
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

Do Crosscutting Concerns Cause Defects?
Marc Eaddy, Student Member, IEEE, Thomas Zimmermann, Member, IEEE,

Kaitlin D. Sherwood, Vibhav Garg, Gail C. Murphy, Member, IEEE Computer Society,
Nachiappan Nagappan, Member, IEEE, and Alfred V. Aho, Fellow, IEEE

Abstract—There is a growing consensus that crosscutting concerns harm code quality. An example of a crosscutting concern
is a functional requirement whose implementation is distributed across multiple software modules. We asked the question,
“How much does the amount that a concern is crosscutting affect the number of defects in a program?” We conducted three
extensive case studies to help answer this question. All three studies revealed a moderate to strong statistically significant
correlation between the degree of scattering and the number of defects. This paper describes the experimental framework we
developed to conduct the studies, the metrics we adopted and developed to measure the degree of scattering, the studies we
performed, the efforts we undertook to remove experimental and other biases, and the results we obtained. In the process, we
have formulated a theory that explains why increased scattering might lead to increased defects.

Index Terms—Crosscutting concerns, fault proneness, feature location, requirements traceability, mining software repositories,
metrics, statistical analysis, empirical software engineering, open source software.

—————————— ——————————

1 INTRODUCTION

espite the significant effort that developers put into
producing reliable software, defects still surface after

the software is deployed. Defects creep in at every stage
of the development process, avoid detection during test-
ing, and all too often appear as failures to the end user.
Enormous effort goes into avoiding defects (e.g., defen-
sive programming), and when that fails, detecting defects
(e.g., code inspections, program analysis, prerelease test-
ing) to reduce the number of defects in a delivered soft-
ware system. These efforts might be better directed if we
had a better understanding of what causes defects.

This paper considers the possibility that one cause of
defects is poor modularization of the concerns of the pro-
gram. A concern is any consideration that can impact the im-
plementation of a program [53]. A software requirement is
an example of a kind of concern. When a concern’s im-
plementation is not modularized, that is, the implementa-
tion is scattered across the program and possibly tangled
with the source code related to other concerns, the con-
cern is said to be crosscutting [42]. Several empirical stu-

dies [25] [28] [29] [30] [47] [60] [64] provide evidence that
crosscutting concerns degrade code quality because they
negatively impact internal quality metrics (i.e., measures
derived from the program itself [41]), such as program
size, coupling, and separation of concerns.

But do these negative impacts on internal quality me-
trics also result in negative impacts on external quality?
Internal metrics are of little value unless there is convinc-
ing evidence that they are related to important externally
visible quality attributes [35] [38], such as maintenance
effort, field reliability, and observed defects [21].

We argue in this paper that crosscutting concerns1
might negatively impact at least one external quality
attribute—defects, i.e., mistakes in the program text. Our
theory is that a crosscutting concern is harder to imple-
ment and change consistently because multiple—possibly
unrelated—locations in the code have to be found and
updated simultaneously. Furthermore, crosscutting con-
cerns may be harder to understand because developers
must reason about code that is distributed across the pro-
gram and must mentally untangle the code from the code
related to other concerns. We hypothesize that this in-
creased complexity leads to increased defects.

To formulate our theory, we present a formal model of
concerns and their relationship to program elements, and
we introduce a set of metrics that measure the extent to
which that relationship is crosscutting. To test our hypo-
thesis, we conducted three case studies to gather data on
scattering and defect counts. We then applied correlation
analysis to gather empirical evidence of a cause–effect rela-
tionship between scattering and defects.

We found a moderate to strong correlation between
scattering and defects for all three case studies. This sug-
gests that scattering may cause or contribute to defects,

1 For this paper we consider a crosscutting concern to be synonymous
with a scattered concern [26].

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society.

D

————————————————
 M. Eaddy, V. Garg, and A. V. Aho are with the Department of Computer

Science, Columbia University, NY, NY 10027, USA. E-mail: {eaddy,
vgarg, aho}@cs.columbia.edu.

 T. Zimmermann is with the Department of Computer Science, Universi-
ty of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N
1N4. E-mail: zimmerth@cpsc.ucalgary.ca.

 N. Nagappan is with Microsoft Research, Redmond, WA 98052, USA.
E-mail: nachin@microsoft.com.

 K.D. Sherwood and G.C. Murphy are with the Department of Computer
Science, University of British Columbia, 201-2366 Main Mall,
Vancouver, BC, Canada V6T 1Z4. E-mail: ducky@webfoot.com,
murphy@cs.ubc.ca.

Manuscript received 24 Sept. 2007; revised 15 Jan. 2008; accepted 12 Feb. 2008;
published online XX XXX. 2008.
Recommended for acceptance by H. Ossher.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-XXXX-XXXX.
Digital Object Identifier no. XXXX.

Digital Object Indentifier 10.1109/TSE.2008.36 0098-5589/$25.00 © 2008 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

which—if true—has many implications. First and fore-
most, our evidence suggests that one way we can improve
software reliability is to modularize crosscutting con-
cerns—or at least ensure they are well tested. Secondly,
our findings suggest that cognitive complexity measures
(e.g., concern-oriented metrics) are perhaps more appro-
priate predictors of software quality than structural com-
plexity measures (e.g., coupling, code churn). Thirdly, it
prompts the need for independent replication of our re-
sults to build confidence that the relationship between
scattering and defects is real. Finally, our findings call for
additional research to determine the root cause of the
supposed relationship: Are changes to highly crosscutting
concerns more likely to be applied inconsistently? Are
crosscutting concerns inherently more difficult to under-
stand?

The paper proceeds as follows. In Section 2, we
present a theory of the relationship between crosscutting
and defects, and state our research hypothesis. In Section
3, we describe our model of concerns and our suite of
concern metrics that are based on the model. In Section 4,
we outline the methodology we used to validate our
theory. In Section 5, we describe our case studies. We
present the results of our studies and a discussion in Sec-
tion 6. We address threats to internal and external validi-
ty in Sections 7 and 8. We summarize related research in
Section 9. Section 10 concludes.

2 WHY MIGHT CROSSCUTTING CONCERNS CAUSE
DEFECTS?

Our theory is a set of models [31] that formalizes concepts
such as “concerns,” “program elements,” and “defects,”
and describes their inter-relationships, along with how
they relate to the developer. In this section, we model the
relationship between developers and concerns. We use
the model to justify why crosscutting might cause defects,
which we need to draw meaningful conclusions from our
results [21].

Every line of code exists to satisfy some concern. Con-
cerns may be described in many ways and at various le-
vels of abstraction:

 Features from a feature list.
 Requirements from a software requirements docu-

ment.
 Design patterns and design elements from a UML

design document.
 Low-level programming concerns such as pro-

gramming language used, coding style, program-
ming idioms, code reuse, information hiding, and
algorithms.

When faced with the task of implementing a concern, a
developer creates—perhaps without realizing it—a con-
cern implementation plan that guides her implementation
decisions. It is in this plan that crosscutting first emerges.
One developer’s plan may entail scattering the implemen-
tation (e.g., she plans to copy-and-paste code), whereas
another may localize it (e.g., she plans to create a shared
function). The plan chosen depends on many variables,
including the development process (e.g., priorities, time,

resources), programming technology (e.g., program lan-
guage), and the developer’s aptitude.

The relationship between the concerns and the pro-
gram is rarely documented [44]. This makes it difficult
for maintainers of the program to answers questions such
as “Where are all the places that the undo feature is imple-
mented?” (i.e., top–down analysis [48]) and “What is this
piece of code for?” (i.e., bottom–up analysis [48]). Without
a proper understanding of the scattered nature of the
concern implementation, maintainers may make changes
incorrectly, or neglect to make changes in all the right
places.

Our conjecture is that when the implementation of a
concern is distributed (scattered) across many program
elements, the complexity of that implementation increas-
es, as does the difficulty of making changes correctly and
consistently, increasing the likelihood of defects. Stated
simply, crosscutting concerns are hard to find, under-
stand, and work with. More formally, our research hypo-
thesis is
Hypothesis. The more scattered a concern’s implementation

is, the more defects it will have, regardless of the implemen-
tation size.

The last stipulation about size is necessary since past re-
search has established that size, in terms of lines of code,
is already a strong predictor of defects [22]. Since we ex-
pect scattering to be related to size, we must rule out the
possibility that an increase in defects is caused by an in-
crease in size alone. We will revisit this technicality in
Section 6.3—so for now we ask the reader to ignore it.

Some controlled experiments on program understand-
ing suggest our theory is valid. Letovsky and Soloway
use the term delocalized plan to refer to a concern whose
implementation is “realized by lines scattered in different
parts of the program.” They observed that programmers
had difficulty understanding delocalized plans, resulting
in several kinds of incorrect modifications [46]. Similarly,
Robillard, Coelho, and Murphy observed that program-
mers made incorrect modifications when they failed to
account for the scattered nature of the concern they were
modifying:

“Unsuccessful subjects made all of their code modifica-
tions in one place even if they should have been scattered
to better align with the existing design.” [54]
Other studies indicate that programmers make mis-

takes when modifying classes whose implementations are
scattered due to inheritance. Harrison, Counsell, and
Nithi found that “systems without inheritance are easier to
modify than systems with either three or five levels of inherit-
ance.” [32]. From the perspective of our theory, inherit-
ance scatters the implementations of the underlying con-
cerns.

In another study, Bruntink, Deursen, and Tourwé ob-
served that the idiom used to implement a specific cross-
cutting concern (exception handling) made it “too easy to
make small mistakes [that] can lead to many faults spread all
over the system.” [9]

Finally, enhancements or fixes applied to a crosscutting
concern may induce changes in multiple source files,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 3

leading to increased code churn. Nagappan and Ball
showed that code churn is a good predictor of system
defect density [49], and we propose that changes to cross-
cutting concerns may be the root cause.

To validate our theory empirically and test our hypo-
thesis, we next describe our concern model and a suite of
metrics that operationalize the concept of “highly scat-
tered.”

3 A MODEL OF CONCERNS
Abstractly, a program specification, or simply specification, is
a description of a program. A specification may be ex-
ecutable, e.g., a set of program elements, or nonexecutable,
e.g., a requirements specification or architectural design.
Our operational definition of a concern is an item from a
program’s nonexecutable specification. Thus, a nonexecuta-
ble specification represents a concern domain of the pro-
gram.

We define our concern–program element mapping as a
tuple M = (S, T, CS, CT, R). S is a set of concerns organized
into a hierarchy [59] described by CS = { (s1, s2) | s1, s2 S,
s1 ≠ s2, s1 is the parent of s2 }. T is a set of program ele-
ments organized according to CT = { (t1, t2) | t1, t2 T, t1 ≠
t2, t1 is the parent of t2 in the abstract syntax tree [1] of the
program }. Finally, R is the relation of interest between
the two specifications, R = { (s, t) | s S, t T }. This is
depicted in Figure 1 below.

