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Abstract 

Auto insurers often use credit-based insurance scores in their underwriting and rating 

processes. The practice is controversial—many consumer groups oppose it, and most 

states regulate it, in part out of concern that insurance scores proxy for policyholder 

income in predicting claim risk. We offer new evidence on this issue in the context of 

auto insurance. Prior studies on the subject suffer from the limitation that they rely solely 

on aggregate measures of income, such as the median income in a policyholder's census 

tract or zip code. We analyze a panel of households that purchased auto and home 

policies from a U.S. insurance company. Because we observe the households' home 

policies as well as their auto policies, we are able to employ two measures of income: the 

median income in a household's census tract, an aggregate measure, and the insured value 

of the household's dwelling, a policyholder-level measure. Using these measures, we find 

that insurance score does not act as proxy for income in a standard actuarial model of 

auto claim risk. 
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I. INTRODUCTION 

Insurance companies are in the business of classifying policyholders into risk-based categories. 

Insurers build actuarial models to relate policyholder characteristics to claim risk. They then use 

these models to predict the rates at which policyholders with different characteristics will 

generate claims. These claim rate predictions, along with predictions about claim amounts, play a 

central role in determining whether insurers offer coverage to prospective policyholders and, if 

so, the premiums that they set for this coverage. 

In the United States, federal and state laws limit the scope of insurers' underwriting and risk 

classification schemes. These laws often restrict insurers' capacity to discriminate among 

policyholders on the basis of characteristics such as race and gender, which are viewed as 

potentially suspect classifications in a wide variety of settings (Brilmayer et al. 1983). They also 

may target discrimination on the basis of policyholder characteristics, such as income or wealth, 

which are potentially suspect in the specific context of insurance, though not always in other 

settings. Finally, insurance anti-discrimination laws may regulate insurers' use of characteristics, 

such as occupation and zip code, that are not independently suspect, but which may correlate 

with one or more suspect classifications. This final form of regulation is often quite 

controversial, resulting in widely varying legal regimes across states (Avraham et al. 2014a, 

2014b). 

Credit-based insurance scores ("insurance scores") are perhaps the most important example of a 

policyholder characteristic that is regulated because it potentially correlates with suspect 

classifications. Many property and casualty insurers use insurance scores in their actuarial 

models for their automobile and homeowners coverage lines. The widespread use of insurance 

scores in these lines of coverage stems from a simple fact: they are predictive of claim risk 

(Miller and Smith 2003; Golden et al. 2016). At the same time, however, insurance scores may 

be correlated with one or more suspect classifications, including, most importantly, race and 

income. For this reason, most states regulate insurers' use of insurance scores in auto and home 

insurance, and a few states ban their use altogether (Avraham et al. 2014a, 2014b). 

Any correlation between insurance scores, on the one hand, and race or income, on the other, is 

potentially troubling from a policy standpoint for two reasons that are not always clearly 

distinguished. The first is that insurance scoring may have a disparate impact on racial minorities 

and low income households, causing members of these groups to pay higher premiums on 

average. Whether this fact, by itself, warrants legal intervention is highly controversial and 

context dependent (O'Neill 2007). Generally, however, critics have had little success arguing that 

insurers' classification schemes should be limited solely because they have a disparate impact on 

certain groups. This is particularly true outside of the domain of race and certain types of 

property insurance, where enhanced federal scrutiny applies due to the Fair Housing Act. But 
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even under the Fair Housing Act, insurance practices that have a disparate impact on protected 

groups are generally permissible if no less discriminatory alternative is available.
1
 

The second, and more potent, reason for regulating the use of insurance scores is that they may 

proxy for race or income. A correlation between insurance scores and a suspect classifier such as 

race or income is a necessary, but not a sufficient, condition for insurance scores to operate as a 

proxy for the suspect classifier. In addition to such a correlation, this "proxy variable" argument 

presumes that the predictive power of insurance scores would greatly diminish in a regression 

model that also includes the suspect classifier as a predictor (Pope and Sydnor 2011). To the 

extent this is so, the predictive value of insurance scores would be largely attributable to its 

correlation with the suspect classifier. This is distinctly troubling from a public policy 

perspective because it would mean not only that racial minorities and low income households are 

disparately impacted by insurers' use of insurance scores, but also that insurers are effectively 

circumventing prohibitions on the use of suspect classifications (either intentionally or 

unknowingly) by relying on a proxy variable that is not itself directly prohibited. 

The relative merits of the disparate impact and proxy variable arguments are reasonably well 

established when it comes to the relationship between insurance scores and race. In 2007, the 

Federal Trade Commission (FTC) published an influential study finding that insurance scoring 

has a disparate impact on African Americans and Hispanics (FTC 2007). The FTC study also 

concluded, however, that insurance scores do not operate principally as a proxy for race. The 

FTC found that insurance scores predict claim risk within racial groups and that they remain 

substantially predictive of claim risk after controlling for race. Although critics have claimed that 

the FTC study was methodologically problematic because it relied on data voluntarily provided 

by insurers (Brobeck and Hunter 2012), it clearly has had a substantial impact on policy debates 

regarding the propriety of insurance scoring. 

Unlike in the case of race, the nature of the relationship between insurance scores and income 

remains unclear. Extant research is mixed about the correlation between insurance scores and 

income, and it provides virtually no guidance on the extent to which insurance scores proxy for 

income in predicting claim risk. At root, this gap in the literature stems from the fact that the 

existing studies rely on aggregate measures of income, such as the median income within the 

policyholder's geographic region (e.g., census tract or zip code). This approach often yields 

limited results that are hard to evaluate, for two reasons. First, income can be quite 

heterogeneous within a geographic region. Second, the individuals within a geographic region 

who purchase insurance may not be representative of the overall population living within that 

geographic region. 

                                                 
1 Implementation of the Fair Housing Act's Discriminatory Effects Standard, 78 Fed. Reg. 11,460 (Feb. 15, 2013), 

http://portal.hud.gov/hudportal/documents/huddoc?id=discriminatoryeffectrule.pdf. Recently, the Supreme Court 

held that disparate impact claims are indeed cognizable under the Fair Housing Act, giving new vitality to this issue. 

See Texas Department of Housing & Community Affairs v. The Inclusive Communities Project, Inc., 135 S. Ct. 

2507 (2015). 
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In the face of this empirical uncertainty, policy concerns about the impact of insurance scoring 

on low income populations remain influential. After all, it is reasonable to assume that income 

may correlate with insurance scores; all else equal, it presumably is harder to promptly repay 

debt when one routinely earns little income. Such a correlation, moreover, could well mean that 

insurance scores operate as a proxy for income, which would explain the still contested 

relationship between insurance scores and claim risk (Brockett and Golden 2007). There may be 

good reasons to expect that low income policyholders might experience claims more frequently. 

