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Do bioactive glasses convey a disinfecting mechanism beyond a
mere increase in pH?

Abstract

AIM: To test whether bioactive glasses kill microbiota via mineralization or the release of ions other
than sodium. METHODOLOGY: Flame-spray synthesis was applied to produce nanometric glasses of
different sodium content and constant Ca/P ratio: 28S5, 45S5 and 77S. Calcium hydroxide and
nanometric tricalcium phosphate (TCP) were used as controls. Apatite induction was monitored by
Raman spectroscopy. Bovine dentine disks with adherent Enterococcus faecalis cells were exposed to
test and control suspensions or buffered solutions for 1 h, 1 day and 1 week. Colony-forming units were
counted and disks were inspected using scanning electron microscopy. Suspension supernatants and
solutions were analysed for their pH, osmolarity, calcium and silicon content. RESULTS: Sodium
containing glasses induced pH levels above 12, compared with less than pH 9 with sodium-free 77S.
Calcium hydroxide, 45S5 and 28S5 killed all bacteria after 1 day and lysed them after 1 week. TCP
caused the highest apatite induction and substantial calcification on bacteria adhering to dentine, but did
not reduce viable counts. 77S achieved disinfection after 1 week without visible apatite formation,
whilst the buffer solution at pH 9 caused only minimal reduction in counts. CONCLUSION: Bioactive
glasses have a directly and an indirectly pH-related antibacterial effect. The effect not directly linked to
pH is because of ion release rather than mineralization.
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Aim Bioactive glasses of the SiO2-Na2O-CaO-P2O5 system appear to exert antimicrobial 

effects by creating an alkaline environment mainly via their release of sodium ions. 

However, non pH-related effects on infected dentine have been suspected. This study 

tested whether bioactive glasses also kill microbiota via mineralization or the release of 

ions other than sodium.  

Methodology Flame-spray synthesis was applied to produce nanometric glasses of 

different sodium content and constant Ca/P ratio: 28S5, 45S5, and 77S. Calcium 

hydroxide and nanometric tricalcium phosphate (TCP) were used as controls. Apatite 

mineral induction was monitored by Raman spectroscopy. Standardized bovine dentine 

disks with adherent Enterococcus faecalis cells were exposed to test and control 

suspensions or buffered solutions for 1 hour, 1 day, and 1 week. Colony-forming units 

were counted, and disks were inspected using scanning electron microscopy. Suspension 

supernatants and solutions were analyzed for their pH, osmolarity, calcium and silica 

content.  

Results Sodium containing glasses induced pH levels above 12, compared to less than 

pH 9 with the sodium-free 77S. Calcium hydroxide, 45S5, and 28S5 killed all bacteria 

after 1 d, and lysed them after 1 w. TCP caused the highest apatite induction and 

substantial calcification on bacteria adhering to dentine, but did not reduce viable counts. 

77S achieved disinfection after 1 w without visible apatite formation, whilst the buffer 

solution at pH 9 caused only a minimal reduction in counts. 

Conclusion Bioactive glasses have both a not and a directly pH-related antibacterial 

effect. The former is due to ion release rather than mineralization.



 

Introduction 

Bioactive glasses are potentially interesting materials in dentistry not only 

because of their ability to mineralize dentine (Forsback et al. 2004; Vollenweider et al. 

2007) but also due to their antimicrobial effect in closed systems (Sepulveda et al. 2002; 

Stoor et al. 1998). Consequently, bioactive glasses could potentially be used as topical 

endodontic disinfectants without the purported negative side effects of calcium hydroxide 

on dentine stability (Doyon et al. 2005). The short-term antimicrobial effect of these 

glasses has been attributed exclusively to their ability to raise pH in an aqueous 

environment (Allan et al. 2001). This pH increase results from the release of alkali ions, 

mainly Na+, and the incorporation of protons (H+) into the corroding material (Ratner 

2004; Sepulveda et al. 2002). Therefore a glass containing more sodium is able to 

generate a higher pH in solution (Wallace et al. 1999). 