Note that CT does not describe a class inheritance hie-
rarchy. It describes a forest of trees, the roots of which are
the abstract syntax trees of the individual source files,
which syntactically contain class definitions, which in
turn contain class member definitions, etc.

The program elements that are meaningful depend
upon the language in which the program is expressed.
The projects analyzed in this paper were written in Java,
so we are primarily interested in classes, fields, methods,
and statements.

3.1 Terminology
We can now define some common terminology. A con-
cern is scattered if it is related to multiple target elements
and tangled if both it and at least one other concern are
related to the same target element [5] [17] [24]. For the
purposes of this paper, a crosscutting concern is a concern
that is scattered [26, p. 4].

This binary definition of scattering is simple and un-
ambiguous, but is not very useful when most of the con-
cerns are scattered, which we believe to be the rule rather
than the exception [17] [62]. Hence, we need metrics to
determine the degree of scattering.

3.2 Concern Metrics
There are many ways to describe how a concern is im-
plemented. For the purpose of validating our theory, we
focused on four cognitive complexity metrics that de-
scribe how scattered the concern’s implementation is, in
absolute terms and in terms of statistical distribution, and
with respect to classes and methods (the elements of in-
terest in an object-oriented implementation). This allows
us to determine which characteristic of scattering, if any,
is the best predictor of defects.

Complexity metrics tend to be heavily influenced by
size (in terms of lines of code), which can lead a research-
er to perceive a cause–effect relationship where none ex-
ists [22]. To test for a possible influence, we also meas-
ured the concern’s size, i.e., the total number of lines of
code associated with the concern. We discuss the results
of the concern size tests in Section 6.3.

Table 1 provides a summary of the metrics, which we
will now describe in detail.

3.2.1 Program Element Contribution
Program element contribution (CONT) is the number of
lines of code in a program element that are associated
with a concern. The entire line is counted even if only a
portion is associated with the concern. Indeed, a line may
be associated with multiple concerns.

TABLE 1
CONCERN METRICS

Bug Count Number of unique bugs associated with the concern.
Program Element Contribution
(CONT)

Number of lines of code in the program element that are associated with the concern. In gener-
al, whitespace or comments are excluded; however, for one case study, they were included.
Lines outside of class definitions (e.g., package declaration, imports) are not counted by our tool.

Lines of Concern Code (LOCC) Total number of lines of code that contribute to the implementation of a concern.
Concern Diffusion over Components
(CDC)

Number of classes that contribute to the implementation of a concern and other classes and
aspects which access them. [28]

Concern Diffusion over Operations
(CDO)

Number of methods which contribute to a concern’s implementation plus the number of other
methods and advice accessing them. [28]

Degree of Scattering across
Classes (DOSC)

Degree to which the concern code is distributed across classes. Varies from 0 to 1. When
DOSC is 0 all the code is in one class. When DOSC is 1 the code is equally divided among all
the classes. [17]

Degree of Scattering across Me-
thods (DOSM)

Degree to which the concern code is distributed across methods. Varies from 0 to 1 similar to
DOSC. [17]

Fig. 1. Relation between concerns and program elements.

Concerns
Program
Elements

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

For a method or field associated with a concern, the
contribution is the number of lines in the method (me-
thod declaration plus method body) or field declaration.

For classes, the contribution includes the lines of the
class declaration plus the contributions of the class’s me-
thods and fields. Inner classes in Java are considered sepa-
rate from the enclosing class when determining contribu-
tion, and anonymous classes are considered part of the en-
closing method. Note that inheritance has no bearing on
contribution.

When the element is the entire program, P, the contri-
bution is the sum of the contributions of all the classes,
i.e., the total number of lines associated with the concern
s. We give this special case its own metric, lines of concern
code (LOCC), that is, LOCC(s) = CONT(s, P).

3.2.2 Scattering Metrics
The concern diffusion metrics, created by Garcia and col-
leagues, measure scattering in absolute terms as a count
of the number of classes (CDC) or methods (CDO) that
implement the concern [25]. We include CDC and CDO
in our correlation analysis because they are rigorously
defined, are validated by several studies [25] [28] [30],
and they nicely contrast our degree of scattering metric.

The degree of scattering metric (DOS) created by Eaddy,
Aho, and Murphy [17] provides more information by fur-
ther considering how the concern’s code is distributed
among the elements. We believe this more accurately
quantifies the modularity of a concern, and so should be a
better predictor of defects than absolute scattering metrics
such as CDC and CDO. The degree of scattering metric
builds upon the concentration metric (CONC) introduced
by Wong et al. [62].

 (1)

 (2)

For the object-oriented programs we studied, we meas-
ured degree of scattering across classes (DOSC), in which
case t is a class, and degree of scattering across methods
(DOSM), in which case t is a method.

Degree of scattering is a measure of the statistical va-
riance [37, p. 57] of the concentration of a concern over all
program elements with respect to the worst case (i.e.,
when the concern is equally scattered across all elements):

 (3)
where,

 (4)

The worst-case occurs when the implementation of a con-
cern is uniformly distributed across all program elements
in T, i.e., CONCworst = 1/|T|. Substituting this into (4),

 (5)

The ideal variance occurs when CONC is 1 for one com-

ponent t, and 0 for all other components, i.e., the concern
s is completely localized in t. (5) reduces to

 (6)

Substituting (6) into (3) and simplifying,

 (7)

Using the validation methodology and terminology
specified by Kitchenham, Pfleeger, and Fenton [43], DOS,
and by extension DOSC and DOSM, has the following
properties:

 It is normalized to be between 0 (completely localized)
and 1 (completely delocalized; uniformly distributed)
(inclusive) so that concerns can be meaningfully
compared. DOS can theoretically take on any real
value within this range and is therefore continuous.
DOS is undefined when |T| 1.

 DOS is proportional to the number of elements re-
lated to the concern, and inversely proportional to the
concentration. That is, the less concentrated the
concern is, the more scattered it is.

 DOS is a ratio-scale measure (0 means “no scatter-
ing”). Thus, it is meaningful to compare and rank
concerns by their DOS values, and obtain the aver-
age DOS.

 While DOS is unitless, the individual components of
the DOS equation do have units, specifically, the
units are lines of code (LOCs), T, and the structural
unit of T (e.g., classes, methods). One can directly
compare two DOS values only they are both ob-
tained from DOS equations with identical units.
This implies that it is not meaningful to directly
compare DOS values for two different programs, or
two different versions of the same program, when S
or T is different.

3.2.3 Comparing DOSC and CDC
The difference between DOSC and CDC is illustrated in
Figure 2. The pie charts show how the code related to the
concern is distributed among four classes. In the first
scenario, the implementation is evenly divided among the
four classes (the worst case). In the second, the implemen-
tation is mostly localized. We compute DOSC as follows:

DOSC = 1.00
 CDC = 4

Fig. 2. Comparing DOSC and CDC for two different imple-

mentations of the same concern.

DOSC = 0.08
 CDC = 4

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 5

 = 1

In the second scenario, the DOSC value is

DOSC is close to 0, indicating the implementation is most-
ly localized. CDC cannot distinguish the two implemen-
tations, as evident by the value of 4 for both.

4 METHODOLOGY USED TO VALIDATE OUR
THEORY

To validate our theory, we chose to undertake a series of
case studies of open source Java programs. In particular,
we looked for medium-size programs that had a clear set
of software requirements and documented defects (the
reasons for these criteria will become apparent in a mo-
ment). For the three programs we selected, we reverse
engineered the concern–code mapping and the bug–code
mapping. We then inferred the bug–concern mapping.
After obtaining the three mappings, we were able to
compute the metrics described in the previous section
and measure the correlation between scattering and de-
fects.

More formally, our methodology for obtaining the
mappings consists of the following steps:

1) Reverse engineer the concern–code mapping: S and CS
(Section 4.1), and R (Section 4.2). This part of our
methodology, depicted in Figure 3, is subjective.
However, we defined assignment rules to improve
the repeatability of our mappings and chose statis-
tical methods designed to improve the reliability of
our correlation results.

2) Mine the bug–code mapping: S is the set of bugs and
R is automatically determined using bug fix data.
This is depicted in Figure 5 and described in Section
4.4.

3) Infer the bug–concern mapping. Section 4.5 explains
how we associate a bug with a concern if the con-
cern’s implementation was modified to fix the bug
(depicted in Figure 6).

4.1 Concern Selection
Selecting the right set of concerns to analyze is critical to
ensure that our theory is applicable, our statistical analy-
sis is valid, and our results are meaningful. However, our
broad definitions for “concern” and “nonexecutable spe-
cification” imply an infinite number of concerns from
which to choose. The context of our theory reduces the
scope to actual concerns, i.e., there is evidence that the
concerns provide the rationale for the implementation.
For example, maintainability is not an actual concern if the
developer did not consider it. This is important because
our theory only explains defects when they are related to
actual crosscutting concerns. This requirement was diffi-
cult to satisfy as most of the 75 open-source projects2 we
considered did not have requirements documents.

2 The list is available in the Online Appendix (see Section 11).

Another criterion was that the set of concerns should
provide a rationale for most of the code. This reduces
sample bias since all concerns are considered, not just those
that are crosscutting. Furthermore, to ensure our correla-
tions were statistically significant, we required that the
final concern set include at least 30 concerns [38, p. 64].
This is easily accomplished by making concerns more
granular; however, at some point we must increase the
granularity of the program elements assignable to the
concerns or suffer a loss in precision. For example, asso-
ciating a concern with an entire method when it is only
related to a single statement inflates the concern’s size.
Unfortunately, our concern and bug assignment tools,
and time restrictions, limited us to field- and method-
level granularity (e.g., we could not assign individual
statements). We discuss how this limitation affects inter-
nal validity in Section 7.3.

The actual process of selecting concerns involved de-
termining (1) the appropriate concern domain (e.g., the
software requirements specification), (2) what constitutes
a concern in that domain, including the concern granular-
ity, and (3) the concern hierarchy. The final concern hie-
rarchy is entered into a tool we built, called ConcernTag-
ger, so that we may begin assigning program elements to
the concerns. We give examples of concerns for the three
case studies in Sections 5.1–5.3. We describe the tool and
assignment procedure in the next section.

4.2 Concern Assignment
Concern assignment is the process of determining the
relationship between a concern and a program element
[6]. In our methodology, an analyst determines the rela-
tionship by examining a set of concern descriptions and
the source code (see Figure 3). For our studies, the most
relevant relationship between concerns and program ele-
ments would be based on a likely–to–contain–defect rule:

A program element is relevant to a concern if it is likely
to harbor defects related to that concern.

In other words, if a bug is reported for a concern, the de-
fect is likely to lie in one of these program elements. Ob-
viously, this relationship is difficult, perhaps impossible,
to establish with any certainty. Instead, we approximate
this rule using the prune dependency rule created by Eaddy,
Aho, and Murphy [17], which is easier to decide:

A program element is relevant to a concern if it should be
removed, or otherwise altered, when the concern is
pruned.