For instance, they may be more willing to file claims when small losses occur or less able to 

invest in precautions that would prevent losses in the first place. 

Perhaps for these reasons, the relationship between insurance scores and income has received 

renewed attention in recent years. In the past three years, for instance, the Consumer Federation 

of America published several reports that focus on this relationship (e.g., Brobeck and Hunter 

2012; Brobeck et al. 2013), and the National Association of Insurance Commissioners (NAIC) 

established an Automobile Insurance Study Group to "review issues relating to low-income 

households and the auto insurance marketplace and to make recommendations as may be 

appropriate" (NAIC 2012b). More recently, Consumer Reports published a high profile Special 

Report concluding that "behind the rate quotes is a pricing process that judges [consumers] less 

on driving habits and increasingly on socioeconomic factors" including "credit history," and it 

launched a campaign designed to encourage state regulators to require insurers to base rates 

solely on how consumers drive (Consumer Reports 2015). 

This paper aims to improve our understanding of the relationships among insurance scores, 

income, and claim risk. We offer new evidence on the question of whether insurance score acts 

as a proxy for income in predicting auto claim risk. We utilize a proprietary data set acquired 

from a large U.S. property and casualty insurance company that specializes in personal 

automobile and homeowners coverage. Our main sample comprises an unbalanced panel of 

66,444 households who purchased auto and home policies from the company between 1998 and 

2006. Among other things, we observe in the data the number of claims filed during the period of 

observation by each household in two lines of auto coverage: collision and comprehensive. In 

addition, we observe detailed information about the households and their policies. Although we 

do not directly observe a household's income, we observe two indirect measures of income: (i) 

the median income in the household's census tract ("median income") and (ii) the insured value 

of the dwelling covered by its home policy ("home value"). The paper's main contribution lies in 

our empirical strategy of using home value, in addition to median income, to measure a 

household's income. Indeed, insofar as we observe and utilize home value, a policyholder-level 

measure of income, in addition to median income, an aggregate measure of income (and, in fact, 

the same aggregate measure used by the FTC), we believe that our study greatly improves upon 

the extant literature. 

We begin our empirical analysis by specifying a standard actuarial model of auto claim risk: the 

Poisson random effects model. We then examine whether insurance score acts as a proxy for 
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income in the model. In particular, we follow the approach taken by the FTC and analyze three 

related questions: (i) whether insurance score predicts claim risk within income groups (yes); (ii) 

whether income predicts claim risk (mixed), and (iii) whether controlling for income changes the 

impact of insurance score on predicted claim risk (no). Our analysis leads us to conclude that 

insurance score does not proxy for income in predicting auto claim risk. Lastly, we repeat our 

analysis on a sample of 8,685 renters,
2
 to probe whether our conclusion for homeowners holds 

equally for renters. We find that it does. 

The remainder of the paper is organized as follows. Section II provides further background 

information on insurance scoring and its regulation. Section III surveys prior studies on 

insurance scoring, race, and income. Section IV contains our empirical analysis. It describes our 

data, presents the model, and reports our results. Finally, Section V discusses the policy 

implications of our findings as well as a number of caveats of our analysis. 

II. INSURANCE SCORING AND ITS REGULATION 

In the early 1980's, individual insurers started to investigate ways to incorporate credit history 

information into their actuarial models (FTC 2007). But it was not until 1993 that the precursor 

to modern insurance scores emerged, with the development by Fair Isaac Corporation (FICO) of 

a credit-based insurance score to predict the likelihood of claims in homeowners insurance. Two 

years later, FICO released a credit-based insurance score for automobile insurance. Thereafter, 

other credit scoring companies and some insurers began designing their own proprietary 

insurance scoring methodologies. 

Today, personal lines insurers routinely rely on insurance scores in pricing and underwriting 

their policies. According to FICO, in the absence of state prohibitions, 95 percent of automobile 

insurers and 85 percent of home insurers employ insurance scores in either the underwriting or 

rating process (NAIC 2012a). The prevalence of insurance scoring in these markets reflects the 

fact that insurance scores are predictive of claim risk, as demonstrated by numerous industry and 

government studies (Insurance Information Institute 2015). Additionally, and just as importantly, 

credit information is readily and cheaply available to insurers, who can largely tap into the 

existing infrastructure for collecting and reporting this information that has developed in 

connection with credit scoring (Abraham 1986). 

Like credit scores, insurance scores are derived from information contained in individuals' credit 

reports. These reports contain hundreds of data points that are grouped into five broad categories: 

prior credit performance; current levels of indebtedness; length of credit history; pursuit of new 

credit; and types of credit used (Shepard 2012). They are compiled by Credit Reporting 

Agencies, such as Equifax, Experian, and Transunion, which are regulated under the Fair Credit 

                                                 
2 The only difference is that in the renters sample our policyholder-level measure of income is the insured value of 

the personal property covered by the household's renters policy ("property value"). 
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Reporting Act.
3
 This law requires Credit Reporting Agencies to make available to consumers 

free copies of their credit reports and to conduct reasonable investigations of items on a 

consumer's report that he or she disputes (Carnell et al. 2013). 

Credit scores and insurance scores differ both in the subset of data from credit reports that they 

incorporate and in how they weight these data. This divergence follows naturally from the 

distinct objectives of the two scores. Credit scores are designed to measure credit risk, whereas 

insurance scores seek to quantify insurance risk. Thus insurance scores only incorporate credit 

history characteristics that are considered predictive of insurance risk (NAIC 2012a; Insurance 

Information Institute 2015). Insurers typically use about 30 of the data points contained in credit 

reports (Consumer Reports 2015). In some cases, insurance scores may also incorporate 

noncredit characteristics. Similarly, credit scores and insurance scores weigh credit history 

characteristics differently. For instance, data on "types of credit used" are less important for 

FICO insurance scores than they are for FICO credit scores.
4
 By contrast, "payment history" 

data—which include number and severity of past delinquencies and presence of bankruptcies, 

liens, judgments, and other derogatory public records—generally influence FICO insurance 

scores more than FICO credit scores.
5
 

Variation also exists across different insurance scoring models. Different models are developed 

both by data analytics firms, such as FICO, ChoicePoint, and Transunion, and by specific 

insurance carriers. These models vary both in the credit data they use and in the weight assigned 

to different types of data. Thus, some insurers consider types of credit while some do not; some 

consider the age of the oldest account and some average the ages (FTC 2007; North Carolina 

Department of Insurance 2010). Usually, credit characteristics encompassed by insurance scores 

include: late payments or delinquencies; judgments against the consumer and bankruptcies; other 

credit score inquiries; use of all available credit; and types of credit used (FTC 2007; Insurance 

Information Institute 2015; Allstate Insurance Company 2015). Unfortunately, more fine-grained 

comparisons among the various different insurance scoring models are difficult because these 

models are not publicly disclosed in most states and insurers use simplified, and more 

homogeneous, insurance scoring models in states requiring disclosure (FTC 2007). 