As recently shown, preparation of ultrafine bioactive glasses by a dry synthesis 

pathway called flame spray synthesis is possible and allows the preparation of different 

bioactive glasses with varying composition and in nanoparticulate form (Brunner et al. 

2006). The resulting nanoparticulate glass with the classical 45S5 composition 

(Bioglass®) showed a higher dissolution rate of alkaline species and thus an elevated 

antimicrobial efficacy in vitro when compared to the currently available melt-derived, 

micron-sized bioactive glass whilst having the same chemical composition (Waltimo et 

al. 2007). However, studies with infected dentine blocks have suggested that there might 

be other, not directly pH-related, effects with a slower onset promoted by bioactive glass 

particles in a liquid environment that affect bacterial viability (Zehnder et al. 2004). 

Recent observations suggested that these effects might either be related to an 



 

encapsulation of the bacteria adhered to dentine by mineralization (Zehnder et al. 2006a) 

or the sustained release of ionic species from the glass during corrosion (Zehnder et al. 

2006b). 

Using nanoparticulate bioactive glasses with varying sodium and silicon content 

and a constant Ca/P ratio, we tested the following hypotheses: i) the immediate killing 

effect of glasses on microbiota is related to their sodium content and thus their alkaline 

capacity; ii) the effect with a slow onset after several days is related to apatite 

precipitation on the bacteria; or iii) the latter effect is promoted by soluble ionic species 

rather than the calcium and phosphate ions mentioned in hypothesis ii). 

 

Materials and methods 

Preparation of test and reference materials 

Nanometric bioactive glasses with the compositions 28S5, 45S5, and 77S (Table 

1) were prepared from suitable precursor solutions (Grass et al. 2005; Stark et al. 2003) 

as described in more detail by Brunner and coworkers (Brunner et al. 2006). In these 

compositions the sodium content is variable (from high to no sodium) and a constant 

Ca/P ratio is preserved. 

 Nanoparticulate tricalcium phosphate (TCP) was produced according to Loher 

and coworkers (Loher et al. 2005) as a reference material, to assess the impact of a 

nanometric substance with minimal change in pH but high mineral induction on bacterial 

viability. The shape and size of all nanoparticulate materials were examined using 

transmission electron microscopy, and the specific surface areas (SSA) were measured by 

nitrogen adsorption on a Micromeritics Tristar (Gosford, NSW, Australia) at 77K using 



 

the Brunauer-Emmet-Teller (BET) method after outgassing at 150°C for 1 hour. A 50 

mM 3-[Tris(hydroxymethyl)methylamino]-1-propanesulfonic acid (TAPS, Fluka, Buchs, 

Switzerland) buffer adjusted to pH 9 was used to assess the effect of pH. 

Calcium hydroxide (Ca(OH)2, puriss., Riedel-de Haen Chemicals, Hannover, 

Germany) was obtained from a commercial source. 

 

Assessment of alkaline capacity 

Here and in all further experiments, 1:20 (wt:vol) suspensions (corresponding to 

50 mg/mL) of the materials in unbuffered physiologic saline (0.9% NaCl) were used. To 

visualize the alkaline capacity of these suspensions, they were potentiometrically titrated 

using a 1 M HCl solution. 

 

Raman spectroscopy 

Raman spectroscopy (Bruker FRA 106/S and Equinox 55, Ettlingen, Germany) 

was carried out in 180° backscatter mode for dried powders after 7 and 30 days 

immersion in saline at room temperature and no fluid exchange. The slurries were 

centrifuged three times for 5 minutes at 13,000 rpm and washed intermediately with 

deionized water, dried overnight in a vacuum oven (Salvis, Luzern, Switzerland) at 250 

mbar at 70° C with a constant nitrogen flow and ground by hand in a mortar. The 

intensity of the phosphate (P-O) and carbonate (C-O) peaks at 960 cm-1 and 1080 cm-1 

(Rehman et al. 1994) in comparison to as prepared material are a qualitative argument for 

the degree of carbonated hydroxyapatite formation on the surface, the main contributor in 

mineralization (Notingher et al. 2002). 



