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Abstract

A conjecture of Dirac states that every simple graph with n vertices and 3n - 5 edges

must contain a subdivision of K 5 . We prove that a topologically minimal counterexample is 5-

connected, and that no minor-minimal counterexample contains K 4 - e. Consequently, we prove

Dirac's conjecture for all graphs that can be imbedded in a surface with Euler characteristic at

least -2.
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1. Introduction I

Let H be a simple undirected graph. An elementary subdivision of H is a graph obtained from H I
by removing some edge e = xy and adding a new vertex z together with two new edges xz and

zy. A subdivision of H is a graph obtained from H by a succession of elementary subdivisions. If 3
a subdivision of H is isomorphic to a subgraph of G, we write TH C G, where TH represents an

arbitrary subdivision of H. A vertex of TKp(p 2! 4) with degree at least three is called a branch I
vertex.

A conjecture due to Dirac [2], and reported by Thomassen [8], states that any simple graph

with n vertices and 3n - 5 edges contains a subdivision of Ks. By Kuratowski's Theorem, no 3
planar graph contains a subdivision of K 5 . Thus Dirac's conjecture, if true, would be sharp.

Thomassen [7] proved that 4n - 10 edges force a TK 5 . In [3], Dirac showed that, if b(G) 2! 3, then

G contains a subdivision of K4 . A similar result by Pelikin [61 and Thomassen [7] established that

6(G) > 4 forces G to contain a subdivision of K 5 - e. More generally, Mader [5] proved that, if 3
6(G) 2 3(2)P- 2 - 2p (p > 3), then TKp C G.

A simple graph G with n vertices is called a counterexample if IE(G)I 2! 3n - 5 and TK 5  C. 3
Let D be the set of all counterexamples. A minor of G is a subgraph obtained from G by a

sequence of edge deletions, vertex deletions, and edge contractions. A graph is minor-minzmal 3
in D provided it is a counterexample but no minor is a counterexample. Similarly, a graph is

(topologically) minimal in D provided it is a counterexample and contains no subdivision of a

smaller counterexample. Observe that any minor-minimal counterexample is also a (topologically)

minimal counterexample. 3
In section 3 we prove that any minimal counterexample is 5-connected. From this we deduce,

in section 4, that no minor-minimal counterexample contains K4 - e. Finally, in section 5, we prove

Dirac's conjecture for all graphs tha _aii e imbedded in a surface with Euler characteristic at

least -2.
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- 2. Menger's Theorem and Extensions

-- We make use of several fundamental results which we list here. The reader is referred to Botlob.s

[1] for further details.

A vertex cut of G is a subset of vertices whose removal disconnects G. A k-separator of G is a

3 vertex cut of k vertices. The connectivity of G is the least k such that there exists a k-separator of

G. If k is the connectivity of G, we write K(G) = k and say that G is k-connected.

U
Theorem 1 (Menger). A non-trivial graph is k-connected if and only if every pair of vertzces is

connected by k disjoint paths.

Let S be a set of vertices in the graph G and let x be a vertex not in S. An x-S fan is a set of

ISI paths from x to S, any two of which share only the vertex x.

Theorem 2 (Dirac). A graph G is k-connected if and only if IGI >_ k + 1 and for any k-set

S C V(G) and vertex x E V(G) - S there is an x - S fan.

The following two theorems follow as corollaries of the previous one.

Theorem 3 (Dirac). If G is k-connected and k > 2, then for any set of k vertices there is a cycle

containing all of them.

Suppose X, Y C V(G). We say that X is linked to Y if there are JXI vertex disjoint paths

from X to Y. Notice that the paths linking X to Y cannot share any vertices including initial and

terminal vertices.

Theorem 4 (Dirac). Let IG! > 2k. G is k-connected if and only if whenever V and 2 ar

disjoint k-sets of vertices, then V, is linked to V2 .

3



I

3. 5-connectivity 3

Let G be a (topologically) minimal counterexample as defined in the introduction. In this section

we show that G is 5-connected. We begin by examining the minimum degree. Observe that a

minimal counterexample with n vertices has 3n - 5 edges. 3
Lemma 1. If G is minimal in D, then 6(G) = 5. 3
Proof: The average degree is less than six, so the minimum degree is at most five. If the minimum 3
degree is less than four, then we may delete a vertex of degree at most three from G, obtaining a

smaller graph with 3(n - 1) - 5 edges and no subdivision of K 5 , which contradicts minimality of

G. Hence, it suffices to show that the minimum degree is not four.

Suppose, for a contradiction, that 6(G) = 4. Let v E V(G) have dG(v) = 4 with neighbors

a, b, c, d. There must be a pair of these neighbors, say c and d, that are not adjacent, otherwise the

five vertices {v, a, b, c, d} form a K5 . Deleting the edges va and vb, then contracting v to edge cd 3
yields a subgraph of G in D, contradicting that G is a minimal counterexample. 0

From Lemma 1, by counting edges and degrees, it is easy to deduce that a minimal counterex- I
ample must have at least ten vertices.

Suppose S is a set of vertices of G. G[S] denotes the subgraph induced by S, and E(S) are

the edges of G[S]. 3
Lemma 2. If G is minimal in D, then r.(G) ! 3.

