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Abstract

We propose a working hypothesis supported by numerical simulations that brain networks

evolve based on the principle of the maximization of their internal information flow capacity.

We find that synchronous behavior and capacity of information flow of the evolved networks

reproduce well the same behaviors observed in the brain dynamical networks of Caenor-

habditis elegans and humans, networks of Hindmarsh-Rose neurons with graphs given by

these brain networks. We make a strong case to verify our hypothesis by showing that the

neural networks with the closest graph distance to the brain networks of Caenorhabditis ele-

gans and humans are the Hindmarsh-Rose neural networks evolved with coupling

strengths that maximize information flow capacity. Surprisingly, we find that global neural

synchronization levels decrease during brain evolution, reflecting on an underlying global

no Hebbian-like evolution process, which is driven by no Hebbian-like learning behaviors

for some of the clusters during evolution, and Hebbian-like learning rules for clusters where

neurons increase their synchronization.

Author Summary

The study of the function of the brain is of primordial importance in neuroscience. Several

brain models have been studied so far that take into account higher level functions of the

external stimulus and the behavioral response attributed to ensembles of neurons of corti-

cal areas. If the brain learns by maximizing the Mutual Information between stimuli and

response, or by updating the internal model of probabilities by using Bayesian techniques,

or by minimizing the free-energy, it provides little insight about the dynamical mecha-

nisms appearing in brain networks when evolved based on such principles. In our work we

propose a working hypothesis supported by numerical simulations that brain dynamical

networks evolve based on the principle of the maximization of their internal information

flow capacity, i.e. the upper bound for the information transferred per time unit between

any two nodes. We make a strong case to verify our hypothesis by showing that the neural

networks with the closest spectral graph distance to the brain networks of Caenorhabditis

elegans and humans are the Hindmarsh-Rose neural networks evolved with coupling
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strengths that maximize information flow capacity. We also find that synchronous behav-

ior and capacity of information flow of the evolved neural networks reproduce well the

same behaviors observed in the brain dynamical networks of Caenorhabditis elegans and

humans. Finally, we find that global neural synchronization levels decrease during brain

network evolution.

Introduction

A plethora of phenomena in nature can be effectively described by networks. Neuroscientists

have used tools for the analysis of complex networks that help realize even more deeply the

functionality and structure of the brain. It was found that many aspects of brain network struc-

tures are typical of a wide range of non-neural or non-biological complex networks [1, 2]. One

of the main findings in neuroscience is the modular organization of the brain, which in turn

implies an inherent parallel nature of brain computations [1]. Modular processors have to be

sufficiently isolated and dynamically differentiated to achieve independent computations, but

also globally connected to be integrated in coherent functions [1]. It has been revealed that the

cortical network is a hierarchical and clustered network with a complex connectivity [3]. A

possible network description for this modular organization is that brain networks may be

small-world structured [4] with properties similar to many other complex networks [5]. This

viewpoint has been driven by the systematic finding of small-world topology in a wide range of

human brain networks derived from structural [4], functional [6], and diffusion tensor MRI

[7] studies. Small-world topology has also been identified at the cellular-network scale in func-

tional cortical neural circuits in mammals [8] and also in the nervous system of the nematode

Caenorhabditis elegans (C.elegans) [9]. Moreover, this topology seems to be relevant for the

brain function because it is affected by diseases [10], normal ageing, and by pharmacological

blockade of dopamine neurotransmission [11].

Synchronization is ubiquitous in nature. Insightful findings regarding synchronization in

complex networks were reviewed recently in Ref. [12]. Recently, synchronization in complex

modular or clustered networks has been investigated [13, 14]. It appears as the interplay

between the intrinsic dynamics associated to the nodes of the network and its graph topology

and connecting functions. In this work, synchronization will be considered as a mean to quan-

tify functional behaviors of the brain dynamical networks (BDNs) studied. By BDN we mean a

network that represents the connectome equipped with neural dynamics for its nodes to

account for their time evolution.

Mathematical and computational approaches have a long tradition traced back to the early

mathematical theories of perception [15] and of current integration by a neural cell membrane

[16]. Hebb’s idea on assembly formation [17] inspired simulations on the largest computers

available at that time (1956) [18] to understand the relation between neural connectivity

strength and response, i.e. behavior. It is a learning rule which proposes an explanation for the

adaptation of neurons during the learning process. The simultaneous activation of pairs of neu-

rons leads to pronounced increases in their synaptic strength. There is also the possibility of

many other kinds of learning [19]. In this work we find evidence of Hebbian-like and no Heb-

bian-like learning rules characterized by the relationship between the addition of synapses and

the increase or decay in the synchronization behavior of neurons in the evolved BDNs.

Several brain models have been studied so far that do not take into account particular

behaviors of isolated neurons, but higher level functions of the external stimulus and the

behavioral response attributed to ensembles of neurons of cortical areas. There are two classes:
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Those based on collective functional dynamics of local groups of neurons, such as the Wilson-

Cowan model for the cortical and thalamic nervous tissue [20], and those based on the condi-

tional probabilities (as well as information and mutual information (MI)) of stimuli and

responses, prominent examples of which are the Bayesian brain hypothesis [21] and the info-

max theory [22]. Recently, it was shown that most of the probabilistic brain models can be uni-

fied under a single free-energy principle [23], the one that interprets the brain as a system that

tries to minimize surprises of the sensations from the world.

If the brain learns by maximizing the MI between stimuli and response [22], or by updating

the internal model of probabilities by using Bayesian techniques [21], or by minimizing the free-

energy [23], the surprise of the response provides little insight about the dynamical mechanisms

appearing in a brain network when it evolves based on such principles. The drawback however

of the probabilistic brain models is that they describe little about the underlying dynamical struc-

ture of what is really happening in the neural level and the representation of the stimuli [24].

For deterministic systems with correlations, an appropriate quantity for measuring the

transfer of information is the Mutual Information Rate (MIR), the MI per time unit. In

Ref. [25], the authors have developed alternative methods to overcome problems that stem

from the definition of probabilities from time series and derived an upper bound for the MIR,

Ic, between two nodes of a complex dynamical network from time averages that do not rely on

probabilities, but instead on the two largest Lyapunov exponents l1, l2 of the subspace of the

network formed by the two nodes (see Eq (10) in Materials and Methods). In our study, Ic
stands for the upper bound for the information transferred per time unit between any two

nodes of the BDN, what represents the information flow capacity of the BDN. We discuss

more on these in Materials and Methods, Section Upper Bound for MIR.

Inspired by the infomax theory and by theoretical studies that proposes that the maximiza-

tion of information transmission between subsystems can be used as a principle for under-

standing the development and evolution of complex brain networks (see Ref. [2] and

references therein, and Ref. [26]) and, aiming at elucidating the microscopic dynamic mecha-

nisms associated to the evolution of brain networks, we propose a working hypothesis and,

provide evidence that a brain dynamical network may evolve based on the maximization of the

information flow capacity it can internally handle at each step of its evolution process, i.e. a

new inter-neuron connection is established if it leads to a subsequent increase of the informa-

tion flow capacity of the new brain circuitry. Our hypothesis is based on the internal neural

network dynamics and on a plausible model for brain structure per se without the need to

resort to probabilistic models based on the external influence in the brain and its response.

We have been able to show that our evolved BDNs present similar synchronization and

information flow capacity behaviors with those found for the simulated dynamical networks for

the brain structure of the C.elegans and humans. Moreover, we show that BDNs evolved with

coupling strengths that maximize the information flow capacity are the ones with the smallest

spectral graph distance from the BDNs of the C.elegans and humans, and that, during the grow-

ing process, their information flow capacity increase is related to moderately low amounts of

global neural synchronization. This work provides ample evidence that brain networks may

grow by maximizing the capacity of information flow they can internally handle, driven by

global no Hebbian-like evolution processes, according to which the addition of interconnec-

tions between clusters during the evolution process leads to a decrease in the global synchroni-

zation level of the BDN. This behavior is accompanied by a similar no Hebbian-like learning

process for neurons in some of the clusters and by Hebbian-like processes for neurons in the

remaining clusters, leading to an increase in the synchronization level between these neurons

during brain network evolution. Effectively, the no Hebbian-like mechanism is akin to the

unlearning anti-Hebbian mechanism of Crick and Mitchison [27] that refers to the elimination
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of unnecessary connections to prevent overload and to render the network more efficient. In

our evolution we do not delete links. However, both mechanisms lead to a decrease of synchro-

nization and to more efficient networks, being in our case the evolved networks able to maxi-

mize their information flow capacity. Global synchronization takes into consideration the

synchronous behavior of all neurons in the BDN whereas local synchronization of neurons in a

cluster of the BDNs. Finally, our work shows that optimising information flow capacity leads to

evolved networks that are heterogeneous, in accordance with the line of research in Ref. [2],

where the authors report on a mathematical model for the evolution of heterogeneous modules

in the brain based on the maximization of bidirectional information flow transmission.