 

 

Assessment of antimicrobial efficacy 

Standardized bovine dentine disks were prepared as follows: cylinders with a 

diameter of 7 mm were cut from the crowns of extracted bovine front teeth using a 

trephine bur. Subsequently, a disk with a thickness of 0.8 mm was cut from the dentine 

section of the cylinder using a saw microtome (SP 1600, Leica, Wetzlar, Germany). 

Disks were then immersed in an excess of a 2% NaOCl solution for 10 min at room 

temperature to dissolve organic remnants and possibly present microorganisms. The disks 

were then transferred into 2% sodium thiosulfate to stop the hypochlorite action. 

Subsequently, the disks were immersed in tryptic soy broth (TSB, Oxoid, Basingstoke, 

UK) and autoclaved. Enterococcus faecalis ATCC 29212 (stock stored at -70°C) was 

cultured in TSB overnight at 37°C (TSB + 10% glycerol vol:vol). The disks, which had 

been autoclaved in TSB, were then transferred to sterile 24-well plates. Each well 

contained 1.6 mL of sterile TSB. Each of these wells was inoculated with 100 µL of the 

TSB containing the Enterococci and incubated for 24 h at 37°C in ambient air. 

Subsequently, the disks were dipped three times in three separate wells containing 0.9% 

saline to wash away loosely adherent bacteria. The disks were then transferred into 

microcentrifugation tubes containing 1:20 (wt:vol) suspensions of test or control 

materials in saline and incubated for 1 h, 1 d, or one 1 w. Incubation of disks in sterile 

saline was used as the positive control treatment. 

For the harvesting of the biofilm, the disks were gently dipped in sterile saline to 

get rid of excess medicament. They were then transferred into 1 mL of saline, vortexed 

vigorously for 2 min, and finally gently ultrasonicated (Vibracell, Sonics & Materials, 



 

Newtown, CT, USA) at 20 W in an ice bath for 5 sec (Guggenheim et al. 2001). The 

suspensions were kept on ice, serially diluted and cultured on tryptic soy agar (TSA, 

Oxoid). The plates were incubated at 37°C for 48 h. Colonies were counted under a 

stereo dissecting microscope, and colony forming units (CFU) were calculated. The 

purity of the cultures was verified by visual inspection of the colony morphology as well 

as Gram staining. 

 

Analysis of supernatants 

Immediately after the bacteria were harvested as described above, the 

microcentrifuge tubes containing the test or control suspensions were centrifuged at 

13,000 x g for 30 min at 4°C. Subsequently, 500 µL of the supernatant was transferred 

into separate tubes and stored at -20°C until further analysis. Osmolarity was assessed in 

an osmometer (One-Ten, Fiske, Needham Heights, MA); pH was determined using a 

calibrated microelectrode (Metrohm). Ca and Si concentrations in solution were 

measured by using an atomic absorption spectrophotometer (Model 2380, Perkin-Elmer, 

Norwalk, CT) as described earlier (Zehnder et al. 2006b). 

 

Scanning electron microscopy 

 Specimens (n = 4 per group) were washed in saline and fixed at room temperature 

in 2% glutaraldehyde for 30 min. Thereafter, specimens were dipped in saline, 

dehydrated in an ascending ethanol series and dried using the critical point method in a 

CPD 030 device (BAL-TEC, Balzers, Liechtenstein). Dry specimens were glued to 

scanning electron microscopy stubs and coated with gold in a sputter coater (SCD-500, 



 

BAL-TEC). They were examined in a scanning electron microscope (Zeiss Supra 50 VP) 

at an accelerating voltage of 20 kV detecting secondary electrons. 

  

Data presentation 

Numerical data from triplicate experiments are presented as means and standard 

deviations. 

