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Abstract

A conjecture of Dirac states that every simple graph with n vertices and 3n — 5 edges

must contain a subdivision of K5. We prove that a topologically minimal counterexample is 5-

connected, and that no minor-minimal counterexample contains K4 —e. Consequently, we prove

Dirac’s conjecture for all graphs that can be imbedded in a surface with Euler characteristic at

least —2.
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1. Introduction

Let H be a simple undirected graph. An elementary subdivision of H is a graph obtained from H
by removing some edge e = zy and adding a new vertex z together with two new edges zz and
zy. A subdivision of H is a graph obtained from H by a succession of elementary subdivisions. If
a subdivision of H is isomorphic to a subgraph of G, we write TH C G, where T H represents an
arbitrary subdivision of H. A vertex of TK,(p > 4) with degree at least three is called a branch

vertex.

A conjecture due to Dirac [2], and reported by Thomassen [8], states that any simple graph
with n vertices and 3n — 5 edges contains a subdivision of Ks. By Kuratowski’s Theorem, no
planar graph contains a subdivision of K5. Thus Dirac’s conjecture, if true, would be sharp.
Thomassen [7] proved that 4n — 10 edges force a T Ks. In (3], Dirac showed that, if §(G) > 3, then
G contains a subdivision of K4. A similar result by Pelikdn [6] and Thomassen (7] established that
6(G) > 4 forces G to contain a subdivision of K5 — e. More generally, Mader (5] proved that, if
6(G)>3(2)P~2-2p (p>3),then TK, CG.

A simple graph G with n vertices is called a counterezample if |E(G)] > 3n -5 and TKs ¢ G.
Let D be the set of all counterexamples. A minor of G is a subgraph obtained from G by a
sequence of edge deletions, vertex deletions, and edge contractions. A graph is minor-minimal
in D provided it is a counterexample but no minor is a counterexample. Similarly, a graph is
(topologically) minimal in D provided it is a counterexample and contains no subdivision of a
smaller counterexample. Observe that any minor-minimal counterexample is also a (topologically)

minimal counterexample.

In section 3 we prove that any minimal counterexample is 5-connected. From this we deduce,
in section 4, that no minor-minimal counterexample contains K4 —e. Finally, in section 5, we prove
Dirac’s conjecture for all graphs tha' .an Ye imbedded in a surface with Euler characteristic at

least ~2.




2. Menger’s Theorem and Extensions

We make use of several fundamental results which we list here. The reader is referred to Bollobas

(1] for further details.

A vertez cut of G is a subset of vertices whose removal disconnects G. A k-separator of G is a
vertex cut of k vertices. The connectivity of G is the least k such that there exists a k-separator of

G. If k 1s the connectivity of G, we write K(G) = k and say that G is k-connected.

Theorem 1 (Menger). A non-trivial graph is k-connected if and only if every pair of vertices is

connected by k disjoint paths.

Let § be a set of vertices in the graph G and let z be a vertex not in S. An z-S fan is a set of

|S| paths from z to S, any two of which share only the vertex z.

Theorem 2 (Dirac). A graph G is k-connected if and only if |G| > k + 1 and for any k-set
S C V(G) and vertez z € V(G) — S there is an z — S fan.

The following two theorems follow as corollaries of the previous one.

Theorem 3 (Dirac). If G is k-connected and k > 2, then for uny set of k vertices there is a cycle

containing all of then..

Suppose X,Y C V(G). We say that X is linked to Y if there are |X| vertex disjoint paths
from X toY. Notice that the paths linking X to Y cannot share any vertices including initial and

terminal vertices.

Theorem 4 (Dirac). Let {G| > 2k. G is k-connected if and only if whenever Vi and V) are

disjoint k-sets of vertices, then V, is linked to V,.




3. 5-connectivity

Let G be a (topologically) minimal counterexample as defined in the introduction. In this section
we show that G is 5-connected. We begin by examining the minimum degree. Observe that a

minimal counterexample with n vertices has 3n — 5 edges.
Lemma 1. If G is minimal in D, then §(G) = 5.

Proof: The average degree is less than six, so the minimum degree is at most five. If the minimum
degree is less than four, then we may delete a vertex of degree at most three from G, obtaining a
smaller graph with 3(n — 1) - 5 edges and no subdivision of K5, which contradicts minimality of

G. Hence, it suffices to show that the minimum degree is not four.

Suppose, for a contradiction, that §(G) = 4. Let v € V(G) have dg(v) = 4 with neighbors
a,b,c,d. There must be a pair of these neighbors, say ¢ and d, that are not adjacent, otherwise the
five vertices {v,a,b,¢c,d} form a Ks. Deleting the edges va and vb, then contracting v to edge cd

yields a subgraph of G in D, contradicting that G is a minimal counterexample. O

From Lemma 1, by counting edges and degrees, it is easy to deduce that a minimal counterex-

ample must have at least ten vertices.

Suppose § is a set of vertices of G. G[S] denotes the subgraph induced by S, and £(5) are
the edges of G[S].

Lemma 2. If G is minimal in D, then x(G) 2 3.