Results

In this work we are interested in understanding the relation between synchronization and

information flow capacity in BDNs constructed by connecting electrically and chemically,

Hindmarsh-Rose (HR) neurons (see Materials and Methods, Subsection Hindmarsh-Rose

Neural Model for Brain Dynamics). Their topologies are given by the C.elegans and human

brain networks, and those that are the result of an evolutionary process that maximizes Ic based

on interconnected small-world communities. Our intention is not to strictly model the C.ele-

gans and human brain neural dynamics but merely to use the topology of their connectomes to

study the corresponding dynamic brain networks and to compare between the results obtained

from these cases. In the following, global synchronization measurement (denoted by ρ) quanti-

fies the synchronous behavior of all neurons of the network whereas local synchronization

(denoted by ρci) quantifies the amount of synchronization between ensembles of neurons form-

ing the i-th cluster within the BDN. Both are quantified by the order parameter defined in

Materials and Methods, Subsection Synchronization Measures in BDNs.

C.elegans BDN

We present in panels (A), (B) of Fig 1 the global synchronization measure ρ and upper bound of

information flow Ic for the BDN of the C.elegans in the parameter space of chemical coupling gn
in [0, 2] and electrical coupling gl in [0, 2]. We refer the reader to Materials andMethods, Subsec-

tion C.elegansData. A direct comparison between the two panels reveals a number of conclu-

sions for the different parameter space regions. At first, for relatively high chemical and electrical

couplings almost full global synchronization can be achieved (yellow and red regions in Fig 1

(A)). For the same region, panel (B) shows an almost absence of capability of information trans-

mission as the upper bound for MIR, Ic� 0 (dark blue region). High levels of global synchroniza-

tion accompanied by low values of Ic indicate that not only neural activities are similar but also

they have very low entropy since both Lyapunov exponents λ1, λ2 are practically zero leading to

their difference Ic� 0 (see Materials and Methods, Subsection Upper Bound for MIR). Second,

for chemical couplings smaller than 0.3 (i.e. gn 2 [0,0.3]) and electrical couplings gl 2 [0, 2], we

observe a multitude of different functional behaviors: There are regions of high synchronization

(red region in panel (A)) and low Ic (blue region in panel (B)) and others with exactly the oppo-

site behavior (i.e. low global synchronization accompanied by high information flow capacity).

These different functional behaviors will become even more evident in Fig 2, where we plot the

regions between the left vertical axes and the white dotted lines of Fig 1 in a finer resolution.

Our findings suggest that for the C.elegans BDN, for most of the chemical and electrical cou-

plings, global brain synchronization is roughly speaking inversely related to the information

flow capacity, Ic. As we shall see in Materials and Methods, Section Similarities between C.ele-

gans and human BDNs for a more detailed analysis of the C.elegans and human BDNs, high

synchronization as depicted by ρ implies small information flow capacity. The relation between
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ρ and Ic can be better understood in the basis that typically ρ ∝ 1/λ2, where λ2 is the second

largest Lyapunov exponent of the BDN, for the so-called non-excitatory networks [28, 29]. The

non-excitatory character is expected to be prominent when the electrical coupling has a domi-

nant contribution to the behavior of the network with respect to the chemical, a situation that

promotes global neural synchronization.

Human BDNs

We have performed a similar study for the global synchronization ρ and upper bound of infor-

mation flow Ic for the human brain networks in Materials and Methods, Subsection Human

Subjects Data, shown in Fig 1(C) and 1(D). Particularly, we first prepared parameter spaces for

all six human subject BDNs with the same coupling ranges with those of the first two panels of

the C.elegans and then computed their average, presented in Fig 1(C) and 1(D). The averaged ρ

and Ic quantities from the six subjects are indicated by hρi6 and hIci6, respectively.
A direct comparison between panels (C) and (D) of Fig 1 for the humans reveals a number

of parameter space regions associated to different functional behaviors, similar to those

Fig 1. Results for the global synchronization and information flow capacity properties for theC.elegans and averaged human BDNs. Parameter
space for the global synchronization ρ in panel (A) and for the upper bound for MIR, Ic, in panel (B) for the C.elegans BDN. Panels (C) and (D) are similar but
for the averaged global synchronization hρi6 and averaged upper bound for MIR, hIci6 for the six human BDNs. Here, gn is the chemical and gl the electrical
coupling of Eq (2). The regions between the left vertical axes and white dotted lines are replotted in Fig 2 in a finer resolution.

doi:10.1371/journal.pcbi.1004372.g001
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observed for the C.elegans. For relatively high chemical and electrical couplings almost full

global synchronization is achieved (yellow and red regions in Fig 1(C)) since hρi6 � 1. For the

same region, Fig 1(D) shows an almost absence of information flow capacity as hIci6 � 0, the

reason being the same as for the C.elegans BDN. For chemical couplings smaller than 0.2 (i.e.

gn 2 [0,0.2]) and electrical couplings gl 2 [0, 2] we observe regions of high synchronization (red

regions in Fig 1(C)) and low hIci6 (blue region in Fig 1(D)), as well as others with exactly the

opposite property, having low synchronization and large hIci6.
In order to look deeper into the details of the functional behaviors of these BDNs and, to

understand the structural and functional similarities between them, we study in Materials and

Methods, Section Similarities between C.elegans and human BDNs, zoom-in plots of the previ-

ous parameter spaces.

Similarities between C.elegans and Human BDNs

There has been enormous research devoted on the C.elegans worm which has revealed its abil-

ity to learn about mechano, chemo and thermosensory inputs and stimuli [30, 31]. It was also

Fig 2. Magnification for the global synchronization and information flow capacity properties of Fig 1. Panel (A): Parameter space for ρ and panel (B)
for Ic for theC.elegans BDN. Panel (C): Similarly for hρi6 and panel (D) for the averaged upper bound for MIR, hIci6, of the six human BDNs. Here, gn is the
chemical and gl the electrical coupling of Eq (2).

doi:10.1371/journal.pcbi.1004372.g002
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shown that its neural system has the ability to distinguish between tastes, odours or any indica-

tion related to the presence or absence of food. It also shows different kinds of learning behav-

ior, such as associative (classical conditioning and differential classical conditioning), and non-

associative forms of learning, such as habituation and dishabituation [32]. These properties are

reminiscent of the human brain ability to adapt to different stimuli and environments.

In Fig 2, we present a finer resolution version of the parameter spaces of Fig 1 for the C.elegans

and humans. They allow us to reveal the extraordinary similarity on the functional level, the

global synchronization and Ic patterns between the C.elegans and human BDNs. In these plots,

wherever we observe high synchronization as evidenced by orange and red regions in panel (A)

for the C.elegans and (C) for the human brain network, the upper bound for MIR, Ic, that stands

for the internal information flow capacity of the BDN, is small (blue region) and vice-versa.

Since the C.elegans brain connectivity network is about four times smaller in size than the

human BDNs [33] studied here, we should expect that the global synchronization and upper

bound for MIR patterns could occur for different ranges of chemical and electrical couplings as

compared to those of Fig 1 (see for example Ref. [34]). Therefore, a rescaling of the coupling

strengths was employed to allow for both BDNs to have the possibility to produce equivalent

dynamical behaviors. This rescaling is described in Materials andMethods, Subsection Rescaling

of Chemical and Electrical Couplings for Parameter Spaces of Networks with Different Eigen-

value Spectra. It is worth noting that there is an optimal coupling range for both BDNs that

allows for large information flow capacity in the brain networks (orange and yellow regions in

panels (B), (D) of Fig 2), a coupling range that promotes moderately low global synchronization!

Functional Properties of the Model for Brain Network Evolution

In Materials and Methods, Subsection A Model for Brain Network Evolution Based on the

Maximization of Information Flow Capacity, we propose an artificial brain network evolution

model that presents important structural and functional properties of the BDNs of the C.ele-

gans and humans. It is based on the combined effect of chemical and electrical synapses and,

on a topology reminiscent of interconnected brain communities found in these BDNs. We use

chemical synapses for the communication of neurons of different clusters (inter-cluster con-

nections) and electrical for the communication of neurons within each cluster (intra-cluster

connections).

Here, we compare the functional properties of this brain network evolution model with

those of the C.elegans and humans. By functional we mean the properties of the dynamics of

the BDN such as local, global synchronization and information flow capacity. Particularly, we

report on the similarities we found for the functional properties of the BDNs of the C.elegans

and humans, and for those of the proposed model for brain network evolution.

To support further the validity of the presented results for the model for brain network evo-

lution and to show its independence on the particular initial small-world cluster configuration,

we computed its parameter spaces averaging over the functional measurements obtained from

five different initial small-world cluster configurations (for a discussion about the creation of

small-world networks or clusters see Materials and Methods, Subsection Analysis of Networks

and Communities). In all cases, we used the same evolution process as described in Materials

and Methods, Subsection A Model for Brain Network Evolution Based on the Maximization of

Information Flow Capacity. The results of this study are shown in Fig 3, where hρi5 stands for
the average of the global synchronization of the evolved BDNs for the five realizations and

hmMIRi5 for the average maximal value of the MIR for the same realizations. We first provide

evidence in panel (A) and (C) to (H) that the finally evolved BDN of small-world clusters cap-

tures similar local and global synchronization properties to those of the C.elegans BDN. The
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local synchronization ρci of the i-th community (Fig 3(C)–3(H)) also reproduces similarly the

global synchronization patterns of Fig 2(A) and 2(C) for the C.elegans and human BDNs.

