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Abstract

Convolutional neural nets (convnets) trained from massive labeled datasets [1]
have substantially improved the state-of-the-art in image classification [2] and ob-
ject detection [3]. However, visual understanding requires establishing correspon-
dence on a finer level than object category. Given their large pooling regions and
training from whole-image labels, it is not clear that convnets derive their success
from an accurate correspondence model which could be used for precise localiza-
tion. In this paper, we study the effectiveness of convnet activation features for
tasks requiring correspondence. We present evidence that convnet features local-
ize at a much finer scale than their receptive field sizes, that they can be used to
perform intraclass aligment as well as conventional hand-engineered features, and
that they outperform conventional features in keypoint prediction on objects from
PASCAL VOC 2011 [4].

1 Introduction

Recent advances in convolutional neural nets [2] dramatically improved the state-of-the-art in image
classification. Despite the magnitude of these results, many doubted [5] that the resulting features
had the spatial specificity necessary for localization; after all, whole image classification can rely
on context cues and overly large pooling regions to get the job done. For coarse localization, such
doubts were alleviated by record breaking results extending the same features to detection on PAS-
CAL [3].

Now, the same questions loom on a finer scale. Are the modern convnets that excel at classification
and detection also able to find precise correspondences between object parts? Or do large receptive
fields mean that correspondence is effectively pooled away, making this a task better suited for
hand-engineered features?

In this paper, we provide evidence that convnet features perform at least as well as conventional
ones, even in the regime of point-to-point correspondence, and we show considerable performance
improvement in certain settings, including category-level keypoint prediction.

1.1 Related work

Image alignment Image alignment is a key step in many computer vision tasks, including face
verification, motion analysis, stereo matching, and object recognition. Alignment results in cor-
respondence across different images by removing intraclass variability and canonicalizing pose.
Alignment methods exist on a supervision spectrum from requiring manually labeled fiducial points
or landmarks, to requiring class labels, to fully unsupervised joint alignment and clustering models.
Congealing [6] is an unsupervised joint alignment method based on an entropy objective. Deep
congealing [7] builds on this idea by replacing hand-engineered features with unsupervised feature
learning from multiple resolutions. Inspired by optical flow, SIFT flow [8] matches densely sampled
SIFT features for correspondence and has been applied to motion prediction and motion transfer. In
Section 3, we apply SIFT flow using deep features for aligning different instances of the same class.
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Keypoint localization Semantic parts carry important information for object recognition, object
detection, and pose estimation. In particular, fine-grained categorization, the subject of many recent
works, depends strongly on part localization [9, 10]. Large pose and appearance variation across
examples make part localization for generic object categories a challenging task.

Most of the existing works on part localization or keypoint prediction focus on either facial landmark
localization [11] or human pose estimation. Human pose estimation has been approached using tree
structured methods to model the spatial relationships between parts [12, 13, 14], and also using
poselets [15] as an intermediate step to localize human keypoints [16, 17]. Tree structured models
and poselets may struggle when applied to generic objects with large articulated deformations and
wide shape variance.

Deep learning Convolutional neural networks have gained much recent attention due to their suc-
cess in image classification [2]. Convnets trained with backpropagation were initially succesful in
digit recognition [18] and OCR [19]. The feature representations learned from large data sets have
been found to generalize well to other image classification tasks [20] and even to object detection
[3, 21]. Recently, Toshev et al. [22] trained a cascade of regression-based convnets for human pose
estimation and Jain et al. [23] combine a weak spatial model with deep learning methods.

The latter work trains multiple small, independent convnets on 64 × 64 patches for binary body-
part detection. In contrast, we employ a powerful pretained ImageNet model that shares mid-elvel
feature representations among all parts in Section 5.

Several recent works have attempted to analyze and explain this overwhelming success. Zeiler and
Fergus [24] provide several heuristic visualizations suggesting coarse localization ability. Szegedy
et al. [25] show counterintuitive properties of the convnet representation, and suggest that individual
feature channels may not be more semantically meaningful than other bases in feature space. A
concurrent work [26] compares convnet features with SIFT in a standard descriptor matching task.
This work illuminates and extends that comparison by providing visual analysis and by moving
beyond single instance matching to intraclass correspondence and keypoint prediction.