Proof: Suppose, for a contradiction, that G is 2-connected with a 2-separator {x, y}. Let C, be

one component of G- {x,y}, nd C 2 = G-({x,y}UCi). Define Gi = G[Ci U{x,y}] for i = 1,2. 3
Lkmma 1 ensures that the number of vertices in each Gi (i = 1,2) is at least six. Because G, and

G2 are sufficiently large subgraphs of G, the minimality of G implies that they do not contain a I
subdivision of Ks; thus they each must have at most 3ni - 6 edges, where ni represents the number

of vertices in Gi. Observing n, + n2 = n+ 2, we find I
3n - 5 = IE(G)j < IE(G 1 )i + IE(G 2)I < (3n1 - 6) + (3n2 - 6) = 3n -6 3

4



a contradiction. C

3 Suppose G is a minimal in D with S a (G)-separator of G. Let C1 be a component of G - S

and C 2 = G - (S U C1 ). Define Gi = G[Ci US], for i = 1,2. We say that S divides G into G,

3 and G 2 . Let ni and ei represent the number of vertices and edges of Gi, respectively. Observe that

n, + n 2 = n + r(G) and, because G is a minimal counterexample, e, < 3mi - 5, for z = 1, 2.

3 We strengthen the ideas of the previous lemma by augmenting each G, with edges correspond-

ing to paths in G. More precisely, consider a pair of non-adjacent vertices x, y E S, and a path P

connecting x to y in G 2 - (S - {x,y}). Now H = G1 + {xy} is a simple graph. Furthermore, if

TK 5 C H, then TK 5 C G. Therefore, by the minimality of G, IE(H) < 3n, - 5 which implies

that el < 3n, - 6. Thus we have used the path P to reduce the number of edges in G 1 .

3 In general, suppose G is minimal 7 with S a t,(G)-separator that divides G into G, and G 2 .

Let P be a path in Gi - (S - {x,y}) connecting two vertices of x,y E S with xy E(G). We

I call P a substituting path for G (where j = {1,2} - i) and say P substitutes for xy (see figure 1).

Define a(Gi) to be the maximum number of internally vertex-disjoint substituting paths for Gi that

3 pairwise do not share the same initial and terminal vertex. Observe that, if some pair of vertices

in G[S] are not adjacent, then a(Gi) > 1, for i = 1,2. We make implicit use of hib observation

3 throughout the rest of the paper. The following lemma is the essence of this section.

Lemma 3. Suppose G is minimal in V, and S is a n(G)-separator dividing G into G1 and G 2 .

Then

7 + IE(S) + a(GI) + o(G2) _< 31SI (1)

Proof: For each i = 1,2, form the simple graph Hi from G, ay adding the u(Gi) edges corresponding

to the substituting paths for Gi. By construction, TK 5 C Hi implies Th'5 C G; hence TK 5  _ H,.

Consequently, by the minimality of G, IE(Hi)1 < 3ni - 5 and ei < 3n, - 5 - a(G,). Now.

[E(G)J = IE(G 1 ) + IE(G 2) - IE(GI)n E(Gf)l

< 3(ni + n 2 ) - 12 - a(Gi) - a(G 2 ) - E(S)

5
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So the result follows from n, + n2 = n + ISI and IE(G)I = 3n - 5. 0

To establish the 5-connectivity of a minimal counterexample, we shall use Lemma 3 repeatedly, 3
forcing contradictions using equation (1).

Lemma 4. If G is minimal in D, then r.(G) : 4.

Proof: As in Lemma 2, we argue by contradiction. Suppose that S = {x,y,z} is a 3-separator, I
dividing G into G, and G2 . By Lemma 2, S is a K(G)-separator of G.

If JE(S)J = 3, then equation (1) immediately yields a contradiction. We conclude that there

is some pair of non-adjacent vertices in S, say x and y. Because S is a minimum separator, there 3
is a substituting path for both G1 and G2 , substituting for xy. That is, 7(Gi) > 1 for i = 1,2.

implying E(S) = 0 by equation (1). 3
Because G is 3-connected, Theorem 3 implies there is a cycle containing x, y and z. The cyde

segments P.,,, Pyz and P.,. can be considered as three vertex-disjoint paths. Indeed the three paths 3
P.Y, P,,, and P., are three substituting paths substituting for xy, xz, and yz since E(S) = 0.

Thus, oa(G) + a(G 2 ) _ 3, and we again obtain a contradiction via equation (1). We conclude that 3
K(G) > 3. 0

Observe that if G is a minimal counterexample, then G may not contain a K 4 . To see this,

consider a set U C V(G) with G[U] isomorphic to K4. For any vertex x E V(G) - U there exists

an x - U fan by Lemma 4 and Theorem 2. This implies TK 5 C G. We use this observation to

prove the following useful lemma. Let NG(x) = {y E V(G) : xy E E(G)} denote the neighborhood 3
of the vertex x in the graph G.

I
Lemma 5. Suppose G is minimal in D, and S is a 4-separator of G that divides G into G1 and

G2 . For i = 1,2, S contains at most one vertex x such that ING,(x) - SI = 1. I

Proof: By contradiction. Suppose x,y E S such that NGI(x) - S = {u} and NG,(y) - S = {v}. 3
Note that u $ v, otherwise (G) = 3 contradicting Lemma 4. Because G(SI is not isomorphic to

K4, a(Gi) > 1, fori= 1,2. Henceei < 3ni-7. Moreover, H = G-{x,y} has at most3(n-2)-7

6



edges, by similar reasoning. Therefore we obtain the following contradiction:

3 3n - 5 = E(G)l < 2 + IE(H)I + IE(G2)I

< 2+(3n,-13)+(3n2 -7)

I < 3n-6

3 since n l + n2 =n+4. 0

3Theorem 5. If G is minimal in D, then K(G) = 5.