 

Results 

Material properties 

Flame spray synthesis allowed the direct and dry synthesis of bioactive glasses 

with varying composition and in the form of nanoparticles. The specific surface areas 

(SSA) measured by nitrogen adsorption were 65, 72, and 147 m2/g for 28S5, 45S5 and 

77S, respectively (Table 1). In comparison, the flame-derived amorphous TCP 

nanoparticles had a SSA of 80 m2/g. 77S, which contained no sodium, showed well 

defined, spherically shaped nanoparticles. In contrast, 28S5 displayed highly 

agglomerated particles with visible sinter necks as observed by transmission electron 

microscopy (images not shown).  

 

pH induction and buffer capacity 

When suspended in unbuffered saline solution, 28S5 and 45S5 induced similar pH 

values to calcium hydroxide. However, their potential to keep the pH at this level upon 

addition of a hydrochloric acid was lower for the glasses than for the calcium hydroxide 



 

(Fig.1). In contrast, the initial pH with the sodium-free glass 77S was <10, and no notable 

alkaline capacity was observed. 

 

Mineralization 

The ability of the nanoparticulate glasses and TCP to form a crystalline apatite 

layer on the surface of the material, i.e. the in vitro mineralization, was investigated by 

Raman spectroscopy. When placed in physiological saline solution for 7 and 30 days, all 

glasses were able to form an apatite layer on their surface (Fig. 2). TCP showed by far the 

highest apatite peak (Fig. 2), indicating the highest mineralization capability. This was in 

line with SEM images of treated bovine dentine discs which showed substantial crystal 

formation not only observed on the dentine, but also on bacteria (Fig. 3, bottom right).  

  

Antimicrobial efficacy 

The disinfection properties of the different bioactive glasses and reference 

materials are shown in Fig. 4 displaying the log10 CFU values for the Enterococci after 

the treatment with the different medicaments for 1hour, 1day and 1week. Calcium 

hydroxide had a very fast effect and resulted in a complete killing of the bacteria within 

one hour. At conditions used in this study, 45S5 nanoparticles were able to kill all 

bacteria of the biofilm within one day. The effect of the 28S5 composition was 

comparable, although the results showed a larger standard deviation. When treated with 

77S, some bacteria were able to survive for one day, but after one week this treatment 

also left no viable cells. No clear reduction in viability was observed for TCP, as well as 

for a buffered solution of pH 9.   



 

In order to get a picture of the dentine surface with the adherent bacteria, the 

samples were investigated by SEM after 1 week of incubation. Without treatment, the 

bacteria were spread out on the dentine surface, whereas a treatment using calcium 

hydroxide did not only kill and lyse all bacteria, but also attacked and eroded the dentine 

(Fig. 3, top right), which did not occur in other treatments. The surface of TCP treated 

dentine showed deposition of mineral and partial encapsulation of the bacteria by these 

deposits (Fig 3, bottom right). Apatite mineral deposition was not visible for the bioactive 

glass treated surfaces by SEM.  

 

Ion concentrations in supernatants 

Osmolarity measurements revealed that values did not change significantly over 

the course of one week. The results for bioactive glasses 28S5, 45S5 and 77S were 

760±60 mOsm, 560±20 mOsm and 300±20 mOsm respectively. For TCP values of 

290±10 mOsm, calcium hydroxide 330±10 mOsm and for unbuffered saline solution 

300±10 mOsm were reached. All values are significantly lower than the by E. faecalis 

experimentally tolerated osmolarity of 1800 mOsm described in the literature (Zehnder et 

al. 2006b).   

After exposure 28S5 bioactive glass supernatants showed high silicon 

concentrations in solution in the range of 1000 ppm for the three time points (Fig. 5). Si 

concentrations for 45S5 glass were in the same range, however, and increase of dissolved 

Si was observed over time. On the other hand 77S showed minimal amounts of Si in 

solution. No dissolved silica species in solution were observed for all other materials. 

Measurements on the calcium concentrations in solution showed low to no Ca for the 



 

28S5 and 45S5 glasses whereas 77S and TCP showed concentrations in the range of 100 

to 200 ppm. Calcium hydroxide effected concentrations of 1000 ppm Ca in solution.  

