# DNSMOS P.835: A NON-INTRUSIVE PERCEPTUAL OBJECTIVE SPEECH QUALITY METRIC TO EVALUATE NOISE SUPPRESSORS

Chandan K A Reddy, Vishak Gopal, Ross Cutler

Microsoft Corporation, Redmond, WA chandan.ka@outlook.com, vishak.gopal@microsoft.com, ross.cutler@microsoft.com

# ABSTRACT

Human subjective evaluation is the "gold standard" to evaluate speech quality optimized for human perception. Perceptual objective metrics serve as a proxy for subjective scores. We have recently developed a non-intrusive speech quality metric called Deep Noise Suppression Mean Opinion Score (DNSMOS) using the scores from ITU-T Rec. P.808 [1] subjective evaluation. The P.808 scores reflect the overall quality of the audio clip. ITU-T Rec. P.835 [2] subjective evaluation framework gives the standalone quality scores of speech and background noise in addition to the overall quality. In this work, we train an objective metric based on P.835 human ratings that output 3 scores: i) speech quality (SIG), ii) background noise quality (BAK), and iii) the overall quality (OVRL) of the audio. The developed metric is highly correlated with human ratings, with a Pearson's Correlation Coefficient (PCC)=0.94 for SIG and PCC=0.98 for BAK and OVRL. This is the first non-intrusive P.835 predictor we are aware of. DNSMOS P.835 is made publicly available as an Azure service.

*Index Terms*— Speech, Perceptual Speech Quality, Objective Metric, Deep Noise Suppressor, Metric, P.835.

#### 1. INTRODUCTION

Subjective evaluation of speech quality is the most reliable way to evaluate Speech Enhancement (SE) methods [3]. However, subjective tests are not easily scalable as they require a considerable number of listeners, the process is laborious, time-consuming, and expensive. Conventional objective speech quality metrics such as Perceptual Evaluation of Speech Quality (PESQ) [4], Perceptual Objective Listening Quality Analysis (POLQA) [5], VisQOL [6] and Signal to Distortion Ratio (SDR) are widely used to evaluate Speech Enhancement (SE) algorithms optimized for human perception. Some of these metrics are designed to predict the subjective Mean Opinion Score (MOS) obtained using the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Recommendation P.800 [7]. However, they are shown to correlate poorly with human rating when used for SE tasks that involve perceptually invariant transformations [3]. Also, intrusive metrics cannot be used to evaluate real recordings when a clean reference is unavailable in realistic scenarios.

#### 2. RELATED WORK

The subjective test ITU-T P.835 [2] provides the speech quality (SIG), background noise quality (BAK), and overall quality (OVRL). Hu and Loizou [8] showed an accurate linear model of OVRL can be estimated as a function of SIG and BAK. Naderi and Cutler [9] used this linear relationship to analyze the results of the 3rd Deep Noise Suppression challenge [10] to estimate the potential improvement in OVRL given a noise suppressor that maximized BAK. Hu and Loizou [8] released an intrusive speech quality assessment tool based on P.835, with a correlation to subjective quality of PCC(SIG)=0.70, PCC(CBAK)=0.58, PCC(OVRL)=0.73 using a synthetic training and test set. A commercial tool, 3QUEST [11], is used to measure the speech (S-MOS), noise (N-MOS), and overall (G-MOS) quality of speech as part of the ETSI EG 202 396-3 standard for mobile telephone quality. This intrusive model has good performance, PCC(S-MOS)=0.92, PCC(N-MOS)=0.94, PCC(G-MOS)=0.94 by condition; it was trained with 179 conditions and tested with 81 conditions, but the duration of training data and testing data is not reported [11].

ITU-T Recommendation P.563 is a non-intrusive technique and can directly operate on the degraded signal [12]. However, it was developed for narrow-band applications, works on limited impairment types, but correlates poorly with human ratings [13]. Recently, Deep Neural Networks (DNNs) based approaches have been proposed to estimate the speech quality scores [14, 15, 13, 16, 17, 18, 19, 20]. Some of these learning-based approaches use other objective metrics as the ground truth to train their speech quality predictor. Other methods use MOS obtained using P.800 as the ground truth to train their models. In [21], the authors trained the model to identify the Just Noticeable Difference (JND). MOS predictors trained on actual human ratings are more reliable than the ones trained to predict other objective metrics like PESQ or POLQA. The accuracy and robustness of the learned models depend on the quality of the human labels and also

the quantity and diversity of the audio clips. A comparison of some common DNN-based non-intrusive speech quality assessment (NI-SQA) methods is given in Table 1. ACR is Absolute Catagorgy Rating [7]. DNSMOS P.835 is the first P.835 based NI-SQA model we are aware of.

In [16], we show that the NI-SQA metric called DNSMOS trained using subjective quality labels is more robust and reliable than some of the other popular intrusive metrics. DNS-MOS is used to do model training and model selection during noise suppression development. DNSMOS is also used for doing ablation studies for noise suppressors [22, 23]. DNS-MOS has been quite popular, with over a hundred researchers using it after several months of releasing it.

However, DNSMOS only gives the overall score of the audio clip. In this paper, we extend that work to predict the quality of speech (SIG), background noise (BAK), and overall quality (OVRL) of the audio clip. We use the subjective quality labels obtained from ITU-T P.835 from Deep Noise Suppression (DNS) Challenge 3 [10] and the noisy clips processed by several noise suppression models internally at Microsoft. The labels were obtained using our crowdsourcing-based extension of P.835 described in [9]. The model uses log power spectrogram as input features to a Convolutional Neural Network (CNN) based model. It can be used to stack rank different DNS methods based on MOS estimates with great accuracy and hence the name DNSMOS P.835. We are providing DNSMOS P.835 as an Azure service for other researchers to use. The details of the API are at www.microsoft.com/en-us/research/ dns-challenge/dnsmos.