Proof: Suppose, for a contradiction, that G is 2-connected with a 2-separator {z,y}. Let C; be
one component of G — {z,y}, and C; = G — ({z,y} U (). Define G, = G[C; U {z,y}] for i = 1,2
Lemma 1 ensures that the number of vertices in each G; (: = 1,2) is at least six. Because (; and
G, are sufficiently large subgraphs of G, the minimality of G implies that they do not contain a
subdivision of Kjs; thus they each must have at most 3n; — 6 edges, where n, represents the number

of vertices in G;. Observing n; + no = n + 2, we find

3n -5 = |E(G) < |E(G1)| + |E(G2)] < (3n1 - 6) + (3nz — 6) = 3n. ~ 6




|

a contradiction. O

Suppose G is a minimal in D with § a k(G)-separator of G. Let C; be a component of G — §
and C; = G — (S U Cy). Define G; = G[C; U ), for 1 = 1,2. We say that S divides G into G,
and G;. Let n; and e, represent the number of vertices and edges of G;, respectively. Observe that

ny + ng = n + &(G) and, because G is a minimal counterexample, e, < 3n; — 5, for 2 = 1,2.

We strengthen the ideas of the previous lemma by augmenting each G, with edges correspond-
ing to paths in G. More precisely, consider a pair of non-adjacent vertices z,y € §, and a path P
connecting z to y in G, — (S — {z,y}). Now H = G; + {zy} is a simple graph. Furthermore. if
TKs C H, then TKs C G. Therefore, by the minimality of G, |E(H)| < 3n; — 5 which implies

that e; < 3ny; — 6. Thus we have used the path P to reduce the number of edges in G;.

In general, suppose G is minimal D with S a «(G)-separator that divides G into Gy and G.
Let P be a path in G; — (§ — {z,y}) connecting two vertices of z,y € S with zy ¢ E(G). We
call P a substituting path for G; (where j = {1,2} — i) and say P substitutes for zy (see figure 1).
Define o(G;) to be the maximum number of internally vertex-disjoint substituting paths for G; that
pairwise do not share the same initial and terminal vertex. Observe that, if some pair of vertices
in G[S] are not adjacent, then ¢(G;) > 1, for ¢ = 1,2. We make implicit use ol this observation

throughout the rest of the paper. The following lemma is the essence of this section.

Lemma 3. Suppose G is minimal in D, and S is a k(G)-separator dividing G into G, and G,.
Then '
7+ |E(S)| + 0(G1) + 0(G2) < 3|5 (1)

Proof: Foreach i = 1,2, form the simple graph H, from G, vy adding the o(G;) edges corresponding
to the substituting paths for G;. By construction, TKs C H; implies TKs C G; hence Th's ¢ H,.
Consequently, by the minimality of G, |E(H;)| < 3n; — 5 and €; < 3n; — 5 — o(G,). Now,

|E(G)|

|E(G1)| + |E(G2)| - |E(G1) 1 E(G2))

IA

3(n1 + n2) = 12 = 0(Gh) — 0(G2) - |E(S)




So the result follows from ny + ng = n +|S| and |E(G)| =3r ~-5. O

To establish the 5-connectivity of a minimal counterexample, we shall use Lemma 3 repeatedly,

forcing contradictions using equation (1).
Lemma 4. If G is minimal in D, then x(G) > 4.

Proof: As in Lemma 2, we argue by contradiction. Suppose that S = {z,y,z} is a 3-separator,

dividing G into G; and G,. By Lemma 2, S is a x(G)-separator of G.

If |E(S)| = 3, then equation (1) immediately yields a contradiction. We conclude that there
is some pair of non-adjacent vertices in S, say ¢ and y. Because S is a minimum separator, there
is a substituting path for both G; and Gj, substituting for zy. That is, o(G;i) > 1 for 1 = 1,2,

implying E(S) = 0 by equation (1).

Because G is 3-connected, Theorem 3 implies there is a cycle containing z,y and z. The cy.le
segments P.,, Py, and P;, can be considered as three vertex-disjoint paths. Indeed the three paths
Py, P:;, and Py, are three substituting paths substituting for 2y, 2z, and yz since E(S) = 0.
Thus, (G1) + 0(G3) > 3, and we again obtain a contradiction via equation (1). We conclude that

k(G)>3. 0

Observe that if G is a minimal counterexample, then G may not contain a K4. To see this,
consider a set U C V(G) with G[U] isomorphic to K4. For any vertex ¢ € V(G) — U there exists
an z — U fan by Lemma 4 and Theorem 2. This implies TKs C G. We use this observation to
prove the following useful lemma. Let Ng(z) = {y € V(G) : zy € E(G)} denote the neighborhood
of the vertex z in the graph G.

Lemma 5. Suppose G is minimal in D, and S is a {-separator of G that divides G into Gy and

G,. Fori =1,2, S contains at most one vertezr  such that |Ng,(z)- S| = 1.

Proof: By contradiction. Suppose z,y € S such that Ng,(z) - § = {u} and Ng,(y) - 5 = {v}.
Note that u # v, otherwise k(G) = 3 contradicting Lemma 4. Because G(S] is not isomorphic to

K4, 0(G;) > 1,fori = 1,2. Hence e; < 3n;—7. Moreover, H = Gy —{z,y} has at most 3(n; -2)~7




edges, by similar reasoning. Therefore we obtain the following contradiction:

3n-5=|E(G)] £ 2+|E(H)| +]|E(G.)
< 2+(3n1-13)+(3n2 - 7)
< 3n-6

sinceny +ny =n+4. 0

Theorem 5. If G is minimal in D, then x(G) = 5.