 

Discussion 

This study showed that the pH generated in an aqueous environment by silica-

containing bioactive glasses is affected by the sodium content in the glass. Furthermore, 

the high pH in the environment of sodium-containing bioactive glasses is the main 

material property that conveys the antimicrobial effect. There is, however, also an 

additional effect with a slower onset, which is related to the sustained release of silica 

and/or calcium phosphate species from the glass. Calcification of microbiota adhering to 

dentine, on the other hand, whilst it did occur, did not affect the viability of the E. 

faecalis type strain under the current conditions. 

As already observed within a previous study, nanoparticulate bioactive glass 45S5 

is a potent disinfectant (Waltimo et al. 2007). The main purpose of this study was to 

further elucidate the antimicrobial effect of bioactive materials such as the glasses under 

investigation. A relatively large amount of data is reported in this communication. 

Consequently, the individual findings are discussed in the following subchapters. 

 

Physical properties of the materials under investigation 

Flame-spray synthesis is a dry, one-step synthesis method to prepare complex 

materials (Stark et al. 2002) and specifically tailor the composition of such materials such 

as the bioactive glasses for biomedical applications. For the different ultrafine bioactive 

glasses described here the surface areas were reduced with increasing sodium content, 



 

which also had an effect on the morphology of the material. It is a well known fact that 

the addition of sodium into a silica glass matrix is decreasing its melting point. It can 

therefore be expected that a variation of sodium content in the glass has an effect on the 

product properties when flame spray synthesis is applied since sintering can occur in the 

flame resulting in a decrease in surface area. Both sodium concentration and specific 

surface area affect the solubility of the glass when placed in an aqueous environment. 

However, the effect of the surface area of the material was not further investigated in the 

current study. 

 

Monospecies E. faecalis biofilm 

 The model used in this study was developed during a larger body of work on a 

multi-species biofilm on dentine (Waltimo et al., International Endodontic Journal, 

submitted). As observed during that study, adhesion to dentine is the main factor that 

increases the resistance of the E. faecalis type strain to alkaline biocides. For simplicity 

reasons, we therefore chose to use a monospecies biofilm model in the current 

investigation. However, it must be conceded that this model does not necessarily reflect 

the clinical reality, in that infection of accessory canals and the presence of necrotic tissue 

are not mimicked. Furthermore, the medication to dentine ratio does not reflect the 

situation in the root canal. Nevertheless, the high efficacy of calcium hydroxide against 

E. faecalis was again proven in this study, and these results are comparable to ex vivo and 

clinical observations in human teeth (Sirén et al. 2004; Zehnder et al. 2006a). 

 

Influence of pH on antimicrobial effect 



 

The disinfection properties of calcium hydroxide are believed to result from a 

mere increase in pH which is not tolerated by microbiota (Proell 1949). This treatment 

effects lysing of bacterial cells. Under the investigated powder to liquid ratios of this 

study the pH caused by bioactive glasses 28S5 and 45S5 was similar to that of calcium 

hydroxide. However, the buffer capacity of these glasses was substantially lower. This 

might be the reason why these bioactive glasses showed a slower onset of the 

antimicrobial effect, although their killing of adherent E. faecalis was still potent, 

clearing all bacteria after 24 hours of incubation. This antimicrobial potency could be 

sufficient for their proposed application as a topical antiseptic. Most interestingly, 77S 

was able to disinfect the dentine surface within 1 week with a by far lower pH induction 

of around 9. We used TAPS buffer adjusted at pH 9 to investigate if such a buffer results 

in the same reduction of viable bacteria after 1 week. However, a system with saline 

solution buffered at pH 9 did not result in the same antimicrobial efficacy but showed no 

reduction at all. This clearly indicates that the effect of 77S is not related to a mere pH 

effect, but might be related to an effect of liberated ions or mineralization. 

