREDLOOKUPSCLASSIFIED BY TYPE

especially beneficial because they greatly reduce the load on the
root servers.

B. Retransmissions

This section considers lookups that result in no answer,
and lookups that require retransmissions in order to elicit an
answer. This is interesting because the total number of query
packets is much larger than the total number of lookups; the
previous section (and Table III) shows that the average number
of query packets for a successfully answered query is 1.27
(mit-jan00), 1.2 (mit-jan00), and 1.2 (kaist-may01).
However, the average number of DNS query packets in the
wide-area per DNS lookup is substantially larger than this.

We can calculate this ratioas follows. Let the total number
of lookups in a trace be, of which are iteratively performed.
This distinction is useful because our traces will not show re-
transmissions going out to the wide area for some of the– re-
cursive lookups. Let the number of query packets corresponding
to retransmissions of recursive lookups be. Let be the total
number of query packets seen in the trace. Then,

or . The values of , , and
for the traces are shown in rows 2, 7, and 10 of Table I.

The value of is relatively invariant across our traces:
2.40 formit-jan00 (), 2.57 formit-dec00
(), and 2.36 forkaist-may01 ().
Notice that in each caseis substantially larger than the average
number of query packets for a successfully answered lookup.
This is because retransmissions account for a significant
fraction of all DNS packets seen in the wide-area Internet.

A querying name server retransmits a query if it does not get a
response from the destination name server within a timeout pe-
riod. This mechanism provides some robustness to UDP packet
loss or server failures. Furthermore, each retransmission is often
targeted at a different name server, e.g., a secondary for the
domain. Despite retransmissions and server redundancy, about
24% of lookups in the MIT traces and 20% of lookups in the
KAIST traces received neither a successful answer nor an error
indication, as shown in the third row of Table I.

We break the unanswered lookups into three categories, as
shown in Table IV. Lookups that elicitedzero referralscor-
respond to those that did not receive even one referral in re-
sponse. Lookups that elicited one or more referrals but did not
lead to an eventual answer are classified asnonzero referrals.
Finally, lookups that led to loops between name servers where
the querier is referred to a set of two or more name servers
forming a querying loop because of misconfigured information
are classified asloops. We distinguish thezero referralsand
nonzero referralscategories because the former allows us to
isolate and understand the performance of the DNS retransmis-
sion mechanism. We do not report this data forkaist-may01

596 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

Fig. 6. Cumulative distribution of number of retransmissions for answered
(topmost curves) and unanswered lookups.

since most lookups in that trace were recursively resolved by a
forwarder outside the trace point.

The packet load caused by unanswered queries is substan-
tial for two reasons: first, the rather persistent retransmission
strategy adopted by many querying name servers, and second,
referral loops between name servers.

On average, each lookup that elicited zero referrals gen-
erated aboutfive times(in the mit-dec00 trace) as many
wide-area query packets before the querying name server gave
up, as shown in Fig. 6. This figure also shows the number of
retransmissions for queries that were eventually answered (the
curves at the top of the graph)—over 99.9% of the answered
lookups incurred at most two retransmissions, and over 90%
involved no retransmissions. What is especially disturbing is
that the fraction of such wasted query packets increased sub-
stantially between January and December 2000; the percentage
of zero referral lookups increased from 5.5% to 9.3% and the
percentage of these causing more than five retransmissions
increased from 10% to 13%.

Given that the queries corresponding to these lookups do not
elicit a response, and that most queries that do get a response
get one within a small number (two or three) of retransmissions,
we conclude that many DNS name servers are too persistent in
their retry strategies. Our results show that it is better for them
to give up sooner, after two or three retransmissions, and rely
on client software to decide what to do. Interestingly, between
12% (mit-jan00) and 19% (mit-dec00) of unanswered
lookups did not see any retransmissions. This suggests either
that the resolver was not set to retransmit or was configured with
a timeout longer than the 60-s window we used in our analysis.