Proof: Asin the previous lemmas, we assume that G is 4-connected and obtain a contradiction. To
this end, suppose S = {w,z,y, z} is a 4-separator of G that divides G into G; and G,. Because G[S]

is not isomorphic to Ky, o(G;) > 1, for i = 1,2. From equation (1), we conclude that |E(S)| < 3.

Let P; and E; denote a path and independent set on j vertices, respectively; G; U G2 denotes
the disjoint union of Gy and G3. So, G[S] is isomorphic to one of K3, Py, K13, P, U P;, P3U Ey,

F, U E;, or E4. To prove that G is 5-connected, it remains to exclude these seven cases.

Case 1: Kj3. Suppose {z,y,2} form a triangle. There are four vertex-disjoint paths from any
vertex u € G1 — S to v € G2 — § since kK(G) > 4. Consequently G contains a subdivision of As

with branch vertices {z,y, z,u,v}.

Case 2: P,;. Suppose E(S) = {wz,zy,yz}. By equation (1), it suffices to show o(G,) + ¢(G2) >
3. Let v € Ng,(z) — §. Because G is 4-connected, Theorem 2 guarantees a fan from w to
{z,y,2,v} consisting of four vertex-disjoint paths Puz, Puy, Pyz, Puy. The paths P,y and P,, each
lie completely in G, or Gy since {w, z,y, z} is a 4-separator. Similarly, P,, must lie completley in
Gyi. If Py, € Gq, then P,, is a substituting path for G; and P, + vz is a substituting path for
Gy; so together with Py, 0(Gy) + o(G3) > 3.

Suppose P, P, € G;. To show o(G1) + o(G2) > 3, it suffices to find vertex-disjoint paths
P, and P,, in G, that avoid y. Consider a path P, connecting z to z in G, such that P, avoids
the vertices w, y (if no such path exists then {w,z,y} is a 3-separator, contradicting Lemma 4). If

P,, avoids either P, or P,,, then we have found the desired paths. Otherwise, let u be the vertex




closest to z where P, intersects one of these paths. Without loss of generality, we may assume
that u € P,,. Let P,, be the segment of P,, from u to z. Then P, + P,, and P, + vz are the

two desired paths.

Case 3: K,3. Suppose E(S) = {wz,wy,wz}. By Lemma 4 and Theorem 3, there is a cycle in
G - w containing z,y, z. This cycle determines three substituting paths Py, P, and P,,. Hence,

o(G1) + 0(G2) > 3 and equation (1) yields a contradiction.

Case 4: P, U P;. Suppose E(S) = {wz,yz}. To obtain a contradiction from equation (1), it
suffices to show, for i = 1,2, that o(G;) > 2. We show g(G;) > 2. The other case is symmetric.

Observe that, by Lemma. 5, there is at most one vertex of S, say z, such that |[Ng,(z)- §| = L.

So there are two vertices a,b € Ng,(w) — S,

Now G — {w,z} is 2-connected. Hence, by Theorem 4 there are two disjoint paths linking
{a,b} and {y, z}. Because {y,z} is a 2-cut in G — {w,z}, these iwo paths must lie entirely in G.

These paths substitute for edges wy and wz, and so o(G3) > 2.

Case 5: P3U E;. Suppose E(S) = {wz,zy}. In this case, we show that o(G,) + 0(G2) > 4 by

showing that, for some ¢ € {1,2}, ¢(G;) > 3. Equation (1) provides the contradiction.

Because 6(G) = 5, there is some j € {1,2} such that there exist three vertices a,b,c €
Ng,(z) — §. By theorem 4, there exist vertex disjoint paths linking {a,b,¢} to {w,z,y} in G - z.
These three paths must all lie in G;. Therefore they form three substituting paths P, P;z, and
P,y for G, where i = {1,2} - j.

Case 6: P, U E,. Suppose E(S) = {wz}. By Lemma 5 and §(G) = 5, we may assume, without
loss of generality, that there are three vertices a,b,¢ € Ng,(y) — §. Arguing as in the previous case,
theorem 4 implies the existence of three substituting paths for G2, Py, Pyz, and P, by linking

{a,b,c} with {w,z, 2} in G — y. Hence, 0(G2) > 3.

Furthermore, by Lemma 5 and 6(G) = 5, either [Ng,(y) — §| > 2 or [Ng,(z) - 5| > 2. In
either case, linking the neighborhood vertices with {w,z} in G — {y,z} shows that o(G,) > 2.

Thus, ¢(G,) + o(G2) > 5, and equation (1) yields a contradiction.




Case 7: E4. In this case, it suffices to show that ¢(G1) + o(G2) > 6. Observe that, applying the
method in the previous case, if there is a vertex of §, say w, such that [Ng (w)— S| > 3, then
o(G;) > 3, where j = {1,2} — ¢. Thus, it is enough to consider the case that, for some i € {1, 2},
forall v € 5, |Ng,(v) — S| < 2. Without loss of generality, suppose i = 1.