Comparing these panels, we conclude that the averaged synchronization measure hρi5 of the
brain network evolution model (Fig 3(A)) attains almost similar values in the same coupling

regions to those of the C.elegans in Fig 2(A). The different ranges on the horizontal axes of the

chemical coupling strength gn can be explained by the fact that the finally evolved network con-

sists of 60 neurons whereas the C.elegans of 277 neurons (for more details see Materials and

Methods, Subsection Rescaling of Chemical and Electrical Couplings for Parameter Spaces of

Networks with Different Eigenvalue Spectra).

Fig 3. Results for the global and local synchronization, and information flow capacity properties for the evolved networks of Materials and
Methods, Subsection AModel for Brain Network Evolution Based on the Maximization of Information Flow Capacity. Panel (A): Parameter space for
the synchronization hρi5. Panel (B): Parameter space for the averaged upper bound for MIR, hmMIRi5, from the five realizations of a network of 60 neurons
with six, equally sized, small-world clusters. CaseA of high synchronization and low information flow capacity is denoted by▲ and case B of low
synchronization and high information flow capacity by ●. Panels (C) to (H) are plots for the local synchronization ρci of the six communities of the C.elegans

brain network. To be compared with panel (A). Here, gn is the chemical and gl the electrical coupling of Eq (2).

doi:10.1371/journal.pcbi.1004372.g003
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It is remarkable that the finally evolved BDN exhibits almost identical synchronization and

information flow capacity features as the BDN of the C.elegans and humans for almost all cou-

pling ranges considered. Particularly, focusing on panels (A), (B) (for the C.elegans) and (C),

(D) (for the humans) of Fig 2 and, on (A), (B) of Fig 3 (for the brain network evolution model),

we observe an almost identical pattern of global synchronization and information flow capacity

as depicted by Ic and its averages. Again, here we have used the rescaling in Materials and

Methods, Subsection Rescaling of Chemical and Electrical Couplings for Parameter Spaces of

Networks with Different Eigenvalue Spectra, to create networks that can potentially reproduce

similar dynamical behaviors for the finally evolved BDNs, in agreement with those identified

for the C.elegans and human BDNs earlier.

The upper bound for MIR, Ic, depends on various factors, such as network topology and

connectivity patterns, coupling strengths and types (chemical, electrical), synchronicity, etc.

The values of Ic, the information flow capacity, can be comparable (or different) for networks

with different topologies. This is due to the fact that Ic is a function of the chemical and electri-

cal coupling strengths. The surprising fact is that as we evolve a network with an initial small-

world network configuration, by maximizing information flow capacity, the final network

exhibits not only similar topological (structural network characteristics) but also similar func-

tional or behavioral (synchronization and upper bound for MIR) properties as those found for

the brain dynamical networks of the C.elegans and human subjects (see Materials and Methods,

Subsection Spectral Similarity of C.elegans and Human Brain Networks with those of the

Model for Brain Network Evolution).

For completeness, in S2 Fig, we present a similar analysis to the one of Fig 3 based on

Erdős-Rényi random networks (panels (A), (B)), scale-free (Barabási-Albert) (panels (C), (D))

and star topologies perturbed by 20% for the clusters of the model for brain evolution of 60

neurons and 6 small-world clusters (panels (E), (F)) and found out that the evolution model

fails to capture similar functional (local and global synchronization and, information flow

capacity patterns in the parameter spaces) as the same model equipped with small-world topol-

ogies for its clusters (see Fig 3). Here, we are interested in studying and proposing a model for

brain network evolution that is able to reproduce not only similar functional properties such as

information flow capacity and, local and global synchronization properties, but also impor-

tantly to reproduce similar structural properties for the finally evolved full brain network and

of its clusters. Based on our results so far, we show next that the initial cluster configuration

able to fulfil both requirements is the small-world cluster topology.

Spectral Similarity of C.elegans and Human Brain Networks with Those
of the Model for Brain Network Evolution

The discussion about the results of Fig 4 in Materials andMethods suggest that the evolution pro-

cess of a basic small-world clustered network is capable of generating an evolved one with similar

structural properties with those for the C.elegans and human BDNs (see Materials and Methods,

Subsection Structural Properties of the Model for Brain Network Evolution). The structural simi-

larity to the human brain network is even more remarkable if the couplings of the network to be

evolved are within the range that promotes high levels of information flow capacity and low neu-

ral synchronization, a prominent example of which is case B (for a definition and discussion

about casesA, B, see Materials and Methods, Subsection Brain Network Evolution Promotes

Global no Hebbian-like and, Local Hebbian-like and no Hebbian-like Evolution Learning).

Here we study how close the normalized Laplacian spectral plots of the networks considered

in Fig 4(Q) are from those of evolved BDNs. Particularly, we examined the spectral similarity by

comparing spectral plots and computing their average Euclidean distance following Ref. [35].

Do Brain Networks Evolve by Maximizing Information Flow Capacity?
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Fig 4. Structural properties and normalized Laplacian spectra of the brain networks considered in this study. Panels (A) to (D): Plot of the pdf of the

normalized degrees �k i (panel (A)), plot of the clustering coefficientCCð�k iÞ (panel (B)), plot of the average normalized degree knnð�k iÞ of the neighbors of nodes

with normalized degree �k i (panel (C)) and the network with its distinct clusters and communities given by different colors for the caseA of high
synchronization and low mMIR of the model for brain network evolution of 60 neurons and 6 clusters. Panels (E) to (H): Same as in panels (A) to (D) but for
the case B of low synchronization and high mMIR of the samemodel. Panels (I) to (L): Same as in panels (A) to (D) but for the C.elegans brain network.
Panels (M) to (P): Same as in panels (A) to (D) but for the human subject A1 brain network. In the plots of the second column, we show with blue dashed lines

the exponential dependence of CC(�k i) to
�k i to guide the eye, where �k i is the normalized degree. It is defined as �k i ¼ ki=kmax, where ki is the node degree and

kmax is the largest node degree in the network. For the first row, kmax = 7, for the second kmax = 8, for the third kmax = 76 and for the fourth, kmax = 87. Panel (Q):
Normalized Laplacian spectra of the brain network of C.elegans (solid curve) and of the averaged over the six human subjects (dashed curve). Panel (R):
Similarly for the brain network of caseA of high synchronization and low information flow capacity (solid curve) and, for case B of low synchronization and
high information flow capacity (dashed curve) of the model for brain network evolution.

doi:10.1371/journal.pcbi.1004372.g004
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We refer the reader to Materials andMethods, Subsection Normalized Laplacian Spectra, for the

details of our computations. We compared the normalized Laplacian spectral plot of the C.ele-

gans and of the six human brain networks with the spectral plots of all finally evolved networks

of the five realizations used to compute the averaged parameter spaces of the model for brain

network evolution of Fig 3(A) and 3(B). We provide additional support by demonstrating in the

last four panels of Fig 5 results from a similar comparison between the C.elegans and humans

with a double-sized version of 120 neurons of the model for brain network evolution of the

Materials andMethods, Subsection AModel for Brain Network Evolution Based on the Maximi-

zation of Information Flow Capacity. The normalized Laplacian spectra for the C.elegans and for

the averaged over the six human BDNs are shown in Fig 4(Q). As it can be seen, both spectra

share some common features: Both show a left-skewed distribution in which the largest eigen-

value is closer to one in agreement with results in Ref. [35]. Also, the distributions show peaks

around one and the eigenvalues are scattered at the beginning of the spectra, suggesting similari-

ties in their community structure, reminiscent of their small-worldness.

Although the spectral plots of both cases of the model for brain network evolution shown in

Fig 4(R) do not exhibit all properties of the spectral plots of the C.elegans and humans of Fig 4

(Q), maybe due to the considerably smaller size of the former networks, they do exhibit inter-

esting similarities: They are both left-skewed distributions with a peak around 1.3, being closer

to 1 than to 2. We also observe low relative frequency eigenvalues at the beginning of both

spectra. Both spectral properties suggest similarities in their community structure [35] as well

(i.e. their small-worldness). This is in accordance with the spectral plots of the averaged human

and C.elegans brain networks of Fig 4(Q). We argue that this similarity comes from the small-

worldness of the communities. The close relation between the normalized Laplacian spectra of

Fig 4 suggests the existence of common underlying structural properties of the neural networks

of the C.elegans, the humans and the model for brain network evolution.

We measured the similarity between the spectral plots of the C.elegans and the averaged

human brain network with the averaged model for brain network evolution and, plot in panels

(A), (B) of Fig 5 their spectral distance D for different chemical and electrical coupling ranges.

In this framework, the closer D is to zero, the closer structurally the compared networks are. In

particular, panel (A) is the parameter space for the spectral distance between the C.elegans and

the averaged model for brain network evolution and, panel (B) is a similar plot for the spectral

distance between the averaged human brain network and the same model for brain network

evolution. We pinpoint caseA by a▲ and case B by ●.