3 Proof: As in the previous lemmas, we assume that G is 4-connected and obtain a contradiction. To

this end, suppose S = {w,x, y, z) is a 4-separator of G that divides G into G1 and G2 . Because G[S]

3 is not isomorphic to K4, a(Gi) > 1, for i = 1,2. From equation (1), we conclude that IE(S)I :S 3.

Let Pi and Ej denote a path and independent set on j vertices, respectively; G, U G2 denotes

3 the disjoint union of G1 and G 2 . So, G[S] is isomorphic to one of K3, P4 , K 1 ,3 , P2 U P2, P3 U El,

P2 U E 2 , or E4. To prove that G is 5-connected, it remains to exclude these seven cases.

I Case 1: K 3. Suppose {x,y,z} form a triangle. There are four vertex-disjoint paths from any

vertex u E G1 - S to v E G 2 - S since t(G) > 4. Consequently G contains a subdivision of K 5

with branch vertices {x,y,z,u,v}.

Case 2: P4 . Suppose E(S) = {wx,xy,yz}. By equation (1), it suffices to show a(G1 ) + a(G2) _

3. Let v E Nc, (z) - S. Because G is 4-connected, Theorem 2 guarantees a fan from w to

{z, y, z, v} consisting of four vertex-disjoint paths P., , P,., P,,. The paths Py and P,, each

lie completely in G1 or G2 since {w, x, y, z} is a 4-separator. Similarly, P', must lie completley in

G1 . If P,,, E G 2 , then P, is a substituting path for G1 and P,,, + vz is a substituting path for

G 2 ; so together with P,,,,,, a(G 1 ) + a(G 2 ) > 3.

Suppose P,-2 , P ,v E G 1 . To show a(GI) + a(G 2 ) > 3, it suffices to find vertex-disjoint paths

P,, and P,, in G1 that avoid y. Consider a path P,,. connecting x to z in G1 such that Px avoids

the vertices w, y (if no such path exists then {w, x, y} is a 3-separator, contradicting Lemma 4). If

P,, avoids either P,, or P,,,, then we have found the desired paths. Otherwise, let u be the vertex

7
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closest to x where P,, intersects one of these paths. Without loss of generality, we may assume I
that u E Pw,. Let P,, be the segment of Pw, from u to z. Then Pu + P, and P,, + vz are the

two desired paths. 3
Case 3: K 1 ,3 . Suppose E(S) = {wx,wy,wz}. By Lemma 4 and Theorem 3, there is a cycle in 3
G - w containing x, y, z. This cycle determines three substituting paths Pxy, Px,, and P,,. Hence,

oa(GI) + a(G 2) >_ 3 and equation (1) yields a contradiction. 3
Case 4: P2 U P2 . Suppose E(S) = {wx,yz}. To obtain a contradiction from equation (1), it

suffices to show, for i = 1,2, that a(Gi) > 2. We show a(G 2 ) > 2. The other case is symmetric. 3
Observe that, by Lemma 5, there is at most one vertex of S, say z, such that ING, (z) - S= 1.

So there are two vertices a,b E NG,((w) - S,

Now G - {w,x} is 2-connected. Hence, by Theorem 4 there are two disjoint paths linking

{a,b} and {y,z}. Because {y,z} is a 2-cut in G - {w,x}, these two paths must he entirely in G1 .

These paths substitute for edges wy and wz, and so a(G 2 ) _ 2. I

Case 5: P3 U El. Suppose E(S) = {wx,xy}. In this case, we show that a(Gi) + a(G 2 ) _> 4 by

showing that, for some i E {1,2}, a(Gi)._ 3. Equation (1) provides the contradiction. 3
Because 6(G) = 5, there is some j E {1,2} such that there exist three vertices a,b,c E 3

NG,(z) - S. By theorem 4, there exist vertex disjoint paths linking {a,b,c} to {w,x, y} in G - z.

These three paths must all lie in Gj. Therefore they form three substituting paths P,, P,.,, and 3
Py for G,, where i = {1,2} - j.

Case 6: P 2 U E 2. Suppose E(S)= {wz}. By Lemma 5 and 6(G) = 5, we may assume, without 3
loss of generality, that there are three vertices a, b, c E NG1 (y) - S. Arguing as in the previous case,

theorem 4 implies the existence of three substituting paths for G 2, Py,, PY.', and Pyz by linking 3
{a,b,c} with {w,x,z} in G- y. Hence, a(G 2) > 3.

Furthermore, by Lemma 5 and 6(G) = 5, either INc2 (y) - SI _> 2 or INc,2 (z) - S > 2. 111

either case, linking the neighborhood vertices with {w,x} in G - {y,z} shows that a(GI) 2! 2.

Thus, a(G 1 ) + a(G2) >_ 5, and equation (1) yields a contradiction.

8
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U Case 7: E 4 . In this case, it suffices to show that a(Gi) + a(G 2 ) > 6. Observe that, applying the

method in the previous case, if there is a vertex of S, say w, such that ING,(W) - S1 > 3, then

a(Gj) _> 3, where j = {1,2} - i. Thus, it is enough to consider the case that, for some i E {1,2},

for all v E S, INc,(v) - S1 < 2. Without loss of generality, suppose i = 1.