Applying the method of the previous case, it is easy to show o(G;) > 2. Hence, e; < ny — 8.
Consider H = G; — S. If H has at least three vertices (i.e. n; —4 > 3), then |E(H)| < 3(n, —4) —6.
by the minimality of G (This is clearly true if n; — 4 > 5. The remaining cases, n; — 4 € {3,4},

follow because G is simple). Therefore,

3n-5=|E(G) < |E(H)|+|E(G2)+38

< 3(n-4)—6+3ny —8+8

3n—-6

This contradiction implies H has exactly two vertices (the minimum degree prohibits H having a

single vertex).

So, H is consists of two adjacent vertices, u and v, each of which is adjacent to every vertex of
S. Suppose G — {u, v} is 3-connected. In this case, theorem 3 guarantees that {z,y, z} lie on a cycle
of G — {u,v}. Consequently, G contains a subdivision of K’s; the branch vertices are u,v,z,y, 2.

This is a contradiction.

Therefore, G — {u,v} must be 2-connected, with a 2-separator S’. However, in this case, we

may form a 4-separator {u,v}U S’ of G with at least one edge. This reduces to a previous case. O

4. Forbidden subgraphs

Recall that, in the previous section, K4 was forbidden from any minimal graph in D. Applying
similar arguments and 3-connectivity, we now extend these results and summarize them in the
following theorem. Let G; + G, denote the join of G, and Gj; it is the graph obtained from G,

and G by joining each vertex of Gy to each vertex of G,.

Theorem 6. No minimal graph in D contains K4, K33, K2 + E3 or Ko 4.




Proof: We prove only that K3 + F3 is forbidden; the other proofs are similar and are omitted.
Suppose that G is minimal in D, and K> + E3 C G such that z, y are the vertices of the i'» portion
of K2 + E3. By Theorem 3, there is a cycle in G — {z,y} containing the three vertices of Ej, since

G - {z,y} is 3- connected. This implies TKs C G. O

The aim of this section is to forbid K4 — € in any minor-minimal graph in D. To prove this we
require some preliminary definitions and technical lemmas. Graph L is defined as shown in figure
2. A branch verter of a subdivision is a vertex of degree at least three; and, a branch path is a path
between branch vertices. In any subdivision of L, the branch vertices of degree three are called
minor branch vertices, and the branch vertices of degree four are called major branch vertices. The

following lemma is presented by Thomassen in [Th74]:

Lemma 6 (Thomassen). Let G’ = G/, the graph obtained by contrecting edge zy in G.
(a) If TKs C G' such that zy € V(G') is not a branch vertez, then TKs C G.
(b) If TKs C G’ with vertez zy € V(G') a branch vertez, then either TKs C G such that  or y s

a branch verter, or TL C G such that z and y are minor branch vertices.

Lemma 7. If G is minor-minimal in D then, for every z,y € V(G) with zy € E(G), there is a

subdivision of L in G such that z and y are minor branch vertices.

Proof: Let G be minor-minimal in D, with z,y € V(G) such that zy € E(G). Since the graph
K, + E3 is forbidden from G, G/;, has at most three fewer edges than G. Hence |E(G/y)| >
3|V(G/zy)| = 5, and G/, contains a TKs. By Lemma 6, G contains a subdivision of L such that

z and y are minor branch vertices. O

From Lemma 7, we may now obtain more detailed structural information about any minoz-
minimal graph in D with a triangle. We introduce a few definitions to refine our view of T'L and

describe this structure.

Label the minor branch vertices of TL, r and y, and the major branch vertices a,b.c, and d
as in figure 3. The four branch paths between {z,y} and {a,b,c,d} are designated P, P2, P3, and
P, and are called P-paths. P is the set of vertices in V(G) — {z,y} that appear in a P-path. The

10




six branch paths between the major branch vertices are labelled R,,..., Ks and are called R-paths.
R is the set of vertices in V (G) — {a,b,c,d} that appear in an R-path. R; and R; are adjacent if
they are incident to the same branch vertex, and parallel if they are not. For example, R; and R,
are adjacent; R, and Rg are parallel. {R;, R, Rs, Re¢} are the middle R-paths, and {R3, R4} the
outside R-paths. If Q is a path with a single endpoint in R — {a,b,c,d}, we define (Q) to be the
R-path that contains the endpoint of @ in R. If S is a set of paths with endpoints in R - {a,b,c,d},
®(S5) is defined to be the set of R-paths that contain the endpoints of S in R.

Lemma 8. Suppose G is minor-minimal in D with a triangle {z,y,z}. Then, G contains a sub-
division of L such that z and y are minor branch vertices. Furthermore, giver. R and P as defincd
above,

(1) z is separated from P by R in G — {z,y},

(2) If z ¢ R, then there are three disjoint paths in G ~ {z,y} from z to R such that all interior

vertices avoid V(T L), and all three endpoints are either
(a) all in the same R-path, or

(b) incident to three d.fferent R-paths, which are pairwise adjacent, though not all incident to

the same major branch vertez.

Proof: Let G be minor-minimal in D with a triangle {z,y,z}. By Lemma 7, G contains a subdi-

vision of L with minor branch vertices z and .