Fig. 7 shows the cumulative distribution functions (CDFs) of
the number of query packets generated for thenonzero referrals
and loopscategories of unanswered lookups. As expected, the
nonzero referrals (which do not have loops) did not generate as
many packets as the loops, which generated on average about ten
query packets. Although unanswered lookups caused by loops
correspond to only about 4.9% and 3.1% of all lookups, they
cause a large number of query packets to be generated.

Fig. 7. Loopsresult in a large number of referrals and, hence, packets. This
graph compares cumulative distributions of the number of referrals for the
lookups that causeloopsand that causenonzero referrals.

This analysis shows that a large fraction of the traced DNS
packets are caused by lookups that end up receiving no an-
swer. For example,mit-dec00 included 3 214 646 lookups
that received an answer; the previous section showed that the
average such lookup sends 1.2 query packets. This accounts for
3 857 575 query packets. However, Table I shows that the trace
contains 10 617 796 query packets. This means that over 63%
of the traced DNS query packets were generated by lookups
that obtained no answer! The corresponding number formit-
jan00 is 59%. Obviously, some of these were required to over-
come packet losses on Internet paths. Typical average loss rates
are between 5% and 10% [5], [23]; the number of redundant
DNS query packets observed in our traces is substantially higher
than this.

C. Negative Responses

As shown in Table I, between 10% and 42% of lookups result
in a negative answer. Most of these errors are eitherNXDOMAIN
or SERVFAIL. NXDOMAINsignifies that the requested name
does not exist.SERVFAIL usually indicates that a server is sup-
posed to be authoritative for a domain, but does not have a valid
copy of the database for the domain; it may also indicate that
the server has run out of memory.

The largest cause of these error responses are inverse
(in-addr.arpa) lookups for IP addresses with no inverse
mappings. Formit-jan00 , in-addr.arpa accounted
for 33 272 out of 47 205 distinct invalid names, and 79 734
of the 194 963 totalNXDOMAINresponses. Similarly, for
mit-dec00 , in-addr.arpa accounted for 67 568 out of
85 353 distinct invalid names, and 250 867 of the 464 761 total
NXDOMAINresponses. Other significant causes forNXDOMAIN
responses include particular invalid names such asloopback ,
andNS andMXrecords that point to names that do not exist.
However, no single name or even type of name seems to
dominate theseNXDOMAINlookups.

SERVFAILs accounted for 84 906 of the answers in
mit-jan00 (out of 4762 distinct names) and 61 498 of the

JUNGet al.: DNS PERFORMANCE AND THE EFFECTIVENESS OF CACHING 597

TABLE V
BREAKDOWN OF NEGATIVE RESPONSES BYCAUSE AS PERCENTAGE OF

ALL NEGATIVE RESPONSES

TABLE VI
TOTAL NUMBER OF LOOKUPSTHAT CONTACTED ROOT AND gTLD SERVERS

AND TOTAL NUMBER OF NEGATIVE ANSWERSRECEIVED. THE PERCENTAGES

ARE OF THETOTAL NUMBER OF LOOKUPS IN THETRACE

answers inmit-dec00 (out of 5102 distinct names). 3282
of the names and 24 170 of the lookups were inverse lookups
in mit-jan00 , while 3651 of the names and 41 465 of the
lookups were inverse lookups inmit-dec00 . Most of the
lookups were accounted for by a relatively small number of
names, each looked up a large number of times; presumably
theNSrecords for these names were misconfigured.

D. Negative Caching

In this section, we touch on the issue of negative caching,
which was formalized in 1998 [22]. The large number of
NXDOMAINduplicate responses suggests that negative caching
may not be working as well as it could be. In order to study
this phenomenon better, we analyzed the error responses to
understand their causes. A summary of this analysis is shown
in Table V.