# 3. DATA AND SUBJECTIVE RATINGS

We used the labeled data from the DNS Challenge V3 [10] to train DNSMOS P.835. The DNS Challenge V3 test set comprised of 600 noisy speech clips processed by about 40 different noise suppression models. The real recordings in the test set were captured in a variety of noise types and Signal to Noise Ratio (SNR) and target levels. The test set is comprised of over 100 noise types and speakers. More de-

| Model         | Data size<br>(hours) | Data<br>type |
|---------------|----------------------|--------------|
| [20]          | 5.2                  | ACR          |
| WAWENETS [19] | 17                   | ACR          |
| [13]          | 27.7                 | ACR          |
| [15]          | 27.7                 | ACR          |
| SESQA [24]    | 45.2                 | ACR, JND     |
| DNSMOS [16]   | 300                  | ACR          |
| DNSMOS P.835  | 75                   | P.835 ACR    |

 Table 1: Comparison of some DNN NI-SQA methods

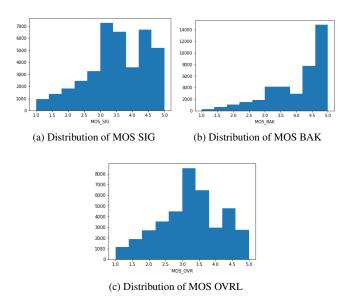



Fig. 1: Distribution of the training set

tails about the creation of these test sets can be found in [10]. The speech quality ratings of the processed clips varied from very poor (MOS=1) to excellent (MOS=5) for SIG, BAK, and OVRL. The distribution of the MOS scores in the training data is shown in Figure 1. The scores are highly skewed with most ratings populated in the range 3 < MOS < 4 and fewer ratings in both the tails for SIG and OVRL. However, BAK is highly skewed towards MOS > 4.

The subjective quality ratings are obtained in several P.835 runs conducted over several months. Multiple noise suppression methods are compared in each P.835 run. Each P.835 run included the best-performing noise suppressor, original noisy speech, and a couple of methods with intermediate perceptual quality from previous runs as anchors. Hence, some of the clips were rated multiple times. In total, we have about 30,000 audio clips with associated MOS scores as ground truth. The average length of each audio clip was about 9 seconds, giving us a total of 75 hours of data.

A subset of the dataset is summarized in Figure 2. What makes this dataset unique is (1) it is by far the largest P.835 dataset we know of and the only one used to train a DNN non-intrusive speech quality assessment model, and (2) the 40 deep noise suppression models used in the dataset gives a large variety of suppression artifacts we think is needed to generalize a speech quality assessment model for noise suppressors.

#### 4. DNSMOS P.835

# 4.1. Features

Recently, researchers have seen success in learning features within the model for tasks such as SE [25], speech, and music

| Team #   | Stationary | Emotional | Tonal    | Non-English | Musical  | English  | Over     | all  |
|----------|------------|-----------|----------|-------------|----------|----------|----------|------|
|          | DMOS       | DMOS      | DMOS     | DMOS        | DMOS     | DMOS     | DMOS     | CI   |
|          |            |           |          |             |          |          |          |      |
| 38       | (0.00)     | 0.05      | (0.07)   | 0.12        | 0.03     | (0.02)   | 0.03     | 0.04 |
| 36       | 0.01       | 0.07      | (0.00)   | 0.16        | (0.17)   | (0.11)   | 0.01     | 0.04 |
| Noisy    | 0 (4.02)   | 0 (3.83)  | 0 (3.93) | 0 (3.8)     | 0 (3.97) | 0 (3.87) | 0 (3.89) | 0.04 |
| 40       | (0.04)     | (0.08)    | (0.17)   | 0.03        | (0.21)   | (0.23)   | (0.10)   | 0.04 |
| 33       | (0.13)     | (0.15)    | (0.21)   | 0.03        | (0.13)   | (0.23)   | (0.12)   | 0.04 |
| 13       | (0.15)     | (0.15)    | (0.17)   | 0.04        | (0.26)   | (0.24)   | (0.13)   | 0.04 |
| 19       | (0.21)     | (0.18)    | (0.13)   | 0.06        | (0.26)   | (0.31)   | (0.15)   | 0.04 |
| 34       | (0.16)     | (0.17)    | (0.12)   | 0.08        | (0.41)   | (0.36)   | (0.17)   | 0.04 |
| 1        | (0.09)     | (0.24)    | (0.20)   | 0.06        | (0.38)   | (0.34)   | (0.17)   | 0.04 |
| 18       | (0.35)     | (0.48)    | (0.47)   | (0.06)      | (0.73)   | (0.54)   | (0.39)   | 0.04 |
| 30       | (0.44)     | (0.80)    | (0.23)   | (0.24)      | (0.53)   | (0.49)   | (0.43)   | 0.05 |
| 20       | (0.48)     | (0.65)    | (0.38)   | (0.18)      | (0.62)   | (0.60)   | (0.45)   | 0.04 |
| 8        | (0.47)     | (0.57)    | (0.37)   | (0.17)      | (0.97)   | (0.76)   | (0.52)   | 0.05 |
| 31       | (0.45)     | (0.63)    | (0.54)   | (0.26)      | (0.84)   | (0.68)   | (0.53)   | 0.05 |
| Baseline | (0.49)     | (0.68)    | (0.49)   | (0.27)      | (0.74)   | (0.72)   | (0.54)   | 0.04 |
| 4        | (0.62)     | (0.69)    | (0.65)   | (0.51)      | (0.50)   | (0.73)   | (0.61)   | 0.05 |
| 22       | (0.46)     | (0.94)    | (0.63)   | (0.33)      | (0.85)   | (0.80)   | (0.62)   | 0.05 |
| 12       | (0.54)     | (1.08)    | (0.56)   | (0.31)      | (1.16)   | (0.86)   | (0.69)   | 0.05 |
| 11       | (0.82)     | (1.09)    | (0.71)   | (0.41)      | (1.03)   | (0.84)   | (0.76)   | 0.05 |
| 37       | (0.72)     | (0.99)    | (0.64)   | (0.43)      | (1.10)   | (1.01)   | (0.78)   | 0.05 |
| 28       | (0.94)     | (1.39)    | (0.87)   | (0.66)      | (1.55)   | (1.12)   | (1.03)   | 0.05 |