If z is a vertex of a P-path, then TKs C G with branch vertices a,b,¢,d and, either z or y
depending upon which P-path contains z. More generally, if there is a path from z to P using only
vertices of V(G) — V(TL), then TKs C G, as shown in figure 4. Thus, z ¢ P, and no path from =
to P avoids V(T L); that is, the vertices in R separate z from P in G - {z,y}, aud statement (1)
has been established.

Suppose z € R (if not, statement (2) is vacuous). Because G is 5-connected, there are three
disjoint paths from z to {a,b,c} in G — {z,y}. Each of these paths must contain a vertex in R.
since R separates z from {a,b,c} in G - {z,y}. Let Z;, Z;, and Z3 be the three disjoint paths from
2 to R defined by these three paths. Call these paths Z-paths, and let Z be the set Z-paths.

11




Suppose two Z-paths paths have endpoints in parallel R-paths. If the parallel R-paths are
both middle R-paths, there is a TK; in G with branch vertices {c,d,z,y, z}, as shown in figure
5. Otherwise the endpoints are in R3 and Ry, and {a,c,z,y, 2z} are branch vertices of a T I’y (see

figure 6).

Suppose the endpoints of the Z-paths lie in three different R-paths all incident to the same
major branch vertex. Without loss of generality, we may assume ®(Z) = {R;, Rz, R3}; they are all

incident to a. In this case, {b,¢,d,y, 2} are branch vertices of a TKs as shown in figure 7.

Suppose ®(Z) consists of two adjacent R-paths. Without loss of generality, we may assume

they are incident to a. In this case, {y,z,b,c,d} are the branch vertices of a T K5 (figure 8).

For every 1 < ¢t < j £ 3, ®(Z;) and ®(Z;) cannot be parallel, and hence must be equal or
mutually adjacent. But if ®(Z) consists of three R-paths all incident to a single branch vertex, then

®(Z) must consist of a single R-path. This shows that the endpoints of the Z-paths are either,
(a) all in the same R-path, or

(b) incident to three different R-paths, which are pairwise adjacent, though not all incident to
the same major branch vertex.

These are the configurations given in the statement of the lemma. O

We now can state the main result of this section:
Theorem 7. No minor-minimal graph in D contains K4 — e.

Proof: We prove the theorem by contradiction. Suppose G is minor-minimal in D such that w,z,y,
and z induce a K4 — e. Let z and y be the vertices of degree three in the induced K4 — e. By
Lemma 7, there is a subdivision of L in G with z and y as minor branch vertices. Label this TL

as in the previous lemma. Also define the P-paths and R-paths as in the previous lemma.

We divide the proof into three cases depending upon whether all, one, or none of z and w are

in R. To prove the the theorem, it suffices to exclude these three cases.
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Case 1: w,z € R. We consider three subcases according to the placement of w and z in R: the

same R-path, adjacent R-paths, or parallel R-paths.

Case 1.1: w and z are in the same R-path. If w and z are both in R, there is a TA;
{c,w,z,y,z}, as shown in figure 9. Similar arguments apply for the other R-paths. (Figure 10

shows the case where w and z are in R3.)

Case 1.2: w and z are in adjacent R-paths, say R,, and R,. By symmetry, it suffices to consider
the case that one of Ry, R, is an outside R-path, and the case that they are both middle R-paths:
R, =R, R, = Rs;and, R, =1, R, = R;. If R, = R; and R, = R, then {a,b,z,y,z} are the
branch vertices of a T K, as shown in figure 11. If R,, = R; and R, = R, then {w,2,y,2,d} are

the branch vertices of a T K5, as shown in figure 12.

Case 1.3: w and 2 are in parallel R-paths, say R, and R,. By symmetry, it suffices to consider
when these R-paths are both middle or both outside R-paths: R, = R;, R; = Rs; and, R, = Ra3,
R, = R4. ¥ R, = Ry and R, = Rs, then {a,b, w,z,y} are the branch vertices of a T K5, as shown

in figure 13. If R, = R3 and R, = R4, a subdivision of K5 appears as in figure 14.

Case 2: |[RN {z,w}| = 1. Without loss of generality, assume w € R. By symmetry, there are cnly
two subcases to consider: w € R; or w € R3. Because z ¢ R, Lemma 8 guarantees three disjoint
paths from z to R. Call these three paths Z-paths. By Lemma 8, either ®(Z) is a single R-path,
or ®(Z) consists of three pairwise adjacent R-paths, not all incident to the same major branch
vertex. We may assume that ®(Z) is not a single R-path because, in this case, one can form a new
subdivision of L in G such that z,w € R and z,y are the minor branch vertices, by redirecting the
R-path in ®(Z) through z (this reduces to case 1). We also may assume no Z-path ends at w since,
in such a case, G contains a subdivision of K5 with branch vertices {w,z,y, 2} plus one vertex in
{a,b,c,d} depending upon the location of w and ®(Z) in R (another Z-path is used to complete a
path from z to the fifth branch vertex).