Insurance scoring has long proven controversial. The primary source of this controversy stems 

from accusations that insurance scores correlate with policyholder race and income (Center for 

                                                 
3 15 U.S.C. § 1681 et seq. 

4 This data comprises only 5 percent of a FICO insurance score for an average consumer, but comprises 10 percent 

of the average consumer's FICO credit score. For both insurance scores and credit scores, an average consumer's 

score is 30 percent impacted by current level of indebtedness, 15 percent by length of credit history, and 10 percent 

by new credit and pursuit of new credit. See FICO (2015a, 2015b). 

5 Such information comprises 40 percent of an average consumer's FICO insurance score, but only 35 percent of an 

average consumer's FICO credit score (FICO 2015a). 
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Economic Justice 2005; Wu and Birnbaum 2007; Robinson 2011).
6
 Such correlations could arise 

through a number of different mechanisms. Most notably, individuals with limited financial 

resources may have a relatively hard time managing their credit and be susceptible to shocks, 

such as job losses or medical events, that are likely to produce an adverse credit history. 

Alternatively, those with distressed finances may be less likely to have cars in good condition, 

more likely to file low value claims, or more likely to drive long distances. 

To the extent that insurance scores are correlated with policyholder race and income, insurers' 

classification practices have a disparate impact on racial minorities and low income groups. 

Whether this is troubling from a legal or regulatory perspective is a matter of long-standing 

debate. Outside of the context of property insurance practices having a disparate impact on 

protected minority groups' access to housing, which implicate the federal Fair Housing Act, 

insurers have generally prevailed in arguing that disparate impact theory should not apply to 

insurance. Their basic argument is that discrimination on the basis of risk is fundamental to 

insurance, and that subjecting the industry to disparate impact analysis would consequently raise 

insurance rates for a majority of consumers and throw into question numerous long-standing 

industry practices (National Association of Mutual Insurance Companies 2004). 

Critics argue that insurance practices that have a disparate impact on minority and low income 

groups end up both reflecting and reinforcing social and economic inequalities, undermining 

broader social values such as racial equality and economic mobility (Abraham 1985). They argue 

that it is possible to construct formulas that exclude credit attributes but still yield sufficiently 

accurate assessments of risk (Wu and Birnbaum 2007). California, they emphasize, has long 

banned auto insurers' use of insurance scores without any dire consequences (Hunter et al. 2013). 

In fact, in contrast to most states, California has generally experienced a decrease in rates and 

residual market size since it banned auto insurance scoring as part of a larger package of 

regulatory reforms (Hunter et al. 2013). 

Potential correlations between insurance scores and race and income take on special importance 

because of the lack of a clear causal connection between credit information and insurance risk. 

Simply put, it is not obvious why individuals who take on too much credit or fail to keep up with 

their bills are more likely to experience a car accident, home fire, or any other insured loss. To be 

sure, many have offered explanations, most often arguing that people with poor credit scores are 

less careful or responsible in general, and thus tend to be more likely to experience accidents 

(Brocket and Golden 2007; Golden et al. 2016). But these claims are difficult, if not impossible, 

to prove. Moreover, to many, they are inconsistent with the fact that two of the major drivers of 

credit risk are unemployment and health problems, neither of which seems to reflect 

irresponsible behavior such as reckless driving or lack of fire safety. 

                                                 
6 Critics of insurance scoring also argue that it unfairly penalizes people for adverse events that are beyond their 

control, such as unemployment or unexpected healthcare costs (Birnbaum 2015). 
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In the absence of a compelling neutral explanation for why insurance scoring works, critics often 

suggest that the predictive capacity of insurance scores stems substantially from their correlation 

with race and income. According to this claim, insurance scores not only have a disparate impact 

on minority and low income policyholders, but also operate as a proxy for policyholder race and 

income. In other words, they allow insurers to indirectly rate policyholders on the basis of their 

race and income without explicitly taking these characteristics into account in their models. 

Implicitly, this argument assumes that race and income are themselves predictive of losses, or at 

least that insurers believe them to be so. Nonetheless, the argument goes, insurers are unable or 

unwilling to explicitly discriminate on the basis of policyholder race and income because of legal 

and regulatory forces. Using insurance scores allows them to accomplish such discrimination in 

practice while avoiding regulatory and legal constraints. 

The prospect that insurers are using insurance scores to proxy for policyholder race and income 

is more clearly troubling from a policy perspective than is the unadorned argument that these 

scores produce a disparate impact. Many—though not all—states explicitly prohibit the use of 

race in the pricing, issuance, and renewal of insurance coverage (Avraham et al. 2014a). And 

while no state bans insurers' explicit use of policyholder income in underwriting or rating, this 

practice "appears to be generally regarded as an illegitimate variable for those purposes" (FTC 

2007). Indeed, insurers in a number of coverage lines appear to frequently avoid discriminating 

on the basis of policyholder characteristics that, while predictive of policyholder claims, may 

trigger regulatory backlash (Finkelstein and Poterba 2014). Using insurance scores to proxy for 

these illicit policyholder characteristics directly undermines these laws and norms.
7
 All of this 

becomes particularly troubling because insurers have a history of using other facially neutral 

categories to discriminate against protected groups. Throughout the 1950s and 1960s, home 

insurers routinely "redlined" certain poor, black geographic regions and refused to sell coverage 

in these areas, ostensibly because of geographically-based considerations (Squires 2003). 

Taken together, these concerns about insurers' use of insurance scores have prompted various 

legal and regulatory responses in the last twenty years. Most notably, three states—California, 

Hawaii, and Massachusetts—ban the use of credit-based insurance scores in auto insurance, and 

two states—Maryland and Massachusetts—ban the use of insurance scores in homeowners' 

                                                 
7 An important regulatory principle is that insurers cannot be allowed to do indirectly what they are prohibited from 

doing directly. This point is well reflected in the NAIC's Market Regulation Handbook, which is designed to help 

state regulators conduct uniform, standardized market analysis and market conduct examinations The handbook 

explains that regulators conducting a market conduct exam should identify any underwriting guidelines in which 

"there any 'red flags,' such as . . . a factor that is an obvious proxy for a prohibited characteristic" (NAIC 2009, p. 