We do not know the actual cause of most of the negative
responses. Many appear to be typos of correct names. The most
clear cause of aNXDOMAINresponse is a reverse lookup for an
address that does not have a reverse mapping. There are several
other small but noticeable causes of negative answers. Reverse
blacklist lookups, described in Section III, make up the next
largest class of queries causing negative responses. A number
of misconfigured servers forward queries for the nameloop-
back , instead of handling it locally. It might be a reasonable
heuristic for servers never to forward this and other queries for
names with a single component (i.e., unqualified names) when
resolving queries for the Internet class.

However, we found that the distribution of names causing a
negative response follows a heavy-tailed distribution as well.
Thus, the hit rate of negative caching is also limited.

E. Interactions With Root Servers

Table VI shows the percentage of lookups forwarded to root
and gTLD servers and the percentage of lookups that resulted
in a negative answer. We observe that 15% to 18% of lookups
contacted root or gTLD servers and the percentage slightly
decreased between January and December 2000. This was
probably caused by an increase in the popularity of popular

names (see Section V and Fig. 9), which decreased DNS cache
miss rates. The table also shows that load on root servers has
been shifted to gTLD servers over time. By the end of 2000,
the gTLD servers were serving more than half of all top-level
domain queries.

Between 15% and 27% of the lookups sent to root name
servers resulted in negative responses. Most of these appear
to be mistyped names (e.g.,prodiy.net), bare host names
(e.g., loopback or loghost), or other mistakes (e.g.,
index.htm). It is likely that many of these are automatically
generated by incorrectly implemented or configured resolvers;
for example, the most common errorloopback is unlikely to
be entered by a user. As suggested above, name servers could
reduce root load by refusing to forward queries for unqualified
host names. Note that the number of these lookups resulting in
negative answers remains roughly the same during 2000, but
because of the shift to gTLDs, the relative percentage of these
lookups has increased.

V. EFFECTIVENESS OFCACHING

The previous sections analyzed the collected traces to charac-
terize the actual client-perceived performance of DNS. This sec-
tion explores DNS performance under a range of controlled con-
ditions, using trace-driven simulations. The simulations focus
on the following questions in the context ofA records.

• How useful is it to share DNS caches among many client
machines? The answer to this question depends on the
extent to which different clients look up the same names.

• What is the likely impact of choice of TTL on caching
effectiveness? The answer to this question depends on lo-
cality of references in time.

We start by analyzing our traces to quantify two important sta-
tistics: 1) the distribution of name popularity, and 2) the distribu-
tion of TTL values in the trace data. These determine observed
cache hit rates.

A. Name Popularity and TTL Distribution

To deduce how the popularity of names varies in our client
traces, we plot access counts as a function of the popularity
rank of a name, first considering only “fully qualified domain
names.” This graph, on a log–log scale, is shown in Fig. 8(a).
To understand the behavior of the tail of this distribution, and
motivated by previous studies that showed that Web object
popularity follows a Zipf-like distribution [10], we represent
the access count as a function , where is termed the
popularity index. If this is a valid form of the tail, then a straight
line fit would closely fit the tail, with the negative of its slope
giving us . This straight line is also shown in the figure, with

.
We also consider whether this tail behavior changes when

names are aggregated according to their domains. Fig. 8(b)
shows the corresponding graph for second-level domain
names, obtained by taking up to two labels separated by dots
of the name; for example,foo.bar.mydomain.com and
foo2.bar2.mydomain.com would both be aggregated
together into the second-level domainmydomain.com . The

for this is greater than one, indicating that the tail falls off a

598 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

(a)

(b)

Fig. 8. Domain name popularity in themit-dec00 trace. (a) Full name. (b)
Second-level domain trace.