Applying the method of the previous case, it is easy to show a(G 2 ) > 2. Hence, e2 _S n2 - 8.

3 Consider H = G1 -S. If H has at least three vertices (i.e. n, -4 > 3), then IE(H)I < 3(n, -4) -6.

by the minimality of G (This is clearly true if n, - 4 > 5. The remaining cases, n, - 4 r {3,4},

follow because G is simple). Therefore,

3n - 5= E(G) < IE(H)l + jE(G2 )j + 8

I - 4)-6+3n2-8+8

= 3n-6

This contradiction implies H has exactly two vertices (the minimum degree prohibits H having a

if single vertex).

So, H is consists of two adjacent vertices, u and v, each of which is adjacent to every vertex of

3 S. Suppose G - {u, v} is 3-connected. In this case, theorem 3 guarantees that {x, y, z} lie on a cycle

of G - {u, v}. Consequently, G contains a subdivision of K5 ; the branch vertices are u, v, x, y, z.

* This is a contradiction.

Therefore, G - {u, v} must be 2-connected, with a 2-separator S'. However, in this case. we

may form a 4-separator {u, v} U S' of G with at least one edge. This reduces to a previous case. D

I
4. Forbidden subgraphsI
Recall that, in the previous section, K 4 was forbidden from any minimal graph in D. Applying

Ssimilar arguments and -connectivity, we now extend these results and summarize them in the

following theorem. Let G + G 2 denote the join of G, and G2 ; it is the graph obtained from G1

Sand G 2 by joining each vertex of G1 to each vertex of G 2 .

Theorem 6. No minimal graph in D contains K4, K,3 ,3 , K 2 + E 3 or K 2 ,4 .

9
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Proof: We prove only that K 2 + E3 is forbidden; the other proofs are similar and are omitted. 3
Suppose that G is minimal in D, and K 2 + E3 C G such that x, y are the vertices of the K 2 portion

of K 2 + E 3 . By Theorem 3, there is a cycle in G - {x, y} containing the three vertices of E3, since 3
G - {x, y} is 3- connected. This implies TK 5 C G. 0

The aim of this section is to forbid K4 - e in any minor-minimal graph in D. To prove this we

require some preliminary definitions and technical lemmas. Graph L is defined as shown in figure 3
2. A branch vertex of a subdivision is a vertex of degree at least three; and, a branch path is a path

between branch vertices. In any subdivision of L, the branch vertices of degree three are called 3
minor branch vertices, and the branch vertices of degree four are called major branch vertices. The

following lemma is presented by Thomassen in [Th74]: 3

Lemma 6 (Thomassen). Let G' = G/,, the graph obtained by contracting edge xy in G. 3
(a) If TK 5 C G' such that xy E V(G') is not a branch vertex, then TK 5 C G.

(b) If TK 5 C G' with vertex xy E V(G') a branch vertex, then either TK 5 C G such that x or y is

a branch vertex, or TL C G such that x and y are minor branch vertices.

Lemma 7. If G is minor-minimal in D then, for every x,y E V(G) with xy E E(G), there is a

subdivision of L in G such that x and y are minor branch vertices. 3

Proof: Let G be minor-minimal in D, with x,y E V(G) such that xy E E(G). Since the graph I

K 2 + E 3 is forbidden from G, G/ has at most three fewer edges than G. Hence IE(G/)] >

3IV(G/y)f - 5, and G/y contains a TKs. By Lemma 6, G contains a subdivision of L such that 3
x and y are minor branch vertices. 0

From Lemma 7, we may now obtain more detailed structural information about any minor- 3
minimal graph in D with a triangle. We introduce a few definitions to refine our view of TL and

describe this structure. 3
Label the minor branch vertices of TL, x and y, and the major branch vertices a,b,c, and d

as in figure 3. The four branch paths between {x,y} and {a,b,c,d} are designated P1, P2 , P3 , and

P4 and are called P-paths. P is the set of vertices in V(G) - {x, y} that appear in a P-path. The

10 I



six branch paths between the major branch vertices are labelled Rl,.. ., R6 and are called R-paths.

R is the set of vertices in V (G) - {a, b, c, d} that appear in an R-path. Ri and R. are adjacent if

they are incident to the same branch vertex, and parallel if they are not. For example, R1 dnd R2

are adjacent; R1 and R 6 are parallel. {R 1 ,R 2 ,R 5 ,R 6 } are the middle R-paths, and {R 3 ,R 4} the

outside R-paths. If Q is a path with a single endpoint in R - {a,b,c,d}, we define 4D(Q) to be the

R-path that contains the endpoint of Q in R. If S is a set of paths with endpoints in R - {a, b, c, d},

O(S) is defined to be the set of R-paths that contain the endpoints of S in R.

Lemma 8. Suppose G is minor-minimal in D with a triangle {x,y,z}. Then, G contains a sub-

division of L such that x and y are minor branch vertices. Furthermore, given R and P as defin,4d

above,

(1) z is separated from P by R in G - {x, y},

(2) If z R, then there are three disjoint paths in G - {x,y} from z to R such that all interior

vertices avoid V(TL), and all three endpoints are either

(a) all in the same R-path, or

(b) incident to three different R-paths, which are pairwise adjacent, though not all incident to

the same major branch vertex.

Proof: Let G be minor-minimal in D with a triangle {x,y,z}. By Lemma 7, G contains a subdi-

vision of L with minor branch vertices x and y.