68). If the underwriting guideline raises such a red flag, then regulators must next ask whether "the underwriting 

guideline serve[s] a necessary underwriting purpose, by identifying a characteristic of the consumer, vehicle or 

property that is demonstrably related to risk of loss and does not duplicate some other factor that has already been 

taken into account" (NAIC 2009, p. 68). 
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insurance (Insurance Information Institute 2015).
8
 

Virtually all of the remaining states restrict or condition insurers' use of insurance scores in 

underwriting and rating. In many cases, states have adopted in whole or in part the National 

Conference of Insurance Legislators' (NCOIL) Model Act Regarding Use of Credit Information 

in Personal Insurance (NCOIL 2009). The NCOIL Model Act prohibits insurers from relying 

solely on credit-based information to raise premiums or to deny, cancel, or refuse to renew a 

policy (NCOIL 2009; FTC 2007; Robinson 2011). It also requires insurers using credit-based 

insurance scores to notify their customers of this fact and to separately disclose any adverse 

actions they take on the basis of credit information. Recent amendments to the NCOIL Model 

Act allow consumers to affirmatively request that their insurance scores not be used to increase 

their rates if they have experienced "extraordinary life circumstances" beyond their control that 

undermined their credit (NCOIL 2009; FTC 2007). 

Many other states have adopted additional or different restrictions on insurance scoring than 

those contained in the NCOIL Model Act (see, generally, FTC 2007; Robinson 2011; Insurance 

Information Institute 2015). For instance, some states prohibit the use of insurance scores in 

calculating premiums during policy renewal,
9
 or allow it only if it positively impacts a 

customer's premium.
10

 Similarly, some states have extraordinary life circumstance exceptions 

that differ from the NCOIL Model Act's.
11

 States also have adopted rules governing insurance 

scoring that have limited parallels in the NCOIL Model Act. For instance, some states limit the 

types of credit information that insurers can consider. 

The controversy surrounding insurance scoring has also prompted federal attention, a rarity in 

insurance regulation, where state regulation typically dominates outside of health insurance 

(Meier 1998). In 2006, Congress passed the Fair and Accurate Credit Transactions Act 

(FACTA), which required the FTC, in conjunction with several other federal agencies, to study 

whether insurance scoring adversely impacts the availability and affordability of consumer 

automobile and homeowners insurance.
12

 Additionally, the Fair Credit Reporting Act requires 

insurers to notify a consumer if the company took an adverse action based in whole or in part on 

                                                 
8 Maryland also bans the use of credit history in renewal rating decisions in auto insurance (Insurance Information 

Institute 2015). 

9 Alaska and Oregon have these laws (Robinson 2011). Despite a lack of state law proscription, some insurers 

choose not to use insurance scores during the policy renewal stage to foster customer relations (FTC 2007). 

10 These states are Connecticut, Delaware, Maryland (for auto insurance), New York, Oregon, Pennsylvania 

(through regulation), Utah (for auto insurance), and Virginia (Robinson 2011). Some states require that an insurer 

recalculate premiums using insurance scores upon a customer's request, and update the premium accordingly if the 

recalculation lessens the amount the customer pays. Some insurers offer this service in the absence of state 

legislation (FTC 2007). 

11 These states are Connecticut, Florida, Delaware, Iowa, Minnesota, Montana, New Mexico, Rhode Island, Texas, 

and Virginia (Robinson 2011; Insurance Information Institute 2015). 

12 Fair and Accurate Credit Transactions Act § 215, 15 U.S.C. § 1681 note (2013). 
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the consumer's report.
13

 The company must provide the contact information of the credit bureau 

supplying the report and must furnish a copy of the credit report for free, for up to sixty days.
 14

 

In recent years, the claim that insurance scoring disproportionately harms low income consumers 

has again garnered sustained regulatory attention. In 2012, the Consumer Federation of America 

published an influential report arguing that low income individuals are systematically charged 

higher rates for automobile insurance coverage (Brobeck and Hunter 2012). A principal culprit 

of this effect, according to the report, is insurers' use of insurance scores. Additionally, various 

consumer advocates have suggested that insurance scoring may operate as a proxy for 

policyholder income (Balber et al. 2007). Largely as a result of these claims, the NAIC formed 

an Auto Insurance Committee to study "issues relating to low-income households and the auto 

insurance marketplace and to make recommendations as may be appropriate" (NAIC 2012b). In 

2014, the Federal Insurance Office entered the fray, requesting comments on the availability of 

affordable auto insurance in minority and low and moderate income communities (Federal 

Insurance Office 2014). 

In parallel with these regulatory developments, state legislatures have considered legislation in 

recent years that would alter the rules governing insurers' use of credit-based insurance scores.
15

 

For instance, in 2013 alone, bills were introduced in thirteen states that would have banned 

insurance scoring in whole or in part.
16

 In that same year, legislatures in seven states considered 

                                                 
13 15 U.S.C. § 1681g(f). See also Robinson (2011). Adverse actions, which apply to new policies and renewals, are 

denials, cancellations, increases in premiums (or other charges), or reductions of coverage. 15 U.S.C. § 1681a(k). 

14 15 U.S.C. § 1681g(f). See also Robinson (2011).  

15 In addition, in 2012, three members of Congress introduced a bill to amend the Fair Credit Reporting Act to 

"prohibit the use of consumer reports and consumer information in making any determination involving auto 

insurance with respect to a consumer." H.R. 6129, 112th Cong. (2012). 

16 S.B. 55, 28th Leg., 1st Sess. (Alaska 2013) (Alaska Senate bill to broaden the definition of "adverse action" and to 

remove language that prevented insurers from failing to underwrite or rate a consumer on account of credit history 

(in whole or in part) during the renewal phase); S.B. 1395, 51st Legis., 1st Sess. (Ariz. 2013) (Arizona bill to 

prohibit use of insurance scores at any time in any type of insurance); H.B. 5510, 2013 Leg., Jan. Sess. (Conn. 2013) 

(Connecticut bill to ban insurance scoring in private motor insurance); H.B. 1073, 2013 Gen. Assemb., 2013 Reg. 

Sess. (Ind. 2013) (Indiana bill to prohibit use of credit history for any reason during renewal); H.F. 47, 88th Leg., 

2013-2014 Reg. Sess. (Minn. 2013); S.F. 1387, 88th Leg., 2013-2014 Reg. Sess. (Minn. 2013) (Minnesota House 

and Senate bill to prohibit insurance scores in underwriting automobile insurance); L.B. 92, 103d Leg., 1st Sess. 

(Neb. 2013) (Nebraska bill to wholly ban the use of insurance scoring); S.B. 1107, 215th Leg., 2012-2013 Reg. 