1.2 Preliminaries

We perform experiments using a network architecture almost identical1 to that popularized by
Krizhevsky et al. [2] and trained for classification using the 1.2 million images of the ILSVRC
2012 challenge dataset [1]. All experiments are implemented using caffe [27], and our network
is the publicly available caffe reference model. We use the activations of each layer as features,
referred to as convn, pooln, or fcn for the nth convolutional, pooling, or fully connected layer,
respectively. We will use the term receptive field, abbreviated rf, to refer to the set of input pixels
that are path-connected to a particular unit in the convnet.

2 Feature visualization

Table 1: Convnet receptive field sizes and strides,
for an input of size 227× 227.

layer rf size stride

conv1 11× 11 4× 4

conv2 51× 51 8× 8

conv3 99× 99 16× 16

conv4 131× 131 16× 16

conv5 163× 163 16× 16

pool5 195× 195 32× 32

In this section and Figures 1 and 2, we provide a
novel visual investigation of the effective pool-
ing regions of convnet features.

In Figure 1, we perform a nonparametric recon-
struction of images from features in the spirit
of HOGgles [28]. Rather than paired dictionary
learning, however, we simply replace patches
with averages of their top-k nearest neighbors
in a convnet feature space. To do so, we first
compute all features at a particular layer, re-
sulting in an 2d grid of feature vectors. We as-
sociate each feature vector with a patch in the
original image at the center of the corresponding receptive field and with size equal to the receptive
field stride. (Note that the strides of the receptive fields are much smaller than the receptive fields

1Ours reverses the order of the response normalization and pooling layers.
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Figure 1: Even though they have large receptive fields, convnet features carry local information at
a finer scale. Upper left: given an input image, we replaced 16 × 16 patches with averages over
1 or 5 nearest neighbor patches, computed using convnet features centered at those patches. The
yellow square illustrates one input patch, and the black squares show the corresponding rfs for the
three layers shown. Right: Notice that the features retrieve reasonable matches for the centers of
their receptive fields, even though those rfs extend over large regions of the source image. In the
“uniform rf” column, we show the best that could be expected if convnet features discarded all
spatial information within their rfs, by choosing input patches uniformly at random from conv3-
sized neighborhoods. (Best viewed electronically.)

themselves, which overlap. Refer to Table 1 above for specific numbers.) We replace each such
patch with an average over k nearest neighbor patches using a database of features densely com-
puted on the images of PASCAL VOC 2011. Our database contains at least one million patches for
every layer. Features are matched by cosine similarity.

Even though the feature rfs cover large regions of the source images, the specific resemblance of
the resulting images shows that information is not spread uniformly throughout those regions. No-
table features (e.g., the tires of the bicycle and the facial features of the cat) are replaced in their
corresponding locations. Also note that replacement appears to become more semantic and less
visually specific as the layer deepens: the eyes and nose of the cat get replaced with differently col-
ored or shaped eyes and noses, and the fur gets replaced with various animal furs, with the diversity
increasing with layer number.

Figure 2 gives a feature-centric rather than image-centric view of feature locality. For each column,
we first pick a random seed feature vector (computed from a PASCAL image), and find k nearest
neighbor features, again by cosine similarity. Instead of averaging only the centers, we average
the entire receptive fields of the neighbors. The resulting images show that similar features tend to
respond to similar colors specifically in the centers of their receptive fields.
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Figure 2: Similar convnet features tend to have similar receptive field centers. Starting from a
randomly selected seed patch occupying one rf in conv3, 4, or 5, we find the nearest k neighbor
features computed on a database of natural images, and average together the corresponding receptive
fields. The contrast of each image has been expanded after averaging. (Note that since each layer
is computed with a stride of 16, there is an upper bound on the quality of alignment that can be
witnessed here.)

3 Intraclass alignment

We conjecture that category learning implicitly aligns instances by pooling over a discriminative
mid-level representation. If this is true, then such features should be useful for post-hoc alignment
in a similar fashion to conventional features. To test this, we use convnet features for the task of
aligning different instances of the same class. We approach this difficult task in the style of SIFT
flow [8]: we retrieve near neighbors using a coarse similarity measure, and then compute dense
correspondences on which we impose an MRF smoothness prior which finally allows all images to
be warped into alignment.