TABLE VII
POPULARITY INDEX � FOR THETAIL OF THE DOMAIN NAME DISTRIBUTION

little faster than in the fully qualified case, although it is still
a power law. The slopes calculated using a least square fit for
each trace are shown in Table VII.1

Fig. 9 illustrates the extent to which lookups are accounted
for by popular names. The axis indicates a fraction of the
most popular distinct names; theaxis indicates the cumula-
tive fraction of answered lookups accounted for by the corre-
sponding most popular names. For example, the most pop-
ular 10% of names account for more than 68% of total answers
for each of the three traces. However, it also has a long tail, and a
large proportion of names that are accessed precisely once. For
instance, out of 302 032 distinct names involved in successful
A lookups inmit-dec00 , there were 138 405 unique names
accessed only once, which suggests that a significant number of

1We calculated the least square straight line fit for all points ignoring the first
100 most popular names to more accurately see the tail behavior.

Fig. 9. Cumulative fraction of requests accounted for by DNS name, most
popular first. The popular names appear to have become even more popular in
December 2000 compared to January 2000, although they are not necessarily
the same names.

Fig. 10. TTL distribution in themit-dec00 trace.

top-level domain queries will occurregardlessof the caching
scheme.

Fig. 10 shows the cumulative distribution of TTL values for
A andNS records.NS records tend to have much longer TTL
values thanA records. This helps explain why only about 20% of
DNS responses (including both referrals and answers in Table I)
come from a root or gTLD server. If NS records had lower TTL
values, essentially all of the DNS lookup traffic observed in our
trace would have gone to a root or gTLD server, which would
have increased the load on them by a factor of about five. Good
NS-record caching is, therefore, critical to DNS scalability.

Fig. 10 shows how TTL values are distributed, but does not
consider how frequently each name is accessed. If it turns out
(as is plausible) that the more popular names have shorter TTL
values, then the corresponding effect on caching would be
even more pronounced. Fig. 11 shows the TTL distribution of
names, weighted by the fraction of TCP connections that were
made to each name. From this, we draw two key conclusions.
First, it is indeed the case that shorter-TTL names are more

JUNGet al.: DNS PERFORMANCE AND THE EFFECTIVENESS OF CACHING 599

Fig. 11. TTL distribution weighted by access counts formit-jan00 ,
mit-dec00 , andkaist-may01 traces.

frequently accessed, which is consistent with the observation
that DNS-based load-balancing (the typical reason for low TTL
values) makes sense only for popular sites. Second, the fraction
of accesses to relatively short (sub-15-min) TTL values has
doubled (from 12% to 25%) in 2000 from our site, probably
because of the increased deployment of DNS-based server
selection and content distribution techniques during 2000.

B. Trace-Driven Simulation Algorithm

To determine the relative benefits of per-client and shared
DNS caching ofA records, we conducted a trace-driven sim-
ulation of cache behavior under different aggregation condi-
tions. First, we preprocessed the DNS answers in the trace to
form two databases. The “name database” maps every IP ad-
dress appearing in anA answer to the domain name in the corre-
sponding lookup. The “TTL database” maps each domain name
to the highest TTL appearing in anA record for that name. (This
should select authoritative responses, avoiding lower TTLs from
cached responses.) After building these databases, the following
steps were used for each simulation run.

1) Randomly divide the TCP clients appearing in the trace
into groups of size. Give each group its own simulated shared
DNS cache, as if the group shared a single forwarding DNS
server. The simulated cache is indexed by domain name, and
contains the (remaining) TTL for that cached name.

2) For each new TCP connection in the trace, determine
which client is involved by looking at the “inside” IP address;
let that client’s group be. Use the outside IP address to index
into the name database to find the domain namethat the client
would have looked up before making the TCP connection.

3) If exists in ’s cache, and the cached TTL has not ex-
pired, record ahit. Otherwise, record amiss.

4) On a miss, make an entry in’s cache for , and copy the
TTL from the TTL database into the’s cache entry.

At the end of each simulation run, the hit rate is the number
of hits divided by the total number of queries.