Sess. (N.J. 2012) (New Jersey bill to ban insurers from using scores in home insurance); S.B. 2975, 2013 Assemb., 

Reg. Sess. (N.Y. 2013) (New York bill to ban scoring for automobile insurance). S.B. 73, 130th Gen. Assemb., 

2013-2014 Reg. Sess. (Ohio 2013) (Ohio bill to ban insurance scoring altogether). S.B. 439, 2013 Gen. Assemb., 

Jan. Sess. (R.I. 2013); H.B. 5028, 2013 Gen. Assemb., Jan. Sess. (R.I. 2013) (Rhode Island bill to prohibiting 

insurance scoring in whole or for automobile insurance); H.B. 1007, 83rd Leg., Reg. Sess. (Tex. 2013); S.B. 72, 

83rd Leg., Reg. Sess. (Tex. 2013) (Texas bill to ban the use of credit scoring). H.B. 1212, 63d Leg., 2013 Reg. Sess. 

(Wash. 2013) (Washington bill to ban scoring for homeowner's insurance). H.B. 2282, 81st Leg., 2013 Reg. Sess. 

(W. Va. 2013) (West Virginia bill banning insurance scoring altogether). 
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adding more restrictions to the use of insurance scores.
17

 

III. PRIOR STUDIES ON INSURANCE SCORING, RACE, AND INCOME 

By far the most important and influential study on insurance scoring is the 2007 FTC study that 

FACTA mandated a year earlier (FTC 2007). The FTC report first confirmed the correlation 

between insurance scores and claim risk with respect to four types of automobile coverage: 

property damage liability, bodily injury liability, collision, and comprehensive. To do so, the 

study focused on automobile insurance policy data voluntarily provided to the FTC by five 

insurance companies.
18

 This data included policy and driver characteristics, claims, and the 

"ChoicePoint Attract Standard Auto" insurance score for the first named policyholder.
19

 The 

FTC concluded that, even after controlling for standard risk factors such as age and driving 

history, there were strong correlations between drivers' insurance scores and their ultimate 

insurance claims.
20

 The FTC report acknowledged the possibility that this correlation might stem 

from the capacity of credit-based information to measure policyholders' levels of responsibility 

or prudence in managing their financial affairs, which might itself predict the likelihood that 

policyholders will suffer an insured loss. But it concluded that insufficient information was 

available to confirm this explanation, or alternative explanations, for the correlation between 

insurance scores and auto claim risk. 

The FTC report focused particular attention on how insurance scoring impacts minority groups. 

It combined the data described above with data on individuals' race and ethnicity derived from 

matching policyholder names with Social Security data on race, ethnicity, and national origin. As 

long claimed by critics, the FTC study confirmed that certain minority groups do indeed have 

lower insurance scores on average than non-Hispanic whites and Asians. The FTC found that 

                                                 
17 H.B. 1231, 2013 Gen. Assemb. 2013 Reg. Sess. (Ind. 2013) (Indiana bill to prohibit including disability in an 

insurance score); H.B. 136, 2013 Gen. Assemb., 13 Reg. Sess. (Ky. 2013) (Kentucky bill to require insurers to 

consider other factors in addition to credit and to treat those with no history as neutral, as defined by the insurer); 

H.B. 4511, 2013-2014 Leg., Reg. Sess. (Mich. 2013) (Michigan bill to prohibit scoring during the renewal phase if it 

will result in an adverse action and to prohibit scoring when an insurer determines installment payment options); 

H.B. 260, 97th Gen. Assemb., 1st Reg. Sess. (Mo. 2013) (Missouri bill to amend the definition of "adverse action" 

to conform with FCRA's definition; require insurers to consider other factors if an applicant has no credit history and 

the insurer is contemplating taking and adverse action; and prohibit insurers from considering credit history during 

the renewal phase); B. 5126, 2013 Assemb., Reg. Sess. (N.Y. 2013) (New York bill to prevent insurers from making 

an adverse action based on insurance score alone); H.B. 1175, 108th Gen. Assemb., 2013-2014 Reg. Sess. (Tenn. 

2013); S.B. 931, 108th Gen. Assemb., 2013-2014 Reg. Sess. (Tenn. 2013) (Tennessee bill to prevent insurers from 

taking adverse actions based primarily on insurance scores); H.B. 3010, 81st Leg., 2013 Reg. Sess. (W. Va. 2013) 

(West Virginia bill to incorporate an extraordinary life circumstances provision). 

18 Perhaps the most vociferous objection to the FTC study by consumer groups was the fact that the study relied so 

heavily on information voluntarily provided by insurance companies. Consumer groups argued that this might have 

represented a skewed sample from insurance companies that were least likely to have problematic practices. 

19 The FTC evaluated its results by replacing credit scores with FICO credit-based insurance scores. These results 

were "qualitatively similar regardless of whether the ChoicePoint or the Fair Isaac score was used." 

20 The FTC found this same effect using an alternative data source for policyholder claims: their Comprehensive 

Loss Underwriting Exchange (CLUE) reports. 
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non-Hispanic whites and Asians were relatively evenly distributed across the range of insurance 

scores, whereas African Americans and Hispanics were over-represented in groupings of 

individuals with the lowest insurance scores and under-represented in groupings of individuals 

with the highest insurance scores. As a result, insurance scoring decreased expected prices for 

non-Hispanic whites and Asians (by an estimated 1.6 percent and 4.9 percent, respectively), but 

increased expected prices for African Americans and Hispanics (by an estimated 10.0 percent 

and 4.2 percent, respectively). 

Despite the correlation between insurance scores and race, the FTC study found little evidence 

that insurance scores operate as a proxy for race or ethnicity. The FTC evaluated this possibility 

in several ways, the most important of which was to build two insurance pricing models: one that 

explicitly included policyholder race, ethnicity and insurance scores, and one that included 

insurance scores but not policyholder race or ethnicity.
21

 To the extent that insurance scores 

similarly predicted claim risk in both models, the FTC reasoned that the explanation for this fact 

must not stem from it operating as a proxy for race or ethnicity. For three of the four types of 

auto insurance coverage studied, the FTC found that low insurance scores increased expected 

claims for African Americans and Hispanics by somewhat more in models excluding race and 

ethnicity than in models including these variables. At the same time, it found that insurance 

scores continued to substantially predict claim risk in both models. Putting these findings 

together, the FTC concluded that insurance scores may operate as a partial proxy for race or 

ethnicity for three of the four types of coverage studied, but that its operation as a proxy for these 

characteristics was not the primary explanation for its predictive capacity. In fact, the FTC found 

that the magnitude of the proxy effect of insurance scores was similar to the capacity of much 

less contentious policyholder characteristics—such as tenure with an insurer, the make and 

model of the policyholder's car, and the car's body type and safety systems—to proxy for race or 

ethnicity. Perhaps just as importantly, the FTC found that it was unable to construct a credit-

based insurance scoring model that would substantially decrease the disparate impact on 

minority groups while maintaining comparable predictive accuracy. 