Nearest neighbors are computed using fc7 features. Since we are specifically testing the quality of
alignment, we use the same nearest neighbors for convnet or conventional features, and we compute
both types of features at the same locations, the grid of convnet rf centers in the response to a single
image.

Alignment is determined by solving an MRF formulated on this grid of feature locations. Let p be a
point on this grid, let fs(p) be the feature vector of the source image at that point, and let ft(p) be the
feature vector of the target image at that point. For each feature grid location p of the source image,
there is a vector w(p) giving the displacement of the corresponding feature in the target image. We
use the energy function

E(w) =
∑

p

‖fs(p)− ft(p+ w(p))‖2 + β
∑

(p,q)∈E

‖w(p)− w(q)‖22,

where E are the edges of a 4-neighborhood graph and β is the regularization parameter. Optimiza-
tion is performed using belief propagation, with the techniques suggested in [29]. Message passing
is performed efficiently using the squared Euclidean distance transform [30]. (Unlike the L1 regu-
larization originally used by SIFT flow [8], this formulation maintains rotational invariance of w.)

Based on its performance in the next section, we use conv4 as our convnet feature, and SIFT with
descriptor radius 20 as our conventional feature. From validation experiments, we set β = 3 · 10−3

for both conv4 and SIFT features (which have a similar scale).

Given the alignment field w, we warp target to source using bivariate spline interpolation (imple-
mented in SciPy [31]). Figure 3 gives examples of alignment quality for a few different seed images,
using both SIFT and convnet features. We show five warped nearest neighbors as well as keypoints
transferred from those neighbors.

We quantitatively assess the alignment by measuring the accuracy of predicted keypoints. To obtain
good predictions, we warp 25 nearest neighbors for each target image, and order them from smallest
to greatest deformation energy (we found this method to outperform ordering using the data term).
We take the predicted keypoints to be the median points (coordinate-wise) of the top five aligned
keypoints according to this ordering.

We assess correctness using mean PCK [32]. We consider a ground truth keypoint to be correctly
predicted if the prediction lies within a Euclidean distance of α times the maximum of the bounding
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Figure 3: Convnet features can bring different instances of the same class into good alignment at
least as well (on average) as traditional features. For each target image (left column), we show
warped versions of five nearest neighbor images aligned with conv4 flow (first row), and warped
versions aligned with SIFT flow [8] (second row). Keypoints from the warped images are shown
copied to the target image. The cat shows a case where convnet features perform better, while the
bicycle shows a case where SIFT features perform better. (Note that each instance is warped to a
square bounding box before alignment. Best viewed in color.)

Table 2: Keypoint transfer accuracy using convnet flow, SIFT flow, and simple copying from nearest
neighbors. Accuracy (PCK) is shown per category using α = 0.1 (see text) and means are also
shown for the stricter values α = 0.05 and 0.025. On average, convnet flow performs as well as
SIFT flow, and performs a bit better for stricter tolerances.

aero bike bird boat bttl bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mean

conv4 flow 28.2 34.1 20.4 17.1 50.6 36.7 20.9 19.6 15.7 25.4 12.7 18.7 25.9 23.1 21.4 40.2 21.1 14.5 18.3 33.3 24.9
SIFT flow 27.6 30.8 19.9 17.5 49.4 36.4 20.7 16.0 16.1 25.0 16.1 16.3 27.7 28.3 20.2 36.4 20.5 17.2 19.9 32.9 24.7

NN transfer 18.3 24.8 14.5 15.4 48.1 27.6 16.0 11.1 12.0 16.8 15.7 12.7 20.2 18.5 18.7 33.4 14.0 15.5 14.6 30.0 19.9

mean α = 0.1 α = 0.05 α = 0.025
conv4 flow 24.9 11.8 4.08

SIFT flow 24.7 10.9 3.55
NN transfer 19.9 7.8 2.35

box width and height, picking some α ∈ [0, 1]. We compute the overall accuracy for each type of
keypoint, and report the average over keypoint types. We do not penalize predicted keypoints that
are not visible in the target image.