Concern
Description

class Query {
 int count=2;
 int exec(){
 ...}

Concern 1.1
Convert query
hits to tasks

Source Code

Fig 3. Associating concerns with program elements.

Query
count
exec()

Code Model Concern Domain

Program
Elements

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

To properly interpret this rule, consider a software prun-
ing scenario where a developer is removing a concern to
reduce the footprint of a program, or otherwise tailor the
program, for a particular environment. In this case, they
want to remove as much code as possible, short of a rede-
sign3, and without affecting other concerns.

A benefit of the prune dependency rule is that the
mapping can be directly obtained by actually removing
each concern in turn and noting which elements require
changes. However, this task is very labor-prone and was
not feasible for the scale of the projects we studied. We
therefore relied on a human analyst to estimate the map-
ping. Based on our experience assigning the concerns of
five small- to medium-size projects (13–44 KLOCs) by
hand, we believe a prune dependency is easier to estimate
than other types of relationships (e.g., implements [50],
contributes–to [25] [52]) and produces relevant results [17].
In this context, relevance is the extent to which the prune
dependency mapping agrees with the likely–to–contain–
defect mapping.4 Both rules will exclude “obviously”
irrelevant program elements including methods shared
by all concerns (e.g., the main function), general purpose

3 Assume that disabling the concern using a flag, preprocessor macros,
or code generation is not allowed.

4 If we knew the likely–to–contain–defect mapping, we would measure
similarity directly using the Jaccard similarity metric [58], for example.

methods (e.g., String.concat), and elements contained in
system and generic libraries.5 On the other hand, a prune
dependency assignment will include some elements that
are unlikely to contain defects, e.g., field declarations and
accessor methods.

Deciding if a prune dependency relationship exists re-
quires human judgment and is therefore subject to human
error. Fortunately, our statistical analysis method
(Spearman’s correlation) mitigates the impact of these
measurement errors since it only considers the relative
ordering of values, not the absolute values themselves.
We revisit the issue of assignment error in Section 7.1.

The actual assignment of elements to concerns was
done by two of the authors using an extension to Con-
cernMapper [55], a plug-in for the Eclipse6 development
environment, developed by Robillard, Manggala and
Weigand-Warr. ConcernMapper allows the user to asso-
ciate program elements with concerns via drag-and-drop,
etc. Our extension to ConcernMapper, named Concern-
Tagger7, further allows the user to create a hierarchy of
concerns and obtain concern metrics and assignment cov-

5 It is not necessary to consider elements contained in system and ge-
neric libraries because application-specific concerns generally do not
provide a rationale for general-purpose code (a similar argument is made
in [19]).

6 http://www.eclipse.org
7 http://www.cs.columbia.edu/~eaddy/concerntagger

Fig 4. ConcernTagger screenshot showing a) a Rhino source file, b) the Rhino concern hierarchy showing the program elements as-
signed to the “Regular Expression Literals” concern (program elements can be assigned to concerns via drag-and-drop and right click),
c) a view showing which concerns are assigned to the methods of the Decompiler class, and d) the Rhino bugs.

 a

 b

 c

 d

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 7

erage statistics (see Figure 4).
The analyst carries out the concern assignment task by

systematically inspecting each program element and de-
ciding if the prune dependency rule applies to any of the
concerns. In some cases this decision is easy, e.g., any
field named “log” has a prune dependency on the logging
concern. However, we found that the accuracy of the ma-
jority of the decisions hinged on how well the analyst
understood the program. To aid program understanding,
we relied on project documentation, source code com-
ments, code navigation and search tools, change history
comments, and in the case of the Rhino study, unit tests.

4.3 Ensuring Independence of Concern Metrics
Correlation and regression analysis can only be applied to
concerns whose concern metrics are independent [37, pp.
114, 206]. As we mentioned, concerns may be organized
in a containment hierarchy, in which case the observation
below applies:
Observation. The program elements associated with a concern

via the prune dependency rule must (at least) include the
program elements associated with the concern’s descendants.

Justification. The prune dependency assignment rule
states that a program element is associated with a con-
cern if removing the concern would require modifica-
tion or removal of the element. Therefore, when con-
cerns are organized in a containment hierarchy, remov-
ing a parent concern implies that the parent’s descen-
dants are also removed. Since removing the parent’s
descendants requires modification or removal of the
program elements associated with the descendants, it
follows that the parent concern must also be associated
with those elements.

Our concern metrics are derived from the program
elements associated with a concern. The observation
above implies that the concern metrics for a parent con-
cern are dependent on those of its descendant concerns
(i.e., the metrics are collinear). For example, the root con-
cern has the largest size and bug count and is the most
scattered8. Correlation and regression analysis is unde-
fined when the metrics of the concerns are interdepen-
dent [22]. Therefore, although we assigned all the con-
cerns, we only performed statistical analysis on sets of
concerns where no two concerns were descendants of

8 Except in rare cases, the degree of scattering metrics for a parent will
be greater than or equal to its children.

each other (specifically, leaf concerns). Restricting our
analysis in this way does not introduce sample bias since
the leaf concerns provide the rationale for most of the
code, as our concern coverage statistics (discussed in Sec-
tion 6) show.

4.4 Bug Assignment
As is typical, we did not have records of individual de-
fects. Instead, we relied on records of bugs: bug reports
stored in an issue tracking system (ITS) and bug fixes stored
in a source code control system (SCCS) [56]. A bug is caused
by one or more defects. For example, an end user might
report a crash (i.e., a failure [34]) that is caused by multiple
defects, whereas a developer might report access to an
uninitialized variable (a single defect). To validate our
theory, we approximate defect counts—which are not di-
rectly measureable, with bug counts—which are directly
measurable, as we will soon see.

4.4.1 Associating Bugs with Bug Fixes
When a bug report is filed in the ITS, the bug is given a
unique bug id. The open source projects we analyzed had
publicly accessible issue tracking systems, so the filer
could be a developer on the project or an end user (or
both). If the bug is genuine, not a duplicate, and is caused
by defects in one or more source files, a developer even-
tually fixes it, submits the updated files to SCCS along
with a reason for the changes, and then changes the bug
status to “fixed.” We use the term bug fix to refer to the
set of lines in the source code—which may span multiple
files—added, removed, or modified to fix a bug.

Common source code control systems typically record
the changes made to source files in the form of one or
more deltas. A delta provides a list of the lines added,
removed, and modified, and the reason for the change
(called the commit message). The SCCS systems used by
the projects we studied were CVS [12] and Subversion
[15]. For CVS, the unit of change described by a delta is a
single file, so a fix may consist of multiple deltas. For
Subversion, the unit of change can include multiple files,
so a fix consists of one delta.

A common approach for associating bugs with pro-
gram elements is to search for deltas whose commit mes-
sages include keywords such as “bug” or “fix” [51], or
include strings that look like bug ids [16] [27] [57]. How-
ever, relying on this information alone is insufficient. For
one project we studied, the ids in 87 (37%) of the commit
messages referred to enhancements instead of bugs,

int exec() {
+ if (!ret)
+ return -1;

- if (ret == 0)

Version Delta Program Elements

Query
count
exec()

Fig 5. Associating bugs with program elements.

Version History
(query.java)

Version Date Author Comment
1.5 Dec-07 sue Fix 149606
1.4 Nov-24 joe Fix 142661
1.3 Nov-24 joe Fix 165491
…

Issue Tracking
System

Bug 149606
Some queries not
converted to
tasks

Bug Report

Source Code Control System Code Model

Diff

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

which would have inflated the bug counts for some con-
cerns. This is easily prevented by using the issue tracking
system to verify that ids refer to actual bugs. Of course,
bugs identified by keywords instead of ids cannot be sys-
tematically verified using this approach.

Furthermore, it is common for a bug to be fixed incor-
rectly the first time [51], or be worked on in stages, requir-
ing multiple updates to the same file [2]. This can result
in the same bug being counted multiple times. Again,
using bug ids helps us minimize noise since we only
count unique bug ids.

Our approach for recognizing bug fixes is depicted in
Figure 5 and described in detail by Śliwerski et al. [57],
which is similar to the approaches used by Fischer et al.
[27] and by Čubranić et al. [16]:

A delta is called a “bug fix” and associated with a bug if
the change reason refers to a valid bug id according to the
issue tracking system.
For Bugzilla, a valid bug is an issue in the ITS with a

resolution of “fixed,” a status of “closed,” “resolved,” or
“verified,” and a severity that is not “enhancement.” For
Jira, the type must be “bug,” the resolution must be
“fixed,” and the status must be “closed” or “resolved.”
We included bug fixes associated with any branch in the
version database (not just the main branch).

Here are examples of commit messages from the
projects we studied that our approach associates with a
bug:

“NEW - bug 172515: Synchronizing queries with Bug-
zilla stuck when empty results. https://bugs.eclipse.org/
bugs/show_bug.cgi?id=172515”
“Fix for 305323: Rhino fails to select the appropriate
overloaded method.”

“Fix for JIRA IBATIS-260: ‘Hash conflict with groupBy
resultMaps’”

We required that the majority of bugs in the issue
tracking system be traceable to bug fixes using this ap-
proach. This helps ensure that we do not miss bugs that
should be assigned to program elements (false negatives)
and that our correlation results are statistically significant.
This turned out to be a very stringent requirement. Out
of the 75 medium-size (less than 50 KLOCs) open source
projects we considered for our case studies, very few fol-
lowed the practice of including bug ids in commit mes-
sages. However, this requirement ensured that our defect
counts would be sufficiently accurate for our purposes.

4.4.2 Associating Bugs with Program Elements
To decide if a bug is associated with a program element,
we created the fixed-for-bug rule:

A program element is relevant to a bug if it was modified
to fix the bug.
For the first case study (Mylyn–Bugzilla), the first au-

thor associated bugs with bug fixes, and then program
elements, by hand.9 We realized that this procedure (de-

9 To prevent bias, concern assignment was performed by a different au-
thor.

picted in Figure 5) could be easily automated, which
would eliminate inconsistencies caused by human error.
We created a plug-in for Eclipse, named BugTagger,
which automatically associates bugs from a Bugzilla or
Jira issue tracking system with methods, fields, and types,
using change history from a CVS or Subversion database.

4.5 Automatically Assigning Bugs to Concerns
Once we have mapped concerns and bugs to program
elements, it is trivial to automatically associate bugs with
concerns:

A bug is associated with a concern if the bug occurs in
the concern’s implementation, i.e., the intersection of the
sets of program elements associated with the bug and the
concern is nonempty.