The FTC study reached far less conclusive results regarding the relationship between insurance 

scores and income. Unlike in the case of race and ethnicity, the FTC did not have access to any 

individuated data about the income of consumers in its data. Instead, the FTC divided individuals 

into low, medium, and high income groups based on the median income of the census tract in 

which consumers resided. Using this aggregate measure of income, the FTC found that 

                                                 
21 The FTC also used two other approaches to test this possibility. First, it evaluated whether insurance scores are 

predictive of risk within racial or ethnic groups, reasoning that insurance scores must operate solely as a proxy for 

race or ethnicity if they are not predictive of risk within groups. The FTC found that insurance scores were 

predictive of risk within these groups, and hence did not operate solely as a proxy for these characteristics. Second, 

it evaluated whether average risk varied across racial or ethnic groups as measured by all factors other than 

insurance scores. It reasoned that if there were no such difference then there would be nothing for which insurance 

scores could proxy. Here the FTC found there are indeed risk differences across racial and ethnic groups, at least for 

three of the four types of auto coverage studied. 
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individuals categorized as low income did tend to have lower insurance scores than individuals 

categorized as high income, though the correlation was weaker than in the case of race or 

ethnicity. And, using the same approach as in the case of race and ethnicity, the FTC found 

limited evidence that insurance scores tend to proxy for income. Because of its inability to 

analyze individuated data on income, however, the FTC was hesitant to reach any firm 

conclusions regarding the relationship between insurance scores and income. Thus, the FTC 

noted that its results on the relationship between insurance scores and income "may simply be 

the result of only having data on income at the neighborhood level." Similarly, the FTC report 

excluded any conclusion about whether insurance scores operate as a proxy for income in its 

Executive Summary. 

In addition to the FTC's study, numerous states have conducted their own examinations into the 

impact of insurers' use of credit-based information on policyholders (NAIC 2014). Most of these 

studies focus on the overall impact that insurers' use of credit-based information has on 

policyholder premiums, without focusing on issues of potentially unfair discrimination (Honey 

2015). However, a few state studies focus more specifically on how insurance scoring impacts 

potentially suspect groups. For instance, in 2004 the Texas Department of Insurance (TDI) 

produced two reports on insurers' use of credit information pursuant to a legislative requirement 

to study the issue (TDI 2004, 2005). Mirroring the results of the FTC study, the TDI studies 

found that policyholders' credit scores were predictive of risk both in univariate analysis and in 

multivariate analysis that included other common rating variables. The TDI studies also found 

that insurers' use of credit scores disproportionately impacted both protected racial and ethnic 

groups, as well as lower and moderate income level populations. The TDI studies were notable 

because they were the first to use individual data on policyholders' race and ethnicity to assess 

the impact of insurance scoring on these groups. However, as with the FTC analysis, the TDI 

studies did not employ policyholder-level data on income, which was not available to the 

department. Instead, they relied on median income within zip code as their measure of income. 

Around the same time as the TDI study, Missouri also released a notable study on insurers' use 

of credit-based information (Kabler 2004). That study used credit scores collected directly from 

Missouri's highest volume automobile and homeowners insurers to assess the prospect that 

insurers' use of this information disproportionately impacted vulnerable groups. Consistent with 

the findings of both the FTC and TDI studies, the Missouri study concluded that policyholders' 

credit scores "are significantly correlated with minority status and income, as well as a host of 

other socio-economic characteristics, the most prominent of which are age, marital status and 

educational attainment." But like both the FTC and TDI studies, the Missouri study did not 

employ policyholder-level data on income, instead relying on median income within zip code as 

its measure of income. 
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IV. EMPIRICAL ANALYSIS 

We offer new evidence on the question of whether insurance score proxies for income in an 

actuarial model of auto claim risk. In Section IV.A, we describe our data and main sample, 

which comprises 66,444 homeowners. In Section IV.B, we specify a standard actuarial model of 

auto claim counts. In Section IV.C, we present our results. Our bottom line finding is that 

insurance score does not act as a proxy for income in the model. The underlying reason is that 

insurance score and income are very weakly correlated. Lastly, in Section IV.D, mindful of the 

possibility that renters may differ from homeowners in terms of income and insurance scores, we 

analyze a sample of 8,685 renters. The bottom line is the same, with the caveat that in the renters 

sample our policyholder-level measure of income is the insured value of the household's personal 

property. 

A. Data and Main Sample 

The source of our data is a large U.S. property and casualty insurance company that specializes 

in personal automobile and homeowners insurance. Our main sample comprises an unbalanced 

panel of 66,444 households who purchased automobile and homeowners policies from the 

company in one or more years between 1998 and 2006. In all, our main sample has 319,784 

household-year records. We observe all the information in the company's records regarding the 

households and their policies. In addition, we observe the number of claims that each household 

filed with the company under each of its policies during the period of observation. We focus our 

attention on claim counts in two lines of auto coverage: collision and comprehensive. Collision 

coverage pays for damage to the insured vehicle caused by a collision with another vehicle or 

object, without regard to fault. Comprehensive coverage pays for damage to the insured vehicle 

from all other causes (e.g., theft, fire, flood, windstorm, glass breakage, vandalism, hitting or 

being hit by an animal or by falling or flying objects), without regard to fault.
22

 

Table 1 reports descriptive statistics for the key variables. (It also lists the other variables used as 

controls in the model, though they are not our primary interest.) As the table indicates, we 

observe three key variables in addition to the households' collision and comprehensive claim 

counts: insurance score, median income in the household's census tract ("median income"), and 

the insured value of the dwelling covered by its homeowners policy ("home value"). However, 

                                                 
22 In addition to data on claim counts in collision and comprehensive, we also have information on claim amounts in 

these coverages and on claim counts and claim amounts in property damage liability and bodily injury liability. We 

focus our attention on claim counts in collision and comprehensive for two reasons. First, we believe that claim 

frequency is the primary component of claim risk in collision and comprehensive; we believe that claim severity is 

secondary because the administrative cost of a claim often exceeds the amount of the claim, in part because the 

maximum claim amount—the auto's fair market value—rapidly declines over time while administrative costs do not. 

Second, we have certain doubts about the reliability of the information we have on claim amounts. This second 

reason also explains why we do not focus our attention on property damage liability and bodily injury liability, as 

we believe that claim severity is the primary component of claim risk in these coverages. Nevertheless, we may in 

future work turn our attention to claim counts in property damage liability and bodily injury liability. 
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we do not directly observe income. Of course, the ideal data set would contain household-level 

information on claim counts, insurance scores, and income. But company data like ours—which 

is the best source of household-level information on claims and insurance scores—often omits 

income; companies typically cannot or do not collect this variable. For this reason, we use 

median income and home value to measure household income.
23

 

B. Actuarial Model of Auto Claim Counts 

We model household claim counts using a Poisson model with multiplicative random effects. 