Results are given in Table 2. We show per category results using α = 0.1, and mean results for
α = 0.1, 0.05, and 0.025. Indeed, convnet learned features are at least as capable as SIFT at
alignment, and better than might have been expected given the size of their receptive fields.

4 Keypoint classification

In this section, we specifically address the ability of convnet features to understand semantic in-
formation at the scale of parts. As an initial test, we consider the task of keypoint classification:
given an image and the coordinates of a keypoint on that image, can we train a classifier to label the
keypoint?

5



Table 3: Keypoint classification accuracies, in percent, on the twenty categories of PASCAL 2011
val, trained with SIFT or convnet features. The best SIFT and convnet scores are bolded in each
category.

aero bike bird boat bttl bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mean

SIFT 10 36 42 36 32 67 64 40 37 33 37 60 34 39 38 29 63 37 42 64 75 45
(radius) 20 37 50 39 35 74 67 47 40 36 43 68 38 42 48 33 70 44 52 68 77 50

40 35 54 37 41 76 68 47 37 39 40 69 36 42 49 32 69 39 52 74 78 51
80 33 43 37 42 75 66 42 30 43 36 70 31 36 51 27 70 35 49 69 77 48

160 27 36 34 38 72 59 35 25 39 30 67 27 32 46 25 70 29 48 66 76 44

conv 1 16 14 15 19 20 29 15 22 16 17 29 17 14 16 15 33 18 12 27 29 20
(layer) 2 37 43 40 35 69 63 38 44 35 40 61 38 40 44 34 65 39 41 63 72 47

3 42 50 46 41 76 69 46 52 39 45 64 47 48 52 40 74 46 50 71 77 54
4 44 53 49 42 78 70 45 55 41 48 68 51 51 53 41 76 49 52 73 76 56
5 44 51 49 41 77 68 44 53 39 45 63 50 49 52 39 73 47 47 71 75 54

(a) cat left eye (b) cat nose

Figure 4: Convnet features show fine
localization ability, even beyond their
stride and in cases where SIFT features
do not perform as well. Each plot is
a 2D histogram of the locations of the
maximum responses of a classifer in a
21 by 21 pixel rectangle taken around a
ground truth keypoint.

(a) (b)

Figure 5: Cross validation scores for cat
keypoint classification as a function of
the SVM parameter C. In (a), we plot
mean accuracy against C for five dif-
ferent convnet features; in (b) we plot
the same for SIFT features of different
sizes. We use C = 10−6 for all experi-
ments in Table 3.

For this task we use keypoint data [15] on the twenty classes of PASCAL VOC 2011 [4]. We extract
features at each keypoint using SIFT [33] and using the column of each convnet layer whose rf
center lies closest to the keypoint. (Note that the SIFT features will be more precisely placed as a
result of this approximation.) We trained one-vs-all linear SVMs on the train set using SIFT at five
different radii and each of the five convolutional layer activations as features (in general, we found
pooling and normalization layers to have lower performance). We set the SVM parameter C = 10−6

for all experiments based on five-fold cross validation on the training set (see Figure 5).

Table 3 gives the resulting accuracies on the val set. We find features from convnet layers consis-
tently perform at least as well as and often better than SIFT at this task, with the highest performance
coming from layers conv4 and conv5. Note that we are specifically testing convnet features trained
only for classification; the same net could be expected to achieve even higher performance if trained
for this task.

Finally, we study the precise location understanding of our classifiers by computing their responses
with a single-pixel stride around ground truth keypoint locations. For two example keypoints (cat
left eye and nose), we histogram the locations of the maximum responses within a 21 pixel by 21
pixel rectangle around the keypoint, shown in Figure 4. We do not include maximum responses
that lie on the boundary of this rectangle. While the SIFT classifiers do not seem to be sensitive
to the precise locations of the keypoints, in many cases the convnet ones seem to be capable of
localization finer than their strides, not just their receptive field sizes. This observation motivates
our final experiments to consider detection-based localization performance.
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5 Keypoint prediction

We have seen that despite their large receptive field sizes, convnets work as well as the hand-
engineered feature SIFT for alignment and slightly better than SIFT for keypoint classification.
Keypoint prediction provides a natural follow-up test. As in Section 3, we use keypoint annotations
from PASCAL VOC 2011, and we assume a ground truth bounding box.

