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Abstract

Background: Unconventional natural gas (UNG) extraction (fracking) is ongoing in 29 North American shale basins

(20 states), with ~6000 wells found within the Fayetteville shale (north-central Arkansas). If the chemical signature of

fracking is detectable in streams, it can be employed to bookmark potential impacts. We evaluated benthic biofilm

community composition as a proxy for stream chemistry so as to segregate anthropogenic signatures in eight

Arkansas River catchments. In doing so, we tested the hypothesis that fracking characteristics in study streams are

statistically distinguishable from those produced by agriculture or urbanization.

Results: Four tributary catchments had UNG-wells significantly more dense and near to our sampling sites and

were grouped as ‘potentially-impacted catchment zones’ (PICZ). Four others were characterized by significantly

larger forested area with greater slope and elevation but reduced pasture, and were classified as ‘minimally-impacted’

(MICZ). Overall, 46 bacterial phyla/141 classes were identified, with 24 phyla (52%) and 54 classes (38%) across all samples.

PICZ-sites were ecologically more variable than MICZ-sites, with significantly greater nutrient levels (total nitrogen, total

phosphorous), and elevated Cyanobacteria as bioindicators that tracked these conditions. PICZ-sites also exhibited

elevated conductance (a correlate of increased ion concentration) and depressed salt-intolerant Spartobacteria,

suggesting the presence of brine as a fracking effect. Biofilm communities at PICZ-sites were significantly less

variable than those at MICZ-sites.

Conclusions: Study streams differed by Group according to morphology, land use, and water chemistry but not

in biofilm community structure. Those at PICZ-sites covaried according to anthropogenic impact, and were

qualitatively similar to communities found at sites disturbed by fracking. The hypothesis that fracking signatures in study

streams are distinguishable from those produced by other anthropogenic effects was statistically rejected.

Instead, alterations in biofilm community composition, as induced by fracking, may be less specific than initially

predicted, and thus more easily confounded by agriculture and urbanization effects (among others). Study

streams must be carefully categorized with regard to the magnitude and extent of anthropogenic impacts. They

must also be segregated with statistical confidence (as herein) before fracking impacts are monitored.
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Background

Unconventional natural gas (UNG) extraction has been

promoted as a potential fuel source in North America,

as well as a bridge to a cleaner energy economy [1]. It is

now ongoing in over 30 states, particularly those con-

taining appropriate geologic ‘plays,’ i.e., geographic areas

that contain fine-grained sedimentary rock with an ap-

propriate clay-to-silt particle size. In North America,

these include: Bakken (ND), Barnett (TX), Haynesville

(LA), Fayetteville (AR), Antrim (MI), Woodford (OK),

Green River (WY), Denver (CO), Marcellus and Utica

(PA, OH, WV) [2] (Fig. 1a). Shale gas is termed ‘uncon-

ventional’ in that it is trapped in strata with low poros-

ity and permeability and requires additional extraction

processes beyond those normally employed in more

traditional petroleum exploitations.

UNG extraction is initiated by drilling downward then

horizontally into shale strata, followed by injection of

8000–50,000 m3 of pressurized local groundwater to

fracture shale and release trapped hydrocarbons, a

process termed ’fracking’ [3]. The injected water con-

tains numerous chemical additives [4, 5] as well as

‘proppants’ (i.e., sand/silica) that lodge into fractures,

allowing oil and gas to flow outward as fluid pressure

subsides. Of the injected water, less than half is quickly

returned to the surface (i.e., as flowback), whereas the

majority (i.e., produced water) lingers underground and is

slowly mobilized as gas is removed [5].

The fracking process can generate numerous environ-

mental impacts [6], the majority of which stem from poor

well integrity, improper wastewater disposal, and surface

spills [3, 7], with the latter either anthropogenic or environ-

mental (i.e., due to rainwater and/or storm flooding). Of

serious concern are those that transport toxic chemicals

into surface and ground water [8], with contamination

directly correlated to the proximity of the drill site [9].

Impacts are most often gauged by monitoring ‘indicator

species’ i.e., organisms whose presence, absence, or abun-

dance can reflect a specific environmental condition [10],

particularly in the context of adaptive stream management.

Biofilm communities in streams (sensu lato) are com-

posed of sessile organisms on substrata [11] and thus

have an intimate contact with, and long-term exposure

to flowing waters. They provide a matrix within which

fundamental ecosystem processes occur [12] and, as

such, are functionally employed as bioindicators. For

example, the Cyanobacterial component of biofilm can

contribute >80% of the primary production in a system

[13], whereas other biofilm components such as hetero-

trophic bacteria employ complex metabolic pathways

Fig. 1 a Map depicting shale plays located in the United States, with the Fayetteville Shale circled in red [44]; (b) Map of Arkansas counties

showing the topographic location of the Fayetteville shale, with eastern (red), central (blue), and western (green) sections highlighted. The study

region is circled in red, with closed black circles designating the locations of unconventional natural gas (UNG) well sites; c Close-up of the

northern Arkansas counties within which the Fayetteville shale is distributed. The region in red is designated as the ‘potentially impacted

catchment zone’ (=PICZ), a region with high UNG well density, whereas the region in green indicates the ‘minimally impacted catchment zone’

(MICZ). d Map depicting the locations of the eight study sites, with inverted red triangles designating sites grouped as PICZ, and green triangles

depicting sites grouped as MICZ. The blue arrow, lower left, indicates the location of the Arkansas River
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that can quickly remediate harmful substances [14].

The composition of biofilm is radically transformed by

alterations in stream conditions [15], with deterioration

directly impacting the aquatic food base, such that ram-

ifications are quickly translated into higher trophic

levels [16]. Although biofilm communities play a major

role in the dynamics of stream ecosystems, they have

been traditionally difficult to monitor, due largely to a

time-consuming process of optical identification

coupled with an inability to initiate and/or sustain la-

boratory cultures for identification [17].