 

Influence of ion release 

On the SEM images of bacteria on the dentine surface, no apparent mineralization 

has occurred for treatments with the different bioactive glasses. We can therefore 

attribute the antimicrobial effect of 77S bioactive glass to the release of ions leaching out 

of the glass which consequently affects the metabolism of the bacteria. On 28S5 and 

45S5 treated dentine no bacteria were found on the surface, indicating that they were 



 

lysed. In contrast, with the 77S treatment bacteria were found on the dentine surface, 

which were not able to divide anymore under the current surrounding conditions.  

Which ionic species or combination thereof account for the secondary 

antimicrobial bioactive glass effect, however, needs to be elucidated in a further study 

and was beyond the scope of the present work. This issue is fairly complex, as the pH 

influences the type and amount of ionic species in bioactive glass dissolution (Fig. 6). 

 

Influence of mineralization 

All bioactive glasses were able to form an apatite layer on the surface of the 

dentine, which is indicated by the in vitro bioactivity observed by Raman spectroscopy 

(Fig. 2). This mineral deposition was speculated to have an effect on the viability of the 

cells by mechanically encapsulating the bacteria (Zehnder et al. 2006a). However, this 

deposition of a layer of apatite mineral is generally very thin. As a reference material 

amorphous TCP was used, which is known to have an even higher mineralization 

potential than the bioactive glasses (Brunner et al. 2007; Loher et al. 2006), but does not 

cause a raise in pH. Crystalline structures on the surface and around bacteria proved this 

phenomenon as observed by SEM (Fig. 3, bottom right panel). However, the calcium 

phosphate deposits did not decrease the viability of the enterococci on the dentine surface 

attesting the mineralization a minor influence on the antimicrobial properties. Further 

studies need to elucidate the ideal glass preparation and composition that can match or 

surpass the antimicrobial effect of calcium hydroxide in the root canal without causing 

the damage to the dentine substrate that calcium hydroxide provokes. 

 



 

Conclusion 

This study highlighted the importance of sodium and the thus-resulting alkaline 

environment created by bioactive glasses on their antimicrobial effect. Furthermore, a 

second antimicrobial effect of bioactive glasses in the absence of sodium can be 

attributed to their continuous release of ionic species in aqueous suspensions.  
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Tables 

Table 1 Nominal composition of the different nanoparticulate materials in weight percent 
and their specific surface area (SSA). 

 SiO2 Na2O CaO P2O5 
SSA  

[m
2
/g] 

Bioactive glass 28S5 27.5 42.0 24.5 6.0 65 

Bioactive glass 45S5 45.0 24.5 24.5 6.0 71 

Bioactive glass 77S 79.7 - 16.3 4.0 147 

Tricalcium phosphate  - - 54.2 45.8 80 

 

 



 

Figure Captions 

 
Figure 1 pH values caused by the different materials when immersed in saline solution 
(top). Ultrafine 28S5 and 45S5 particles effected similar pH values than calcium 
hydroxide. Buffer capacity of the different materials when titrated with 1M hydrochloric 
acid (bottom).   
  

 

Figure 2 Raman spectroscopy of the materials after incubation in saline for 7 (left) and 
30 days (right). The peaks attributed to carbonated hydroxyapatite are highlighted.   



 

 

 

Figure 3 SEM images of dentine surfaces after treatments for 1 week. Saline did not 
reduce the amount of adhering bacteria (top left). Calcium hydroxide left no bacteria on 
the dentin but also damaged the dentin surface (top right). Some bacteria on dentin 
treated with ultrafine 77S were visible but showed no viability (see Fig 4). The dentine 
surface is intact (bottom left). Nanoparticulate TCP caused precipitate formation on the 
dentine surface partially covering bacteria (bottom right).  
 



 

 

Figure 4 Viable E. faecalis bacteria from the dentine surfaces after treatments for 1 hour, 
day and week in saline solution (mean log10 CFU values (n=3) and standard deviation). 
 
 
 

Figure 5 Concentrations of silicon and calcium in the supernatants after medication. 
Mean values (n=3) and standard deviation are shown. 
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Figure 5 Concentrations of silicon and calcium in the supernatants after medication. 

Mean values (n=3) and standard deviation are shown. 
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