Inspired in part by [3, 34, 23], we train sliding window part detectors to predict keypoint locations
independently. R-CNN [3] and OverFeat [34] have both demonstrated the effectiveness of deep con-
volutional networks on the generic object detection task. However, neither of them have investigated
the application of CNNs for keypoint prediction.2 R-CNN starts from bottom-up region proposal
[35], which tends to overlook the signal from small parts. OverFeat, on the other hand, combines
convnets trained for classification and for regression and runs in multi-scale sliding window fashion.

We rescale each bounding box to 500× 500 and compute conv5 (with a stride of 16 pixels). Each
cell of conv5 contains one 256-dimensional descriptor. We concatenate conv5 descriptors from a
local region of 3× 3 cells, giving an overall receptive field size of 195× 195 and feature dimension
of 2304. For each keypoint, we train a linear SVM with hard negative mining. We consider the ten
closest features to each ground truth keypoint as positive examples, and all the features whose rfs
do not contain the keypoint as negative examples. We also train using dense SIFT descriptors for
comparison. We compute SIFT on a grid of stride eight and bin size of eight using VLFeat [36]. For
SIFT, we consider features within twice the bin size from the ground truth keypoint to be positives,
while samples that are at least four times the bin size away are negatives.

We augment our SVM detectors with a spherical Gaussian prior over candidate locations constructed
by nearest neighbor matching. The mean of each Gaussian is taken to be the location of the keypoint
in the nearest neighbor in the training set found using cosine similarity on pool5 features, and we
use a fixed standard deviation of 22 pixels. Let s(Xi) be the output score of our local detector for
keypoint Xi, and let p(Xi) be the prior score. We combine these to yield a final score f(Xi) =
s(Xi)

1−ηp(Xi)
η , where η ∈ [0, 1] is a tradeoff parameter. In our experiments, we set η = 0.1 by

cross validation. At test time, we predict the keypoint location as the highest scoring candidate over
all feature locations.

We evaluate the predicted keypoints using the measure PCK introduced in Section 3, taking α = 0.1.
A predicted keypoint is defined as correct if the distance between it and the ground truth keypoint is
less than α · max(h,w) where h and w are the height and width of the bounding box. The results
using conv5 and SIFT with and without the prior are shown in Table 4. From the table, we can see
that local part detectors trained on the conv5 feature outperform SIFT by a large margin and that the
prior information is helpful in both cases. To our knowledge, these are the first keypoint prediction
results reported on this dataset. We show example results from five different categories in Figure
6. Each set consists of rescaled bounding box images with ground truth keypoint annotations and
predicted keypoints using SIFT and conv5 features, where each color corresponds to one keypoint.
As the figure shows, conv5 outperforms SIFT, often managing satisfactory outputs despite the
challenge of this task. A small offset can be noticed for some keypoints like eyes and noses, likely
due to the limited stride of our scanning windows. A final regression or finer stride could mitigate
this issue.

6 Conclusion

Through visualization, alignment, and keypoint prediction, we have studied the ability of the in-
termediate features implicitly learned in a state-of-the-art convnet classifier to understand specific,
local correspondence. Despite their large receptive fields and weak label training, we have found in
all cases that convnet features are at least as useful (and sometimes considerably more useful) than
conventional ones for extracting local visual information.

Acknowledgements This work was supported in part by DARPA’s MSEE and SMISC programs, by NSF

awards IIS-1427425, IIS-1212798, and IIS-1116411, and by support from Toyota.