This simulation algorithm is driven by the IP addresses
observed in the traced TCP connections, rather than domain
names, because DNS queries that hit in local caches do not

Fig. 12. Effect of the number of clients sharing a cache on cache hit rate.

appear in the traces. This approach suffers from the weakness
that multiple domain names may map to the same IP address,
as sometimes occurs at Web hosting sites. This may cause the
simulations to overestimate the DNS hit rate. The simulation
also assumes that each client belongs to a single caching group,
which may not be true if a client uses multiple local forwarding
DNS servers. However, because DNS clients typically query
servers in a strictly sequential order, this may be a reasonable
assumption to make.

C. Effect of Sharing on Hit Rate

Fig. 12 shows the hit rates obtained from the simulation, for
a range of different caching group sizes. Each data point is the
average of four independent simulation runs. With a group size
of one client (no sharing), the average per-connection cache hit
rate is 71% formit-dec00 . At the opposite extreme, if all
1216 traced clients share a single cache, the average hit rate is
89% formit-jan00 . However, most of the benefits of sharing
are obtained with as few as 10 or 20 clients per cache.

The fact that domain name popularity has a Zipf-like dis-
tribution explains these results. A small number of names are
very popular, and even small degrees of cache sharing can take
advantage of this. However, the remaining names are large in
number but are each of interest to only a tiny fraction of clients.
Thus, very large numbers of clients are required before it is
likely that two of them would wish to look up the same unpop-
ular name within its TTL interval. Most cacheable references to
these names are likely to be sequential references from the same
client, which are easily captured with per-client caches or even
the per-application caches often found in Web browsers.

D. Impact of TTL on Hit Rate

The TTL values in DNS records affect cache rates by limiting
the opportunities for reusing cache entries. If a name’s TTL is
shorter than the typical inter-reference interval for that name,
caching will not work for that name. Once a name’s TTL is
significantly longer than the inter-reference interval, multiple
references are likely to hit in the cache before the TTL expires.
The relevant interval depends on the name’s popularity: popular
names will likely be cached effectively even with short TTL

600 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

(a) (b)

(c)

Fig. 13. Impact of TTL on hit rate. (a)mit-jan00 . (b) mit-dec00 . (c) kaist-may01 .

values, while unpopular names may not benefit from caching
even with very long TTL values. In turn, a name’s popularity
among a group of clients that share a cache is to some extent
determined by the number of clients in the group.

To gauge the effect of TTL on DNS cache hit rate, we per-
form simulations using a small modification to the algorithm
described in Section V-B. Instead of using TTL values taken
from the actual DNS responses in the traces, these simulations
set all TTL values to specific values. Fig. 13 shows the results,
with one graph for each of the three traces. Each graph shows
the hit rate as a function of TTL. Since the results depend on the
number of clients that share a cache, each graph includes sepa-
rate curves for per-client caches, groups of 25 clients per cache,
and one cache shared among all clients. We use a group of size
25 because in Section V-C it was shown that for the actual TTL
distribution observed in our traces, a group size of 25 achieves
essentially the same hit rate as the entire client population ag-
gregated together.

As expected, increasing TTL values yield increasing hit rates.
However, the effect on the hit rate is noticeable only for TTL
values less than about 1000 s. Most of the benefit of caching
is achieved with TTL values of only a small number of min-
utes. This is because most cache hits are produced by single

Fig. 14. Time-line diagram of DNS queries to a given destination. It also
depicts a partial realization ofN(T),X , andS .

clients looking up the same server multiple times in quick suc-
cession, a pattern probably produced by Web browsers loading
multiple objects from the same page or users viewing multiple
pages from the same Web site.

Fig. 14 may help understand this better. It shows a time
sequence of connection (DNS lookup) arrivals to a given
destination, where is the interarrival time between arrival
and . Let denote the number of queries for the given
destination in the interval , excluding the event at time 0.
Define , with . The TTL
is .