Case 2.1: w € R;. Because ®(Z) consists of pairwise adjacent R-paths not all incident to
one major branch vertex, some Z-path ends in an outside R-path. Therefore {a,c,z.y, w} are the

branch vertices of a T K5, as in figure 15.
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Case 2.2: w € R3. ®(Z) consists of pairwise adjacent R-paths, not all incident to the same
major branch vertex. By symmetry, we may assume, without loss of generality, that ®(Z) contains
R2; that is, ®(Z) = {R2, Rs, Re} or {R2, Ry, R4}. In either case, {w,z,y,z,a} are the branch

vertices of a T K5, as shown in figure 16 (which shows the case where a Z-path ends in Rg).

Case 3: RN {w,z} = 0. Because both w and z are neighbors to z and y, Lemma 8 guarantees
three disjoint paths from z to R, and three disjoint paths from w to R. Let Z;, Z, and Z3 be the
three disjoint paths from z to R (the Z-paths), and Z the set of Z-paths. Similarly, let W,, W, and
W3 be the three disjoint paths from w to R (the W-paths), and W the set of W-paths. Observe

that, by definition, only terminal vertices of Z-paths or W-paths are vertices of R.

By Lemima 8, either ®(Z) is a single R-path, or ®(Z) consists of three pairwise adjacent R-°

paths, not all incident to the same major branch vertex. We may assume that ®(Z) is not a single
R-path because, in this case, one can form a new subdivision of L in G such that z € R and z,y
are the minor branch vertices, by redirecting the R-path in ®(Z) through 2 (this reduces to case

2). The same argument shows that (W} is not a single R-path.

Because ®(Z) and ®(W) each consist of three pairwise adjacent R-paths not all incident to the
same branch vertex, we may assume, without loss of generality, that $(Z;) = R, and ®(W;) = R3.
If Z, and W, do not intersect, then G contains a subdivision of K5 with branch vertices {z,y,b.c,d},

as shown in figure 17. Hence, Z; and W) must intersect.

Reorder the W-paths so that Wj is the first W-path that Z; intersects, and u is a vertex of
their intersection closest to z. Our immediate goal is to construct, from the Z-paths and W-paths,
three internally disjoint paths: one zw-path, one zR-path (Q.), and one wR-path (Q,). If Z;, does
not meet any W-path, then we let @, = Z;, Q,, = W>, and form the zw- path with the initial
segments of Z; and W, that meet at u. Otherwise, Z; first intersects some W-path, say W;, at
some vertex v. If W; # W, then let Qu = W;(j = {2,3} - {i}), Q. the path formed by the initial
segment of Z, from z to v and the final segment of W; from v to 2, and form the zw-path from the
initial segments of Z; and W;. If W; = W;, we may assume, without loss of generality, that u is
closer to v along W;. In this case, let @, be the path formed by the initial segment of Z, and the
final segment of Wy, let Q,, = W3, and form the zw-path from the initial segments of Z; and W;.
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The zw-path together with the edges in the Ky — e form a subdivision of K4 in G. To show
that G has a subdivision of K, it suffices to show that some vertex in {a,b,c,d} can be the fifth
branch vertex of a T K involving {w, z,y,2}. The branch paths from the fifth branch vertex are

constructed using Q., @., P-paths, and R-paths.

Suppose ®(Q,) = ®(Q.). If Q. and Q; end in the same vertex ¢ € R, then {q,w,z,y,z2}
are the branch vertices of a TKs. If @, and Q, do not share a common endpoint, but &(Q.) =
®(Q.) = Ry say, then {a,w,z,y, 2} are the branch vertices of a T K's (figure 18). Other cases where
®(Q:) = ®(Qw) are similar.

Suppose ®(Q,,) # ®(Q:). By symmetry, we may assume that ®((.) is incident to a, while
®(Q.) is not. It suffices to find four vertex disjoint paths: one path from each of w,z,y.z toa. P,
connects z and a. A segment of ®(Q,) plus @, connects z and «. A pathin {Ry, R} — ®(Q-) plus
a path in {Ps, P4} connect y and a. The remaining R-paths and @, contain a path connecting w

and a. Thus, {a,w,z,y,z} are the branch vertices of a TKs. O

5. Genus

We assume the reader is familiar with the notation and results found in [4]. Let S be a closed.
connected 2-manifold. We denote the Euler characteristic of a cellular imbedding, G — .5 of a
connected graph G into S by x(G — S); its value is |V(G)| - |E(G)| + f, where f is the number of
faces of the imbedding. The Euler characteristic is an invariant of the.surface S. Let x(S) be the

Euler characteristic of S (so x(G — §) = x(S) for any cellular imbedding of any G into §).

Theorem 8. Suppose G is a simple graph on n vertices that is minor-minimal in D, and G — S

a cellular imbedding of G into S, a closed, connected 2-manifold. Then,

x(5) < [5/3 - n/4.
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Proof: Let x = x(5), @ = number of triangles in G, and f, = the number of i-sided faces in the
imbedding G — §. Now, x = n - (3n - 5) + f, since |E(G)| = 3n — 5. On the other hand,
3a+4(f-a) <) ifi=2(3n-35).
i>3
Combining these two, we find

-4x22n-10-a 2)
so it suffices to show that a < (3n — 10)/3.