This is a standard actuarial model for use with longitudinal data on property and casualty 

insurance claims. For textbook treatments, see, e.g., Cameron and Trivedi (1998), Wooldridge 

(2002), and Denuit et al. (2007).
24

 

Let  denote the number of claims for household  in year  under coverage , where 1,… , , 1,… , , and ∈ , . In the set of coverages,  denotes collision and  denotes 

comprehensive. Let 1, , … ,  denote a vector of  characteristics (plus a constant) 

for household  in year  under coverage , and define , … , . In addition, let  

denote household 's income in year , and define , … , . Finally, let  denote 

household 's baseline claim rate in year  under coverage , and let  denote a time-constant 

random effect for household  under coverage . 

In each coverage , we assume for every household : 
 | , , 	~	Poisson ,  1,… , ,          (1) 
 exp ,            (2) 
 | , , ,  ,            (3) 
 , , and  	~	Gamma , 1/ ,           (4) 
 

so that 1 and 1/ .
25

 

                                                 
23 Because we do not observe income, we do not know the correlation between home value and income in our data. 

However, using combined extract data (1998-2010) from the Survey of Consumer Finance (SCF), a triennial survey 

of U.S. households sponsored by the Board of Governors of the Federal Reserve System, we find that the correlation 

between home value and income is 0.35 (std. err. = 0.002). 

24 The Poisson model is the standard model for auto claim counts because the Poisson distribution is "the probability 

distribution of the number of occurrences of an event that happens rarely but that has very many opportunities to 

happen" (Denuit et al. 2007, p. 3). This is because the Binomial ,  distribution—the discrete probability 

distribution of the number of successes in a sequence of  independent yes/no experiments with success probability 

—is well approximated by the Poisson distribution with mean  when the number of experiments  is large 

and the success probability  is small. (Denuit et al. 2007, p. 3). Random effects are incorporated into the model to 

allow for unobserved heterogeneity and relax the (unrealistic) restriction of equidispersion (i.e., mean = variance). 

25 In equations (3) and (4), the symbol  denotes independence. 
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From these assumptions, it follows that for every household  in each coverage : 
 | , , exp ,  1,… , ,          (5) 
 | , 	 	 1.            (6) 
 

Given conditions (5) and (6),  and  can be consistently estimated by the method of maximum 

likelihood. 

C. Insurance Score as a Proxy for Income 

We now examine whether insurance score acts as a proxy for income in the model. Following 

the approach taken by the FTC (2007), we conduct three related analyses. First, we analyze 

whether insurance score predicts claim risk within income groups. If yes, then insurance score 

does not act solely as a proxy for income; it acts at most as a partial proxy. Second, we analyze 

whether income predicts claim risk. If not, then there is nothing for which to proxy. Third, we 

analyze whether controlling for income changes the impact of insurance score on predicted claim 

risk. If no, then insurance scoring has no proxy effect. 

1. Does insurance score predict claim risk within income groups? 

To address this question, we estimate the actuarial model with the following variables included 

as predictors: insurance score, median income, home value, a full set of interactions among 

insurance score, median income, and home value, and a full set of controls. We then plot the 

estimated relationship between claim risk and insurance score for various combinations of 

median income and home value. Figures 1 and 2 present the results for collision and 

comprehensive, respectively. Each graph shows a consistent negative relationship between claim 

risk and insurance score, indicating that insurance score does predict claim risk within income 

groups. Hence, insurance score does not act solely as a proxy for income. 

2. Does income predict claim risk? 

To address this question, we estimate the actuarial model with the following variables included 

as predictors: median income, home value, their product, and a full set of controls. We then plot 

the estimated relationship between claim risk and home value at different percentiles of median 

income. Figures 3 and 4 present the results for collision and comprehensive, respectively. Figure 

4 shows a mixed relationship between comprehensive risk and home value. Hence, if insurance 

scoring has a proxy effect in comprehensive, its impact on low income households may be 

nonuniform. By contrast, Figure 3 shows a clear positive relationship between collision risk and 

home value. This suggests that if insurance scoring has a proxy effect in collision, it may be 

favorable to low income households. 
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3. Does controlling for income change the impact of insurance score on predicted claim risk? 

The answer to this question goes to the heart of the matter. If insurance score acts as a proxy for 

income, even as a partial proxy, the answer should be yes. If the answer is no, then insurance 

scoring has no proxy effect. To answer the question, we estimate the actuarial model with 

insurance score and a full set of controls included as predictors, both with and without the 

income variables (median income, home value, and their product) included as predictors. Table 2 

reports the results. In both collision and comprehensive, controlling for income has little to no 

effect on the coefficient for insurance score.
26

 Hence, we conclude that insurance scoring has 

little to no proxy effect. The lack of a proxy effect is made clear in Figures 5 and 6. They show, 

for collision and comprehensive, respectively, that there is no discernible change in the density 

of the predicted claim rate when controls for income are included in the model. 

*  *  * 

In sum, we find that insurance score does not proxy for income in predicting auto claim risk. The 

underlying reason is that insurance score and income are very weakly correlated. For instance, 

when we calculate the Pearson correlation coefficient between insurance score and  = median 

income + home value + (median income × home value), we find that the correlation is 0.0284 

(p-value = 0.0000). This is very weak. Moreover it is negative, implying a slightly favorable 

impact of insurance scoring on low income households.
27

 

D. Renters versus Homeowners 

All of the households in our main sample are homeowners; none are renters. However, there are 

reasons to believe that renters may differ from homeowners in terms of their incomes and 

insurance scores. An important question, therefore, is whether our main finding for 

homeowners—that insurance score does not proxy for income in predicting auto claim risk—

holds equally for renters. 

In an effort to address this question, we analyze a sample of 8,685 households who purchased 

auto and renters insurance from the company in one or more years between 1998 and 2006. We 

repeat the same analyses on the renters sample that we conduct on the main sample. The only 

difference is that in the renters sample our policyholder-level measure of income is the insured 

value of the personal property covered by the household's renters policy ("property value"). 

                                                 
26 It is important to note that measurement error arising from using home value in lieu of income biases this effect 

towards zero. But because of the fairly strong correlation between home value and income (0.35 in the SCF data), 

we are comfortable that the bias is not driving the result. The degree of bias implied by this correlation is not 

sufficient to drive to zero what otherwise would be a substantial effect in the absence of measurement error. 

27 What's more, if we break down the main sample by median income and home value quartiles, we find that the 

correlation is very weak in each subsample. This suggests that the very weak correlation we find in the main sample 

is not masking systematic differences across income categories that are just cancelling out. 
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In all, the renters sample has 28,643 household-year records. Table 3 reports descriptive statistics 

for the key variables. For purposes of comparison, the table also reports the corresponding 

statistics for the main sample. On average, the households in the renters sample have lower claim 

counts and insurance scores than the households in the main sample. Although they have similar 

median incomes, the households in the renters sample have substantially lower property values 

than the households in the main sample. 