This is depicted in Figure 6. Our underlying assumption
is that it is reasonable to associate a bug with a concern if
the source code associated with the concern must be
changed to fix the bug. This echoes the approach that is
common in the software engineering literature (for exam-
ple, see El Eman et al. [22]), where a defect is assigned to a
class if it occurs in the class’s implementation. The bug
count for a concern is therefore the number of unique bugs
associated with the concern.

Our bug–concern assignment methodology does not
consider the similarity of the sets of program elements
assigned to the concern and bug, other than requiring that
at least one element is shared. We therefore make no
claims about the strength of the association between a bug
and a concern. For example, if all the program elements
modified to fix a bug were associated with one concern,
we would say that the bug was strongly associated with
that concern. For the purposes of validating our theory,
we only need to know how defective a concern is, and for
this our bug–concern assignment rule is adequate.

5 OUR CASE STUDIES
Case studies in software engineering test theories and
collect data through observation of a project in an unmo-
dified setting [63]. In this section, we summarize the pro-
grams we studied, explain how we selected the concerns,
and provide some example concerns.10 We required all

10 Due to space limitations we could not list all the concerns we ana-
lyzed. However, the complete list is available in the Online Appendix
(see Section 11).

Fig 6. Associating bugs with concerns.

Bug 149606
Some queries not
converted to tasks

Concern 1.1
Convert query
hits to tasks

Query
count
exec()

Inferred

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 9

three projects to share the following characteristics
 Open source – Ensures our studies can be replicated.

In addition, program understanding, which is re-
quired for concern assignment, is very difficult
without access to the source code [6].

 Written in Java – Limitation imposed by our tooling.
 Production quality – Helps us to argue that our re-

sults generalize to an industrial setting.
 Maintained by several people – This is more represent-

ative of industrial projects. Furthermore, our theory
has greater applicability to highly collaborative
projects, where we suspect the adverse effects of
scattering to be more evident.

 Easily identifiable set of at least 30 relevant concerns (see
Section 4.1).

 Publicly accessible issue tracking system (see Section
4.4.1).

 Majority of bugs are referenced consistently by id in
commit messages (see Section 4.4.1).

To improve the generalizability of our results, we pur-
posely varied some context parameters, such as applica-
tion domain and project size. Table 2 summarizes the
high-level project differences.

5.1 Case Study #1: Mylyn–Bugzilla
Mylyn11 is a production-quality plug-in for the Eclipse
development environment that enables a task-focused
development methodology [39]. It was developed by a
team of graduate students and professional developers in
conjunction with one of the authors of this paper. Ver-
sion 1.0.1 consists of 168,457 lines of Java code (LOCs)12
computed using the Unix wc command; however, we li-
mited our analysis to two components: bugzilla.core and
bugzilla.ui, totaling 56 classes, 427 methods, 457 fields,
13,649 lines of Java code. We refer to this subset as My-
lyn–Bugzilla.

The requirements for Mylyn–Bugzilla were reverse en-
gineered based on the “New and Noteworthy” section of
the Mylyn web site and the personal experience of one of
the authors with the development and usage of the com-
ponents. We identified 28 of Mylyn’s functional and non-
functional requirements related to the bugzilla.core and
bugzilla.ui components (i.e., requirement concerns). This
is somewhat short of the 30 concern requirement we put
forth in Section 4.1. We explain how this affected statis-
tical significance in Section 6.1. The requirements were

11 http://www.eclipse.org/mylyn
12 For Mylyn–Bugzilla, line counts include comments and whitespace

(i.e., LOCs). They are excluded for the other two case studies so that only
source lines are counted (i.e., SLOCs).

organized as a list so they were all leaf concerns. Exam-
ple requirement concerns are “Convert query hits to
tasks” and “Support search for duplicates.”

For Mylyn–Bugzilla, one author (heretofore referred to
as “Author A”) manually assigned concerns to program
elements using the procedure outlined in Section 4.2. To
avoid potential bias, a different author (“Author B”) ma-
nually assigned bugs to program elements using the pro-
cedure explained in Section 4.4. As explained in Section
4.5, the assignment of bugs to concerns was completely
automated for all the case studies.

5.2 Case Study #2: Rhino
Rhino13 is a JavaScript/ECMAScript interpreter and com-
piler. Rhino began life as an industrial project at Nets-
cape and was then transitioned to open source. Due to its
large user base and extensive test suite, Rhino has a
healthy number of bugs in its bug database. Version
1.5R6 consists of 32,134 source lines of Java code (SLOCs),
138 types (classes, interfaces, and enums), 1870 methods,
and 1339 fields (as reported by ConcernTagger).

Unlike the other case studies, Rhino implements a
formal specification: The ECMAScript Standard [18]. Ob-
viously, this specification provides a strong rationale for
at least part of the source code of any program that claims
to conform to the specification. It was therefore an ob-
vious choice for the concern domain. Every normative
section and subsection of the specification was considered
a concern, resulting in a hierarchy of 480 concerns. How-
ever, to ensure our samples were independent (as ex-
plained in Section 4.3), we only performed statistical
analysis on 357 mapped leaf concerns.

The screenshot of ConcernTagger in Figure 4 shows a
portion of the Rhino concern hierarchy. The “7 Lexical
Conventions” concern is visible, along with its subcon-
cern “7.8 Literals,” which has the child leaf concern
named “7.8.5 Regular Expression Literals.” Also visible
are some of the program elements assigned to the Regular
Expression Literals concern, which would need to be
modified or removed if support for regular expression
literals was removed. Please refer to [18] for detailed con-
cern descriptions.

For Rhino, Author B manually assigned concerns to
program elements, while BugTagger automatically as-
signed bugs as explained in Section 4.4.2.

5.3 Case Study #3: iBATIS
iBATIS14 is a popular object-relational mapping (O/RM)

13 http://www.mozilla.org/rhino
14 http://ibatis.apache.org

TABLE 2
PROJECT SUMMARIES

 Mylyn–Bugzilla Rhino iBATIS
Application Domain Development Tools Compilers Databases

Project Size (KLOCS) Small (~14) Medium (~32) Small (~13)
Issue Tracking System Bugzilla Bugzilla Jira

Source Code Control System CVS CVS Subversion
Concern Domain Requirements ECMAScript Specification Requirements

Bug Assignment Technique By-Hand BugTagger BugTagger

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

tool for persisting Java objects in a relational database.
The project was started by a single developer in 2001 and
has since gathered a community of collaborators. The
community currently includes 12 active developers, some
with industrial experience. Version 2.3 consists of 13,314
source lines of Java code, 212 classes, 1844 methods, and
536 fields (as reported by ConcernTagger).

The iBATIS Developer’s Guide provides a good over-
view of functionality, but makes for a poor concern do-
main. One reason is that the guide was clearly written
after iBATIS was implemented—it is a stretch to say that
the guide provides a rationale for the implementation.
Concerns cause implementation, not the other way
around, and therefore concerns must precede the imple-
mentation in time. Furthermore, the concepts in the
guide are clearly organized and presented in a way that
guides learning, not implementation. We therefore con-
structed a mock requirements document based on the
guide consisting of 183 requirement concerns organized

in a hierarchy. Of these concerns, 132 were leaves. An
example requirement concern is “Caching,” which has
subconcerns “Class Caching,” “Request Caching,” and
“Statement Caching.”

For iBATIS, Author B manually assigned concerns,
while BugTagger automatically assigned bugs.

6 EMPIRICAL RESULTS AND DISCUSSION
Table 3 shows the amount of source code covered by the
selected concerns and bugs. The concern coverage for
Mylyn–Bugzilla is relatively poor, considering that only
43% of the code is covered by the requirement concerns
we reverse engineered. This is likely due to a lack of a
complete set of requirements for the Mylyn–Bugzilla
component. In contrast, the bug coverage is high (92%).

The concern coverage for Rhino is high (88%), confirm-
ing that the ECMAScript specification explained most of
the code. The remaining 12% is dead code, general pur-

TABLE 3
SIZE AND ASSIGNMENT COVERAGE STATISTICS

 Mylyn–Bugzilla Rhino iBATIS
 All Mappeda % All Mapped % All Mapped %

Classes 56 44 79 138 80 57 212 207 97
Methods 427 253 59 1870 1415 75 1844 1807 97

Fields 457 230 50 1339 962 71 536 529 98
Linesb 13649 5914 43 32134 28308 88 13314 13144 98

Concernsc 28 28 100 480 417 86 183 173 94
Bugsd 110 101 92 241 160 66 87 47 53

a A program element is “mapped” if it is assigned to at least one concern.

b Comments and whitespace are included for Mylyn–Bugzilla, but excluded for Rhino and iBATIS.
c “All” means all concerns in the concern domain. “Mapped” means those concerns that were assigned to at least one program element.
d “All” means all “fixed” bugs (non-enhancement issues) found in the issue tracking system on or before the version of the program we

studied. “Mapped” means bugs mapped to at least one program element that is present in the version we studied.

Fig 7. Scatter plots of the concern metrics versus bug count for Rhino.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 11

pose, or implements other concerns. For example, Rhino
implements some nonstandard extensions to ECMA-
Script, as well as the E4X and LiveConnect standards.
The bug coverage was somewhat low (66%), probably
because some bugs were mapped to program elements
that were absent in the version of Rhino we studied
(1.5R6), or were related to concerns other than the ones
we analyzed (e.g., LiveConnect).

Among studies that map concerns manually and ex-
haustively—as opposed to the more common approach of
only mapping a subset of the concerns or a portion of the
code—Rhino is the largest and most comprehensive study
that we know of.

We obtained 98% concern coverage for iBATIS, signify-
ing that the developer’s guide we used to create the re-
quirements described all the functionality. The bug cov-
erage was somewhat low (53%), probably because of the
issues already mentioned for Rhino. Low bug coverage is
not necessarily bad, as we explain in Section 7.2.4.

6.1 Is Scattering Correlated with Defect Count?
Figure 7 shows the scatter plots for all the concern metrics
versus bug count for the Rhino project. DOSC and DOSM
appear to have a logarithmic relationship with bug count.
CDC, CDO, and LOCC have a clear linear relationship
with bug count. We therefore used Spearman’s rank-
order correlation coefficient, which supports both linear
and curvilinear relationships, and mitigates to a certain
extent the unreliability of our measurements (we discuss
this further in Section 7.1). Table 4 shows our correlation
results for the three projects. Correlation coefficients
range from -1.00 (a perfect negative correlation) to +1.00
(a perfect positive correlation). A coefficient of 0 means
no correlation.

The Mylyn–Bugzilla results (see Table 4a) show that
our degree of scattering metrics (DOSC and DOSM) are
moderately correlated with bug count (.39 and .50), and
the concern diffusion metrics (CDC and CDO) are strong-
ly15 correlated (.57 and .61). These correlations were sta-
tistically significant at the 5% confidence level. In other
words, there is a small (5%) probability that the relation-
ship between the scattering metrics and bug count is
coincidental. Thus, even though we obtained only 28
concerns for Mylyn–Bugzilla instead of 30 as prescribed
in Section 4.1, our results are still statistically significant.