Molecular advances have now largely ameliorated these

issues by facilitating identification and quantification of

bacterial constituents in the biofilm community. From this,

a much broader perspective on stream metabolism can be

developed, in that numerous concurrent samples can be

rapidly, simultaneously, and accurately characterized. For

example, microbial traits are not only conserved in a

phylogenetic context but also linked across clades through

biochemical and genetic complexities. Important ecological

traits such as pH- and salinity preferences are not only

characteristic in a phylogenetic sense but also drive stream

metabolism and fulfill ecosystem services [18].

Genomic approaches that characterize microbial com-

munities are also utilized to interpret their dynamics.

Here, the 16S ribosomal RNA region has been the

molecular marker of choice, as it contains both con-

served and hyper-variable regions that are well suited for

phylogenetic analyses. Furthermore, the advent of

high-throughput DNA sequencing technologies has

improved accuracy and reduced costs [17], making

community characterization an attractive procedure

with which to gauge ecosystem health.

A molecular genetic approach was utilized in the

current study to assay biofilm communities of selected

streams within a 932-km2 region of Fayetteville shale

located in the Boston Mountains of northwest Arkansas

(Fig. 1b, c). The topography of this region is a limestone-

based karst, with numerous emergent ground and spring-

fed streams. Previous studies have assessed the potential

impacts of fracking in these streams by focusing on

either stream metabolism [19] or the presence/absence

of aquatic insects as bioindicator species [20].

The objectives of this study were to characterize and

compare the biofilm communities at sampling sites a

priori characterized by fracking impacts. These sites were

first evaluated across a series of abiotic and anthropogenic

factors, then compared and contrasted using univariate and

multivariate statistical approaches. Our results could then

be evaluated against biofilm communities recorded within

other shale play studies, as well as those utilizing non-

microbial indicators within the Fayetteville shale [19, 20]. In

addition to assaying for potential effects of fracking on

stream biofilm communities, other potential anthropogenic

effects that drive biofilm communities such as agriculture,

silviculture, urbanization, etc., were also considered so as to

guide the adaptive management of regional streams. This,

in turn, provides broader insights into the manner by which

the functioning of stream ecosystem can vary locally and

regionally with regard to anthropogenic land manipula-

tions, and nationally with regard to fossil fuel extraction. It

also allowed us the opportunity to test if potential fracking

effects could be parsed from those engendered by other

anthropogenic activities.

Results

Biofilm collection

To understand the potential effects of fracking on stream

microbial communities, we collected biofilm at eight

stream sites. We grouped our sampling sites using two

parameters that denoted their proximity to UNG wells.

These were ‘inverse flow length’ (IFL) and ‘well density.’

Four sampling locations quite distant from UNG wells

were allocated as MICZ-sites (i.e., ‘minimally-impacted

catchment zone;’ = Group 1), whereas four that were sig-

nificantly proximal to UNG wells were defined PICZ-sites

(i.e., ‘potentially-impacted catchment zone;’ = Group 2).

For easier reference, MICZ-sites and PICZ-sites are listed

with an affiliated letter (i.e., A-D) that designates sampling

locations in each Group (Table 1).

For each stream site, we collected two biofilm samples

(one from the downstream and one from the upstream

Table 1 Study sites (Sites) characterized by unconventional

natural gas (UNG) activities within 1 km2 catchment radius

Sites Density IFL Group

A = Rock creek 0.12 0.18 1

B = Driver creek 0.00 0.00 1

C = Cedar creek 0.04 0.00 1

D = Sis hollow 0.00 0.00 1

A = East fork 2.32 2.35 2

B = Sunnyside creek 3.64 0.31 2

C = Hogans creek 1.77 1.7 2

D = Black fork 0.69 1.3 2

F-value 11.30 10.17

Probability 0.015a 0.019a

Sites are geographically depicted in Fig. 1; Density is the number of

unconventional natural gas (UNG) wells within a km2 of each site; Inverse Flow

Length (IFL) represents the length of flow from each well to the stream

channel, corrected for slope, and calculated for wells upstream of each sampling

location using the flow length tool in ArcGIS [19]. The inverse of each flow length

was summed across all wells for each catchment area such that wells more

proximal had a higher value and thus a greater potential effect; Group is based on

threshold values of > =0.25 wells/km2 and IFL >0.05, with Group 1 indicating

presence within a ‘minimally impacted catchment zone’ (=MICZ), whereas Group 2

are within a ‘potentially impacted catchment zone’ (PICZ) with greater density of,

and proximimty to, UNG wells; F-value is the F-statistic recorded in a 1-way analysis

of variance (ANOVA) by Group [i.e., = MICZ (1) versus PICZ (2)] as derived in R [41].

Probability represents the statistical significance of each F-value as determined by

Bonferroni adjusted alpha = 0.025, with significance indicated by ana
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boundaries of the pool), extracted DNA, and used Illumina

sequencing to evaluate a 16S rDNA molecular marker that

delimits representative biofilm communities. The biofilm

samples (2/site; N = 16) averaged 153 mg/sample (wet

weight), with significantly greater amounts from down-

stream sections of pools as compared to those upstream

(average lower = 174.4 mg, average upper = 131.1 mg; F =

7.09, P < 0.011, one-way ANOVA [21]). DNA concentra-

tion per sample averaged 39.8 ng/μl and did not differ by

site or pool location (results not shown).

Univariate analyses of site, hydrology, land use, and

stream chemistry

We characterized ten variables at each site so as to

determine whether our designated Groups differed

with regard to environmental or anthropogenic factors

that could, in turn, affect microbial communities. Four

stream morphology variables (i.e., ‘elevation,’ ‘stream

order,’ ‘%-slope,’ and ‘watershed area’) were non-significant

by Group at the Bonferroni-adjusted P-value (results not

shown). With regard to land use characteristics, MICZ-

sites reflected significantly greater ‘%-forested area’ and sig-

nificantly less ‘%-pasture’ (Table 2). The two Groups did

not differ significantly with regard to ‘%-urban area’ at the

Bonferroni-adjusted probability. In the stream chemistry

analyses, PICZ-sites showed significantly greater mean

values for ‘total nitrogen’ and ‘total phosphorus’ than

did MICZ-sites (Table 3), suggesting more nutrient-rich

catchments. Elevated values for ‘stream conductivity’

did not differ by Group at the adjusted Bonferroni-

probability level.