Notwithstanding the differences between the two samples, the results of our analysis for the 

renters sample are qualitatively the same as the results for the main sample. We again find that 

insurance score does not proxy for income in predicting auto claim risk—insurance score 

predicts claim risk within income groups, income does not predict claim risk, and controlling for 

income does not change the impact of insurance score on predicted claim risk (see Table 4). And 

again the underlying reason is that the correlation between insurance score and income is very 

weak: 0.0395 (p-value =0.0000).
28

 

V. DISCUSSION 

We conclude the paper in this section by discussing the policy implications of our findings. 

Before turning to this discussion, however, we want to highlight four caveats of our analysis. 

The first caveat relates to our income measures. We employ two measures of a household's 

income in our main analysis: (i) the median income in the household's census tract ("median 

income") and (ii) the insured value of the dwelling covered by its homeowners policy ("home 

value"). Insofar as we observe and utilize home value, a policyholder-level measure of income, 

in addition to median income, an aggregate measure of income (and, indeed, the same aggregate 

measure used by the FTC), we believe that our study greatly improves upon the existing 

literature. The fact remains, however, that we do not directly observe a household's income—

median income and home value are indirect measure of income.
29

 Ideally, one would have a 

direct measure of income.
30

 

The second caveat relates to our data. Our data is high quality administrative data. However, it 

comes from a single insurer operating in a single state. Consequently, it may not be 

representative of other insurers in other states. We have no reason to believe that the insurer is 

not representative of other insurers in other states. But it is possible. 

                                                 
28 In the case of the renters sample, we measure income by  = median income + property value + (median income × 

property value). 

29 Also, we do not directly observe census tract. Rather, we observe zip code and we use HUD "crosswalk files" to 

allocate census tract data to zip codes. 

30 In our analysis of the renters sample, we use the insured value of the personal property covered by the household's 

renters policy ("property value") as our policyholder-level measure of income. The foregoing caveat applies equally 

to property value. 
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The third caveat relates to our model. The Poisson model with gamma distributed random effects 

is a standard actuarial model of claim risk. Nevertheless, there are other models that one might 

consider. Moreover, although the model, under certain conditions, can be consistently estimated 

via maximum likelihood, there are other estimation methods that one might use (e.g., generalized 

estimating equations based on marginal moments) and which, under certain conditions, may be 

more efficient. 

The fourth caveat relates to the renters sample. The renters sample comprises households that 

purchase an HO-4 policy, common known as a renters policy. However, HO-4 policies are 

purchased not only by tenants but also by members of housing cooperatives (aka co-op owners). 

Arguably, co-op owners are more like homeowners than renters. We do not know the exact 

number of co-op owners in the renters sample. Based on the households' territory codes, 

however, we believe that the number of co-op owners is very small (less than 1 percent of the 

renters sample). 

With these caveats in mind, we now turn to the policy implications of our findings. 

Our results tend to undermine two objections to insurers' use of credit-based information in their 

rating and underwriting practices. First, our finding that insurance scores do not operate as a 

proxy for income in predicting claims risk refutes the strongest argument for regulating insurers' 

use of credit-based information. As described in Section II, it is theoretically plausible that 

insurers knowingly or unknowingly use credit-based insurance scores to proxy for policyholders' 

income. Such a practice, even if it were actuarially justified, would raise substantial regulatory 

concerns given the norm against income-based discrimination in insurance and the principle that 

insurers cannot be permitted to accomplish indirectly what they are prohibited from doing 

directly. It is for precisely these reasons that critics of insurance scoring often invoke the income-

proxy argument. Our findings tend to diminish the weight that these concerns should be given in 

policy and regulatory debates. 

Second, our findings tend to suggest that insurance scoring does not always or necessarily have a 

disparate impact on low income policyholders. In our sample, policyholders' incomes, as 

measured by median incomes and home values, are very weakly correlated with their insurance 

scores. By contrast, advocates and policymakers often assume that insurance scores do tend to 

correlate with policyholder income or wealth, as those with higher incomes can presumably more 

easily avoid defaulting on their debt or otherwise encountering credit-related problems. As noted 

in Section II, the legal relevance of any such disparate impact effect is highly contested. But the 

prospect that insurance scoring may disparately impact low income policyholders has obvious 

political salience. By demonstrating that policyholder income does not necessarily correlate with 

insurance scores, our results again undermine the case for regulatory or legal restrictions on 

insurance scoring. 
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What's more, our results tend to buttress the claim advanced by the insurance industry, as well as 

by Brockett and Golden (2007) and Golden et al. (2016), that insurance scores are predictive of 

risk because they operate as a rough measure of policyholders' "responsibility" or level of 

caution. Of course, our results do not directly test this hypothesis for the same reason that no 

prior study has been able to do so: it is not clear how researchers could measure policyholder 

responsibility independently of credit-based information. But the primary alternative explanation 

for the predictive capacity of insurance scores is that they proxy for income. By demonstrating 

that insurance scores are substantially predictive of policyholder claims even when they are not 

correlated to policyholder income, our study lends further credence to the responsibility-based 

theory of insurance scores' predictive power. 

At bottom the policy debate about insurance scoring is a debate about equity versus efficiency, 

and the terms of the debate are much the same as they are in the debates about other methods of 

risk classification (Abraham 1985, 1986; Avraham et al. 2014a). Proponents of legal restrictions 

on insurance scoring and other risk classification methods typically point to distributional and 

deontological equity considerations that may be furthered thereby, including, for instance, access 

to insurance for high-risk, low-income insureds (Meier 1991). Opponents, meanwhile, typically 

point to efficiency considerations, including, foremost, that such restrictions may artificially 

create asymmetric information and thereby induce "regulatory" adverse selection (Hoy 2006). 

There is a rich academic literature on the equity-efficiency tradeoff of risk classification in 

insurance markets, including both theoretical treatments (see, e.g., Dionne and Rothschild 2014 

and sources cited therein) and empirical studies (see, e.g., sources cited in Einav et al. 2010). 

While we do not engage here with all sides of the equity-versus-efficiency debate surrounding 

insurance scoring, our analysis contributes to the debate by offering new evidence on the validity 

of an important equity-based objection to the practice of insurance scoring. 
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Figure 1: Estimated relationship between claim risk and insurance score, collision. 
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Figure 2: Estimated relationship between claim risk and insurance score, comprehensive. 
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Figure 3: Estimated relationship between claim risk and income, collision. 

 

 

Figure 4: Estimated relationship between claim risk and income, comprehensive. 
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Figure 5: Density of predicted claim rate, collision. 

 

 

Figure 6: Density of predicted claim rate, comprehensive. 
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