(a) Speech MOS

| Team #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stationary                                                                                                                                           | Emotional                                                                                                                                                                     | Tonal                                                                                                                                                            | Non-English                                                                                                                                                                         | Musical                                                                                                                                                                            |                                                                                                                                                 | Over                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DMOS                                                                                                                                                 | DMOS                                                                                                                                                                          | DMOS                                                                                                                                                             | DMOS                                                                                                                                                                                | DMOS                                                                                                                                                                               | DMOS                                                                                                                                            | DMOS                                                                                                                                                    | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                 |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.92                                                                                                                                                 | 2.73                                                                                                                                                                          | 1.82                                                                                                                                                             | 1.54                                                                                                                                                                                | 2.39                                                                                                                                                                               |                                                                                                                                                 | 2.05                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.90                                                                                                                                                 | 2.59                                                                                                                                                                          | 1.71                                                                                                                                                             | 1.54                                                                                                                                                                                | 2.25                                                                                                                                                                               |                                                                                                                                                 | 1.98                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.82                                                                                                                                                 | 2.63                                                                                                                                                                          | 1.61                                                                                                                                                             | 1.42                                                                                                                                                                                | 2.07                                                                                                                                                                               |                                                                                                                                                 | 1.91                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.78                                                                                                                                                 | 2.42                                                                                                                                                                          | 1.54                                                                                                                                                             | 1.40                                                                                                                                                                                | 2.27                                                                                                                                                                               |                                                                                                                                                 | 1.87                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.73                                                                                                                                                 | 2.28                                                                                                                                                                          | 1.48                                                                                                                                                             | 1.34                                                                                                                                                                                | 2.01                                                                                                                                                                               |                                                                                                                                                 | 1.74                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.77                                                                                                                                                 | 2.20                                                                                                                                                                          | 1.37                                                                                                                                                             | 1.36                                                                                                                                                                                | 1.91                                                                                                                                                                               |                                                                                                                                                 | 1.73                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.78                                                                                                                                                 | 2.15                                                                                                                                                                          | 1.51                                                                                                                                                             | 1.28                                                                                                                                                                                | 1.84                                                                                                                                                                               |                                                                                                                                                 | 1.68                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.62                                                                                                                                                 | 2.01                                                                                                                                                                          | 1.36                                                                                                                                                             | 1.17                                                                                                                                                                                | 1.81                                                                                                                                                                               |                                                                                                                                                 | 1.59                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.69                                                                                                                                                 | 2.14                                                                                                                                                                          | 1.46                                                                                                                                                             | 1.13                                                                                                                                                                                | 1.61                                                                                                                                                                               |                                                                                                                                                 | 1.58                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.48                                                                                                                                                 | 1.92                                                                                                                                                                          | 1.36                                                                                                                                                             | 1.14                                                                                                                                                                                | 1.84                                                                                                                                                                               |                                                                                                                                                 | 1.52                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.82                                                                                                                                                 | 2.13                                                                                                                                                                          | 1.44                                                                                                                                                             | 1.07                                                                                                                                                                                | 1.13                                                                                                                                                                               |                                                                                                                                                 | 1.47                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.35                                                                                                                                                 | 1.68                                                                                                                                                                          | 1.32                                                                                                                                                             | 0.92                                                                                                                                                                                | 0.97                                                                                                                                                                               |                                                                                                                                                 | 1.28                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.55                                                                                                                                                 | 1.61                                                                                                                                                                          | 1.29                                                                                                                                                             | 1.06                                                                                                                                                                                | 1.04                                                                                                                                                                               |                                                                                                                                                 | 1.28                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.39                                                                                                                                                 | 1.52                                                                                                                                                                          | 0.95                                                                                                                                                             | 0.86                                                                                                                                                                                | 1.43                                                                                                                                                                               |                                                                                                                                                 | 1.20                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.50                                                                                                                                                 | 1.52                                                                                                                                                                          | 0.97                                                                                                                                                             | 0.86                                                                                                                                                                                | 1.10                                                                                                                                                                               | 1.21                                                                                                                                            | 1.15                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.24                                                                                                                                                 | 1.70                                                                                                                                                                          | 1.08                                                                                                                                                             | 0.72                                                                                                                                                                                | 1.21                                                                                                                                                                               | 1.21                                                                                                                                            | 1.12                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.01                                                                                                                                                 | 1.34                                                                                                                                                                          | 0.91                                                                                                                                                             | 0.78                                                                                                                                                                                | 0.80                                                                                                                                                                               | 1.22                                                                                                                                            | 1.00                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.53                                                                                                                                                 | 1.23                                                                                                                                                                          | 0.87                                                                                                                                                             | 0.64                                                                                                                                                                                | 0.62                                                                                                                                                                               | 0.59                                                                                                                                            | 0.85                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24                                                                                                                                                 | 0.49                                                                                                                                                                          | 0.26                                                                                                                                                             | 0.13                                                                                                                                                                                | 0.33                                                                                                                                                                               | 0.16                                                                                                                                            | 0.23                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      | 0 (1 02)                                                                                                                                                                      | 0 (2.91)                                                                                                                                                         | 0 (3.11)                                                                                                                                                                            | 0 (2.14)                                                                                                                                                                           | 0 (2.3)                                                                                                                                         | 0 (2.6)                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Noisy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 (2.86)                                                                                                                                             | 0 (1.93)                                                                                                                                                                      | 0 (2.91)                                                                                                                                                         | 0 (0111)                                                                                                                                                                            | 0 (2.14)                                                                                                                                                                           | 0 (2.0)                                                                                                                                         | 0 (2.0)                                                                                                                                                 | 0.