2But see works cited in Section 1.1 regarding keypoint localization.
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Table 4: Keypoint prediction results on PASCAL VOC 2011. The numbers give average accuracy
of keypoint prediction using the criterion described in Section 3, PCK with α = 0.1.

aero bike bird boat bttl bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mean

SIFT 17.9 16.5 15.3 15.6 25.7 21.7 22.0 12.6 11.3 7.6 6.5 12.5 18.3 15.1 15.9 21.3 14.7 15.1 9.2 19.9 15.7
SIFT+prior 33.5 36.9 22.7 23.1 44.0 42.6 39.3 22.1 18.5 23.5 11.2 20.6 32.2 33.9 26.7 30.6 25.7 26.5 21.9 32.4 28.4
conv5 38.5 37.6 29.6 25.3 54.5 52.1 28.6 31.5 8.9 30.5 24.1 23.7 35.8 29.9 39.3 38.2 30.5 24.5 41.5 42.0 33.3

conv5+prior 50.9 48.8 35.1 32.5 66.1 62.0 45.7 34.2 21.4 41.1 27.2 29.3 46.8 45.6 47.1 42.5 38.8 37.6 50.7 45.6 42.5

Groundtruth SIFT+prior conv5+prior Groundtruth SIFT+prior conv5+prior

Figure 6: Examples of keypoint prediction on five classes of the PASCAL dataset: aeroplane, cat,
cow, potted plant, and horse. Each keypoint is associated with one color. The first column is the
ground truth annotation, the second column is the prediction result of SIFT+prior and the third
column is conv5+prior. (Best viewed in color).

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR, 2009.

[2] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural net-
works. In NIPS, 2012.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, 2014.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2011 (VOC2011) Results. http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html.

[5] Debate on Yann LeCun’s Google+ page. https://plus.google.com/+YannLeCunPhD/posts/JBBFfv2XgWM.
Accessed: 2014-5-31.

[6] G. B. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint alignment of complex images. In ICCV,
2007.

8



[7] G. B. Huang, M. A. Mattar, H. Lee, and E. Learned-Miller. Learning to align from scratch. In NIPS,
2012.

[8] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications.
PAMI, 33(5):978–994, 2011.

[9] J. Liu and P. N. Belhumeur. Bird part localization using exemplar-based models with enforced pose and
subcategory consistenty. In ICCV, 2013.

[10] T. Berg and P. N. Belhumeur. POOF: Part-based one-vs.-one features for fine-grained categorization, face
verification, and attribute estimation. In CVPR, 2013.

[11] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. Localizing parts of faces using a consensus
of exemplars. In CVPR, 2011.

[12] Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts. In CVPR, 2011.

[13] M. Sun and S. Savarese. Articulated part-based model for joint object detection and pose estimation. In
ICCV, 2011.

[14] X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. In
CVPR, 2012.

[15] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In
ICCV, 2009.

[16] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Using k-poselets for detecting people and localizing
their keypoints. In CVPR, 2014.

[17] G. Gkioxari, P. Arbelaez, L. Bourdev, and J. Malik. Articulated pose estimation using discriminative
armlet classifiers. In CVPR, 2013.

[18] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backprop-
agation applied to hand-written zip code recognition. In Neural Computation, 1989.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
In Proceedings of the IEEE, pages 2278–2324, 1998.

[20] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convo-
lutional activation feature for generic visual recognition. In ICML, 2014.

[21] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multi-
stage feature learning. In CVPR, 2013.

[22] A. Toshev and C. Szegedy. DeepPose: Human pose estimation via deep neural networks. In CVPR, 2014.

[23] A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bregler. Learning human pose estimation
features with convolutional networks. In ICLR, 2014.

[24] M. D Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. In ECCV,
2014.

[25] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In ICLR, 2014.

[26] P. Fischer, A. Dosovitskiy, and T. Brox. Descriptor Matching with Convolutional Neural Networks: a
Comparison to SIFT. ArXiv e-prints, May 2014.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[28] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. HOGgles: Visualizing Object Detection Fea-
tures. In ICCV, 2013.

[29] P. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision. International journal
of computer vision, 70(1):41–54, 2006.

[30] P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions. Technical report, Cornell
University, 2004.

[31] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, 2001.

[32] Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. In PAMI, 2013.

[33] D.G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.

[34] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition,
localization and detection using convolutional networks. In ICLR, 2014.

[35] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV,
2013.

[36] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algorithms.
http://www.vlfeat.org/, 2008.

9