The correlations are stronger and more statistically
significant for Rhino (see Table 4b). All scattering metrics
(DOSC, DOSM, CDC, and CDO) have substantial correla-
tion coefficients—ranging from .65 to .74—indicating a
strong association with bug count. The probability that
the association exists by chance is minute (less than
0.01%).

For iBATIS (see Table 4c) we see correlations of similar
strength as Mylyn–Bugzilla. All scattering metrics have a
nontrivial association with defects with correlation coeffi-
cients ranging from .29 for DOSM to .58 for CDC. Similar
to Rhino, the probability that the association exists by
chance is minute (less than 0.01%).

Taken together these results support our hypothesis:

It is interesting to consider one of the crosscutting con-

cerns revealed by our analysis. In Rhino, the requirement
“10.1.4 - Scope Chain and Identifier Resolution” was the

15 Our use of the qualitative descriptions of correlation strength,
“strong” and “moderate,” is based on convention [14, pp. 79-80].

Concern scattering is correlated with defects.

(b) RHINO
a

 DOSM CDC CDO LOCC Bugs
DOSC .62 .96 .74 .60 .67

DOSM — .63 .88 .68 .66

CDC — — .80 .67 .73

CDO — — — .80 .77

LOCC — — — — .90
a All values are statistically significant at the 0.01% level (two-
tailed). The sample size N (number of concerns) is 357.

(a) MYLYN–BUGZILLA
a

 DOSM CDC CDO LOCC Bugs
DOSC .64 .84 .57 .38 .39

DOSM — .77 .91 .63 .50

CDC — — .78 .65 .57

CDO — — — .71 .61

LOCC — — — — .77
a All values are statistically significant at the 5% level (two-tailed).
The sample size N (number of concerns) is 28.

 (c) IBATISa

 DOSM CDC CDO LOCC Bugs
DOSC .67 .90 .73 .43 .46

DOSM — .67 .90 .64 .29

CDC — — .78 .55 .58

CDO — — — .77 .44

LOCC — — — — .53
a All values are statistically significant at the 0.01% level (two-
tailed). The sample size N (number of concerns) is 132.

TABLE 4
SPEARMAN CORRELATION COEFFICIENTS

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

most scattered according to its DOSC (.91) and CDC (68)
values. This requirement specifies the scoping rules for
identifier lookup in ECMAScript. Its physical realization
in the source code entails passing around a scope parame-
ter to most of the method calls in Rhino, resulting in the
concern being scattered across the code base. Consider-
ing its highly scattered nature, it is not surprising that the
concern is also the most error prone (73 bugs).

6.2 Correlations between the Scattering Metrics
From Table 4 (a-c) we observe that the scattering metrics
are strongly correlated with each other. For example, for
Rhino, CDC is almost perfectly correlated with DOSC
(.96). This is expected since CDC and CDO are coarser
versions of DOSC and DOSM. In addition, the member-
level metrics were strongly correlated with their class-
level counterparts. This is also expected since a class is
only associated with a concern if at least one of its mem-
bers is associated.

Although we were hoping to determine if it is more
profitable to analyze scattering at the class or method
level when correlating defects, our results were inconclu-
sive. For Mylyn–Bugzilla and Rhino, method-level scat-
tering (CDO) had the strongest correlation (.61 and .77,
respectively), whereas for iBATIS, class-level scattering
(CDC) was the strongest (.58).

By and large, CDC and CDO were more strongly cor-
related with defects than DOSC and DOSM. We were
somewhat surprised by this result. We expected DOSC
and DOSM to decidedly outperform CDC and CDO be-
cause we believe degree of scattering more faithfully
quantifies the scattered nature of a concern. However,
our results indicate that simply knowing the number of
classes and methods involved in the implementation of a
concern is sufficient. It may be that degree of scattering is
more useful when concern assignment is performed at the
level of statements (or below). For example, moving re-
dundant code into a shared function reduces degree of
scattering but is undetected by CDC and CDO.

6.3 Testing for the Confounding Effect of Size
For all the projects, the size of the concern implementa-
tion (LOCC) had the strongest or second strongest corre-

lation with bug count (.77, .90, and .53). This is consistent
with several other studies [8] [11] [33] that found strong
correlations between size metrics and defects (although
[23] found no correlation). This indicates that larger con-
cerns have more defects. This also suggests that a refac-
toring that reduces scattering but increases concern size
might actually increase defects.

Previous studies have found correlations between ob-
ject-oriented metrics, such as the CK metrics [13], and
fault-proneness. However, El Eman showed that after
controlling for the confounding effect of size, the correla-
tion disappeared [22]. The reason is that many object-
oriented metrics are strongly correlated with size, and
therefore serve as surrogates for size.

Looking at Table 4 (a-c) we see a strong correlation be-
tween the scattering metrics and size (LOCC). For exam-
ple, for Rhino (Table 4b), the strength of the correlation
between CDO and LOCC is very strong (.80). The reason
is obvious if one considers that as more classes and me-
thods become involved in a concern’s implementation
(CDC and CDO), the number of lines (LOCC) grows. In
fact, CDC and CDO cannot increase without a simultane-
ous increase in LOCC. DOSC and DOSM are not directly
dependent on the number of lines associated with a con-
cern, but rather on how those lines are distributed across
classes and methods. There is, however, a significant cor-
relation between these metrics and size, ranging from .38
to .68.

The strong correlation between all the scattering me-
trics and size, and between size and bug count, indicates
that we must test for a confounding effect. For the sake of
thoroughness, we performed two tests: step-wise regression
analysis and principal component analysis.

6.3.1 Size Test #1: Step-Wise Regression Analysis
For step-wise regression analysis [37, pp. 263-264], we
build a regression model that initially consists of the con-
cern metric that has the single largest correlation with
bug count. We then add metrics to the model based on
their partial correlation with the metrics already in the
model. With each new set of metrics, the model is eva-
luated and metrics that do not significantly contribute
towards the statistical significance are removed so that, in

(b) RHINO

Model R2
Adjusted

R2
Std.
Error

1a .92 .92 11.42

2b .92 .92 11.28

3c .93 .93 10.96
a Metrics Used: LogDOSC
b Metrics Used: LogDOSC, CDC
c Metrics Used: LogDOSC, CDC, LogDOSM

(c) IBATIS

Model R2
Adjusted

R2
Std.
Error

1a .80 .80 1.75

2b .82 .82 1.67

3c .83 .83 1.62

4d .84 .84 1.59

5e .85 .85 1.54
a Metrics Used: SLOCC
b Metrics Used: SLOCC, CDO
c Metrics Used: SLOCC, CDO, CDC
d Metrics Used: SLOCC, CDO, CDC, DOSM
e Metrics Used: SLOCC, CDO , CDC, DOSM, DOSC

(a) MYLYN–BUGZILLA

Model R2
Adjusted

R2
Std.
Error

1a .73 .72 3.89

2b .79 .77 3.49
a Metrics Used: LOCC
b Metrics Used: LOCC, CDC

TABLE 5
STEP-WISE REGRESSION MODEL SUMMARIES

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 13

the end, the best set of metrics that explain the maximum
possible variance is left. The amount of variance ex-
plained by a model is signified by the model’s R2 value
[37, p. 229].

For completeness, we also include the Adjusted R2 and
Standard Error of Estimate values. Adjusted R2 explains
for any bias in the R2 measure by taking into account the
degrees of freedom of the predictor variables and the
sample population. From Tables 5 and 6, we see that the
Adjusted R2 values are almost the same as the R2 values,
which indicates that the bias is absent from our models.
Standard Error of Estimate (Std. Error) measures the dev-
iation of the actual bug count from the bug count pre-
dicted by the model.

We can now state our test: If size explains all of the va-
riance in bug count, we would not expect step-wise re-
gression to include any of our scattering metrics. Table 5
shows our step-wise regression results for the three
projects. Narrowing our focus to Mylyn–Bugzilla (Table
5a), we see that the step-wise regression completed after
two steps. From the first step, we can see that the most
significant metric is size (LOCC). The R2 value of .73
means that we can explain 73.0% of the variance in bug
count using size alone. The second step adds a scattering
metric (CDC), which improves R2 only slightly.

Shifting our attention to iBATIS (Table 5c), we find re-
sults similar to Mylyn–Bugzilla. While all the scattering
metrics in the final model (Model #5) contribute to ex-
plaining the variance in bug count to some extent, size
explains the most variance.

This is to be expected. Our theory states that scattering
is responsible for some—not all—of the defects in the pro-
gram. We therefore expect that size explains most of the
defects. The step-wise regression models for Mylyn–
Bugzilla and iBATIS indicate that scattering explains some
of the variance in bug count, which supports our hypo-
thesis.

The step-wise regression results for Rhino (Table 5b)
are strongly in favor of our hypothesis. As explained in
Section 6.1, DOSC and DOSM have a clear logarithmic
relationship with bug count for Rhino. Since step-wise
regression expects a linear relationship, we first took the
logarithm of these metrics, which explains the terms
LogDOSC and LogDOSM in Table 5b. From the table we
see that the regression terminated after three steps and
that at each step, the metric that explains the most of the
remaining variance was chosen. From the R2 value we see

that the model with scattering metrics LogDOSC, CDC,
and LogDOSM explains 92.8% of the variance in bug
count—size (LOCC) does not factor into the prediction at all.

In summary, step-wise regression analysis supports
our hypothesis because it indicates that scattering ex-
plains some—and for Rhino, most—of the variance in bug
count for the three projects we studied independent of size.

6.3.2 Size Test #2: Principal Component Analysis
Because the scattering metrics and LOCC are highly cor-
related amongst themselves, it is likely that the Spearman
and step-wise regression models do not explain as much
of the variance in bug count as the coefficients imply (i.e.,
they overfit the data). To overcome this collinearity, we
used principal component analysis (PCA) [36]. With
PCA, a small number of uncorrelated weighted combina-
tions of metrics (that account for as much sample variance
as possible) are generated, such that the transformed va-
riables are independent. These weighted combinations of
metrics are called principal components.

Running PCA on the metrics for the three projects re-
sulted in the generation of the principal components
shown in Table 6 (a-c), which account for greater than
95% of the sample variance. For Mylyn–Bugzilla (Table
6a), three components were generated. The first compo-
nent explains the highest amount of variance; the second
component explains the second highest, and so on. The
first component weighs all the metrics highly—DOSC has
a weighting of .70, DOSM has .80, etc. This indicates that
the scattering metrics are significant contributors to ex-
plaining the variance in bug count. The results for Rhino
(Table 6b) and iBATIS (Table 6c) are similar.

We then used the principal components to build a re-
gression model for each project. From Table 7 below, we
see that the models are highly accurate at predicting bug
count—as indicated by the high R2 values—further indi-
cating the importance of the scattering metrics. The mod-
els are also statistically significant at the 99% confidence
level.