Such results allow one to draw interesting relations between structure and function of the

proposed model for brain network evolution with the structural properties of the brain net-

works of C.elegans and humans. Panels (A) and (B) of Fig 5 already reveals that the smallest

mean spectral distance happens for the pair of chemical and electrical couplings that gives rise

to BDNs that present small amount of synchronization and high information flow capacity, in

other words to cases such as B. In contrast, one of the largest mean spectral distances was

found for caseA that promotes high amount of neural synchronization and small information

flow capacity in the brain network!

Materials and Methods

Preparation of Data for the Study of BDNs

C.elegans data. C.elegans is the most commonly used model organism for neural network

studies. It is a 1mm long soil worm with a simple nervous system that can be represented at

first by 302 neurons and about 7000 synapses [32]. Its nervous system is divided into two dis-

tinct and independent nervous systems: A large somatic nervous system with 282 neurons and
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Fig 5. Spectral distances between the network topology of theC.elegans, humans and evolved networks and, global synchronization and
information flow capacity properties for an evolved BDN of 120 neurons. Panel (A): Parameter space for the spectral distanceD between theC.elegans

brain network and the averagedmodel for brain network evolution of 60 neurons and 6 small-world clusters and, panel (B) similarly for the spectral distance
between the averaged brain network of the six human subjects and the same averaged network created by our brain network evolution.▲ denotes caseA

and ● case B, both explained in Materials and Methods, Subsection Brain Network Evolution Promotes Global no Hebbian-like and, Local Hebbian-like and
no Hebbian-like Evolution Learning Processes. Both panels to be compared with Fig 3(B). Panel (C): Parameter space for the synchronization ρ and panel
(D) for the mMIR of evolved networks using our brain network evolution process with 120 neurons. Panels (E), (F) are similar to (A), (B) for the spectral
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a small pharyngeal nervous system with only 20 neurons. Since neurons CANL/R and VC06

do not make synapses with other neurons (i.e. they are isolated), they can be removed and a

reduced connectivity brain matrix of 279 somatic neurons can be produced. We use in our

study the connectome of the large somatic nervous system found in Ref. [36] that consists of

277 neurons. We decided to use the undirected version of this adjacency matrix as we are not

concerned with the directionality of the information flow. We simulate the dynamics of each

“neuron” by a single HR neuron system given in Eq (1) and couple them by the corresponding

adjacency matrix obtained from the brain connectivity of the C.elegans using Eq (2).

We study the C.elegans nervous system in order to understand the human nervous system.

The reason is that both human and C.elegans nervous systems consist of neurons and the com-

munication or flow of information is passing through synapses that use neurotransmitters to

perform brain activity. Many of these neurotransmitters are common in humans and C.elegans

such as Glutamate, GABA, Acetylcholine and Dopamine. The genome of the C.elegans is

almost 30 times smaller than that of humans but still, encodes almost 22000 proteins. More-

over, it is almost 35% similar to that of humans.

Human subjects data. The data for the analysis of the human connectome were based on

Refs. [33, 36]. The authors report on results based on the study of five different subjects (right

handed males aged between 24 and 32) coded as A, B, C, D and E, where the first one was

examined twice giving connectomes A1, A2 with the second examination performed several

days after the first one which yielded a highly consistent regional adjacency matrix A2 to A1. In

our study, we make use of all six adjacency matrices (referring thereafter to six human subject

BDNs) to prepare averaged quantities for global synchronization and upper bound for MIR.

The diffusion spectrum imaging technique was then employed to retrieve high-resolution con-

nection matrices for all subjects. The cortical regions of their brains were then further divided

into 66 clear anatomical regions and these were individually subdivided into smaller regions of

interest (of size 1.5cm2) which finally resulted in 998 parts. These parts cover the entire cortices

of both hemispheres but do not include subcortical nodes and connections [33]. Thus, the orig-

inal adjacency matrices obtained for brain circuitry had 998 neural ensembles for all subjects.

However, during the analysis of the adjacency matrices of these subjects, we found out that all

these brain networks were disconnected and different numbers of isolated neural ensembles

(nodes) were identified for each connectome. We decided to remove the isolated nodes as they

were not connected to other neural ensembles of the connectome, and ended up with 994 for

subject A1, 987 for A2, 980 for B, 996 for C and D, and 992 for E. We also decided to use the

undirected versions of the adjacency matrices for the same reason as for the C.elegans. We sim-

ulated each neural ensemble by a single HR neuron given in Eq (1) and coupled them by the

corresponding adjacency matrix obtained from the brain connectivity using Eq (2).

Hindmarsh-Rose Neural Model for Brain Dynamics

The complexity of the circuitry of the nervous system of the human brain is still a big challenge

to be resolved as it contains about 86 billion neurons and thousands times more synapses. A

synapse is a junction between two neurons and it is a mean through which neurons communi-

cate with each other. There are electrical and chemical synapses: An electrical synapse is a

physical connection between two neurons which allows electrons to pass through neurons by a

very small gap between nerve cells. Electrical synapses are bidirectional and of a local character,

happening between neurons whose cells are close. They are believed to contribute to the

distance between theC.elegans, averaged brain network of the six human subjects and the model for brain network evolution of 120 neurons. Panels (E), (F)
to be compared with panel (D). Here, gn is the chemical and gl the electrical coupling of Eq (2).

doi:10.1371/journal.pcbi.1004372.g005
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regulation of synchronization in the brain network. In contrast, chemical synapses are special

junctions through which the axon of the pre-synaptic neuron comes close to the post-synaptic

cell membrane of another neuron or non-neural cell. In Ref. [37], the authors report on the

self-consistent gap junctions and chemical synapses in the connectome of the C.elegans. In our

work, we use both kinds of synapses.

Following Ref. [34], we endow the nodes (i.e. neurons for the c.elegans and neural ensembles

for the humans) of the networks with Hindmarsh-Rose brain dynamics [38]:

_p ¼ q� ap3 þ bp2 � nþ Iext;

_q ¼ c� dp2 � q;

_n ¼ r½sðp� p
0
Þ � n�;

ð1Þ

where p is the membrane potential, q is associated with the fast current, Na+ or K+, and n with

the slow current, for example Ca2+. The rest of the parameters are defined as a = 1, b = 3, c = 1,

d = 5, s = 4, p0 = −1.6 and Iext = 3.25 for which the system exhibits a multi-scale chaotic behav-

ior characterized as spike bursting. rmodulates the slow dynamics of the system and was set to

0.005 so that each neuron or neural ensemble be chaotic. For these parameters, the HR model

enables the spiking-bursting behavior of the membrane potential observed in experiments

made with a single neuron in vitro. It is also a relatively simple model that provides a good

qualitative description of the many different patterns empirically observed in neural activity.

We couple the HR system to create an undirected BDN of Nn neurons connected simulta-

neously by electrical (linear diffusive coupling) and chemical (nonlinear coupling) synapses:

_pi ¼ qi � ap3i þ bp2i � ni þ Iext � gnðpi � VsynÞ
X

Nn

j¼1

BijSðpjÞ � gl
X

Nn

j¼1

GijHðpjÞ;

_qi ¼ c� dp2i � qi;

_ni ¼ r½sðpi � p
0
Þ � ni�;

_� i ¼
_q ipi � _piqi
p2i þ q2i

; i ¼ 1; . . . ;Nn:

ð2Þ

In our study, _� i is the instantaneous angular frequency of the i-th neuron and ϕi is the phase

defined by the fast variables (pi,qi) of the i-th neuron. We consider H(pi) = pi and:

SðpjÞ ¼
1

1þ e�lðpj�ysynÞ
; ð3Þ

with θsyn = −0.25, λ = 10, and Vsyn = 2 to create excitatory BDNs. Eq (3) is a sigmoidal func-

tion that acts as a continuous mechanism for the activation and deactivation of the chemical

synapses and, also allows for analytical calculations of the synchronous modes and synchroni-

zation manifolds of the coupled system of Eq (2) [34]. In Eq (2), gn is the coupling strength

associated to the chemical synapses and gl to the electrical synapses. For the chosen parame-

ters, we have jpij< 2 and that (pi − Vsyn) is always negative for excitatory networks. If two

neurons are connected under an excitatory synapse then, when the presynaptic neuron spikes,

it induces the postsynaptic neuron to spike. We adopt only excitatory chemical synapses in

our analysis. We use as initial conditions for each neuron i: pi ¼ �1:30784489þ Zr
i ,

qi ¼ �7:32183132þ Zri , ni ¼ 3:35299859þ Zri and ϕi = 0, where Zr
i is a uniformly distributed

random number in [0,0.5] for all i = 1, . . .,Nn, following Ref. [34]. These initial conditions

place the trajectory quickly in the attractor of the dynamics and thus, there is less need to con-

sider longer transients.
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Gij accounts for the way neurons are electrically (diffusively) coupled and it is a Laplacian

matrix (i.e. Gij = Kij − Aij, where A is the binary adjacency matrix of the electrical connections

and K is the degree identity matrix based on A), and so
PNn

j¼1
Gij ¼ 0. By a binary adjacency

matrix, we mean an adjacency matrix with entries either 0 (no connection) or 1 (connection).