Theorem 7 implies that every edge of G is in at most one triangle. Furthermore, every vertex
of degree five in G is incident to an edge in no triangle, otherwise G has a K4 —e. Because G has at
least ten vertices of degree five, there are at least five edges of G that appear in no triangle. Thus.

at most 3n — 10 edges are in triangles, and a < (3n - 10)/3. O

We say that Dirac’s conjecture holds for a surface S if every simple graph G with n vertices,
3n — 5 edges, and a cellular imbedding into S, contains a subdivision of K5 (the conjecture holds
vacuously for the sphere). In this section, we use Theorem 8 to prove that Dirac’s conjecture holds

for several surfaces. First we prove a technical lemma.

Lemma 9. Suppose G is minor-minimal in D, and F = {v € V(G) : dg(v) = 5}. Then, the girth
of G[F) is at least five.

Proof: We prove that G{F] does not have a triangle or four-cycle.

Suppose, to the contrary, that z,,z2,z3 € F form a triangle of G. By Theorem 7, Ng(z;) N
Ng(z;) = {zx} for {i,j,k} = {1,2,3}. Furthermore, for each i = 1,2,3, there exist a pair of
vertices y;, z; € Ng(z;) such that y;z; ¢ E(G). Consider H = G + {y121,¥222,¥323} — {21,22,23}.
H has n — 3 vertices and 3(n — 3) — 5 edges. By the minimality of G, TKs C H contradicting
TKs ¢ G. Thus, G[F) has no triangle.

Suppose z1,22,23,24 € F form a four-cycle. By Theorem 7, we may assume Ng(z,)NNg(z,) =
@, for i — j odd. Furthermore, one can show that, for each : = 1,...,4, there exist a pair of vertices

Yi,zi € Ng(z;) such that y;z; € E(G) and {yi, 2} N {y;,2;} = @ for all § # ¢. Now consider
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H =G+ {y=}, —{z:}.2,. H has n — 4 vertices and 3(n — 4) — 5 edges, co by the minimality of
G.TKs C H. This contradicts TKs ¢ G. O

The conclusion of Lemma 9 may be extended in the case that G has large girth. In particular,

if G has girth at least five, then G[F] must be acyclic.

Corollary 1. Suppose G is a simple graph with n vertices, 3n — 5 edges, and a cellular imbedding

into a surface S with x(§) > —-2. Then TKs C G.

Proof: We show that no minor-minimal counterexample can be imbedded into a surface with
Euler characteristic greater than —3. To this end, let G be a minor-minimal counterexample with
an imbedding G — § into a surface S with x(§) > —2. By Theorem 8, x(5) < 5/3 - n/4. so

n < 14. By remarks following Lemma 1, n > 10.

Observe that G must contain a triangle T'; otherwise, by equation (2), —4x(S5) > 2n - 10 > 10.
By Lemma 9, T must contain a vertex of degree six. Counting the neighborhood of T reveals that

n > 13 since Theorem 7 implies the neighborhoods of vertices in T are disjoint.

Case 1: n = 13. Suppose that G has a vertex with degree at least eight. An edge count
reveals that the remaining vertices must then all have degree five. Because every triangle contains
the high degree vertex and G has no Ky - e, G has at most four triangles so, by equation (2},

—-4x(S)>2n-10-4 > 12.

Thus, the maximum degree of G is seven, which implies that G has three vertices of degree six
and ten vertices of degree five. If a triangle of G contains two vertices of degree six, then n é 14
because the neighbors of the triangle are all distinct. So, every triangle in G contains exactly one
degree six vertex. Because G has no K4 — e, we conclude that G has at most seven triangles and

—-4x(8) > 2n - 10 - 7 > 9, which is a contradiction.

Case 2: n = 14. By the proof of Theorem 8, G has at most ten triangles. On the other hand.
equation (2) implies that G has at least ten triangles. Consequently, G must have exactly ten

triangles.
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If G has a vertex v with degree at least eight, then an edge count reveals that G must have a
vertex u of degree six. Now every triangle contains either u or v by Theorem 9. However v is in
at most four triangles and u is in at most three triangles; that is, G has at most seven triangles, a

contradiction.

So the maximum degree of G is seven. If there is a vertex of degree seven, then there are at most

three vertices with degree more than five. Hence, G has at most nine triangles, a contradiction.

The remaining case is when G has exactly four degree six vertices and exactly ten degree five
vertices. Let F be the set of degree five vertices, and S = {a,b,¢,d} the set of degree six vertices.
Note that |E(F)| = 13+ |E(S)|. Also, G[F]is connected since G is 5-connected and G[F] = G - S.

In particular, G[F]| does not have isolated vertices.

If there is a vertex v € F with dg(r)(v) = 5, then G[F] — {v} — Ng(v) has four vertices and at
least four edges, contradicting that the girth of G[F] is at least five. Therefore, A(G[F]) < 4.

Suppose there is a vertex v € F with dgry(v) = 4. Let Ng(v) N § = {a} and Ng(v)N F =
{z1,22,23,24}- If dgiF)(z1) = 1 say, then z; & Ng(a)(2 < j < 4)since K4—e ¢ G, so there must be
a pair, say 2, z3 such that |Ng(z2)N Ng(z3)N{b,¢,d}| > 2. However, G[{v,b,c,d, 71,72, z3}] must
then contain K33 contradicting Theorem 6. On the other hand, if dG[p](a:,-) >2fori=1,...,4,

then G[{v,b,¢,d} U Ng(v)] must contain K33, by similar reasoning.