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Noisy<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (2.86)<br>(0.09)                                                                                                                                   | (0.04)                                                                                                                                                                        | (0.04)                                                                                                                                                           | (0.03)<br>und Nois                                                                                                                                                                  | 0.04                                                                                                                                                                               | 0.01                                                                                                                                            | (0.02)                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.09)                                                                                                                                               | (0.04)<br>(b) Ba                                                                                                                                                              | (0.04)<br>ackgro                                                                                                                                                 | (0.03)<br>und Nois                                                                                                                                                                  | 0.04<br>e MO                                                                                                                                                                       | 0.01<br>S                                                                                                                                       | (0.02)                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.09)<br>Stationary                                                                                                                                 | (0.04)<br>(b) Ba<br>Emotional                                                                                                                                                 | (0.04)<br>ackgro                                                                                                                                                 | (0.03)<br>und Nois<br><sup>Non-English M</sup>                                                                                                                                      | 0.04<br>e MO<br>Musical                                                                                                                                                            | 0.01<br>S<br>English                                                                                                                            | (0.02)<br>Overa                                                                                                                                         | 0.04<br>all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.09)                                                                                                                                               | (0.04)<br>(b) Ba                                                                                                                                                              | (0.04)<br>ackgro                                                                                                                                                 | (0.03)<br>und Nois<br><sup>Non-English M</sup>                                                                                                                                      | 0.04<br>e MO                                                                                                                                                                       | 0.01<br>S                                                                                                                                       | (0.02)                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 38<br>Team #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.09)<br>Stationary<br>DMOS                                                                                                                         | (0.04)<br>(b) Ba<br>Emotional<br>DMOS                                                                                                                                         | (0.04)<br>ackgro<br>Tonal f<br>DMOS                                                                                                                              | (0.03)<br>und Nois<br><sup>Non-English M</sup><br>DMOS                                                                                                                              | 0.04<br>e MO<br>Musical<br>DMOS                                                                                                                                                    | English<br>DMOS                                                                                                                                 | (0.02)<br>Overa<br>DMOS                                                                                                                                 | 0.04<br>all<br>CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38<br>Team #<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.09)<br>Stationary<br>DMOS<br>0.89                                                                                                                 | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51                                                                                                                                 | (0.04)<br>ackgro<br>Tonal I<br>DMOS<br>0.79                                                                                                                      | (0.03)<br>und Nois<br>Non-English M<br>DMOS<br>0.80                                                                                                                                 | 0.04<br>se MO<br>Musical<br>DMOS<br>1.14                                                                                                                                           | English<br>DMOS                                                                                                                                 | (0.02)<br>Overa<br>DMOS<br>1.01                                                                                                                         | 0.04<br>all<br>Cl<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 38<br>Team #<br>36<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85                                                                                                         | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16                                                                                                                         | (0.04)<br>ackgro<br>Tonal f<br>DMOS<br>0.79<br>0.65                                                                                                              | (0.03)<br>und Nois<br>Non-English<br>DMOS<br>0.80<br>0.69                                                                                                                           | 0.04<br>se MO<br>Musical<br>DMOS<br>1.14<br>0.89                                                                                                                                   | English<br>DMOS<br>1.111<br>0.92                                                                                                                | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85                                                                                                                 | 0.04<br>LII<br>CI<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38<br>Team #<br>36<br>1<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74                                                                                                 | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16                                                                                                                 | (0.04)<br>ackgro<br>Tonal 1<br>DMOS<br>0.79<br>0.65<br>0.56                                                                                                      | (0.03)<br>und Nois<br>Non-English M<br>DMOS<br>0.80<br>0.69<br>0.57                                                                                                                 | 0.04<br>ce MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06                                                                                                                           | English<br>DMOS<br>1.11<br>0.92<br>0.93                                                                                                         | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81                                                                                                         | 0.04<br>ci<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.76                                                                                         | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.14                                                                                                         | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.60                                                                                                         | (0.03)<br>und Nois<br>Non-English M<br>DMOS<br>0.60<br>0.69<br>0.57<br>0.60                                                                                                         | 0.04<br>ee MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97                                                                                                                   | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90                                                                                                 | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80                                                                                                 | 0.04<br>Cl<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38<br>Team #<br>36<br>1<br>33<br>13<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.76<br>0.69                                                                                 | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.14<br>1.13                                                                                                 | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.60<br>0.59                                                                                                 | (0.03)<br>und Nois<br>Non-English M<br>DMOS<br>0.80<br>0.69<br>0.57<br>0.60<br>0.64                                                                                                 | 0.04<br>e MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76                                                                                                            | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75                                                                                         | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74                                                                                         | 0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.76<br>0.69<br>0.61                                                                         | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.14<br>1.13<br>0.98                                                                                         | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.60<br>0.59<br>0.58                                                                                         | (0.03)<br>und Nois<br>Non-English M<br>DMOS<br>0.60<br>0.69<br>0.60<br>0.64<br>0.57                                                                                                 | 0.04<br>e MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90                                                                                                    | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.74                                                                                 | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.71                                                                                 | 0.04<br>cl<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.76<br>0.69<br>0.61<br>0.59                                                                 | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02                                                                                         | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.60<br>0.59<br>0.58<br>0.40                                                                                 | (0.03)<br>und Nois<br>Non-English M<br>DMOS<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.55                                                                                         | 0.04<br>e MO<br>viusical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55                                                                                           | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.74<br>0.75                                                                         | (0.02)<br>Over<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.71<br>0.64                                                                          | 0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19<br>18<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.69<br>0.69<br>0.69<br>0.59<br>0.79                                                         | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94                                                                         | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.65<br>0.59<br>0.58<br>0.40<br>0.37                                                                         | (0.03)<br>und Nois<br>DMOS<br>0.80<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40                                                                                          | 0.04<br>e MO<br>vusical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62                                                                                    | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.74<br>0.75<br>0.63                                                                 | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.71<br>0.64<br>0.60                                                                 | 0.04<br>CI<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19<br>18<br>40<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.76<br>0.69<br>0.61<br>0.59<br>0.79<br>0.41                                                                 | (0.04)<br>(b) B:<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.79                                                                 | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.56<br>0.59<br>0.58<br>0.40<br>0.37<br>0.37                                                                 | (0.03)<br>und Nois<br>DMOS<br>0.80<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39                                                                                  | 0.04<br>e MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62<br>0.25                                                                            | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.74<br>0.75<br>0.63<br>0.41                                                         | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.71<br>0.64<br>0.71<br>0.64<br>0.42                                                         | 0.04<br>Cl<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19<br>18<br>40<br>8<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.76<br>0.69<br>0.61<br>0.59<br>0.79<br>0.71<br>0.51                                         | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.79<br>0.50                                                                 | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.60<br>0.59<br>0.58<br>0.40<br>0.37<br>0.37<br>0.18                                                         | (0.03)<br>und Nois<br>Non-English M<br>DMOS<br>0.60<br>0.64<br>0.67<br>0.60<br>0.64<br>0.67<br>0.65<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39<br>0.30                         | 0.04<br>e MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62<br>0.25<br>0.42                                                                    | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.74<br>0.75<br>0.63<br>0.41<br>0.42                                                 | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.71<br>0.64<br>0.60<br>0.42<br>0.39                                                 | 0.04<br>Cl<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19<br>18<br>40<br>8<br>22<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.89<br>0.61<br>0.59<br>0.61<br>0.59<br>0.79<br>0.41<br>0.51<br>0.44                                         | (0.04)<br>(b) B:<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.79<br>0.50<br>0.48                                                         | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.56<br>0.59<br>0.58<br>0.40<br>0.37<br>0.18<br>0.28                                                         | (0.03)<br>und Nois<br>Non-English n<br>DMOS<br>0.69<br>0.67<br>0.60<br>0.64<br>0.57<br>0.55<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39<br>0.30<br>0.36                         | 0.04<br>e MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62<br>0.25<br>0.42<br>0.29                                                            | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.74<br>0.75<br>0.63<br>0.41<br>0.42<br>0.39                                         | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.71<br>0.64<br>0.60<br>0.42<br>0.39<br>0.38                                         | 0.04<br>CI<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19<br>18<br>40<br>8<br>22<br>20<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.76<br>0.69<br>0.69<br>0.79<br>0.41<br>0.51<br>0.44<br>0.37                                 | (0.04)<br>(b) B:<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.79<br>0.50<br>0.48<br>0.50                                         | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.59<br>0.58<br>0.40<br>0.37<br>0.37<br>0.37<br>0.37<br>0.28<br>0.20                                         | (0.03)<br>und Nois<br>won-English n<br>DMOS<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39<br>0.30<br>0.30<br>0.36<br>0.20                                         | 0.04<br>e MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62<br>0.25<br>0.42<br>0.29<br>0.28                                                    | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.63<br>0.41<br>0.42<br>0.39<br>0.35                                                 | (0.02)<br>Overa<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.64<br>0.60<br>0.42<br>0.39<br>0.38<br>0.32                                         | 0.04<br>CI<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19<br>18<br>40<br>8<br>22<br>20<br>31<br>Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.69<br>0.61<br>0.59<br>0.79<br>0.41<br>0.51<br>0.44<br>0.37<br>0.25                         | (0.04)<br>(b) B3<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.16<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.79<br>0.50<br>0.48<br>0.60<br>0.47                 | (0.04)                                                                                                                                                           | (0.03)<br>und Nois<br>von-English n<br>DMOS<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39<br>0.30<br>0.30<br>0.30<br>0.36<br>0.21                                 | 0.04<br>ae MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62<br>0.25<br>0.42<br>0.29<br>0.28<br>0.21                                           | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.63<br>0.41<br>0.42<br>0.35<br>0.41                                                 | (0.02)<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.71<br>0.64<br>0.60<br>0.42<br>0.39<br>0.38<br>0.32<br>0.30                                  | 0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04 |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>34<br>19<br>18<br>40<br>8<br>22<br>20<br>31<br>33<br>22<br>20<br>31<br>33<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.76<br>0.69<br>0.61<br>0.59<br>0.79<br>0.41<br>0.51<br>0.44<br>0.37<br>0.25<br>0.39         | (0.04)<br>(b) B:<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.50<br>0.48<br>0.60<br>0.47<br>0.33                                         | (0.04)<br>ackgro<br>mos<br>0.79<br>0.65<br>0.56<br>0.56<br>0.56<br>0.58<br>0.58<br>0.40<br>0.37<br>0.37<br>0.37<br>0.18<br>0.28<br>0.20<br>0.31<br>0.29          | (0.03)<br>und Nois<br>Non-English M<br>DMOS<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39<br>0.30<br>0.30<br>0.36<br>0.20<br>0.22                 | 0.04<br>ce MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62<br>0.25<br>0.42<br>0.29<br>0.28<br>0.21<br>(0.00)                                 | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.63<br>0.41<br>0.42<br>0.39<br>0.35<br>0.41<br>0.28                                 | (0.02)<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.71<br>0.64<br>0.60<br>0.42<br>0.39<br>0.38<br>0.32<br>0.30<br>0.25                          | 0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04 |
| 38<br>36<br>1<br>33<br>34<br>19<br>18<br>40<br>8<br>22<br>20<br>31<br>33<br>34<br>19<br>18<br>40<br>8<br>22<br>20<br>31<br>33<br>31<br>33<br>31<br>33<br>34<br>40<br>8<br>22<br>20<br>30<br>31<br>31<br>33<br>34<br>34<br>35<br>31<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.69<br>0.61<br>0.59<br>0.79<br>0.41<br>0.51<br>0.44<br>0.37<br>0.25<br>0.39<br>0.44         | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.79<br>0.50<br>0.48<br>0.60<br>0.48<br>0.60<br>0.43<br>0.23         | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.56<br>0.59<br>0.58<br>0.40<br>0.37<br>0.37<br>0.37<br>0.18<br>0.28<br>0.20<br>0.31                         | (0.03)<br>und Nois<br>son-English n<br>DMOS<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39<br>0.30<br>0.30<br>0.36<br>0.20<br>0.21<br>0.21<br>0.21<br>0.22         | 0.04<br>ce MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62<br>0.25<br>0.42<br>0.29<br>0.25<br>0.42<br>0.29<br>0.21<br>(0.00)<br>0.16         | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.63<br>0.41<br>0.42<br>0.39<br>0.35<br>0.41<br>0.28<br>0.17                         | (0.02)<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.74<br>0.64<br>0.71<br>0.64<br>0.60<br>0.42<br>0.39<br>0.38<br>0.32<br>0.30<br>0.22          | 0.04<br>CI<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38<br><b>Team #</b><br>36<br>1<br>33<br>13<br>34<br>19<br>18<br>40<br>8<br>22<br>20<br>31<br>8<br>40<br>8<br>22<br>20<br>33<br>8<br>34<br>40<br>8<br>22<br>20<br>33<br>33<br>8<br>34<br>40<br>8<br>22<br>20<br>33<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>34<br>40<br>33<br>33<br>34<br>40<br>33<br>33<br>40<br>33<br>34<br>33<br>40<br>33<br>33<br>40<br>33<br>33<br>40<br>33<br>33<br>40<br>33<br>33<br>40<br>33<br>33<br>34<br>40<br>33<br>33<br>34<br>40<br>33<br>33<br>34<br>12<br>33<br>34<br>33<br>33<br>33<br>40<br>33<br>33<br>33<br>33<br>33<br>33<br>34<br>33<br>33<br>33 | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.61<br>0.59<br>0.61<br>0.59<br>0.41<br>0.51<br>0.44<br>0.37<br>0.25<br>0.39<br>0.44<br>0.37 | (0.04)<br>(b) B:<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.79<br>0.50<br>0.48<br>0.60<br>0.47<br>0.33<br>0.27<br>0.41 | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.60<br>0.59<br>0.58<br>0.40<br>0.37<br>0.37<br>0.18<br>0.20<br>0.31<br>0.29<br>0.31<br>0.29<br>0.31<br>0.29 | (0.03)<br>und Nois<br>von-English n<br>DMOS<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39<br>0.30<br>0.30<br>0.30<br>0.30<br>0.32<br>0.21<br>0.23<br>0.12<br>0.13 | 0.04<br>se MO<br>musical<br>pmos<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.97<br>0.76<br>0.97<br>0.25<br>0.42<br>0.25<br>0.42<br>0.29<br>0.28<br>0.21<br>(0.00)<br>0.16<br>0.13 | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.74<br>0.75<br>0.63<br>0.41<br>0.42<br>0.39<br>0.35<br>0.41<br>0.28<br>0.17<br>0.20 | (0.02)<br>Overs<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.71<br>0.64<br>0.64<br>0.64<br>0.39<br>0.38<br>0.32<br>0.30<br>0.25<br>0.22<br>0.19 | 0.04<br>C<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 38<br>36<br>1<br>33<br>34<br>19<br>18<br>40<br>8<br>22<br>20<br>31<br>33<br>34<br>19<br>18<br>40<br>8<br>22<br>20<br>31<br>33<br>31<br>33<br>31<br>33<br>34<br>40<br>8<br>22<br>20<br>30<br>31<br>31<br>33<br>34<br>34<br>35<br>31<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.09)<br>Stationary<br>DMOS<br>0.89<br>0.85<br>0.74<br>0.69<br>0.61<br>0.59<br>0.79<br>0.41<br>0.51<br>0.44<br>0.37<br>0.25<br>0.39<br>0.44         | (0.04)<br>(b) Ba<br>Emotional<br>DMOS<br>1.51<br>1.16<br>1.16<br>1.14<br>1.13<br>0.98<br>1.02<br>0.94<br>0.79<br>0.50<br>0.48<br>0.60<br>0.48<br>0.60<br>0.43<br>0.23         | (0.04)<br>ackgro<br>DMOS<br>0.79<br>0.65<br>0.56<br>0.56<br>0.59<br>0.58<br>0.40<br>0.37<br>0.37<br>0.37<br>0.18<br>0.28<br>0.20<br>0.31                         | (0.03)<br>und Nois<br>son-English n<br>DMOS<br>0.69<br>0.57<br>0.60<br>0.64<br>0.57<br>0.55<br>0.40<br>0.39<br>0.30<br>0.30<br>0.36<br>0.20<br>0.21<br>0.21<br>0.21<br>0.22         | 0.04<br>ce MO<br>Musical<br>DMOS<br>1.14<br>0.89<br>1.06<br>0.97<br>0.76<br>0.90<br>0.55<br>0.62<br>0.25<br>0.42<br>0.29<br>0.25<br>0.42<br>0.29<br>0.21<br>(0.00)<br>0.16         | English<br>DMOS<br>1.11<br>0.92<br>0.93<br>0.90<br>0.75<br>0.63<br>0.41<br>0.42<br>0.39<br>0.35<br>0.41<br>0.28<br>0.17                         | (0.02)<br>DMOS<br>1.01<br>0.85<br>0.81<br>0.80<br>0.74<br>0.74<br>0.64<br>0.71<br>0.64<br>0.60<br>0.42<br>0.39<br>0.38<br>0.32<br>0.30<br>0.22          | 0.04<br>CI<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