If z is a vertex of a P-path, then TKs5 C G with branch vertices a,b,c,d and, either x or y

depending upon which P-path contains z. More generally, if there is a path from z to P using only

vertices of V(G) - V(TL), then TK5 C G, as shown in figure 4. Thus, z _ P, and no path from z

to P avoids V(TL); that is, the vertices in R separate z from P in G - {x,y}, and statement (1)

has been established.

Suppose z R (if not, statement (2) is vacuous). Because G is 5-connected, there are three

disjoint paths from z to {a,b,c} in G - {x,y}. Each of these paths must contain a vertex in R.

since R separates z from {a,b,c} in G-{x,y}. Let Z1, Z2 , and Z3 be the three disjoint paths from

z to R defined by these three paths. Call these paths Z-paths, and let Z be the set Z-paths.

11
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Suppose two Z-paths paths have endpoints in parallel R-paths. If the parallel R-paths are 3
both middle R-paths, there is a TK 5 in G with branch vertices {c,d,x,y,z}, as shown in figure

5. Otherwise the endpoints are in R 3 and R 4 , and {a, c, x, y, z} are branch vertices of a TKs (see 3
figure 6).

Suppose the endpoints of the Z-paths lie in three different R-paths all incident to the same

major branch vertex. Without loss of generality, we may assume -O(Z) = {R 1 , R 2 , R3 }; they are all

incident to a. In this case, {b, c, d, y, z} are branch vertices of a TK 5 as shown in figure 7. I
Suppose 4(Z) consists of two adjacent R-paths. Without lose of generality, we may assume 3

they are incident to a. In this case, {y,z,b,c,d} are the branch vertices of a TK 5 (figure 8).

For every 1 < i < j 3, 4(Zi) and 4(Zj) cannot be parallel, and hence must be equal or I
mutually adjacent. But if ' (Z) consists of three R-paths all incident to a single branch vertex, then

4I(Z) must consist of a single R-path. This shows that the endpoints of the Z-paths are either,

(a) all in the same R-path, or 3
(b) incident to three different R-paths, which are pairwise adjacent, though not all incident to

the same major branch vertex. 3
These are the configurations given in the statement of the lemma. 0

We now can state the main result of this section:

Theorem 7. No minor-minimal graph in D contains K 4 - e. I

Proof: We prove the theorem by contradiction. Suppose G is minor-minimal in V such that w, x, y, I
and z induce a K 4 - e. Let x and y be the vertices of degree three in the induced K 4 - e. By

Lemma 7, there is a subdivision of L in G with x and y as minor branch vertices. Label this TL i
as in the previous lemma. Also define the P-paths and R-paths as in the previous lemma.

We divide the proof into three cases depending upon whether all, one, or none of z and w are

in R. To prove the the theorem, it suffices to exclude these three cases. 3
i
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I Case 1: w, z E R. We consider three subcases according to the placement of w and z in R: the

same R-path, adjacent R-paths, or parallel R-paths.

Case 1.1: w and z are in the same R-path. If w and z are both in R 1 , there is a TK 5

3 {c,w,x,y,z}, as shown in figure 9. Similar arguments apply for the other R-paths. (Figure 10

shows the case where w and z are in R 3 .)

3 Case 1.2: w and z are in adjacent R-paths, say R, and R_. By symmetry, it suffices to consider

the case that one of R,,, R, is an outside R-path, and the case that they are both middle R-paths:

3R = R 1, R. = R3; and, R, = 1, R, = R2. If R, = R1 and R, = R 3 , then {a,b,x,y,z} are the

branch vertices of a TK 5 , as shown in figure 11. If R,, = R1 and R, = R 2 , then {w, x, y, z, d} are

3 the branch vertices of a TK 5 , as shown in figure 12.

Case 1.3: w and z are in parallel R-paths, say R,, and R.. By symmetry, it suffices to consider

when these R-paths are both middle or both outside R-paths: R, = R 1, R_ = R 6 ; and, R, = R3,

R = R 4 . If R, = R1 and R_ = R6 , then {a,b,w,x,y} are the branch vertices of a TK 5 , as shown

in figure 13. If R,, = R 3 and R, = R 4 , a subdivision of K 5 appears as in figure 14.

3 Case 2: R n {z,w}I = 1. Without loss of generality, assume w E R. By symmetry, there are only

two subcases to consider: w E R1 or w E R3 . Because z R, Lemma 8 guarantees three disjoint

3 paths from z to R. Call these three paths Z-paths. By Lemma 8, either D(Z) is a single R-path,

or -I)(Z) consists of three pairwise adjacent R-paths, not all incident to the same major branch

3 vertex. We may assume that -(Z) is not a single R-path because, in this case, one can form a new

subdivision of L in G such that z, w E R and x, y are the minor branch vertices, by redirecting the

3 R-path in 4(Z) through z (this reduces to case 1). We also may assume no Z-path ends at w since,

in such a case, G contains a subdivision of K5 with branch vertices {w,x, y, z} plus one vertex in

3 {a,b,c, d} depending upon the location of w and 4D(Z) in R (another Z-path is used to complete a

path from z to the fifth branch vertex).

I Case 2.1: w E R 1 . Because 4(Z) consists of pairwise adjacent R-paths not all incident to

one major branch vertex, some Z-path ends in an outside R-path. Therefore {a, c, x. y, w} are the

I branch vertices of a TK 5 , as in figure 15.