TABLE 6
PRINCIPAL COMPONENTS

 (b) RHINO

 Component

 1 2 3 4

DOSC .81 .26 -.50 -.06

DOSM .65 .67 .35 .03

CDC .89 -.21 -.05 .39

CDO .83 -.40 .30 -.10

SLOCC .92 -.15 -.03 -.26

 (c) IBATIS

 Component

 1 2 3

DOSC .55 .68 -.48

DOSM .49 .73 .48

CDC .96 -.18 -.07

CDO .94 -.30 .03

SLOCC .94 -.30 .07

 (a) MYLYN–BUGZILLA

 Component

 1 2 3

DOSC .70 .68 -.16

DOSM .80 .22 .55

CDC .92 .11 -.32

CDO .92 -.32 -.03

LOCC .80 -.58 -.02

 TABLE 7

 PCA REGRESSION MODEL SUMMARY

 R2 Adjusted R2 Std. Error

Mylyn–Bugzilla 0.78 0.75 3.69

Rhino 0.92 0.92 3.03

iBATIS 0.78 0.78 1.86

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

From the step-wise regression analysis and PCA re-
sults we conclude that concern size is not the single do-
minating factor—the scattering metrics contribute to-
wards explaining the variance in bug count, thus signify-
ing their importance and reaffirming our hypothesis.

6.4 Do Crosscutting Concerns Cause Defects?
A correlation by itself does not imply causality [37, p.
213]. Isolating cause and effect is easier for controlled
experiments than for correlation studies such as our own
[38, pp. 80-81]. Kan outlines three criteria for causality that
correlation studies must meet before making causality
claims [38, pp. 80-81]. The first is that the cause must pre-
cede the effect. This is equivalent to saying that crosscut-
ting concerns precede defects related to those concerns.
In our theory, crosscutting first manifests itself in the con-
cern implementation plan, which precedes the defects that
are introduced during the implementation of that plan.

The second criterion is that a correlation must exist. The
results of our three case studies indicate that a moderate
to strong statistically significant correlation exists be-
tween scattering and defects.

Finally, the correlation must not be spurious. We argue
that the correlation is not spurious because 1) there is a
plausible reason (i.e., a theoretical justification) for the
correlation to exist, 2) we verified that the scattering me-
trics are not surrogates for size, and 3) the correlation is
not coincidental since we observed similar correlation
results for three separate case studies.

This brings us back to our original question: Do cross-
cutting concerns cause defects? Our theory and the re-
sults of our studies suggest “yes.” Independent verifica-
tion, in the form of empirical studies and controlled expe-
riments, is needed before we can be confident that a caus-
al relationship exists.

7 THREATS TO INTERNAL VALIDITY

7.1 Concern Assignment Unreliability
Our concern metrics are unreliable because of the subjec-
tivity inherent in our concern assignment methodology.
This limits the consistency and repeatability of our mea-
surements. Indeed, studies [45] [52] have shown dispari-
ties between concern assignments produced by different
analysts. Unreliability can also reduce the strength and
significance of the relationship between scattering and
defects [21].

While automated assignment techniques [2] produce
consistent results, we believe that the assignment pro-
duced by our interactive technique more accurately cap-
tures the rationale behind the code [17], which we need
before we can apply our theory. Thus, we tolerate some
loss in measurement reliability for improved relevance.

We compensated for this unreliability in two ways.
First, we used a rank-order correlation (Spearman) that
can tolerate unreliable measurements as long as the rela-
tive ordering (rank) of the measurements is correct [38, p.
78]. Comparing measurements by relative order instead
of absolute value is consistent with how the concentration

metric, upon which our degree of scattering metric is
based, should be interpreted [62]. This implies that it is
sufficient for the concern assignment to be a close approx-
imation of the “correct” concern assignment.

Second, two of our studies had large sample sizes
(N=357 and 132). The correlation results show a moderate
to strong statistically significant relationship between
scattering and defects for all three case studies, which we
would not expect if the measurements were completely
unreliable.

Our future work is to measure the reproducibility (va-
riance across analysts), repeatability (variance across trials),
and accuracy (variance with respect to a reference assign-
ment, i.e., a gold standard) of our prune dependency as-
signment technique. We will then be able to properly
compensate for measurement errors by incorporating
error estimates into our regression model.

7.2 Bug Assignment Errors
In the context of bug assignment a false positive means that
a bug should not have been associated with a program
element, and a false negative means a bug should have been
associated with a program element (but was not). These
false observations may perturb bug counts. Bug assign-
ment errors fall into three categories:

1) Incorrect bug metadata.
2) Bugs mapped to the wrong elements.
3) Bugs mapped to “missing” elements.

7.2.1 Incorrect Bug Metadata
Many of the Mylyn–Bugzilla bugs were clearly enhance-
ments although they were not classified as such. This is
an example of a Category 1 error.

7.2.2 Bugs Mapped to the Wrong Elements
Category 2 errors can occur when a commit message is
misleading. For example, a sequence of numbers may be
mistaken for a valid bug id (Category 2a, false positive),
or a bug id may be referenced coincidentally (Category
2b, false positive) or not at all (Category 2c, false nega-
tive). We eliminated Category 2a errors by validating all
bug ids against the issue tracking system, which allowed
us to eliminate 32 false positives for one project. By
choosing projects that use bug ids in commit messages in
a disciplined and consistent (and in the case of Mylyn–
Bugzilla, completely automated) way, we believe there are
no instances of Category 2b or 2c errors.

It is also possible that the real defect does not lie in the
lines changed by the bug fix (Category 2d). For example,
instead of fixing the defect (e.g., because it lies in a third-
party library), a “workaround” is made to another part of
the code so that the defect no longer manifests itself. This
leads to a false positive and negative since the bug should
be mapped to a completely different program element.
We agree with Purushothaman and Perry, who concluded
that detecting Category 2d errors would require more
information than “is available or automatically inferable.”
[51]

It is common for a bug fix to include modifications un-
related to the bug (Category 2e) [10] [21] [51], or fixes for

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 15

multiple bugs (Category 2f). To reduce Category 2e er-
rors, we ignored insignificant changes such as changes to
whitespace and comments. We also ignored bug fixes
associated with the first version of a file. To avoid false
positives due to Category 2f errors, we ignored bug fixes
that referenced multiple bug ids.

For two case studies the bug assignment task was
completely automated using BugTagger. This eliminates
Category 2 errors caused by the inconsistencies inherent
in a manual assignment and guarantees assignment re-
peatability. However, there is always the possibility that
BugTagger is faulty. We used the Jaccard similarity metric
[58] to compare the bug assignment produced by Bug-
Tagger with the one we created by hand for Mylyn–
Bugzilla, and found the Jaccard similarity was 0.87, indi-
cating the assignments were very similar. On closer in-
spection, we found that many of the disagreements were
due to human errors made during manual assignment,
further vindicating our decision to mechanize.

7.2.3 Bugs Mapped to “Missing” Elements
Category 3 errors can occur when a bug is mapped to
some methods and fields that were present at the time of
the bug fix, but were subsequently removed or renamed.
For Rhino, initially 37 bugs (21%) were mapped entirely to
missing methods and fields, and therefore could not be
associated with any concern. Our assignment technique
uniquely identifies program elements by their signature
(the fully qualified element name, and in the case of me-
thods, the list of parameters). Therefore, we investigated
the possibility that the element’s signature had been
changed, e.g., the element was renamed or the parameter
list was modified. BugTagger automatically detects
changes to the parameter list, e.g., foo(int, int) changed to
foo(float, float); however, name changes were harder to
detect automatically. We therefore tracked down name
changes by hand and were able to halve the number of
bugs that could not be mapped to any concern. To fur-
ther reduce these errors, we would need a concern map-
ping for every revision—not just the latest.

We would like to point out that the studies we are
aware of that analyze defects based on mining software
repositories [16] [22] [27] [50] [57] suffer from the same
problems. We believe that our enumeration of the possi-
ble errors, and recommendations for avoiding them, will
be a welcome contribution to this area of research.

7.2.4 Impact of Assignment Errors on Our Results
Ultimately, we care about the extent to which false bug–
code assignments propagate to false bug–concern assign-
ments, which will increase errors in our defect counts and
correlations. Some bug assignment errors may be
masked. For example, we may miss a program element
that should have been assigned to the bug, but as long as
another assigned program element causes the bug to be
associated with the correct concern, the false negative is
masked. False positives can be masked similarly.

A bug that is not associated with a concern is not nec-
essarily a problem. For example, in Mylyn–Bugzilla, 9 of
the 110 defects were mapped to methods or fields not

covered by any concern. In most cases, this is not an issue
since a program element may be related to a concern from
a different concern domain (e.g., “resource deacquisition”
is a programming concern rather than a requirement or
design concern). However, it may also mean that some
concerns were not accounted for, which can skew the
measurements.

7.3 Assignment Aggregation Error
Our concern and bug assignment techniques aggregate at
the member level the lines of code associated with the
concern or defect. This loss in granularity makes our as-
signments less precise [65]. For example, often sibling leaf
concerns16 in Rhino are implemented using switch state-
ments.17 For instance, the parent concern “15.2.4 - Proper-
ties of Object Prototypes,” has the following child con-
cerns:

15.2.4.1 - constructor
15.2.4.2 - toString
15.2.4.3 - toLocaleString
15.2.4.4 - valueOf

In this case, even though each concern is really only as-
sociated with an individual case in the switch statement
[19], they will be assigned at the method level and will
therefore have inflated concern sizes. Let us further sup-
pose a bug is associated with one of the cases. The bug
will also be assigned at the method level and will there-
fore inflate the bug counts for the concerns not associated
with the case statement.

In addition to inflated sizes and bug counts, the me-
trics computed for the concern subset will be very similar.
For the Rhino project, we found that the standard devia-
tions for all the metrics were much lower for sibling leaf
concern clusters than for the entire population of con-
cerns. For example, the standard deviation of the bug
count was 3.31 for sibling leaf concerns but 14.07 for the
entire population.

It is hard to predict the impact that aggregation error
has on our results. Aggregation error appears to be bi-
ased in favor of supporting our main hypothesis in the
sense that the more scattered a concern is, the more me-
thods contribute to its implementation, increasing the
number of opportunities for aggregation error to inflate
the concern size and defect count.

Despite this bias, we argue that eliminating aggrega-
tion error would not reverse our conclusions, for the fol-
lowing reason: It only occurs when method level assign-
ment is not granular enough to faithfully represent the
implementation of a concern. This is true for Rhino
where concerns were very fine grained and switch state-
ments were prevalent. However, this is not the case for
Mylyn–Bugzilla and iBATIS. Since the correlations for all
three studies were moderate to strong and statistically
significant, we conclude that eliminating aggregation er-
ror would not reverse our conclusions.