Therefore, A(G[F]) = 3. Notice that this implies that §(G[F]) = 2. To see this, consider, for
a contradiction, a vertex v € F with dg(r)(v) = 1. Now dg(v) = 5, so v must be adjacent to every
vertex of S. A neighbor of v in G[F] must have at least two neighbors in § (since A(G) = 3).

Therefore §, v, and the neighbor of v in G[F) must induce K4 — e, a contradiction.

Subcase A: |E[S]| > 3. In this case, G[F] has at least 16 edges and so it must contain a vertex of

degree four, contradicting A(G[F]) < 3.

Subcase B: |E(S)| = 2. Consider two adjacent vertices ¢,d € §. If ¢ and d share no common
neighbor, then the edge cd appears in no triangle; consequently each of ¢ and d appear in at most two
triangles. However, if ¢ and d have a common neighbor w € F, then (Ng(¢)U Ng(d)) N Ng(w) =0

because G has no K4—e. Therefore, there exists a common neighbor of ¢ and d, say z € F —w, since
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|E(S)| = 2 and 6(G[F)) = 3. However, this implies that G contains a Ky — ¢, namely {c,d, w,z}.
Hence, ¢ and d appear in al most two triangles. Because ¢ and d were arbitrary adjacent vertices
of § and |E(S)| = 2, there must be three vertices of § that appear in at most two triangles. That
is, G has at most nine triangles, since each triangle of G must contain a vertex of 5. This is a

contradiction.

Subcase C: |E(S)| = 1. In this case, |E[F]| = 14. Because A(G[F]) = 3 and §(G[F]) = 2, G|F]
must have exactly two vertices of degree two, say v and v. If w € Ng(u)NNg(v)N F, then Ky —€e C
G[{u,v,w} U §], a contradiction. Similarly, if u and v are adjacent, then K4y — e C G{{u,v} U 5]
So, we may assume Ng(v)N Ng(v)N F =0, and uv € E(G).

Suppose, without loss of generality, E(S5) = {cd}. If {c,d} C Ng(v), then h'y — ¢ C Glv U
Ng(v)U S). Thus, we may assume |Ng(v) N {c,d}| = 1. The same argument applies to u. Thus.
there are two cases to consider: Ng(v) NS # Ng(u)N S, and Ng(v)N S = Ng(u)n 5. Let
H = G[{u,v}U Ng(u) U Ng(v)U S].

Suppose Ng(v)N § # Ng(u)Nn S. Without loss of generality, assume ¢ € Ng(v) and d €
Ng(u). Figure 19 shows the ten vertices of H, the edges forced into H by degree requiremerts and
K4-e ¢ G, and a new vertex z € Ng(a)N Ng(b) — H. The vertex 2z must exist since a and b each
have six neighbors in G while a has only four neighbors in H, b has only three neighbors in H, and
there are only four vertices in G — H. Thus G contains a subdivision of K5 as shown by the bold

lines in the figure.

Similarly, suppose Ng(v)N S = Ng(u)N S. Figure 20 shows the ten vertices of H, the edges
forced into H by degree requirements and K4 — e ¢ G, and a vertex z € Ng(b) N Ng(¢) — H
guaranteed by arguing as in the previous paragraph. Thus G contains a subdivision of I's as shown

by the bold lines in the figure.

Subcase D: E(S) = 0. In this case, |E[F]| = 13. Because A(G[F]) < 3 and §(G[F]) = 2, G[F]

has a set T of four vertices of degree two.

Suppose there are two vertices u,v € T, such that Ng(u) NS = Ng(v)N §; without loss of

generality, Ng(u) N S = {a,b,c¢} = Ng(v)N S. If u and v are adjacent, then a,b,c,u,v form a
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K3 + E5. Similarly, if v and v share a common neighbor w € F, then w must have a neighbor
among a.b,c so a K4 — e is formed. Thus Ng(v)N F = {z,y} and Ng(u)N F = {p,q} such that
p.q,z,y € F —T. Since Ky —e ¢ G, {p,q,z,y} C Ng(d). We may assume that z € Ng(a)
and y € Ng(b). Now there are three cases according to whether S — (Ng(p) U Ng(g)) is equal
to a, b, or c. The three cases are shown in figures 21,22, and 23. The figures include a vertex
2 & {u,v} UNg(u)U Ng(v)U S adjacent to two vertices of § (the existence of z can be established
by considering the neighborhoods of vertices adjacent to z in §). In each case a subdivision of I\'s

is indicated by bold lines.

Thus, we may assume that no pair of vertices in T share the same three neighbors in S:
that is, G[S U T] is isomorphic to K44 minus a one-factor. Because no pair of vertices of T are
adjacent, some pair of vertices u,v € T share a common neighbor z € Ng(u)N Ng(v)N F. Let w =
Ng(u)N F - {z}. Without loss of generality, assume Ng(u)NS = {b,c,d} and Ng(v)NS = {a,c,d}
(so Ng(2)Nn § = {a,b} and a € Ng(w)). However, one can now see that there is a subdivision of

K5 in G[SUT U {w, z}] with branch vertices a,b,u,v,z. O
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