Microbial community composition

We performed Illumina sequencing of a 16S rDNA

marker as a means of identifying and quantifying micro-

bial biofilm communities at each site. De-replication (i.e.,

merging of identical reads) condensed the data by 89%

[i.e., from 761,914 reads into a unique set of 83,441 OTUs

(operational taxonomic units)]. Elimination of singletons

(i.e., OTUs that occurred but once) further reduced the

total to 48,802 (a 41.5% reduction). The removal of

chimeric sequences (i.e., hybrid sequences consisting of

multiple OTUs) eliminated an additional 3753 (7.7%).

A comparison of sequences against a reference database

excluded an additional 50 (0.1%), and alignment with

the core set database [22] removed an additional 345,

yielding 6965 unique OTUs as a final total.

We generated rarefaction curves that estimated alpha-

diversity for each site to determine whether depth of

sampling and sequencing were sufficient to adequately

capture microbial community diversity. These curves

approached horizontal asymptotes when plotted against

number of sequence reads, suggesting sufficient sequen-

cing depth (Fig. 2). A total of 46 phyla were represented,

with 24 of these found across all samples. Average per

sample = 36 (range = 32–39), with several phyla dominating

across all samples: Cyanobacteria (37.4%); Proteobacteria

(31.7%); Bacteroidetes (7.6%); Planctomycetes (5.3%); and

Actinobacteria (4%) [21].

A total of 141 microbial classes were also represented,

with 54 found across all samples. Those with average

Table 2 Land use characterization for Location (sampling sites)

and Group (sites grouped in Table 1)

Location Forest Pasture Urban Group

A = Rock creek 1.22 0.04 0.01 1

B = Driver creek 1.29 0.02 0.01 1

C = Cedar creek 1.10 0.09 0.01 1

D = Sis hollow 0.94 0.14 0.01 1

A = East fork 0.69 0.24 0.02 2

B = Sunnyside creek 0.51 0.41 0.01 2

C = Hogans creek 0.82 0.23 0.03 2

D = Black fork 0.40 0.52 0.02 2

F-value 19.45 13.66 6.00

Probability 0.005a 0.010a 0.050

Sites are geographically depicted in Fig. 1; Allocation of sites to Group is

provided in Table 1; Sites labeled as Group 1 are within a ‘minimally impacted

catchment zone’ (=MICZ), whereas sites labeled as Group 2 are within a

‘potentially impacted catchment zone’ (PICZ) that contains a significantly

greater density of unconventional natural gas (UNG) wells; Forest, Pasture, and

Urban represent arcsin transformed values originally recorded as percentage

within a 1 km2 radius of the catchment area; F-value is the F-statistic recorded

in a 1-way analysis of variance (ANOVA) by Group [i.e., = MICZ (1) versus PICZ

(2)] as derived in R [41]; Probability represents statistical significance of each

F-value determined by Bonferroni adjusted alpha = 0.017, with significance

indicated by ana

Table 3 Water chemistry for each Site (sampling location) and

Group (sites group in Table 1)

Site Tot-N Tot-Ph Conductivity Group

A = Rock creek 0.21 0.014 0.014 1

B = Driver creek 0.07 0.012 0.012 1

C = Cedar creek 0.07 0.01 0.01 1

D = Sis hollow 0.07 0.01 0.01 1

A = East fork 0.3 0.032 0.032 2

B = Sunnyside creek 0.72 0.032 0.032 2

C = Hogans creek 0.86 0.016 0.016 2

D = Black fork 0.41 0.038 0.038 2

F-value 11.93 13.99 6.49

Probability 0.014a 0.010a 0.043

Sites are geographically depicted in Fig. 1; Allocation of sites to Group is

provided in Table 1; Total nitrogen (Tot-N), total Phosphorus (Tot-Ph), and

Conductivity values were originally recorded as μg/L (Tot-N and Tot-Ph) and

millisieverts/cm (Conductivity) but have been log10-transformed; F-value is the

F-statistic recorded in a 1-way analysis of variance (ANOVA) by Group [i.e., = MICZ

(1) versus PICZ (2)] as derived in R [41]. Probability represents the statistical

significance of each F-value as determined by Bonferroni adjusted alpha = 0.017,

with significance indicated by ana
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abundance >2% (N = 20) are presented in Fig. 3. Of

these, Alphaproteobacteria was the most dominant, aver-

aging 18.9% across samples, with Betaproteobacteria

averaging 8.4%. A total of 310 genera were subsequently

identified, with 116 (37%) identified across all sites and

297 (95.8%) found at ≥ 4 sites [21].

Univariate analyses of biofilm communities

We performed univariate analyses to determine

whether microbial community diversity and/or individ-

ual membership varied across MICZ and PICZ sites.

Values for Shannon entropy, evenness, and number of

OTUs/site did not differ significantly by Group [21],

suggesting in turn that differences between groups did

not broadly affect microbial diversity. The top five most

abundant and the bottom three least abundant bacterial

classes (Fig. 3) did not differ significantly when com-

pared by Group [21]. We did observe differences be-

tween Groups for four other bacterial classes: the 6th

(Synechoccophycideae: F(1,6) = 8.24, P < 0.028); the 9th

(Oscillatoriophycideae: F(1,6) = 9.36, P < 0.022); 13th

(Spartobacteria F(1,6) = 6.36, p < 0.045); and 17th (Nostoco-

phycideae: F(1,6) = 14.23, p < 0.009), with only the latter

significant at an adjusted Bonferroni-value (Table 4). Syne-

choccophycideae and Oscillatoriophycideae are Cyanobac-

teria (=primary producers), and each was more prevalent

at PICZ-sites, whereas Spartobacteria and Nostocophyci-

deae were most prevalent at MICZ-sites (Fig. 3).