At time , there is a DNS cache miss. Subsequently,
three DNS lookups occur, at times, , , before the TTL
expires at time . These three queries are cache hits. The
subsequent fourth query at time occurs after and is
a cache miss. Thus, in Fig. 14, and the number of

JUNGet al.: DNS PERFORMANCE AND THE EFFECTIVENESS OF CACHING 601

(a) (b)

(c)

Fig. 15. Cumulative distributions for TCP connection interarrivals. (a)mit-jan00 (� = 0:24; k = 274; w = 0:023). (b) mit-dec00 (� = 0:29; k =

735; w = 0:033). (c) kaist-may01 (� = 0:37; k = 153; w = 0:056).

DNS cache hits per miss is three. In general, models the
number of DNS cache hits per cache miss.

This example also suggests that the DNS hit rate for a given
destination is a function of the interarrival statistics to that des-
tination. We are currently developing an analytic model based
on renewal processes that can predict hit rates for various arrival
processes [24]. For the traces studied in this paper, we consid-
ered a few different analytic interarrival distributions and found
that a Pareto with point mass at was a good fit in all cases.
The general form of this fit is

where is the interarrival time and is the weight of the point
mass. Fig. 15 shows the fit; in all cases , indicating a
heavy-tailed distribution with infinite mean.

The infinite mean result suggests that increasing the TTL of a
DNS record would have limited additional benefit; essentially,
all hits in the cache in most cases arrive in close succession,
probably typically generated when browsers initiate multiple
connections to an address [24].

These results suggest that giving low TTL values toA records
will not significantly harm hit rates. Thus, for example, the in-
creasingly common practice of using low TTL values in DNS-
based server selection probably does not greatly affect hit rates.

Thus, caching ofA records appears to have limited impact
on reducing load on remote servers. In terms of overall system
scalability, eliminatingall A-record caching would increase
wide-area DNS traffic by at most a factor of four, but almost
none of that would involve a root or gTLD server. Eliminating
all but per-client caching would little more than double DNS
traffic. While neither of these cases would be desirable, this
evidence favors recent shifts toward more dynamic (and less
cacheable) uses of DNS, such as mobile host location tracking
and sophisticated DNS-based server selection. The function of
caching to reduce client latency can almost be handled entirely
by per-client or per-application caching.

The discussion above applies toA records, specifically for
A records for names that do not correspond to name servers for
domains. It isnot a good idea to make the TTL values low on
NSrecords, or forA records for name servers. Doing so would
increase the load on the root and gTLD servers by about a factor
of five and significantly harm DNS scalability.

602 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002

VI. CONCLUSION

This paper has presented a detailed analysis of traces of DNS
and associated TCP traffic collected on the Internet links of the
MIT Laboratory for Computer Science and the Korea Advanced
Institute of Science and Technology. We analyzed the client-per-
ceived performance of DNS, including the latency to receive an-
swers, the performance of the DNS protocol, the prevalence of
failures and errors, and the interactions with root/gTLD servers.
We conducted trace-driven simulations to study the effective-
ness of DNS caching as a function of TTL and degree of cache
sharing.

A significant fraction of lookups never receive an answer.
Further, DNS server implementations continue to be overly
persistent in the face of failures. While most successful answers
are received in at most two to three retransmissions, failures
today cause a much larger number of retransmissions and, thus,
packets that traverse the wide area. For instance, in the most
recent MIT trace, 23% of lookups receive no answer; these
lookups account for more than half of all traced DNS packets in
the wide area since they are retransmitted quite persistently. In
addition, about 13% of all lookups result in a negative response.
Many of these responses appear to be caused by missing inverse
(IP-to-name) mappings orNSrecords that point to nonexistent
or inappropriate hosts. We also found that over a quarter of the
queries sent to the root name servers result in such failures.