1
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Case 2.2: w E R 3. 4D(Z) consists of pairwise adjacent R-paths, not all incident to the same 3
major branch vertex. By symmetry, we may assume, without loss of generality, that ¢(Z) contains

R 2 ; that is, 4(Z) = {R 2 ,R 3 ,R 6 } or {R 2 ,R 1 ,R 4}. In either case, {w,x,y,z,a} are the branch 3
vertices of a TK 5 , as shown in figure 16 (which shows the case where a Z-path ends in R6 ).

Case 3: R n {w, z} = 0. Because both w and z are neighbors to x and y, Lemma 8 guarantees

three disjoint paths from z to R, and three disjoint paths from w to R. Let Z1 , Z 2 and Z3 be the 3
three disjoint paths from z to R (the Z-paths), and Z the set of Z-paths. Similarly, let W 1 , W2 and

W3 be the three disjoint paths from w to R (the W-paths), and W the set of W-paths. Observe 3
that, by definition, only terminal vertices of Z-paths or W-paths %re vertices of R.

By Lemma 8, either -t(Z) is a single R-path, or 4(Z) consists of three pairwise adjacent R- 3
paths, not all incident to the same major branch vertex. We may assume that (Z) is not a single

R-path because, in this case, one can form a new subdivision of L in G such that z E R and x, y 3
are the minor branch vertices, by redirecting the R-path in §(Z) through z (this reduces to case

2). The same argument shows that 4(W) is not a single R-path. 3
Because 4 (Z) and 4(W) each consist of three pairwise adjacent R-paths not all incident to the

same branch vertex, we may assume, without loss of generality, that t(Z 1 ) = R1 and t(W 1 ) = R 3.

If Z, and W1 do not intersect, then G contains a subdivision of K 5 with branch vertices {x, y, b, c, d}

as shown in figure 17. Hence, Z1 and W must intersect.

Reorder the W-paths so that W1 is the first W-path that Z 1 intersects, and u is a vertex of I

their intersection closest to z. Our immediate goal is to construct, from the Z-paths and W-paths,

three internally disjoint paths: one zw-path, one zR-path (Q,), and one wR-path (Q,). If Z 2 does 3
not meet any W-path, then we let Q, = Z 2 , Qw = W2, and form the zw- path with the initial

segments of Z1 and W 1 that meet at u. Otherwise, Z2 first intersects some W-path, say Wi, at 3
some vertex v. If Wi 5 W 1 , then let Q, = Wj(j = {2,3} - {i}), Q, the path formed by the initial

segment of Z2 from z to v and the final segment of Wi from v to R, and form the zw-path from the 3
initial segments of Z 1 and W1 . If Wi = W 1 , we may assume, without loss of generality, that u is

closer to v along W 1 . In this case, let Q, be the path formed by the initial segment of Z2 and the 3
final segment of W 1 , let Q, = W2, and form the zw-path from the initial segments of Z 1 and W1 .

1
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I The zw-path together with the edges in the K 4 - e form a subdivision of K 4 in G. To show

that G has a subdivision of K5 , it suffices to show that some vertex in {a,b,c,d} can be the fifth

branch vertex of a TK5 involving {w, x,y, z}. The branch paths from the fifth branch vertex are

constructed using Q,,, Q,, P-paths, and R-paths.

Suppose 4(Q,) = t(Q 2 ). If Q, and Q, end in the same vertex q E R, then {q, w,X,y,z}

3 are the branch vertices of a TK 5 . If Qw and Q do not share a common endpoint, but D(Q,) =

I(Q.)= R1 say, then {a, w, x, y, z} axe the branch vertices of a TK 5 (figure 18). Other cases where

3 (Q ) = b(Q.) are similar.

Suppose O(Q.) i 4I(Q,). By symmetry, we may assume that ((Q,) is incident to a, while

3 ((Q ) is not. It suffices to find four vertex disjoint paths: one path from each of w,x,y.z to a. P2

connects x and a. A segment of 4I(Q_) plus Q, connects z and a. A path in {R 1, R2 } - (D(QZ) plUs

3 a path in {P3 , P4 } connect y and a. The remaining R-paths and Q, contain a path connecting u7

and a. Thus, {a,w,x,y,z} are the branch vertices of a TK 5 . 0I

* 5. Genus

3 We assume the reader is familiar with the notation and results found in [4]. Let S be a closed.

connected 2-manifold. We denote the Euler characteristic of a cellular imbedding, G - .S of a

3 connected graph G into S by x(G -* S); its value is IV(G)I - JE(G)J + f, where f is the number of

faces of the imbedding. The Euler characteristic is an invaxiant of the surface S. Let x(S) be the

3 Euler characteristic of S (so x(G - S) = x(S) for any cellular imbedding of any G into S).

Theorem 8. Suppose G is a simple graph on n vertices that is minor-minimal in D, and G - S

a cellular imbedding of G into S, a closed, connected 2-manifold. Then,

x(S) < L5/3 - n/4J.

15



Proof: Let ,y = x(S), a = number of triangles in G, and f, = the number of i-sided faces in the

imbedding G -- S. Now, , = n - (3n - 5) + f, since IE(G)I = 3n - 5. On the other hand,

3a + 4(f -a) S E ifi = 2(3n -5).

Combining these two, we find i>3

- 4 X 2! 2n- 10- a (2)

so it suffice to show that a < (3n - 10)/3.