The class Synechoccophycideae was represented by six

genera, listed in descending abundance as: Arthronema,

Acaryochloris, Leptolyngbya, Pseudanabaena, Paulinella,

and Synechococus. In turn, seven genera composed the

class Oscillatoriophycideae: Microcystis, Chroococcus,

Cyanobacterium, Chroococciddoipsis, Phoridium, and

Planktothrix. Microcystis was particularly elevated at

PICZ-site 2-D (at 5.54%) [21]. Of the five Spartobac-

teria genera, two were identified as Xiphinematobacter

and Chthoniobacter (family Chthoniobacteraceae), while

the remaining three were not identified to genus. The

Fig. 2 Graph depicting the number of 16S ribosomal DNA sequences

generated for each of the eight study sites located in the Fayetteville

shale of north-central Arkansas (X-axis) plotted according to their

rarefaction scores (Chao statistic, Y-axis) as generated by the program

QIIME [40]. Color of the rarefaction curve indicates study site, dots at

terminus reflects ‘potentially impacted catchment zones’ (=PICZ) in red,

or ‘minimally impacted catchment zone’ (=MICZ) in blue. PICZ-sites

have significantly greater density of unconventional natural gas (UNG)

well sites

Fig. 3 Heat map reflecting abundance of the 20-most abundant

bacterial classes across the eight study sites located in the Fayetteville

shale of north-central Arkansas. Columns represent study sites (X-axis)

and rows are bacterial classes. The heat map was generated by

the program QIIME [40] with intensities of colors (=heat) reflecting

abundances as depicted by the scale to the right of the map. Study

sites within ‘minimally impacted catchment zones’ (MICZ) are on

the left (1-A through 1-D), whereas sites within ‘potentially im-

pacted catchment zones’ (=PICZ) are on the right (2-A through 2-

D). PICZ-sites have significantly greater density of unconventional

natural gas (UNG) well sites

Table 4 Four dominant microbial classes found at study sites

(Site) and analyzed by Group

Site Sparto Synecho Oscillato Nostoc Group

A = Rock creek 0.0261 0.0162 0.0050 0.0105 1

B = Driver creek 0.0075 0.0063 0.0001 0.0026 1

C = Cedar creek 0.0158 0.0076 0.0086 0.0089 1

D = Sis hollow 0.0078 0.0163 0.0105 0.0073 1

A = East fork 0.0051 0.0269 0.0125 0.0001 2

B = Sunnyside creek 0.0031 0.0636 0.0766 0.0011 2

C = Hogans creek 0.0011 0.0549 0.0638 0.0017 2

D = Black fork 0.0029 0.0223 0.0443 0.0003 2

F-value 6.36 8.24 9.36 14.13

Probability 0.045 0.028 0.022 0.009a

Sites are geographically depicted in Fig. 1; Allocation of sites to Group is

provided in Table 1; Sparto = Bacterial class Spartobacteria, Synecho =

Synechococcophycideae, Oscillato = Oscillatoriophycideae, and Nostoc =

Nostocophycideae, with values representing arcsin-transformed percentages of

abundance (Fig. 3); F-value is the F-statistic recorded in a 1-way analysis of

variance (ANOVA) by Group (i.e., = MICZ versus PICZ) as derived in R [41].

Probability represents the statistical significance of each F-value at Bonferroni

adjusted alpha = 0.017, with significance indicated by ana
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implications with regard to the abundances of these

microbial classes and genera between Groups are

discussed below.

Multivariate comparisons among group

In Fig. 4a, a bi-plot depicts relationships within and

between Groups based upon the first two principle com-

ponents (PCs) of the stream morphology, anthropogenic

land use, and water chemistry variables. Sites are identi-

fied according to Group (number) and Site (letter) with

MICZ-sites in blue (1-A through 1-D), and PICZ-sites in

red (2-A through 2-D), respectively (per Table 1). PC-1

accommodated 60% of the variation in the data, and PC-

2 absorbed an additional 17% (77% total). MICZ-sites

clustered to the positive (right) side of PC-1 with

congruent loadings for ‘slope,’ ‘elevation,’ and ‘%-forest.’

Separation on PC-2 was more prominent for MICZ-

sites, largely due to the negative values that associated

sites 1-B and 1-C with ‘%-forest’ and ‘slope.’ On the posi-

tive side of PC-2, MICZ-sites 1-A and 1-D were and

allied with ‘elevation.’

PICZ-sites grouped instead to the far left of the PC-1

axis, quite distinct from MICZ-sites. They still separated

into quite distinct pairs, with sites 2-A and 2-C on the

negative side of this axis and consistent with vectors

depicting ‘watershed’ size and ‘%-urban.’ PICZ-sites 2-B

and 2-D fell more distant on the positive side of the PC-

2 axis, and in alliance with vectors depicting ‘conduct-

ance,’ ‘total nitrogen’, total phosphorus,’ and ‘%-pasture.’

The acute angles of these four vectors reflected their

close correlation. In this regard, PICZ-site 2-D was more

strongly affected than 2-B. Scores on PC-1 differed sig-

nificantly by Group (P < 0.003; results not shown),

whereas those for PC-2 did not.

In Fig. 4b, a second biplot depicted relationships

within and between Groups, but in relation to the

composition of their bacterial communities, with

MICZ-sites in blue and PICZ-sites in red (as above).

PC-1 accommodated 58% of the variation in the data,

and PC-2 absorbed an additional 25% (83% total). Of

the 20 bacterial classes evaluated, 16 clustered quite

closely with one another and were represented by an

ellipse in the plot. Four bacterial classes clearly sepa-

rated from the ellipse, with arrows designating the

magnitude and direction of their trajectories. PICZ-

sites 2-B, 2-C, and 2-D aligned with vectors depicting

classes Synechoccophycideae and Oscillatoriophyci-

deae, whereas site 2-A grouped within the ellipse.