Our trace-driven simulations yield two findings. First,
reducing the TTLs ofA records to as low as a few hundred
seconds has little adverse effect on hit rates. Second, little
benefit is obtained from sharing a forwarding DNS cache
among more than 10 or 20 clients. This is consistent with
the heavy-tailed nature of access to names. This suggests that
the performance of DNS is not as dependent on aggressive
caching as is commonly believed, and that the widespread use
of dynamic low-TTL A-record bindings should not degrade
DNS performance. The reasons for the scalability of DNS are
due less to the hierarchical design of its name space or good
A-record caching than seems to be widely believed; rather, the
cacheability ofNSrecords efficiently partition the name space
and avoid overloading any single name server in the Internet.

ACKNOWLEDGMENT

The authors would like to thank G. Wollman and M. A. Ladd,
who run the network infrastructure at MIT LCS, for their prompt
help and for facilitating this collection process. They also thank
D. Curtis for help with data collection. This study would not
have been possible without the cooperation of the LCS and AI
Laboratory communities at MIT. They also thank H. Park and
T. Yoon who helped collect traces at KAIST, D. Andersen for
useful discussions, N. Feamster for several comments on drafts
of this paper, J. Rexford for useful suggestions, and A. Berger
for his insights in explaining the relationship between cache hit
rates and TTLs.

REFERENCES

[1] P. Danzig, K. Obraczka, and A. Kumar, “An analysis of wide-area name
server traffic: A study of the Internet domain name system,” inProc.
ACM SIGCOMM, Baltimore, MD, Aug. 1992, pp. 281–292.

[2] A. Snoeren and H. Balakrishnan, “An end-to-end approach to host mo-
bility,” in Proc. 6th ACM MOBICOM, Boston, MA, Aug. 2000, pp.
155–166.

[3] K. Frazer. (1995) NSFNET: A partnership for high-speed networking.
[Online]. Available: http://www.merit.edu/merit/archive/nsfnet/final.re-
port/.

[4] K. Thompson, G. Miller, and R. Wilder, “Wide-area traffic pattterns and
characteristics,”IEEE Network, vol. 11, pp. 10–23, Nov./Dec. 1997.

[5] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, and R. Katz,
“TCP behavior of a busy Web server: Analysis and improvements,”
in Proc. IEEE INFOCOM, vol. 1, San Francisco, CA, Mar. 1998, pp.
252–262.

[6] P. Mockapetris, “Domain names—Concepts and facilities,”, RFC 1034,
Nov. 1987.

[7] , “Domain names—Implementation and specification,”, RFC 1035,
Nov. 1987.

[8] P. Mockapetris and K. Dunlap, “Development of the domain name
system,” inProc. ACM SIGCOMM, Stanford, CA, 1988, pp. 123–133.

[9] A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller, “Common
DNS implementation errors and suggested fixes,”, RFC 1536, Oct. 1993.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “On the implica-
tions of Zipf’s law for web caching,” University of Wisconsin, Madison,
Tech. Rep. CS-TR-1998-1371, Apr. 1998.

[11] M. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: Evidence and possible causes,”IEEE/ACM Trans. Networking,
vol. 5, pp. 835–846, Dec. 1997.

[12] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy,
“On the scale and performance of cooperative web proxy caching,” in
Proc. 17th ACM SOSP, Kiawah Island, SC, Dec. 1999, pp. 16–31.

[13] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of DNS-
based server selection,” inProc. IEEE INFOCOM, Anchorage, AK, Apr.
2001, pp. 1801–1810.

[14] C. Wills and H. Shang. (2000, July) The contribution of DNS
lookup costs to web object retrieval. Worcester Polytechnic
Inst., Worcester, MA. [Online] Tech. Rep. TR-00-12. Available:
http://www.cs.wpi.edu/~cew/papers/tr00-12.ps.gz.

[15] E. Cohen and H. Kaplan, “Proactive caching of DNS records: Ad-
dressing a performance bottleneck,” inProc. Symp. Applications and
the Internet (SAINT), San Diego, CA, Jan. 2001, pp. 85–94.