Bij is a binary adjacency matrix and describes how the neurons are chemically connected and

therefore its diagonal elements are equal to 0, giving thus
PNn

j¼1
Bij ¼ ki, where ki is the degree

of the i-th neuron, i.e. it represents the number of chemical links that neuron i receives from all

other j neurons in the network. A positive (i.e. 1) off-diagonal value in both matrices A, B in

row i and column jmeans that neuron i perturbs neuron j with an intensity given by glGij (elec-

trical diffusive coupling) or gnBij (chemical excitatory coupling), respectively. Therefore, the

binary adjacency matrices C of the BDNs considered in this work are given by:

C ¼ Aþ B:

Numerical Simulations Details

We numerically integrated Eq (2) in Fortran 90 using the Euler integration method (order one)

with time step δt = 0.01. We decided to do so to reduce the numerical complexity and CPU

time of the required simulations to feasible levels as a preliminary comparison of trajectories

computed for the same parameters (i.e. δt, initial conditions, etc.) with integration methods of

order 2, 3 and 4, revealed similar results.

We evolve the dynamics of the brain networks and calculate their two largest Lyapunov

exponents λ1, λ2 for the estimation of the upper bound for MIR, Ic. We use the well-known

method of Refs. [39, 40] to compute the Lyapunov exponents needed for the estimation of the

upper bound Ic for MIR (see also Materials and Methods, Subsection Upper Bound for MIR).

The numerical integration of the HR system of Eq (2) for the C.elegans and human BDNs was

performed for the final integration time tf = 5000 and the computation of the different quanti-

ties such as the order parameter ρ of Materials and Methods, Subsection Synchronization Mea-

sures in BDNs and the Lyapunov exponents, starts after the transient time tt = 300 to make

sure that orbits converged to the attractor of the dynamics. The same parameters for the model

of brain network evolution of Materials and Methods, Subsection A Model for Brain Network

Evolution Based on the Maximization of Information Flow Capacity were set to tf = 2500 and tt
= 300 to reduce the numerical complexity and CPU time to feasible levels, retaining similar

results. We have been careful to check that using exactly the same values as for the C.elegans

and humans, the conclusions were practically the same.

AModel for Brain Network Evolution Based on the Maximization of
Information Flow Capacity

In this work we propose an artificial evolution model for brain network connectivity that cap-

tures important structural and functional properties of the BDNs of the C.elegans and humans.

Our idea is reminiscent of modular processors that are sufficiently isolated and dynamically

differentiated to achieve independent computations, but also globally connected to be inte-

grated in coherent functions [1].

The model is based on the consideration of the combined effect of chemical and electrical syn-

apses between neurons based on a topology reminiscent of interconnected brain network com-

munities found in the BDNs of C.elegans and humans. In this study, we consider chemical

synapses solely for the communication of neurons of different clusters of the network
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(inter-cluster connections) and electrical synapses for the communication of neurons within

each cluster (intra-cluster connections). This idea comes from the biological local and non-local

nature of these connections.

Particularly, we consider a starting network topology for brain network evolution, where Nc

clusters of electrically coupled neurons are connected in a closed ring as shown in S1 Fig of the

Supporting Information. We endow each cluster with a small-world topology [9] as this is

what we found to be more plausible to happen on the brain networks of the C.elegans and

humans (see Subsection. Analysis of Networks and Communities in Materials and Methods).

We also use in our evolution model, for simplicity but this is not mandatory, clusters of the

same number of neurons. We denote the total amount of neurons in the network by Nn. Each

small-world cluster is connected by an inter-cluster connection with its two nearest neighbour

clusters by only chemical excitatory connections. In S1 Fig of the Supporting Information, one

can see such an example of a small-world network topology that comprises Nc = 6 clusters and

Nn = 60 neurons, where the red links denote the chemical inter-cluster connections and black

the electrical intra-cluster connections. For this model network, we subsequently compute the

two largest Lyapunov exponents λ1,λ2 of the BDNs following Refs. [39, 40] to estimate the

upper bound Ic = λ1 − λ2 for the MIR of the network, i.e. the maximum amount of information

per time unit that can be exchanged between the neurons of the basic (not yet evolved) net-

work, aka its information flow capacity (for the details see Subsection. Upper Bound for MIR

in Materials and Methods).

We then evolve the starting network, such as the one in S1 Fig, by adding new chemical

excitatory inter-cluster connections to simulate the creation of new chemical synapses between

neurons of different clusters. The electrical connections, topology and the values of the chemi-

cal and electrical coupling strengths are not modified during the evolution process. We adopt

the following evolutionary rule to imitate brain plasticity [19]: If the newly added inter-cluster

chemical connection leads to an increase of Ic prior to the addition, the new synapse is retained.

If, instead, it is found not to increase Ic then it is deleted from the network and the random

search for another one starts, being this procedure iterative. We choose the nodes of the differ-

ent small-world clusters so that to simulate the addition of new inter-cluster connections in a

random fashion (i.e. the candidate links are randomly chosen from a uniform distribution).

The iterative procedure is repeated until the maximum number of possible pairs of neurons

from different clusters is exhausted. We denote by mMIR the value of Ic of the finally evolved

BDN which is always bigger or equal than the Ic of the starting BDN. For different values of the

coupling strengths, mMIR can be achieved for different numbers of added interconnections. In

all cases studied, we also compute the global synchronization measure ρ of the finally evolved

BDN (for the details, see Materials and Methods, Subsection Synchronization Measures in

BDNs) to allow for direct comparisons with mMIR and for the identification of relations

between synchronization and information flow capacity in the BDNs.

Rescaling of Chemical and Electrical Couplings for Parameter Spaces of
Networks with Different Eigenvalue Spectra

Following Ref. [34], a rough estimation on the range of chemical and electrical couplings based

on those used for the parameter space of another network that is capable of reproducing similar

synchronous behaviors [28] and similar amounts of Kolmogorov-Sinai entropy [29], can be

computed as following: Suppose we have produced a parameter space such as those of Fig 2

showing behaviors of the BDN of the C.elegans as a function of gn and gl. Let us denote the

maximum electrical coupling as gCl , the maximum chemical as gCn , the smallest positive eigen-

value of the Laplacian matrix of the electrical connections as oC

m and the average degree of the
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chemical connections as �dC. Suppose now we want to compute a similar parameter space for

another BDN. Let us denote by gmax

l , gmax

n , omax

m and �dmax the corresponding values of the new

parameter space. Then, for the new maximum couplings we have:

gmax
n ¼

�dC

�dmax

� �

gCn ðchemical couplingÞ; ð4Þ

gmax
l ¼ oC

m

omax
m

� �

gCl ðelectrical couplingÞ: ð5Þ

To arrive at Eqs (4) and (5) using the results of Ref. [34], we have assumed that a network with

an average degree �d for its chemical connections behaves similarly to a network with the same

degree for its chemical connections.

Eqs (4) and (5) provide a rough estimation on the maximum coupling strengths that can be

used for the new parameter spaces. S1 Table presents ωm, �d , g
max

n and gmax

l for the different

BDNs considered in our work. Based on these rough predictions, we then identified as best

matching ranges, those depicted in the figures of the paper. Based on the maximum values of

the parameter space ranges of Fig 2(A) for the C.elegans (gCn ¼ 0:3 and gCl ¼ 2), we get for the

average humans gmax

n ¼ 0:21 and gmax

l ¼ 1:71, in good agreement with the maximum values of

the ranges in Fig 2(C) and 2(D). For the model for brain network evolution we get gmax

n ¼ 1:14

to 2.28 and gmax

l ¼ 0:97 to 1.17 depending on the particular BDN, in accordance with the range

of couplings used in Fig 3 and, 2 in S2 Fig. Similarly, for the large version of our model for brain

network evolution (Nn = 120, Nc = 6) we estimated gmax

n ¼ 2:16 and gmax

l ¼ 2:9, consistent with

the maximum coupling strengths used in the last four panels of Fig 5. Consequently, our meth-

odology allowed us to identify regions of synchronization ρ and upper bound for MIR, Ic, for

the different BDNs of this work with similar functional and structural properties.

Analysis of Networks and Communities

We initially identified the communities of the networks using the walktrap method [41] of the

igraph software with six steps. The algorithm detects communities through a series of short

random walks, with the idea that the vertices encountered on any given random walk are more

likely to be within a community. The algorithm initially treats all nodes as communities of

their own, then merges them into larger communities, and these into still larger, and so on.

Essentially, it tries to find densely connected subgraphs (i.e. communities) in a graph via ran-

dom walks. The idea is that short random walks tend to stay in the same community. Following

this procedure we have been able to identify 6 communities in the C.elegans BDN, 10 in human

subject A1, 5 in A2, 9 in B, 6 in C, 10 in D and finally, 7 in E.

After this step, we computed various statistical quantities such as the global clustering coef-

ficient, the average of local clustering coefficients, the mean shortest path, the degree pdf of the

network and the small-worldness measure. The latter property is characterized by a relatively

short minimum path length on average between all pairs of nodes in the network, together

with a high clustering coefficient.

Even though small-worldness captures important aspects of complex networks at the local

and global scale of the structure, it does not provide information about the intermediate scale.