MICZ-site 1-C was well separated and in conjunction

with the class Spartobacteria, whereas class Plancto-

mycetia separated but little from the ellipse. MICZ-site

1-D fell at the edge of the ellipse, but sites 1-B and 1-

A were more distant, with 1-B particularly so.

Fig. 4 a Results of a biplot analysis where the first two principal

components depict relationships among the eight sites in the

Fayetteville shale of north-central Arkansas versus principal

component loadings for a suite of ten environmental variables in

three defined categories (i.e., stream morphology, land use, and

water chemistry) using library “prcomp” in R [41]. Sites in red text

are within a ‘potentially impacted catchment zone’ (=PICZ) that

signifies a significantly greater density of unconventional natural

gas (UNG) well sites, whereas those in blue text are found within

a ‘minimally impacted catchment zone’ (MICZ). Variables in the

biplot are represented as vectors, and the angle at their origin

reflects pairwise correlations (i.e., the more acute the angle, the

greater the correlation). TotPh = Total Phosphorus, TotN = Total

Nitrogen, Cond = Conductance, Strahler = Stream order. b Re-

sults of a biplot analysis in which the first two principal compo-

nents reflect relationships among the eight sites in the Fayetteville

shale of north-central Arkansas versus principal component loadings for

the 20-most abundant bacterial classes, where densities are represented

as arcsin-transformed percentages
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Linear iscriminant analysis Effect Size (LEfSe) ana-

lyses corroborated much of the above by delineating 20

OTUs with an LDA score > 2.7. Subclasses Oscillatorio-

phycideae and Synechococcophycideae (Cyanobacteria),

and Roseiflexales (a filamentous bacteria often found

with Synechococcophycideae and deemed tolerant of

eutrophication and/or poor water quality) were abundant

at PICZ-sites. Bioindicators of healthy streams [i.e.,

families Rhodocyclaceae (Proteobacteria), Stigonematales

(Cyanobacteria), and Rivulariaceae (Cyanobacteria)] were

abundant at MICZ-sites, as were ‘negative bioindicators’

(N = 5; primarily Spartobacteria) whose abundances co-

vary negatively with particular impacts such as elevated

pH or salt concentrations.

Discussion

During the past decade, shale resources have been heavily

developed in the United States, an industry that will steadily

increase over the next several years [10]. The majority of

environmental impacts that stem from these activities par-

allel those recorded for traditional petroleum-extraction,

and as such can be predictably monitored [23]. Others are

instead UNG-specific, such as poor well integrity and acci-

dental wastewater release, and are compounded by the geo-

graphic distribution of shale plays across the continent [24]

(Fig. 1a). Environmental risks associated with UNG are

hence more difficult to predict and to track, in that suffi-

cient data regarding their breadth and depth have yet to

accumulate. This, in turn, delays the designation of appro-

priate environmental policies that would otherwise provide

for their regulation [25, 26].

Research activities that evaluate these impacts are

ongoing in the Fayetteville Shale of northwest Arkansas

[19, 20] (Fig. 1b, c), and have now been expanded so as

to encompass biofilm communities as biological indica-

tors of study catchments (this study). The composition

of microbial communities reflects sensitivity and expos-

ure of these catchments to anthropogenic activities [14],

such as urbanization, deforestation, agricultural develop-

ment, habitat fragmentation, and others [27], including

UNG-extraction. It is of interest to potentially parse

these situations according to the manner by which they

drive stream microbial diversity. Similarly, ecosystem

processes are also driven by hydrology, stream gradient,

stream order, and stream chemistry (among others), and

these also modulate the composition of biofilm commu-

nities [15]. Given this, we first tested (and rejected) the

hypothesis that environmental variability was similar

among our minimally impacted (MICZ) versus poten-

tially impacted (PICZ) study sites.

Ecological variation among study sites

Instead, we found significant differences among several

test variables, as evaluated by Group. For example, MICZ-

sites reflected catchments with significantly greater ‘%-for-

ested’ area, but significantly less ‘%-pasture’ (Table 2). Of

interest is the fact that several other variables showed

elevated but not significantly different values, as gauged

by the Bonferroni-corrected probability value for multiple

comparisons. We comment on this situation below.

Significant environmental differences between the two

groups were also noted when multivariate analyses in-

corporated the ten variables across the three categories.

Sites separated along PC-1, with strong positive (MICZ)

and negative (PICZ) loadings manifested according to

stream morphology, anthropogenic land use, and water

chemistry (Fig. 4a). There was also considerably more

variance among PICZ-sites, with paired catchments (i.e.,

2-A/2-C and 2-D/ 2-B) well separated on PC-2. Some-

what surprisingly, these sites also showed a strong and

concerted response to those variables not deemed sig-

nificant in the univariate analyses. MICZ-sites displayed

much less variability, yet were similarly separated on

PC-2 according to a composite of variables that were

significant (i.e., ‘%-forest’) and non-significant (i.e., ‘slope’

and ‘elevation’).

The univariate statistics provided differentiation by

Group according to individual variables evaluated singly

whereas the multivariate analyses provided broader

patterns much more interpretable at the ecosystem level,

yet not apparent from the separate univariate analyses.

This was due largely to the reduced degrees of freedom

in the univariate analyses, as constrained by small sample

sizes parsed between groups and gauged with Bonferroni-

adjusted probabilities. Although our multivariate analyses

did not provide statistical probabilities within a hypothesis-

testing framework, they more easily depicted the disparity

within- and among-Groups, as promoted by watershed,

land use, and water chemistry.

The variability in biofilm communities among study sites

Having established the environmental context for our

sampling sites by Group, we could then contrast their

biofilm communities (Fig. 4b). Groups again separated

in multivariate space, albeit less distinctively and with a

greater spread among PICZ-sites along PC-1. PICZ-sites

also exhibited less variation than did MICZ-sites along

PC-2. Clearly, microbial composition varies both among-

and within-sites, but with different microbial taxa driv-

ing this result in each Group.