[16] C. Huitema and S. Weerahandi, “Internet measurements: The rising tide
and the DNS snag,” inProc. 13th ITC Specialist Seminar Internet Traffic
Measurement and Modeling, Monterey, CA, Sept. 2000.

[17] N. Brownlee, K. C. Claffy, and E. Nemeth, “DNS measurements at a
root server,” inProc. IEEE GlobeCom, San Antonio, TX, Nov. 2001,
pp. 1672–1676.

[18] , “DNS root/gTLD performance measurements,” inProc. 15th
USENIX Systems Administration Conf., Dec. 2001.

[19] R. Rivest, “The MD5 message-digest algorithm,”, RFC 1321, Apr. 1992.
[20] G. Minshall. (1997, Aug.) Tcpdpriv. [Online]. Available:

http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html.
[21] V. Jacobson, C. Leres, and S. McCanne. tcpdump. [Online]. Available:

http://www.tcpdump.org/.
[22] M. Andrews, “Negative caching of DNS queries (DNS NCACHE),”,

RFC 2308, Mar. 1998.
[23] V. Paxson, “End-to-end Internet packet dynamics,” inProc. ACM SIG-

COMM, Cannes, France, Sept. 1997, pp. 139–152.
[24] J. Jung, A. W. Berger, and H. Balakrishnan. (2002, July) Modeling TTL-

based Internet caches. [Online]. Available: http://nms.lcs.mit.edu/dns/.

Jaeyeon Jungreceived the B.S. and M.S. degrees
from the Korea Advanced Institute of Science and
Technology. Since 2000, she has been working
toward the Ph.D. degree in the MIT Laboratory
of Computer Science, Massachusetts Institute of
Technology, Cambridge.

She has done extensive work in performance
measurement for web caches at CAIDA and while
working with the Nationwide Caching Project,
Korea.

JUNGet al.: DNS PERFORMANCE AND THE EFFECTIVENESS OF CACHING 603

Emil Sit received the B.S. and M.Eng. degrees in
computer science and the B.S. degree in mathematics
from the Massachusetts Institute of Technology
(MIT), Cambridge. He is currently working toward
the Ph.D. degree in the Parallel and Distributed
Operating Systems Group, MIT Laboratory of
Computer Science.

His research interests include security and its ap-
plications to networks and networked applications.

Hari Balakrishnan (S’95–M’98) received the
B.Tech. degree from the Indian Institute of Tech-
nology, Madras, in 1993 and the Ph.D. degree in
computer science from the University of California
at Berkeley in 1998.

He is currently an Associate Professor in the
Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology
(MIT), Cambridge, where he holds the KDD Career
Development Chair. He leads the Networks and
Mobile Systems group at the Laboratory for Com-

puter Science, exploring research issues in network protocols and architecture,
mobile computing systems, and pervasive computing.

Dr. Balakrishnan was the recipient of a Sloan Foundation Fellowship in 2002,
a National Science Foundation CAREER Award in 2000, the ACM doctoral
dissertation award in 1998, and award papers at the ACM MOBICOM in 1995
and 2000, IEEE HotOS in 2001, and USENIX in 1995. He was awarded the
MIT School of Engineering Junior Bose Award for Excellence in Teaching in
2002. He is a Member of the Association for Computing Machinery.

Robert Morris received the Ph.D. degree from
Harvard University, Cambridge, MA, for work
on modeling and controlling networks with large
numbers of competing connections. As a graduate
student, he helped design and build an ARPA-funded
ATM switch with per-circuit hop-by-hop flow
control.

He is currently an Assistant Professor in the
Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology
(MIT), Cambridge, and a member of the MIT

Laboratory for Computer Science. He co-founded Viaweb, an e-commerce
hosting service. His current interests include modular software-based routers,
analysis of the aggregation behavior of Internet traffic, and scalablead-hoc
routing.

Dr. Morris led a mobile communication project which won a best student
paper award from USENIX.