16 Sibling leaf concerns have the same parent and no children.
17 Rhino inherits many of these quirks from the JavaScript interpreter it

was based on, which was written in C. If Rhino had been written in Java
from scratch, virtual methods might have been used instead of switch
statements, which would have reduced aggregation error.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

8 THREATS TO EXTERNAL VALIDITY
External validity is the degree to which we can draw gen-
eral conclusions from our results. As stated by Basili et
al., drawing general conclusions from empirical studies in
software engineering is difficult because any process de-
pends to a large degree on a potentially large number of
relevant context variables. For this reason we cannot as-
sume that the results of a study generalize beyond the
specific environment in which it was conducted [4]. El
Emam concurs: “It is only when evidence is accumulated that
a particular metric is valid across systems and across organiza-
tions can we draw general conclusions.” [21]

There are many possible sources of defects including
the complexity of the problem domain, developer expe-
rience, mental and physical stress, tool support, etc. [21].
Our theory only attempts to explain a small portion of
defects, namely, those caused by the complexity asso-
ciated with implementing crosscutting concerns.

We expect that the programming language has a large
impact on how scattered a concern’s implementation is.
Because the programs we studied were written in Java,
we cannot generalize our results to other programming
languages. Interesting future work would be to compare
Rhino with SpiderMonkey18, an implementation of EC-
MAScript written in C.

The open source projects we studied had many simi-
larities to projects developed in industry including the
use of change management systems, extensive test suites,
and descriptive commit messages. Therefore, we expect
our results to hold in an industrial setting for Java pro-
grams of similar size (13–44 KSLOCs).

It is possible that the relationship between scattering
and defects only holds for requirement concerns and not
for concerns from other domains, such as the ones men-
tioned in Section 2.

9 LITERATURE REVIEW
9.1 Feature Location
The goal of feature location (or more generally, concern
location) is to learn the how, where and why of software:
How and where is a feature implemented? Why is the
code implemented this way? In a study of the informa-
tion needs of developers, Ko, DeLine, and Venolia con-
cluded that the information most sought after—and most
difficult to obtain—was “the intent behind existing code and
code yet to be written” [44]. This information is essential
for making changes correctly, yet is largely undocu-
mented.

Researchers have employed a variety of automated
techniques to recover links between concerns and code.
Antoniol, Canfora, Casazza, and Lucia employed informa-
tion retrieval (IR) to find the correspondence between re-
quirements documents and identifiers and comments in
the source code [2]. Zhao et al. augment IR results with
branch-reserving call graph information to improve rele-
vancy [65]. Several researchers [20] [61] [62] have ana-
lyzed execution traces of the program to see which me-

18 http://www.mozilla.org/js/spidermonkey

thods are called when a feature is invoked. Poshyanyk et
al. showed that accuracy can be improved by combining
static and dynamic analysis techniques [50].

Automation is essential for feature location to scale to
large continuously evolving systems. However, the rele-
vancy of the concern–code mapping they produce is de-
batable. For example, links between concerns and code
may be missed by IR techniques if meaningful identifier
names are not used [50] [65], and by execution tracing
techniques if features cannot be exercised completely and
orthogonally [50].

While the mappings produced by these automated
techniques are well suited for guiding program compre-
hension and maintenance activities, we felt they would
not be sufficiently relevant for validating our theory. Fur-
thermore, we sought to eliminate the possibility that defi-
ciencies, mistakes, or biases in the assignment algorithm
could skew our results. We therefore required all as-
signment decisions to be made by a human analyst using
our interactive concern assignment tool, ConcernTagger,
as explained in Section 4.2. Obviously, this limited the
size of the programs we could analyze.

9.2 Empirical Studies of Crosscutting Concerns
Many researchers have studied the impact of crosscutting
concerns on code quality. Most of the effort has concen-
trated on developing new internal metrics, or adapting
existing ones, for quantifying crosscutting, and assessing
the impact of modularizing crosscutting concerns using
techniques such as aspect-oriented programming.

For example, some researchers [45] [52] [64] have
created concern metrics that measure scattering in abso-
lute terms (e.g., number of classes that contribute to the
implementation of the concern). Garcia and colleagues
used their concern diffusion metrics in several studies [25]
[28] [30] to show that, in general, modularizing crosscut-
ting concerns using aspect-oriented programming im-
proves the separation of concerns. As explained in Sec-
tion 3.3, we believe our degree of scattering metrics com-
plement the concern diffusion metrics by providing a
more fine-grained measurement of scattering.

We know of one study besides our own that correlates
aspect- and concern-related metrics with external quality
attributes. Bartsch and Harrison examined change histo-
ry data for a set of aspects and found a statistically signif-
icant correlation between aspect coupling and mainten-
ance effort [3]. Their metrics were different from ours
(aspect coupling versus concern scattering), and their ex-
ternal quality indicator was different (effort versus de-
fects). Whereas we investigated the impact of a crosscut-
ting concern on code quality prior to refactoring using
aspects, they looked at the impact after refactoring. A
benefit of our scattering metrics is that they may help
identify the crosscutting concerns that would benefit the
most from refactoring.

9.3 Empirical Studies of Software Quality
In this section we discuss some of the earlier work related
to investigations of using historical measures of complexi-
ty, code churn, pre-release defects, etc. as predictors of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 17

software quality in large software systems.
Ostrand et al. [46] use file status information such as

“new”, “changed”, and “unchanged” along with other
explanatory variables such as lines of code, age, prior
faults, etc. as predictors in a negative binomial regression
equation to predict the number of faults in a multiple-
release software system. The predictions made using
their binomial regression model had high accuracy for
faults found in both early and later stages of development
[46]. Khoshgoftaar et al. [40] studied two consecutive re-
leases of a large legacy system for telecommunications.
The system contained over 38,000 procedures in 171
modules. Discriminant analysis identified fault-prone
modules based on 16 static software product metrics with
a type I and II misclassification rate of 21.7% and 19.1%,
respectively, and an overall misclassification rate of
21.0%. Nagappan and Ball [49] investigated the use of a
set of relative code churn measures in isolation as predic-
tors of software defect density for the Windows Server
2003 system. Relative churn measures are normalized
values of the various measures obtained during the mea-
surement of churn. They found that relative code churn
measures were strong statistically significant predictors of
code quality. In contrast, Eick et al. found no correlation
between code churn and code quality [19].

Several researchers have attempted to find a relation-
ship between defects and internal product metrics, such
as code churn [49], size metrics [11] [22] [23] [33], object-
oriented metrics (e.g., the CK metrics [13]) [11] [22] [33],
design metrics [11] and prerelease defects [7]. We add to
this body of research by examining the relationship be-
tween concern metrics and defects.

10 CONCLUSION
This paper is the first to provide empirical evidence sug-
gesting that crosscutting concerns cause defects. We ex-
amined the concerns of three small- to medium-size open-
source Java projects and found that the more scattered the
implementation of a concern is, the more likely it is to
have defects. Moreover, this effect is evident independent
of the size of the concern’s implementation (in terms of
lines of code).

This evidence, although preliminary, is important for
several reasons. It adds credibility to the claims about the
dangers of crosscutting concerns made by the aspect-
oriented programming and programming language
communities. By establishing a correlation between con-
cern metrics and an external quality indicator—defects—
we provide a stronger form of validation for these metrics
than previous empirical studies that focused on internal
quality indicators (e.g., [25], [28]).

We also proposed a theory that suggests why crosscut-
ting concerns might cause defects, and described our con-
cern model and metrics. These can serve as the founda-
tion for future empirical work.

It is important to realize that the novelty of our expe-
riment and the subjectivity inherent in our methodology
limit the conclusions we can draw from of our results.
Further studies are needed before we can draw general

conclusions about the relationship between scattering and
defects. To facilitate this, we are working on automating
our concern assignment technique, which is needed to
make application of our metrics practical for large sys-
tems (greater than 50 KLOCs).

Several questions remain. Can we reduce the
likelihood of defects by reducing crosscutting (assuming
concern size does not increase)? Are crosscutting concerns
a by-product of programming technology, developer
aptitude, or the inherent complexity of the concern?
What is the relationship between code churn and
scattering? If a relationship exists, we can use code churn
to help identify crosscutting concerns [10] and as a cost-
effective surrogate for measuring scattering. When code
churn levels are dangerously high, concern analysis may
provide an explanation and an actionable plan for
reducing churn (e.g., by modularizing the underlying
crosscutting concerns).

11 ONLINE APPENDIX
We invite researchers to replicate our case studies. Source
code for the subject programs and our measurement
tools, complete concern and bug lists, concern–code and
bug–code mappings, and our results are available at
http://www.cs.columbia.edu/~eaddy/concerntagger.

ACKNOWLEDGMENTS
The authors are extremely grateful to the anonymous re-
viewers for their feedback and suggestions. This research
was funded in part by the Natural Sciences and Engineer-
ing Research Council of Canada.

REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Prin-

ciples, Techniques, & Tools, 2nd ed.: Addison Wesley, 2006.
[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo,

"Recovering Traceability Links between Code and Documenta-
tion," IEEE Transactions on Software Eng., 28(10):970–983, 2002.

[3] M. Bartsch, R. Harrison, "Towards an Empirical Validation of
Aspect-Oriented Coupling Measures," Workshop on Assessment
of Aspect Techniques (ASAT), 2007.

[4] V. Basili, F. Shull, F. Lanubile, "Building Knowledge through
Families of Experiments," IEEE Transactions on Software Engi-
neering, 25(4):456–473, 1999.

[5] K. v. d. Berg, J. M. Conejero, J. Hernández, "Analysis of Cross-
cutting across Software Development Phases based on Tracea-
bility," Wkshp. on Aspect-Oriented Req. Eng. and Arch. Design (Ear-
ly Aspects), 2006.

[6] T. J. Biggerstaff, B. G. Mitbander, D. Webster, "The concept as-
signment problem in program understanding," Intl. Conf. on
Software Engineering (ICSE), 1993, pp. 482–498.

[7] S. Biyani, P. Santhanam, "Exploring defect data from develop-
ment and customer usage on software modules over multiple
releases," Intl. Symp. Software Reliability Eng. (ISSRE), 1998.

[8] L. Briand, J. Wuest, J. Daly, V. Porter, "Exploring the Relation-
ships Between Design Measures and Software Quality in Object
Oriented Systems," Journal of Systems and Soft., 51:245–273, 2000.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXX 2008

[9] M. Bruntink, A. v. Deursen, T. Tourwé, "Discovering Faults in
Idiom-Based Exception Handling," Intl. Conf. on Software Engi-
neering (ICSE), 2006.

[10] G. Canfora, L. Cerulo, M. D. Penta, "On the Use of Line Co-
change for Identifying Crosscutting Concern Code," Intl. Conf.
on Software Maintenance (ICSM), 2006.