For example, Spartobacteria (non-significant in the 1-

way ANOVA) clearly associated with MICZ-site 1-C, and

differentiated it from all others, whereas site 1-B (associ-

ated with 1-C in Fig. 4a) was arrayed quite distantly from

other MICZ-sites on PC-2. Furthermore, one site from

each Group (i.e., 1-D/ 2-A) fell close to the origin of the

PC-axes, suggesting a low overall diversity in their micro-

bial composition (results not shown).
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These differences indicate a disparity between biofilm

community composition and environmental variability

among sites, a result that parallels those from other stud-

ies. For instance, microbial assemblages will often group

according to historical (i.e., phylogenetic) events [28], but

also in response to more contemporary biochemical con-

ditions associated with streams [29]. In this study, numer-

ous factors (per Tables 1, 2 and 3) obviously impact the

relationship between biofilm communities and their envir-

onment. This result confounds any ‘cause-and-effect’ sce-

narios for the observed patterns. However, we draw two

strong conclusions from the multivariate analyses: PIZC-

sites display greater ecological variability within the envir-

onmental matrix (Fig. 4a), yet are much less variable when

embedded within the biofilm community matrix (Fig. 4b).

An alternate approach would be to contrast our results

with those from studies in other shale plays that employed

biofilm communities as bioindicators of fracking. Yet

many of the latter are tangential to the present study, in

that they examined biofilm communities in either flow-

back [30] or produced waters [30, 31]. Few evaluated

stream catchments into which groundwater from fracked

sites would eventually percolate, as herein. One study that

did so evaluated headwater streams in the Marcellus shale

(PA) (Fig. 1a), and found significantly lower species rich-

ness and evenness values at sites impacted by fracking

[24]. Several of these sites also contained an abundance of

bacterial OTUs that correlated positively with decreasing

pH, suggesting more acidic stream environments. The

diversity of carbon sources available in a stream promotes

the functioning of its biofilm communities, and as diver-

sity decreases, so does the community [32]. In this sense,

a reduction in carbon sources would be an ecological

explanation for the observed reduction in species richness

at these sites, although this was not stated as such.

The richness and evenness of species within biofilm

communities

In our study, the species richness, evenness, and num-

ber of OTUs in biofilm communities were not signifi-

cantly different when compared between MICZ- and

PICZ-sites. Yet such comparisons often mask the in-

teractions among OTUs within these communities. For

example, a decrease in abundance of some taxa can

also stimulate growth in others normally more rare, a

situation that would promote rather than depress

evenness [29, 32]. Those streams with lowest values for

evenness in each of our Groups [i.e. 1-B and 2-D; 21]

may indeed reflect this consideration. For example, 1-B is

a headwater stream (stream order = 1) with the greatest

‘%-forest’ in the study (=96%) both of these environmental

aspects would promote deposition of leaf litter into the

stream that, in turn, must be decomposed. This similarly

constrains the biofilm community.

The two least diverse streams in an ecological sense

(i.e., 1-A and 1-B) also had low numbers of OTUs [21],

again suggesting the potential for a reduction in available

nutrients [19]. In a similar vein, PICZ-site 2-D had the

highest value for ‘%-pasture’ in the study, and was also

associated with elevated levels of available phosphates

and nitrates (Fig. 4a), both of which can promote a few

dominant species. This was represented at PICZ-sites by

the elevated abundances of two Cyanobacterial classes

(i.e., Synechococcophycideae and Oscillatoriophycideae).

Cyanobacteria are primary producers that seemingly track

the significantly elevated levels of nitrogen and phosphorus

found in these streams.

A second but related limitation with regard to species

richness and evenness is the strong competition among

bacteria and hyphomycetes (stream fungi), as promoted

by the reduction in dissolved organic matter (DOM)

[27]. Dissolved nitrogen primarily exists as nitrates within

ground and surface waters, and must be transformed by

microbes before entering into and moving through the

ecosystem. This, in turn, could promote bacterial OTUs

more strongly competitive, at the expense of those less

competitive, a situation that would also constrain bio-

film community diversity. In addition, and as a second

consideration, elevated nitrogen levels are often associ-

ated with UNG well sites [19].

Additionally, the removal of pollutants can, paradoxically,

also reduce microbial diversity and evenness [33], sug-

gesting (as above) that external sources of carbon can

promote the development of OTUs normally more rare.

These caveats, in turn, provide numerous potential cor-

ollaries to explain the low values for evenness at sites,

particularly when carbon sources have become more

limited due to fracking [24, 32].

Biofilm communities as bioindicators

The function of many bacterial lineages is not well

understood at the ecosystem level, despite their abundances

in soil and aquatic systems, and this in turn makes it more

difficult to ascertain their status as potential bioindicators.

Despite this, general functions are indeed assignable to

some clades. Many Synechococcophycideae, for example,

employ unique metabolic pathways that allow them to per-

sist in highly acidic environments such as volcanic seeps.

The Oscillatoriophycideae is an equally diverse clade that

can also serve a bioindicator for organic pollutants. For

example, Microcystis (a genus of Oscillatoriophycideae) is

abundant at PICZ-sites, and its presence may point to the

presence of elevated polycyclic aromatic hydrocarbons

(PAHs) that in turn promote its growth [34].

In addition, the genomes of aquatic Spartobacteria

encode for a diversity of glycoside hydrolases that are

employed in the degradation of complex carbohydrates

[35]. This physiological aspect also explains its common
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co-occurrence with Cyanobacteria, in that the former me-

tabolizes the complex carbohydrates produced by the latter

[12]. Spartobacteria should thus positively correlate with

Cyanobacteria at PICZ-sites, but was instead found to be

significantly reduced. Brine contamination is a well-known

fracking by-product, and it continues to be pulled upwards

from deeper strata long after drilling has subsided [36]. In

addition, PICZ-sites also reflected greater conductance in

their water chemistry. Spartobacteria has a pronounced in-

tolerance for salt, and these environmental conditions at

PICZ-sites would impede its expected proliferation.