Properties of the intermediate scale can be more completely described by the community struc-

ture or modularity of the network [42]. The modules of a complex network, also-called com-

munities, are subsets of nodes that are densely connected to other nodes in the same module

but sparsely connected to nodes belonging to other communities. Since nodes within the same
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module are densely intra-connected, the number of triangles in a modular network is larger

than in a random graph of the same size and degree distribution, while the existence of a few

links between nodes in different modules plays the role of topological shortcuts in the small-

world topology. Systems characterized by this property tend to be small-world networks, with

high clustering coefficient and short path length with respect to random networks.

To infer the small-worldness of a network or community, we first compute the mean local

clustering coefficient C of the network or community and the mean of the local clustering coef-

ficients of one hundred randomly created networks hCri100 of the same degree pdf with the

studied network and also, the mean shortest path of the studied network L and the average of

the mean shortest paths of the same one hundred random networks hLri100. Watts and Strogatz

[9] measured that many real-world networks have an average shortest path length comparable

to those of a random network (L* Lr), and at the same time a clustering coefficient signifi-

cantly higher than expected by random chance (C� Cr). Then, they proposed a novel graph

model, currently named the Watts-Strogatz model, with a small average shortest path length L,

and a large clustering coefficient C. We adopt this as a working definition of a small-world net-

work or community. Therefore, small-world networks are in between the limit cases of regular

graphs with large L and C and random networks with small L and C. To quantify small-world-

ness we use the ratios [43]:

m ¼ L

hLri100
; g ¼ C

hCri100
; ð6Þ

in such a way that, for a small-world network or community, we compute:

s ¼ g

m
> 1; ð7Þ

being the small-worldness measure. The higher is σ from unity for a given network or commu-

nity, the better it displays the small-world property.

For completeness, we note that for the human subject D, the walk-trap community analysis

with step equal to six detected eleven communities for which the last one comprised only one

neuron. Hence, in all computations, we disregarded this community as a trivial case. We pres-

ent the results of the above analysis in S2 Table. We have performed all structural analyses of

this paper using the igraph software. The evolution of the basic network of S1 Fig, under the

principle of the maximization of the information flow capacity, is able to capture behaviors of

real brain connectivity networks such as those for the communities of the C.elegans BDN,

being their small-world structure a prominent reason. We found out that in all networks stud-

ied, the small-world measure σ gets values much higher than unity (see S2 Table), clearly indi-

cating that they all display the small-world property, though in different degrees.

Brain Network Evolution Promotes Global no Hebbian-like, and Local
Hebbian-like and no Hebbian-like Evolution Learning Processes

Here, based on the extraordinary functional similarities found so far, we focus on two charac-

teristic behaviors of the model for brain network evolution defined in Materials and Methods,

Subsection A Model for Brain Network Evolution Based on the Maximization of Information

Flow Capacity, to reveal important modular behaviors and underlying learning evolution pro-

cesses: We associate the first one to the case of high global synchronization and low informa-

tion flow capacity (which we call caseA) and the other one to the opposite situation of low

synchronization and high information flow capacity (case B). For illustration purposes, we

select from the proposed model for the brain network evolution of 60 neurons and 6 clusters of
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Materials and Methods, Subsection A Model for Brain Network Evolution Based on the Maxi-

mization of Information Flow Capacity, two finally evolved BDNs with the following coupling

strengths: For caseA the pair gn = 0.2, gl = 1.8 from the fifth realization (indicated by▲ in Figs

3 and 5) and for case B the pair gn = 0.9, gl = 1.5 from the fourth realization (indicated by ● in

Figs 3 and 5). We have checked that the conclusions are valid independently of the realization

and other similar pairs of coupling strengths. Also, our results reported here are independent

on the initial small-world cluster configuration and initial conditions.

In panels (A), (B) of Fig 6 we demonstrate the relation between global synchronization ρ

and mMIR for these cases. Case B of moderately low global synchronization (dashed black

curve in panel (A)) and high information flow capacity (dashed black curve in panel (B)) is

characterized by a larger number of added interconnections (i.e. 30) present in the finally

evolved network with respect to caseA of only 12 (corresponding to the solid black curves in

panels (A), (B))! In both cases, ρ of Eq (8) for global synchronous behavior, has the tendency to

decrease with different slopes (denoted by θ in Fig 6(A)) during brain network evolution as is

evident by the fitting to the data in dashed blue lines. We attribute this behavior to an evolu-

tionary brain network behavior, where global neural synchronization levels decrease during

brain network evolution, reminiscent of a possible underlying global no Hebbian-like evolution

process that promotes a decrease in global synchronization levels as new connections are

added in the network.

We regard this as an important global property of the model for brain network evolution

that needs to be further clarified, as we need to account for what happens on the local, cluster

level as well. We thus use the following procedure to infer about the underlying learning rules

for the clusters: During each step of the evolution process of the model of 60 neurons and 6

small-world clusters (which is a particular BDN), we compute hρijicl based on Eq (9) in Materi-

als and Methods, to account for the average pair-wise synchronization of cluster cl, l = 1, . . ., 6.

At the end of the time evolution, we have six such values for the clusters, lying in the interval

[0, 1]. We then record these values if the newly added chemical interconnection leads to an

increase of the information flow capacity as depicted by the corresponding Ic and disregard

them if not. At the end of the process, we result with a relationship between hρijicl and the
added interconnections that maximizes Ic, for all clusters (see panels (C), (D) of Fig 6). Doing

so, we can account for the underlying cluster learning processes. In particular, the terminology

“Hebbian-like” is employed to represent a learning rule that not only involves quantities for

synchronous events defined between pairs of neurons (see Eq (9)), but also a direct relation

between synapse strength and synchronization increase. The “no Hebbian-like” terminology

refers to a learning rule that involves not only a global measure of synchronous behavior (see

Eq (9)), but also refers to a phenomenon where the addition of synapses is accompanied by a

decrease in the synchronization levels.

We present these results in Fig 6(C) and 6(D). Following our considerations, we already

know that globally, both finally evolved BDNs are following a no Hebbian-like learning rule.

However, panels (C), (D) reveal a substantial difference for the synchronization behavior for

pairs of neurons in the clusters in the two cases that allows us to assign different kinds of learn-

ing rules to them. For case B in panel (D), the slopes θcl of the fitted lines (in blue) to the data

hρijicl, l = 1, . . ., 6 (in black) show that the third and fifth cluster have the tendency to increase

their internal synchronization level as the BDN evolves. In other words, neurons belonging to

these two clusters follow a Hebbian-like learning process that comes in contrast to the no Heb-

bian-like learning behavior of neurons belonging to the other clusters as they show the opposite

trend during brain network evolution, exhibiting negative slopes for the synchronization.

These findings are in agreement with the conclusions drawn from panel (F) in which neurons

belonging to the third and fifth cluster are seen to be more synchronized with respect to the
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Fig 6. Brain network evolution promotes Hebbian-like and no Hebbian-like processes andmodular organization in the brain dynamical networks.
Panels (A), (B): Global synchronization ρ and mMIR respectively for casesA and B. θs are the slopes of the two dashed blue lines which are fitted to the
black curves to demonstrate the decrease of the global neural synchrony during brain network evolution. Panels (C), (D) show how the average pair-wise
synchronization hρijicl of the clusters cl, l = 1, . . ., 6 changes during evolution, for casesA, B respectively. Panels (E), (F) show the pair-wise neural
synchronization level ρij of the finally evolved BDNs for the same cases. The horizontal axes (Number of links) correspond to the added links during brain
network evolution that lead to the increase of the information flow capacity at each step. The caption of panel (D) for the black curves is the same as in panel
(C). These results are for the studied model of brain network evolution with 60 neurons and 6 small-world clusters.

doi:10.1371/journal.pcbi.1004372.g006
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others (in yellow and red), a situation that promotes the modular organization in the brain

with different internal levels of synchronization. On the other hand, caseA demonstrates a

completely different situation in which the level of global synchronization decreases and cluster

synchronization is very strong between neurons in all clusters during the whole brain network

evolution, a behavior that results in a network whose neurons are unable to exchange but very

small amounts of information. This is a case where the brain network can not transmit infor-

mation by increasing its synaptic efficacy and thus, it is unable to learn new information!

Panels (E), (F) of Fig 6 show the pair-wise synchronization level of the neurons denoted as ρij
(see Eq (9) in Materials and Methods, Subsection Synchronization Measures in BDNs) of the

finally evolved BDNs for casesA and B, resulting in networks of 12 and 30 chemical inter-links,

respectively. Panel (F) of case B for moderately low global synchronization and high information

flow capacity reveals a clusterized synchronization behavior. The third and fifth small-world

clusters showmuch higher levels of internal synchrony (yellow and red points), i.e. synchroniza-

tion of pairs of neurons in the same small-world community, with respect to the blue or dark

blue points of low neural pair synchronization in other small-world clusters. The same also hap-

pens for a small number of pairs of neurons belonging to different clusters (off-diagonal points).