**Fig. 2**: Track 1 results for the 3rd Deep Noise Suppression Challenge

(c) Overall MOS

(0.27) 0.02

(0.02)

(0.15)

(0.44)

(0.13) 0.04

(0.15) 0.04

(0.07) (0.10

(0.12)

synthesis [26] and to learn acoustic models [27]. They show that using the time-domain waveform requires a larger model trained on a larger and diverse data set to ensure generalization. The ground truth MOS scores are obtained for audio clips with an average length of 9 seconds sampled at 16 kHz. This leads to a very large input dimension if we are treating it as a vector and the model will require many layers to compress and extract input features. Instead, we used log power spectrogram as input feature extracted over 9 seconds duration as it correlates well with human perception and is proven to work very well for analyzing speech quality [15]. For spectral features, we used a frame size of 20 ms with a Hamming window and a hop length of 10 ms. The input features are then converted to dB scale.

#### 4.2. Prediction model

For predicting the MOS scores, we explored different configurations of CNN-based models. The architecture for the best performing model is shown in Table 2. The input to the model is log power spectrogram with a 320 FFT size computed over a clip of length 9 seconds sampled at 16 kHz with a frame size of 20 ms and hop length of 10 ms. This results in an input dimension of 900 x 161. We trained two different models with almost the same architecture except for the last layer. One model is trained to predict all 3 outputs (SIG, BAK, OVRL) and the other model is trained to predict only SIG. The reason is we found the prediction of SIG is a much harder task and is less correlated with BAK and OVRL. The models were trained with a batch size of 32 using the Adam optimizer and MSE loss function until the loss saturated. We experimented by adding batch normalization layers after every Conv layer in Table 1. However, adding batch normalization reduces the prediction accuracy of low volume clips. Humans tend to give lower ratings to clips with low amplitudes [28]. We want the model to capture the variations in the target levels of the data. Hence, we avoid any kind of feature normalization. We also explored different network architectures including CNN followed by LSTM. The model in Table 2 generalized the best and was of least complexity.

#### 5. EXPERIMENTAL RESULTS

#### 5.1. Test set

The unseen real test set used to validate the trained model consists of P.835 evaluation of 17 different Microsoft internal noise suppression models on an unseen set of 850 clips. The clips span various categories like emotional, English, Non-English with and without tonal languages, and stationary noises. This unseen test set was created for a future DNS challenge and has similar categories as the training data, adding mouse clicks and improving the quality of emotional speech. The test set was created with crowdsourcing using the method described in [10].

Table 2: DNSMOS P.835 Prediction Model

| Layer                          | Output dimension |
|--------------------------------|------------------|
| Input                          | 900 x 120 x 1    |
| Conv: 128, (3 x 3), 'ReLU'     | 900 x 161 x 128  |
| Conv: 64, (3 x 3), 'ReLU'      | 900 x 161 x 64   |
| Conv: 64, (3 x 3), 'ReLU'      | 900 x 161 x 64   |
| Conv: 32, (3 x 3), 'ReLU'      | 900 x 161 x 32   |
| MaxPool: (2 x 2), Dropout(0.3) | 450 x 80 x 32    |
| Conv: 32, (3 x 3), 'ReLU'      | 450 x 80 x 32    |
| MaxPool: (2 x 2), Dropout(0.3) | 225 x 40 x 32    |
| Conv: 32, (3 x 3), 'ReLU'      | 112 x 20 x 32    |
| MaxPool: (2 x 2), Dropout(0.3) | 112 x 15 x 32    |
| Conv: 64, (3 x 3), 'ReLU'      | 112 x 20 x 64    |
| GlobalMaxPool                  | 1 x 64           |
| Dense: 128, 'ReLU'             | 1 x 128          |
| Dense: 64, 'ReLU'              | 1 x 64           |
| Dense: 1 or 3                  | 1 x 1 or 1 x 3   |

### 5.2. Evaluation metric

PCC or MSE between the predictions of the developed objective metric and the ground truth human ratings is commonly used to measure the accuracy of the model [15, 16]. From [9], we know that P.835 is highly repeatable between runs when averaged across a set of clips per condition, which can be formed by grouping clips enhanced by a particular SE model or based on other criteria like SNR or reverb RT60 times. The PCC computed on the average of ratings per group across different runs is >0.9. We also found that PCC computed on the same clips but from two different P.835 runs is only about 0.7-0.8 due to the high rating noise per clip.

Hence, for stack ranking different noise suppressors we evaluate by computing the average of ratings across the entire test set for each model. Therefore, we compute Spearman's Rank Correlation Coefficient (SRCC) and PCC between averaged human ratings and averaged DNSMOS per model. SRCC gives us the stack ranking accuracy of various SE models.

 Table 3: Model and clip level correlation of DNSMOS P.835

 with human ratings

| Туре       | SIG  | BAK  | OVRL |
|------------|------|------|------|
| Model PCC  | 0.94 | 0.98 | 0.98 |
| Model SRCC | 0.95 | 0.99 | 0.98 |
| Clip PCC   | 0.71 | 0.83 | 0.82 |
| Clip SRCC  | 0.72 | 0.82 | 0.81 |

# 5.3. Results

Table 3 shows the per model and per clip PCC and SRCC between human ratings and DNSMOS P.835 on the unseen test set described in Section 5.1. When DNSMOS is aggregated by model the results are excellent, though it still shows an area for improvement in SIG. The results on this unseen test set show DNSMOS P.835 generalizes well, at least for these categories of noises and environments. We can not compare DNSMOS P.835 with other metrics since it is the first NI-SQA metric for P.835 we are aware of.

The clip level correlation of two noise suppression models on the same dataset but using N=30 ratings per clip instead of N=5 used in the per model correlation to give us better accuracy for the human ratings. These results show DNSMOS P.835 has good per clip performance also, though of course not as good as when aggregated at the model level.

# 6. CONCLUSION AND FUTURE WORK

DNSMOS P.835 is an accurate speech quality metric designed to stack rank noise suppressors with great accuracy. We attribute the excellent performance of DNSMOS P.835 to (1) a large high-quality dataset, (2) a limited speech quality impairment category, (3) significant optimizations on the model architecture and training, and (4) aggregation by noise suppression model. The per clip performance can be improved by significantly increasing the number of ratings per clip, which is currently only 5 because of cost restrictions. We can also expand the complexity of the model to further improve performance.