In an attempt to gain a more comprehensive perspective,

we can also contrast results from this study with those from

earlier studies at the same sites. For example, UNG devel-

opment had a definite impact on stream macroinvertebrate

communities, with short-lived generalists being more abun-

dant at those sites [20]. Yet these effects were difficult to

parse across specific taxa, or to specifically associate with

the benthic habitat found at PICZ-site.

A second study [19] found increased primary production

and eutrophication at sites impacted by UNG activities, and

this was interpreted as a potential response to the enhanced

levels of nitrogen these sites displayed. Our data support

these conclusions in that two classes of Cyanobacteria were

clearly more abundant at impacted sites, suggesting the

presence of an environment that is beneficial for primary

production. Our statistical analyses also verified significant

levels of ‘total nitrogen’ and ‘total phosphorus’ at these sites,

as well as heightened conductance.

Overall, the observed differences between MICZ-sites

and PICZ-sites may reflect the accessibility of sites chosen

for UNG well construction, and as such, may add an add-

itional consideration for the design controlled studies to

gauge the effects of fracking (see Discussion).

Conclusions

Biofilm communities have complex roles in freshwater

stream metabolism, and consequently drive numerous crit-

ical processes: Primary production [12], biogeochemical

cycling [17], nitrogen cycles [28], and the remediation of

deleterious carbon sources [14], among many. Microbial

communities are also extraordinarily diverse, composed of

numerous rare OTUs, and display a rapid response to

changes in temperature, pH, and stream metabolism [16].

This also provoke taxonomic turnover in stream biofilm

communities as an ecosystem-scale response [29]. Given

this, stream biofilm communities can be employed to only

to gauge ecosystem health [28], but also its potential im-

pacts on humankind [17]. Unfortunately, the breadth and

depth of biofilm communities are also confounding factors

that can limit diagnostic and taxonomic projections, par-

ticularly with regard to bioremediation.

Region specific issues also predominate [4]. For example,

biofilm communities are quite sensitive to changes in land

use [15]. This is important in that both the Fayetteville and

Barnett shale catchments display pre-existing anthropo-

genic disturbances [26] that can easily confound more

focused analyses regarding the impacts of UNG-activity. In

addition, habitat and water chemistry data collected prior

to the onset of fracking are necessary baselines from which

potential impacts on both freshwater streams and their

biofilm communities can be assessed. These data were

lacking herein, and similarly lacking in other studies

that employed biofilm communities as a means to adju-

dicate fracking activities [24]. As a result, the statistical

analyses employed to contrast these sites were similarly

limited.

Unfortunately, necessary data are often unavailable at

the national level, and a mandate for their collection has

not as yet been established in state or federal manage-

ment plans. This, in turn, cripples the development of

conservation measures that may promote the sustain-

ability of stream ecosystems. Resource managers require

these data so as to guide local development projects,

and to reduce possible environmental effects particularly

in light of the interactive effects produced by multiple

stressors in a warming climate [12]. The evaluation of

anthropogenic impacts, whether fracking or otherwise,

also depends upon rigorous statistical analyses con-

ducted in a comparative manner (as herein). This, too, is

often lacking with regard to those projects that attempt

to recognize and define biodiversity elements, or con-

serve and restore habitats.

Our data mirror similar conditions found in other

systems with long-term disturbance, such as elevated

conductance/lack of Spartobacteria, and elevated nitrogen/

elevated Cyanobacteria, and these, in turn, suggest potential

impacts from UNG wells. Our data are also confounded by

pre-existing conditions such as development of pasture and

the extent of urbanization, as well as naturally occurring

aspects such as stream order that likewise influence the

constituents of biofilm communities, and biodiversity in

general. These limitations argue for an a priori selection of

pre- versus post-impact study sites, in that a variety of

anthropogenic endeavors can drive biofilm communities in

concurrent directions and it is difficult if not impossible to

separate these effects a posteriori. The complexities of

anthropogenic/environmental interactions also necessitate

the development of a rigorous statistical framework, one

within which variability can be tested among- and between-

groups. This study provides a set of guidelines with regard

to study design that can avoid the former, while establishing

a strong statistical framework for the latter.

Methods

Sampling sites and environmental data for catchments

Eight sites from an ongoing stream ecology project [19, 20]

(Fig. 1b, c, d) were assigned to ‘Group’ using two
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parameters that relate to UNG-well activity: ‘well dens-

ity’ and ‘inverse flow length’ (IFL). ‘Well density’ is de-

fined as the number of UNG well sites within a 1-km2

radius (=catchment area), whereas ‘IFL’ represents the

length of flow from each well site to the stream chan-

nel, corrected for slope, and calculated for wells up-

stream of each sampling location via the flow length

tool in the ‘Spatial Analyst Toolkit’ of ArcGIS [19]. The

inverse of each flow length was summed across all well

sites for each catchment area, such that wells more

proximal had a higher value that corresponded to a

greater potential effect. Sites with an IFL < 0.25 and

Well Density (no./km2) < 0.5 were scored as ‘1,’ and

designated as a ‘minimally-impacted catchment zone’

(MICZ), whereas those with an IFL ≥ 0.25 and a Well

Density ≥ 0.5 were scored as ‘2’ and grouped as a ‘po-

tentially-impacted catchment zone’ (PICZ).