One can notice that given the cluster that has the same internal level of synchronization, there

can always be found two subnetworks, each belonging to one cluster, that have an equal amount

of synchronization. This means that case B corresponds to a BDN that has clustered multilayer

synchronization, where different clusters become functionally connected with different common

behaviors. A situation reminiscent of findings in neuroscience that demonstrate the modular

organization of the brain in which modular processors are sufficiently isolated and dynamically

differentiated to achieve independent computations, but also globally connected to be integrated

in coherent functions [1]. Our results for case B (see Fig 6(F)) come in contrast to those ofA of

high global synchronization and low information flow capacity shown in Fig 6(E) which demon-

strates that all clusters and pairs of neurons attain almost the same state of almost complete syn-

chronization, revealing a highly synchronized brain dynamical network that is not able however

to exchange but only very small amounts of information between its different parts!

The no Hebbian-like mechanism is effectively similar to the unlearning anti-Hebbian mech-

anism of Crick and Mitchison [27] that proposes the elimination of unnecessary connections

to prevent overload and to render the network more efficient. Both mechanisms lead however

to more efficient networks, being in our case the evolved networks able to maximize their infor-

mation flow capacity.

Typically, low synchronization implies λ1� λ2 leading to Ic� 0. In critical points however, Ic
tends to be large as long as most of the oscillation modes are stable resulting in a situation where

λ1> 0 and, λ2� 0 and positive. Thus, maximum Ic at low synchronization corresponds to maxi-

mum Ic near the critical point of the dynamics where λ1> 0 and, λ2� 0 and positive. Self critical

phenomena happen when the network has marginal Lyapunov exponents, in other words at the

critical point that results in typically large Ic. In this context, our results are in agreement with

the work in Ref. [44], supporting our findings for the existence of Hebbian and no Hebbian-like

learning mechanisms in the level of the communities (local synchronization) at self criticality,

which is responsible for the maximization of the information flow capacity of the evolved BDNs

(low global synchronization), such as in case B (for a similar result see Ref. [45]).

We do not study our BDNs under different stimuli. Our main hypothesis is that the final

topology and behavior of an evolved BDN that maximizes mutual information rate between its

neurons is similar to real brain networks, such as those from the C.elegans and human subjects.

Since our results for the maximization of the information flow capacity of the evolved BDNs

happen when self critical phenomena emerge, they are in agreement with the results reported

in Refs. [46, 47].
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Structural Properties of the Model for Brain Network Evolution

We study here the structural properties of the evolved BDNs and compare with those of the C.

elegans and human BDNs. As we have already demonstrated, they share common functional

properties.

We present the results of this study in Fig 4. Particularly, panel (A) shows the degree proba-

bility distribution function (pdf(�ki)), panel (B) the clustering coefficient CC(
�k i) as a function of

the normalized degree �k i, panel (C) the average degree knnð�kiÞ of the neighbors of nodes with
degree �ki and panel (D) the network with its distinct communities depicted by different color-

shaded neighborhoods, for caseA. In this context, �ki is the normalized with respect to the max-

imum, degree. Panels (E) to (H) show similar plots for case B. Panels (I) to (L) are similar plots

for the C.elegans brain network and, panels (M) to (P) for human subject A1. The plots in the

second column show the correlation between different normalized degrees of the network

whereas those of the third the tendency of the nodes of a certain normalized degree �k to link

with other nodes of a given degree. From the plots of the second column we observe that high

degree nodes have the tendency to link with low degree nodes following an exponential depen-

dence (with different exponents) implying disassortative mixing by degree. Our results from

the second column of Fig 4 suggest that evolving BDNs based on the maximization of the

upper bound for MIR (casesA and B) gives rise to disassortative mixing by degree meaning

that high degree nodes are preferentially connected to other low degree nodes and low to high

degree nodes.

It is worth noting that the structural properties of all human subjects are similar. Fig 4(I)–4

(O) show that human subject A1 has similar structural properties to the C.elegans structure.

CasesA and B seem also to present strong structural similarities, for the quantities considered

in Fig 4, despite the profoundly different functional behaviors. We found out that case B of

moderately low global synchronization and high information flow capacity is characterized by

a big number of added interconnections (i.e. 30) present in the final network whereas caseA

by only 12! We have checked that this relationship between a large (small) number of added

chemical inter-links with low (high) synchronization and large (low) information flow capacity

happens for all similar cases of the parameter spaces. It is also noteworthy that in case B (see

Fig 4(H)), the number of clusters of the finally evolved network is reduced by one (since we

start with six and end up with five) and is in contrast with what is happening in caseA!

Depending on the couplings which give rise to different functional behaviors, the brain net-

work evolution model is capable of merging different communities, i.e. of restructuring the ini-

tial network configuration. Case B is a more globally connected network.

The previous observation can be quantified in terms of the modularity of the network, i.e.

by the strength of the division of the network into modules (groups, clusters or communities).

Networks with high modularity have dense connections between the nodes within modules

and sparse connections between nodes of different modules, being more clustered. We have

used the igraph software for these computations. By applying this idea here, we find that the

modularity of the final BDN of case B is 0.596, very close to the average modularity of the six

human subjects 0.588 ± 0.023. In contrast, the modularity of caseA is 0.702. For the sake of

completeness, we also report the modularity of the C.elegans topology which is 0.375, the

smaller of all cases we considered. The last result shows a network with sparser connections

between the nodes within the modules and denser between nodes of different modules! For the

C.elegans, the natural evolution process led to a smaller clusterization of its brain network.

The results of Fig 4 suggest that the evolution process of a basic small-world clustered net-

work is capable of generating evolved ones with similar structural properties to those for the C.

elegans and human BDNs. The structural similarity to the human brain is even more
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remarkable if the couplings of the network to be evolved are within the range that promotes

high levels of information flow capacity such as in case B.

Synchronization Measures in BDNs

Synchronous activity has been observed in neural systems and reported to be associated not

only with pathological brain states [48] but also with various cognitive functions [49]. It has

been found that burst synchronization of neural systems may be strongly influenced by many

factors, such as coupling strengths and types [50], noise [51], and the existence of clusters in

neural networks [14].

In this paper we use the order parameter ρ to account for the synchronization level of the

neural activity of the studied BDNs and of their communities [52]. It is originated from the the-

ory of measures of dynamical coherence of a population of Nn oscillators of the Kuramoto type

[53] and, can be computed by a complex number z(t) defined as:

zðtÞ ¼ rðtÞeiFðtÞ ¼
X

Nn

j¼1

ei�jðtÞ: ð8Þ

By taking the modulus ρ(t) of z(t), one can measure the phase coherence of the population of

the Nn neurons of the BDN, and by F(t) to measure the average phase of the population of

oscillators. In this context, ϕi is the phase variable of the i-th neuron of the HR system Eq (2)

given by its fourth equation. Actually, one averages over time ρ(t) to obtain the order parameter

ρ = hρ(t)it, the tendency of ρ in time. A value of ρ = 1 corresponds to complete synchronization

of the oscillators, whereas ρ = 0 to complete desynchronization.

We use Eq (8), adapted accordingly, wherever in the paper we need to compute the synchro-

nization level of BDNs or clusters. In particular, in the case of BDNs, Nn is the number of neu-

rons of the BDN and j runs through all Nn neurons of that network whereas in the case of

clusters, Nn represents the number of neurons of the particular cluster and j refers to the partic-

ular neurons which are members of this cluster.

We also compute and plot in Fig 6(C) and 6(D), for casesA and B respectively of the model

for brain network evolution of 60 neurons and 6 small-world clusters, the pair-wise neural syn-

chronization by looking at the synchronization patterns between all pairs of neurons i,j of the

network as:

rij ¼ lim
Dt!1

Cij

Dt

Z tþDt

t

ei½�iðtÞ��jðtÞ�dt

�

�

�

�

�

�

�

�

; ð9Þ

where Cij is the adjacency matrix of the brain network and ϕi is the phase variable of the i-th

neuron of system Eq (2). ρij are bounded in the interval [0, 1], being ρij = 1 when neurons i,j are

fully synchronized and 0 when they are dynamically uncorrelated. To correctly compute ρij, we

take the averaging time large enough in order to obtain good measurements of the coherence

degree of each pair. We similarly compute and plot in Fig 6(C) and (D) for the same cases, the

averaged quantity hρijicl, l = 1, . . ., 6 over the 6 clusters, where i,j run through the neurons of

each cluster.

Upper Bound for MIR

After Shannon’s pioneering work [54] on information, it became clear that it is a very useful

and important concept as it can measure the amount of uncertainty an observer has about a

random event and thus provides a measure of how unpredictable it is. Another related concept

to the Shannon entropy that can characterize random complex systems is the MI [54] which is
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a measure of how much uncertainty one has about a state variable after observing another state

variable.