Theorem 7 implies that every edge of G is in at most one triangle. Furthermore, every vertex

of degree five in G is incident to an edge in no triangle, otherwise G has a K 4 - e. Because G has at

least ten vertices of degree five, there are at least five edges of G that appear in no triangle. Thus. 3
at most 3n - 10 edges are in triangles, and a < (3n - 10)/3. 0

We say that Dirac's conjecture holds for a surface S if every simple graph G with n vertices,

3n - 5 edges, and a cellular imbedding into S, contains a subdivision of K 5 (the conjecture holds

vacuously for the sphere). In this section, we use Theorem 8 to prove that Dirac's conjecture holds

for several surfaces. First we prove a technical lemma. 3

Lemma 9. Suppose G is minor-minimal in P, and F = {v E V(G) : dG(v) = 5}. Then, the girth

of G[F] is at least five. I

Proof: We prove that G[F] does not have a triangle or four-cycle.

Suppose, to the contrary, that Xl,x2,X3 E F form a triangle of G. By Theorem 7, NG(x 1 ) n 3
NG(z,) = {zk} for {i,j,k} = {1,2,3}. Furthermore, for each i = 1,2,3, there exist a pair of

vertices Yi, zi E NG(xi) such that yiz i . E(G). Consider H = G + {y 1 z1 , y2z2 , y 3z 3 } - {X, X 2 , x 3}.

H has n - 3 vertices and 3(n - 3) - 5 edges. By the minimality of G, TK5 C H contradicting

TK,5 9 G. Thus, G[F] has no triangle. 3
Suppose z 1 ,x 2 ,X 3 ,x 4 E F form a four-cycle. By Theorem 7, we may assume NG(X,)nNG(x,) =

0, for i -j odd. Furthermore, one can show that, for each i = 1,.. .,4, there exist a pair of vertices I
yi,zi E NG(Zi) such that yizi . E(G) and {yi, zi} n {yj,zj} = 0 for all j 5 i. Now consider

16 I



iH = GI+{yIZ}i -{x 2}= 1 , 11 has n - 4 vertices and 3(n - 4) - 5 edges, so by the miniinality of

G, TK5 C H. This contradicts TK 5  G. 0

The conclusion of Lemma 9 may be extended in the case that G has large girth. In particular,

3 if G has girth at least five, then G[F] must be acyclic.

Corollary 1. Suppose G is a simple graph with n vertices, 3n - 5 edges, and a cellular imbedding

into a surface S with x(S) >_ -2. Then TK 5 C G.

Proof: We show that no minor-minimal counterexample can be imbedded into a surface with

3 Euler characteristic greater than -3. To this end, let G be a minor-minimal counterexample with

an imbedding G - S into a surface S with X(S) > -2. By Theorem 8, X(S) < 5/3 - n/4. so

3 n < 14. By remarks following Lemma 1, n > 10.

Observe that G must contain a triangle T; otherwise, by equation (2), -4x(S) _> 2n - 10 > 10.

By Lemma 9, T must contain a vertex of degree six. Counting the neighborhood of T reveals that

n > 13 since Theorem 7 implies the neighborhoods of vertices in T are disjoint.

I Case 1: n = 13. Suppose that G has a vertex with degree at least eight. An edge count

reveals that the remaining vertices must then all have degree five. Because every triangle contains

the high degree vertex and G has no 1(4 - e, G has at most four triangles so, by equation (2),

-4X(S) > 2n- 10- 4 > 12.

Thus, the maximum degree of G is seven, which implies that G has three vertices of degree six

3 and ten vertices of degree five. If a triangle of G contains two vertices of degree six, then n ; 14

because the neighbors of the triangle are all distinct. So, every triangle in G contains exactly one

3 degree six vertex. Because G has no K 4 - e, we conclude that G has at most seven triangles and

- 4x(S) > 2n - 10 - 7 > 9, which is a contradiction.

3 Case 2: n = 14. By the proof of Theorem 8, G has at most ten triangles. On the other hand.

equation (2) implies that G has at least ten triangles. Consequently, G must have exactly ten

3 triangles.

17
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If G has a vertex v with degree at least eight, then an edge count reveals that G must have a 3
vertex u of degree six. Now every triangle contains either u or v by Theorem 9. However t is in

at most four triangles and u is in at most three triangles; that is, G has at most seven triangles, a I
contradiction.

So the maximum degree of G is seven. If there is a vertex of degree seven, then there are at most

three vertices with degree more than five. Hence, G has at most nine triangles, a contradiction. 3
The remaining case is when G has exactly four degree six vertices and exactly ten degree five

vertices. Let F be the set of degree five vertices, and S = {a, b,c, d} the set of degree six vertices. 3
Note that IE(F) = 13 + IE(S)I. Also, G[F] is connected since G is 5-connected and G[F] = G - S.

In particular, G[F] does not have isolated vertices. 3
If there is a vertex v E F with dG[F](v) = 5, then G[F] - {v} - NG(v) has four vertices and at

least four edges, contradicting that the girth of G[F] is at least five. Therefore, A(G[F]) < 4.