## 7. REFERENCES

- [1] ITU-T Recommendation P.808, *Subjective evaluation of speech quality with a crowdsourcing approach*, International Telecommunication Union, Geneva, 2018.
- [2] ITU-T Recommendation P.835, Subjective test methodology for evaluating speech communication systems that include noise suppression algorithm, International Telecommunication Union, Geneva, 2003.
- [3] Chandan KA Reddy, Ebrahim Beyrami, Jamie Pool, Ross Cutler, Sriram Srinivasan, and Johannes Gehrke, "A scalable noisy speech dataset and online subjective test framework," *Proc. INTERSPEECH 2019*, pp. 1816– 1820, 2019.
- [4] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, "Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs," in *ICASSP*, 2001, vol. 2, pp. 749– 752 vol.2.

- [5] John Beerends, Christian Schmidmer, Jens Berger, Matthias Obermann, Raphael Ullmann, Joachim Pomy, and Michael Keyhl, "Perceptual Objective Listening Quality Assessment (POLQA), The Third Generation ITU-T Standard for End-to-End Speech Quality Measurement Part II-Perceptual Model," AES: Journal of the Audio Engineering Society, vol. 61, pp. 385–402, 06 2013.
- [6] Andrew Hines, Jan Skoglund, Anil C Kokaram, and Naomi Harte, "ViSQOL: an objective speech quality model," *Eurasip Journal on Audio, Speech, and Music Processing*, , no. 1, pp. 13, 2015.
- [7] "ITU-T Recommendation P.800: Methods for subjective determination of transmission quality," Feb 1998.
- [8] Yi Hu and Philipos C Loizou, "Evaluation of objective measures for speech enhancement," in *International Conference on Spoken Language Processing*, 2006.
- [9] Babak Naderi and Ross Cutler, "Subjective evaluation of noise suppression algorithms in crowdsourcing," in *INTERSPEECH*, 2021.
- [10] Chandan K A Reddy, Harishchandra Dubey, Kazuhito Koishida, Arun Nair, Vishak Gopal, Ross Cutler, Sebastian Braun, Hannes Gamper, Robert Aichner, and Sriram Srinivasan, "INTERSPEECH 2021 Deep Noise Suppression Challenge," in *INTERSPEECH*, 2021.
- [11] Head Acoustics Application Note, "3QUEST: 3-fold Quality Evaluation of Speech in Telecommunications Systems," 2008.
- [12] "ITU-T Recommendation P.563: Single-ended method for objective speech quality assessment in narrowband telephony applications," 2004.
- [13] A. R. Avila, H. Gamper, C. Reddy, R. Cutler, I. Tashev, and J. Gehrke, "Non-intrusive speech quality assessment using neural networks," in *ICASSP*, 2019, pp. 631– 635.
- [14] Xuan Dong and Donald S Williamson, "An attention enhanced multi-task model for objective speech assessment in real-world environments," in *ICASSP*. IEEE, 2020, pp. 911–915.
- [15] Hannes Gamper, Chandan KA Reddy, Ross Cutler, Ivan J Tashev, and Johannes Gehrke, "Intrusive and non-intrusive perceptual speech quality assessment using a convolutional neural network," in WASPAA. IEEE, 2019, pp. 85–89.
- [16] Chandan K A Reddy, Vishak Gopal, and Ross Cutler, "DNSMOS: A non-intrusive perceptual objective speech quality metric to evaluate noise suppressors," in *ICASSP*, 2021, pp. 6493–6497.

- [17] Jasper Ooster and Bernd T Meyer, "Improving deep models of speech quality prediction through voice activity detection and entropy-based measures," in *ICASSP*. IEEE, 2019, pp. 636–640.
- [18] Szu-Wei Fu, Yu Tsao, Hsin-Te Hwang, and Hsin-Min Wang, "Quality-net: An end-to-end non-intrusive speech quality assessment model based on blstm," in *INTERSPEECH*, 2018.
- [19] Andrew A Catellier and Stephen D Voran, "Wawenets: A no-reference convolutional waveform-based approach to estimating narrowband and wideband speech quality," in *ICASSP*. IEEE, 2020, pp. 331–335.
- [20] Benjamin Cauchi, Kai Siedenburg, Joao F Santos, Tiago H Falk, Simon Doclo, and Stefan Goetze, "Nonintrusive speech quality prediction using modulation energies and lstm-network," *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 27, no. 7, pp. 1151–1163, 2019.
- [21] Pranay Manocha, Adam Finkelstein, Zeyu Jin, Nicholas J Bryan, Richard Zhang, and Gautham J Mysore, "A differentiable perceptual audio metric learned from just noticeable differences," in *INTERSPEECH*, 2020.
- [22] Shubo Lv, Yanxin Hu, Shimin Zhang, and Lei Xie, "Dccrn+: Channel-wise subband dccrn with snr estimation for speech enhancement," in *INTERSPEECH*, 2021.
- [23] Andong Li, Wenzhe Liu, Xiaoxue Luo, Guochen Yu, Chengshi Zheng, and Xiaodong Li, "A simultaneous denoising and dereverberation framework with target decoupling," in *INTERSPEECH*, 2021.
- [24] Joan Serrà, Jordi Pons, and Santiago Pascual, "Sesqa: semi-supervised learning for speech quality assessment," in *ICASSP*. IEEE, 2021, pp. 381–385.
- [25] Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi, "Real time speech enhancement in the waveform domain," in *INTERSPEECH*, 2020.
- [26] Kou Tanaka, Hirokazu Kameoka, Takuhiro Kaneko, and Nobukatsu Hojo, "WaveCycleGAN2: Timedomain neural post-filter for speech waveform generation," arXiv preprint arXiv:1904.02892, 2019.
- [27] Y. Hoshen, R. J. Weiss, and K. W. Wilson, "Speech acoustic modeling from raw multichannel waveforms," in *ICASSP*, 2015, pp. 4624–4628.
- [28] Côté Nicolas, Valérie Gautier-Turbin, and Sebastian Möller, "Influence of loudness level on the overall quality of transmitted speech," in *Audio Engineering Society Convention 123*. Audio Engineering Society, 2007.