In Ref. [25], the authors have derived an upper bound for the MIR between two nodes or

two groups of nodes of a complex dynamical network that depends on the two largest Lyapu-

nov exponents l1, l2 of the subspace of the network formed by these nodes. In particular, they

have shown that:

MIR � Ic ¼ l
1
� l

2
; l

1
� l

2
; ð10Þ

where l1, l2 are the two finite time and size Lyapunov exponents calculated in the bi-dimen-

sional observation space of the two considered nodes [25, 55], which typically should approach

the two largest Lyapunov exponents λ1, λ2 of the dynamical network if it is connected and the

time considered to calculate l1, l2 is sufficiently small. In our study, the upper bound Ic for the

MIR between any two nodes of the BDNs is effectively estimated by Ic = λ1 − λ2 (i.e. l1 = λ1 and

l2 = λ2) and will stand for the upper bound for the information transferred per time unit

between any two nodes of the BDN (i.e. between the neurons), what represents the information

flow capacity of the BDN. The phase spaces of the dynamical systems associated to the neural

networks we study here are excessively highly multi-dimensional and thus, estimating an

upper bound for the MIR using λ1 and λ2 calculated by the methods of Refs. [39, 40] instead of

the MIR itself between all pairs of nodes, reduces enormously the computational complexity of

the numerical calculations of this work. Besides, parameter changes that causes positive or neg-

ative changes in the MIR are reflected in the upper bound with the same proportion [25].

Normalized Laplacian Spectra

It is well-known that similarities between the structure of networks can be used for their classi-

fication [56]. The architecture of brain networks that describe the organization of maps of con-

nections between neurons and brain elements at a systems level can be achieved by examining

the eigenvalue spectrum of the normalized Laplacian of the connectome [35, 57]. In our study,

the connectome is given by the adjacency matrix of the brain network and thus we compute

the eigenvalues of the normalized Laplacian based on this matrix. The eigenvalues νi,i = 1, . . .,

Nn of the normalized Laplacian matrix L are in [0, 2] which helps to compare networks of dif-

ferent sizes, and is defined as:

Lij ¼

1 if i ¼ j;

� 1

ki
if i; j are connected;

0 otherwise;

ð11Þ

8

>

>

>

<

>

>

>

:

where i,j represent any two nodes of the brain network, Lij the link between nodes i,j and ki the

degree of node i. Therefore, the Laplacian spectrum of the network is given by the set of all

eigenvalues of L, namely by its eigenspectrum.

Spectral plot. The spectral plots were obtained from a smoothed eigenvalue distribution Γ

(x) that consists of eigenvalue frequencies convolved with a Gaussian kernel [56]:

GðxÞ ¼
X

Nn

i¼1

1
ffiffiffiffiffiffiffiffiffiffi

2ps2

p exp � jx � n2i j
2s2

� �

; ð12Þ

where Nn is the number of eigenvalues of L and σ a smoothing function. In our study, we used

σ = 0.015 to smooth out appropriately the spectral plots. For these plots, a discrete smoothed
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spectrum was used in which Γ had steps of 0.001 and the distribution was normalized in such a

way that the total eigenvalue frequency is unity.

Spectral graph distance. The similarity distance between spectral plots was quantified

using a spectral distance measure, based on the distance measure introduced in Ref. [56], and

is defined as the average Euclidean distance between two spectral plots Γ1 and Γ2:

DðG
1
;G

2
Þ ¼ 1

kþ 1

X

k

i¼0

min
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½G
1
ðiÞ � G

2
ðjÞ�2 þ ½i� j�2

q

� �

þ 1

kþ 1

X

k

j¼0

min
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½G
1
ðiÞ � G

2
ðjÞ�2 þ ½i� j�2

q

� �

; ð13Þ

where Γ(i) is the discrete, normalized and smoothed eigenvalue distribution of Eq (12) and the

number of intervals k was set to 2000. The distance Eq (13) depends on the scaling of the axes,

meaning that different scales result in different distances. Therefore, it is not an invariant dis-

tance measure between two networks but only serves as a tool to underpin the visual results in

a quantitative manner.

To generalize the important relation between function and structure in BDNs, we plot in pan-

els (C) to (F) in Fig 5 the results of a similar study for one realization of a double-sized model for

brain network evolution based on 120 HR coupled neurons arranged in six small-world clusters.

Panels (C) and (D) show the parameter spaces for the global synchronization ρ and information

flow capacity mMIR of the big BDN which reproduce well the behavior of the small version of

the model for brain network evolution of Fig 3(A) and 3(B) and allow for similar functional con-

clusions to be drawn. The relation between structural and functional properties for the double-

sized model can be seen in the last two panels where we present the parameter spaces for the

spectral distances when compared with the C.elegans (panel (E)) and averaged humans (panel

(F)). Again, couplings that promote low global neural synchronization and high information

flow capacity give rise to the biggest possible spectral similarity of the double-sized brain net-

work evolution model with the C.elegans and human brain networks, the same conclusion

drawn for the small version of the same model! We therefore verify our hypothesis that finally

evolved BDNs with neurons that can potentially exchange the highest levels of information are

the BDNs with topologies closer to the brain networks of the C.elegans and humans.

Discussion

In this paper we propose a working hypothesis, and provide evidence, that neural networks that

evolve based on the principle of the maximization of their internal information flow capabilities

produce networks whose functional behavior and topology are similar to those features observed

in dynamical neural networks whose topology is provided by the C.elegans and humans.

Our hypothesis goes along the lines of the infomax theory that proposes that the brain

evolves by maximizing the mutual information between external stimuli and its response.

When maximizing the internal information flow capacity, we are creating a network capable of

processing information about external stimuli for which its information content is smaller than

the information flow capacity of the evolved network. Notably, the brain evolves by the action

of input signals. Our working hypothesis simplifies enormously the complexity of the involved

calculations and, allow us to understand function and behavior in the brain, without the need

to externally perturb non-autonomous neural networks.

We have been able to show that our evolved brain networks present similar synchronization

and information flow capacity behaviors with the ones found for the simulated dynamical net-

works for the structure of the C.elegans and human brain. Moreover, we have shown that
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BDNs evolved with coupling strengths that maximize the information flow capacity are the

ones that have the smallest spectral graph distance from the BDNs of the C.elegans and

humans, and that, during the growing process, their MIR increase is related to moderately low

amounts of global neural synchronization. Actually, the global neural synchronization levels

decrease during brain network evolution, revealing an underlying global no Hebbian-like evo-

lution process (where synapse strength leads to global decay of synchronization) driven by a

mix of local no Hebbian-like learning rules for neurons in some clusters and by Hebbian-like

learning rules in neurons belonging to other clusters where synapse strength leads to cluster

synchronization. In this context, the no Hebbian-like mechanism is effectively similar to the

unlearning anti-Hebbian mechanism as both lead to more efficient networks, in the sense that

in our case the evolved networks are able to maximize their information flow capacity.

We note that if other models than Hindmarsh-Rose will be used, such as the Morris-Lecar,

Izhikevich, or spiking map-based neural models, then the parameter regions that maximize

information flow capacity and minimize synchronization (or vice versa) will be different, how-

ever we expect that this would not change the main results and conclusions of this work in the

sense that brain network evolution based on the maximization of information flow capacity

will lead to similar topologies, behaviors and relations for the evolved networks. For the human

subjects, the graphs represent functionally connected brain regions. The Wilson-Cowan model

could be appropriate to model the human brain, whereas it will not be suitable to model the C.

elegans brain. As we have done here, using neurons to represent nodes in the human connec-

tome do not reproduce the real dynamics of the brain but gives us a mean to compare results

with the C.elegans and the evolved networks.

In relation to our work, the maximization of the information flow capacity for low synchro-

nization corresponds to the critical point of the dynamics in which self critical phenomena

occur when the second or larger Lyapunov exponents of the BDNs are marginally positive.

Finally, our results support further the hypothesis made in Ref. [2] that maximization of the

information flow capacity can serve as a principle for the development of heterogeneous struc-

tures in brain dynamical networks, such as the neocortex of mammalian brains.

Supporting Information

S1 Fig. An example (first of the five realizations) of a starting small-world network topol-

ogy for the proposed brain network evolution model. It comprises Nn = 60 neurons arranged

in Nc = 6 small-world clusters. The red ring consists of chemical excitatory connections that

link all hubs of the network. Within each cluster, depicted by a differently color-shaded area of

intra-connected neurons, we consider solely electrical connections denoted by black edges.

(TIF)

S2 Fig. Global synchronization and information flow capacity properties for the evolved

BDNs for different initial community structures. Panel (A): Parameter space for the syn-

chronization ρ and panel (B): for mMIR for six totally random (Erdős-Rényi) clusters. Panels

(C) and (D) are similar plots but for six scale-free (Barabási-Albert) clusters. Panels (E) and (F)

are for six star clusters perturbed by 20%. All plots are from the model for brain network evolu-

tion of 60 neurons and 6 clusters. Here, gn is the chemical and gl the electrical coupling of Eq

(2) of the paper.

(TIF)

S1 Table. Smallest positive eigenvalue ωm of the Laplacian matrixG of the electrical connec-

tions and average degree of chemical connections d of the adjacency matrix B for the BDNs

considered in this work. These values were used to provide rough estimates for the extend of
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the couplings of the parameter spaces, gmax
n

and gmax
l

, based on those of the zoomed-in parame-

ter space of the C.elegans of Fig 2 of the main manuscript (first row of the Table).

(TIF)

S2 Table. Small-worldness measure σ for the C.elegans and human brain networks and for

their communities.

(TIF)
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