We characterized ten variables distributed across three

categories at each site so as to ascertain if designated

Groups differed with regard to environmental or an-

thropogenic factors that could, in turn, affect microbial

communities. The first category related to stream morph-

ology and employed four variables (i.e., ‘elevation,’ ‘stream

order,’ ‘%-slope,’ and ‘watershed area’). The second utilized

three variables that summarized anthropogenic land use

(i.e., ‘%-forest,’ ‘%-pasture,’ and ‘%-urban’). The third

recorded three water-chemistry parameters (i.e., ‘total

nitrogen,’ ‘total phosphorus,’ and ‘conductivity’) deemed

important in gauging relationships between stream metab-

olism and bacterial communities [19]. Abundance of nu-

trients was measured as μg/L, whereas dissolved salt/ions

was in microSiemens (uS)/cm, with higher values signal-

ing an elevated presence of ions.

Biofilm collection, DNA extraction, and Illumina

sequencing

At each site, a pool was identified peripheral to the

greatest stream flow and a biofilm-covered rock was

then selected at downstream (lower) and upstream

(upper) boundaries and scrubbed with a sterile Nasco

Whirl-Pak Speci-Sponge™. Sponges were immediately

re-sealed in the sterile Whirl-Pak and placed onto dry

ice for transport to the lab where they were stored at −80°C

until processed. For DNA extraction, 20 ml of phosphate

buffered saline solution (PBS; 137 mM NaCl, 2.7 mM KCl,

4.3 mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4) was

added to each sample, and the sponge squeezed

manually for 5 min to suspend biofilm. Suspensions were

transferred to individual centrifuge tubes and pelleted by

centrifugation (8000 g for 20 min), with biofilm quantified

via wet weight (mg). Standard laboratory protocols

were used for all procedures to prevent sample

contamination.

DNA from pelleted biofilm was extracted for all 16

samples (2 per site) using a MOBIO commercial kit

(PowerBiofilm® DNA Isolation Kit) following manufac-

turer’s instructions. DNA was quantified (ng/ul) using a

Qubit 2.0 Fluorometer (Invitrogen®). Extractions were sub-

jected to PCR using primers that amplified the hyper-

variable V4 region of the 16S structural subunit rRNA

gene [37]. Multiplexed 16S metagenomic libraries were

constructed using standard Illumina protocols, and were

sequenced on an Illumina MiSeq platform. Raw Illumina

reads were de-multiplexed (MiSeq Reporter software™)

and downloaded from the Illumina BaseSpace® cloud.

Bioinformatics

Sequences were trimmed to 251 bp and quality filtered

at an expected error of <1% using USEARCH v8.0 [38].

A pipeline developed by the Brazilian Microbiome Pro-

ject [39] was employed to correct any Illumina formatting

issues for subsequent analyses in QIIME v1.7 [40]. OTUs

were selected with the UCLUST method (as implemented

in QIIME) and taxonomy assigned using the Greengenes

16S rRNA gene database [22], with subsequent conversion

into an OTU table (QIIME).

Univariate analyses

Prior to analyses, nine variables were transformed:

Percentages (N = 4) were arcsin transformed to ra-

dians; areas (N = 1) reduced to square root; and quan-

titative variables (N = 5) transformed to log10. ‘Stream

order’ was evaluated as recorded. Each category was

test by Group using a 1-way analysis of variance in R

[41], with statistical significance assigned according to

Bonferroni-corrected probabilities.

Shannon entropy was computed in QIIME to gauge

the number of unique bacterial taxa in each commu-

nity (i.e., richness) and the evenness of their distribu-

tions, with results compared by Group using a 1-way

ANOVA in R. Species richness (with repeated sub-

sampling) was then plotted by site as rarefaction

curves, so as to estimate whether sampling at each site

was of sufficient depth to accurately characterize

biofilm communities. Analyses were carried out with

the default number of Monte-Carlo permutations (N =

999) at a p-value of 0.05. UniFrac analyses (in QIIME)

were used to derive beta (or between sample) diver-

sity estimates using both unweighted data (i.e., OTU

presence/absence) and weighted (by relative abun-

dance) [42]. To identify potential bioindicators, a

heat map was generated in QIIME using the 20-most

abundant taxonomic classes of bacteria. Potential

bioindicators were then identified and compared by

Group using a 1-Way ANOVA in R with Bonferroni-

corrected probabilities.
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Multivariate analyses

A principal components analysis (PCA) was performed

using a matrix of correlations among sites based on the

ten variables across the three categories (i.e., stream morph-

ology, anthropogenic land use, and stream chemistry) using

library “prcomp” in R [41]. The first two principal compo-

nents depicted relationships among the eight sites (i.e., PC-

scores) and were contrasted against principal component

loadings for the variables. Both scores and loading were

visualized in a single plot (hence the term, ‘biplot’), so as to

promote the interpretation of the component axes in rela-

tion to the variables. Those in the biplot were represented

as vectors, and the angle at their origin(s) reflects pairwise

correlations (i.e., the more acute the angle, the greater the

correlation). We then compared the first six principal

components by Group in R, using a 1-way ANOVA with

Bonferroni-corrected probabilities.

A principal component analysis was also used to con-

trast densities of the 20-most abundant bacterial classes

among study sites (using library “prcomp” in R [41]),

with densities represented as arcsin-transformed percent-

ages. The first two principal components depicted rela-

tionships among the eight sites (i.e., PC-scores) and were

contrasted against principal component loadings for the

20-most abundant classes.

The biomarker discovery algorithm LEfSe (Linear dis-

criminant analysis Effect Size) was used to designate

potential bioindicators among biofilm communities [43].

The program employs a linear discriminant analysis (LDA)

with effect size estimated by linking output to the level-6

(Kingdom to Genus) taxonomic summary in QIIME.

Parameters employed were: an alpha value of 0.05 for

the Kruskal-Wallis (KW) test, an LDA score threshold

of >2.7, and a pairwise Group-comparison. Initially,

LEfSe conducts the KW rank-sum test as a means of

detecting OTUs that differed significantly in abun-

dances between Groups. Biological significance was

then investigated with the (unpaired) Wilcoxon rank-

sum test. Finally, LDA was then employed to evaluate

each OTU with an effect size > 2.7, and with biological

indicator gauged via habitat and metabolism.
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