Suppose there is a vertex v E F with dqF,(v) = 4. Let NG(v) nlS = {a} and NG(v) nF = 3
{XI, X2, X3, X4 }. IfdG[F(Xl) = 1 say, then xj . NG(a) (2 < j <_ 4) since K 4 -e _ G, so there must be

a pair, say Z2 , X3 such that ING(x 2 )ANG(x3)f{b,c,d}] ! 2. However, G[{v,b,c,d,x,X 2 ,X 3 }] must 3
then contain K 3 ,3 contradicting Theorem 6. On the other hand, if dG[F](xi) 2 for i = 1,... ,4,

then G[{v,b, c, d} U NG(v)] must contain K3,3 , by similar reasoning. 3
Therefore, A(G[F]) = 3. Notice that this implies that 6(G[F]) = 2. To see this, consider, for

a contimdictioa, a vertex v E F with dG[F](v) = 1. Now dG(v) = 5, so v must be adjacent to every 3
vertex of S. A neighbor of v in G[F] must have at least two neighbors in S (since A(G) = 3).

Therefore 8, v, and the neighbor of v in G[F] must induce K 4 - e, a contradiction. I

Subcase A: IE[S]I > 3. In this case, G[F] has at least 16 edges and so it must contain a vertex of 3
degree four, contradicting A(G[F]) < 3.

Subcase B: IE(S)I = 2. Consider two adjacent vertices c,d E S. If c and d share no common 3
neighbor, then the edge cd appears in no triangle; consequently each of c and d appear in at most two

triangles. However, if c and d have a common neighbor w E F, then (NG(c) U NG(d)) n NG(w) = 0

because G has no K 4 - e. Therefore, there exists a common neighbor of c and d, say z E F - w, since

3
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I IE(S)I = 2 and b(G[F]) = 3. However, this implies that G contains a K4 - c, namely {c,d,w,z}.

Hence, c and d appear in at most two triangles. Because c and d were arbitrary adjacent vertices

I of S and IE(S)I = 2, there must be three vertices of S that appear in at most two triangles. That

is, G has at most nine triangles, since each triangle of G must contain a vertex of S. This is a

I contradiction.

Subcase C: IE(S)I = 1. In this case, JE[F]I = 14. Because A(G[F]) = 3 and 6(G[F]) = 2, G[F]

must have exactly two vertices of degree two, say u and v. If w E NG(u)fl NG(v)On F, then K 4 - e C

3 G[{u,v,w} U S], a contradiction. Similarly, if u and v are adjacent, then K 4 - e C GIlu, v} U .5].

So, we may assume NG(v) n NG(v) n F = 0, and uv E(G).

3 Suppose, without loss of generality, E(S) = {cd}. If {c,d} C NG(v), then AK4 - e C G[c u

VG(v) U S]. Thus, we may assume ING(v) n {c,d}l = 1. The same argument applies to it. Thins.

3 there are two cases to consider: NG(v) n S 6 NG(u) n S, and Na(v) n S = NG(L) n S. Let

H = G[{u, v} U NG(u) U NG(v) U S].

I Suppose NG(v) n S # NG(u) n S. Without loss of generality, assume c E NG(v) and d E

NG(u). Figure 19 shows the ten vertices of H, the edges forced into H by degree requirements and

K4 - e t G, and a new vertex z E NG(a) n NG(b) - H. The vertex z must exist since a and b each

have six neighbors in G while a has only four neighbors in H, b has only three neighbors in H, and

there are only four vertices in G - H. Thus G contains a subdivision of K5 as shown by the bold

i lines in the figure.

Similarly, suppose NG(v) n S = NG(u) n S. Figure 20 shows the ten vertices of H, the edges

3 forced into H by degree requirements and K 4 - e G, and a vertex z E NG(b) n NG(c) - H

guaranteed by arguing as in the previous paragraph. Thus G contains a subdivision of 1K5 as shown

I by the bold lines in the figure.

Subcase D: E(S) = 0. In this case, IE[F]I = 13. Because A(G[F]) < 3 and b(G[F]) = 2, G[F]

I has a set T of four vertices of degree two.

3 Suppose there are two vertices u,v E T, such that NG(u) n S = NG(v) n S; without loss of

generality, NG(u) n S = {a,b,c} = NG(v) n S. If u and v are adjacent, then a,b,c,u,v form a

i
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K 2 + E3. Similarly, if u and v share a common neighbor w E F, then w must have a neighbor

among a,b,c so a K 4 - e is formed. Thus NG(v) n F = {x,y} and NG(u) n F = {p,q} such that

p,q,x,y E F - T. Since K 4 - e _ G, {p,q,x,y) C NG(d). We may assume that x E NG(a) 3
and y E NG(b). Now there are three cases according to whether S - (NG(p) U NG(q)) is equal

to a, b, or c. The three cases are shown in figures 21,22, and 23. The figures include a vertex 3
- V J u, v} U NG(u) U NG(v) U S adjacent to two vertices of S (the existence of z can be established

by considering the neighborhoods of vertices adjacent to z in S). In each case a subdivision of A5  3
is indicated by bold lines.

Thus, we may assume that no pair of vertices in T share the same three neighbors in 5:

that is, G[S U T1 is isomorphic to K4,4 minus a one-factor. Because no pair of vertices of T are

adjacent, some pair of vertices u, v E T share a common neighbor z E NG(u)A Nr(v)A F. Let w

NG(u)n F-{z}. Without loss of generality, assume NG(u)n S = {b,c,d} and NG(v)lS = {a,c,d}

(so NG(z) n S = {a,b} and a E NG(w)). However, one can now see that there is a subdivision of

Ks in G[S U T U {w, z}] with branch vertices a, b, u, v, z. 0
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