[11] M. Cartwright, M. Shepperd, "An Empirical Investigation of an
Object-Oriented Software System," IEEE Transactions on Software
Engineering, 26(8):786–796, 2000.

[12] P. Cederqvist et al., Version Management with CVS: Network
Theory Ltd., 2002.

[13] S. Chidamber, C. Kemerer, "A Metrics Suite for Object Oriented
Design," IEEE Transactions on Software Eng., 20(6):476-493, 1994.

[14] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd
ed.: Lawrence Erlbaum Associates Incorporated, 1988.

[15] B. Collins-Sussman, B. W. Fitzpatrick, C. M. Pilato, Version Con-
trol with Subversion: O’Reilly, 2004.

[16] D. Čubranić, G. C. Murphy, J. Singer, K. S. Booth, "Hipikat: A
Project Memory for Software Development," IEEE Transactions
on Software Engineering, 31(6):446–465, 2005.

[17] M. Eaddy, A. Aho, G. C. Murphy, "Identifying, Assigning, and
Quantifying Crosscutting Concerns," Wkshp. on Assess. of Con-
temporary Modularization Techniques (ACoM), 2007.

[18] ECMA, "ECMAScript Standard," ECMA-262 v3, ISO/IEC 16262,
2007.

[19] T. Eisenbarth, R. Koschke, D. Simon, "Locating features in
source code," IEEE Transactions on Soft. Eng., 29:210–224, 2003.

[20] A. D. Eisenberg, K. De Volder, "Dynamic Feature Traces: Find-
ing Features in Unfamiliar Code," Intl. Conf. on Software Main-
tenance (ICSM), 2005, pp. 337–346.

[21] K. El Emam, "A Methodology for Validating Software Product
Metrics," Technical Report NRC 44142, National Research
Council of Canada, 2000.

[22] K. El Emam, S. Benlarbi, N. Goel, S. N. Rai, "The confounding
effect of class size on the validity of object-oriented metrics,"
IEEE Transactions on Software Engineering, 27(7):630–650, 2001.

[23] N. E. Fenton, N. Ohlsson, "Quantitative analysis of faults and
failures in complex software systems," IEEE Transactions on
Software Engineering, 26(8):797–814, 2000.

[24] E. Figueiredo, A. Garcia, C. Sant'Anna, U. Kulesza, C. Lucena,
"Assessing Aspect-Oriented Artifacts: Towards a Tool-
Supported Quantitative Method," Wkshp. on Quantitative Ap-
proaches in OO Soft. Eng. (QAOOSE), 2005.

[25] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, C.
M. F. Rubira, "Exceptions and Aspects: The Devil is in the De-
tails," Foundations of Software Eng. (FSE), 2006, pp. 152–162.

[26] R. E. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-Oriented Soft-
ware Development: Addison–Wesley, 2005.

[27] M. Fischer, M. Pinzger, H. Gall, "Populating a Release History
Database from Version Control and Bug Tracking Systems," Intl.
Conf. on Software Maintenance (ICSM), 2003, pp. 23–32.

[28] A. Garcia, C. Sant'Anna, E. Figueiredo, U. Kulesza, C. Lucena,
A. v. Staa, "Modularizing Design Patterns with Aspects: A
Quantitative Study," Aspect Oriented Software Dev. (AOSD), 2005.

[29] C. Gibbs, C. R. Liu, Y. Coady, "Sustainable System Infrastruc-
ture and Big Bang Evolution: Can Aspects Keep Pace?," Euro.
Conf. on Object-Oriented Prog. (ECOOP), 2005, pp. 241–261.

[30] P. Greenwood, T. T. Bartolomei, E. Figueiredo, M. Dósea, A.

Garcia, N. Cacho, C. Sant'Anna, S. Soares, P. Borba, U. Kulesza,
A. Rashid, "On the Impact of Aspectual Decompositions on De-
sign Stability: An Empirical Study," Euro. Conf. on Object-
Oriented Prog. (ECOOP), 2007, pp. 176–200.

[31] J. E. Hannay, D. I. K. Sjøberg, T. Dybå, "A Systematic Review of
Theory Use in Software Engineering Experiments," IEEE Trans-
actions on Software Engineering, 33(2):87-107, 2007.

[32] R. Harrison, S. Counsel, R. Nithi, "Experimental assessment of
the effect of inheritance on the maintainability of object-
oriented systems," Journal of Systems and Soft., 52:173–179, 2000.

[33] R. Harrison, L. Samaraweera, M. Dobie, P. Lewis, "An Evalua-
tion of Code Metrics for Object-Oriented Programs," Information
and Software Technology, 38:443-450, 1996.

[34] IEEE, "IEEE Standard Glossary of Software Engineering Termi-
nology," IEEE Standard 610.12-1990, 1990.

[35] ISO/IEC, "Information Technology - Software Product Evalua-
tion," IDS 14598-1, 1996.

[36] E. J. Jackson, A User's Guide to Principal Components: John Wiley
& Sons, Inc., 1991.

[37] S. K. Kachigan, Statistical Analysis: Radius Press, 1986.
[38] S. H. Kan, Metrics and Models in Software Quality Engineering,

2nd ed.: Addison–Wesley, 2003.
[39] M. Kersten, G. C. Murphy, "Using task context to improve pro-

grammer productivity," Foundations of Software Eng. (FSE), 2006.
[40] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, J. McMullan,

"Detection of Software Modules with High Debug Code Churn
in a Very Large Legacy System," Intl. Symp. on Software Reliabili-
ty Engineering (ISSRE), 1996, pp. 364–371.

[41] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, J. P. Hudepohl,
"Classification-Tree Models of Software Quality Over Multiple
Releases," IEEE Transactions on Reliability, 49(1):4–11, 2000.

[42] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. V. Lopes, C.
Maeda, A. Mendhekar, "Aspect-oriented programming," ACM
Computing Surveys, 28(4es):154, 1996.

[43] B. Kitchenham, S. L. Pfleeger, N. Fenton, "Towards a framework
for software measurement validation," IEEE Transactions on
Software Engineering, 21(12):929–944, 1995.

[44] A. J. Ko, R. DeLine, G. Venolia, "Information Needs in Collo-
cated Software Development Teams," Intl. Conf. on Soft. Eng.
(ICSE), 2007.

[45] A. Lai, G. C. Murphy, "The Structure of Features in Java Code:
An Exploratory Investigation," Wkshp. on Multi-Dimensional Se-
paration of Concerns (OOPSLA), 1999.

[46] S. Letovsky, E. Soloway, "Delocalized Plans and Program Com-
prehension," IEEE Software, 3(3):41–49, 1986.

[47] M. Lippert, C. V. Lopes, "A study on exception detection and
handling using aspect-oriented programming," Intl. Conf. on
Software Eng. (ICSE), 2000, pp. 418–427.

[48] A. v. Mayrhauser, A. M. Vans, A. E. Howe, "Program Under-
standing Behaviour during Enhancement of Large-Scale Soft-
ware," Software Maintenance: Rsch. and Prac., 9:299–327, 1997.

[49] N. Nagappan, T. Ball, "Use of Relative Code Churn Measures to
Predict System Defect Density," Intl. Conf. on Software Engineer-
ing (ICSE), 2005.

[50] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, V.
Rajlich, "Feature Location Using Probabilistic Ranking of Me-
thods Based on Execution Scenarios and Information Retrieval,"
IEEE Transactions on Software Engineering, 33(6):420–432, 2007.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 19

[51] R. Purushothaman, D. E. Perry, "Toward Understanding the
Rhetoric of Small Source Changes," IEEE Transactions on Soft-
ware Engineering, 31(6):511–526, 2005.

[52] M. Revelle, T. Broadbent, D. Coppit, "Understanding Concerns
in Software: Insights Gained from Two Case Studies," Interna-
tional Workshop on Program Comprehension (IWPC), 2005.

[53] M. P. Robillard, "Representing Concerns in Source Code," PhD
Thesis, CS Dept., University of British Columbia, Nov. 2003.

[54] M. P. Robillard, W. Coelho, G. C. Murphy, "How Effective De-
velopers Investigate Source Code: An Exploratory Study," IEEE
Transactions on Software Engineering, 30(12):889–903, 2004.

[55] M. P. Robillard, F. Weigand-Warr, "ConcernMapper: Simple
View-Based Separation of Scattered Concerns," Wkshp. on Ec-
lipse Tech. eXchange (ETX), 2005.

[56] M. J. Rochkind, "The Source Code Control System," IEEE Trans-
actions on Software Engineering, 1(4):364–370, 1975.

[57] J. Śliwerski, T. Zimmermann, A. Zeller, "When Do Changes
Induce Fixes?," Wkshp. on Mining Soft. Repositories (MSR), 2005.

[58] P. H. Sneath, R. R. Sokal, Numerical taxonomy: W. H. Freeman &
Co., 1973.

[59] S. M. Sutton Jr., I. Rouvellou, "Concern Modeling for Aspect-
Oriented Software Development," in Aspect-Oriented Software
Development: Addison-Wesley, 2005, pp. 479–505.

[60] S. L. Tsang, S. Clarke, E. Baniassad, "An Evaluation of Aspect-
Oriented Programming for Java-based Real-time Systems De-
velopment," Intl. Symp. on Object-Oriented Real-Time Distributed
Computing (ISORC), 2004.

[61] N. Wilde, M. C. Scully, "Software reconnaissance: Mapping
program features to code," Journal of Software Maintenance and
Evolution: Research and Practice, 7(1):49–62, 1995.

[62] W. E. Wong, S. S. Gokhale, J. R. Horgan, "Quantifying the close-
ness between program components and features," Journal of Sys-
tems and Software, 54(2):87–98, 2000.

[63] M. V. Zelkowitz, D. R. Wallace, "Experimental Models for Vali-
dating Technology," IEEE Computer, 31(5):23-31, 1998.

[64] C. Zhang, H.-A. Jacobsen, "Quantifying Aspects in Middleware
Platforms," Aspect-Oriented Soft. Dev. (AOSD), 2003, pp. 130–139.

[65] W. Zhao, L. Zhang, Y. Liu, J. Sun, F. Yang, "SNIAFL: Towards a
Static Noninteractive Approach to Feature Location," ACM
Transactions on Soft. Eng. and Methodology, 15(2):195–226, 2006.

Marc Eaddy received the dual BS degree in
electrical engineering and computer science
from Florida State University in 1995, and the
MS degree in computer science from Columbia
University in 2001. From 1995 to 2003 he
worked at News Internet Services where he
helped develop the TV Guide Online Listings,
and at Thomson Financial where he built real-
time stock market data applications. He is
currently pursuing a PhD in computer science

at Columbia University under Alfred Aho. His research goal is to
better understand—and solve—the crosscutting concern problem.
He is a student member of IEEE.

Kaitlin D. Sherwood received the BS degree
in metallurgical engineering in 1984 and the MS
degree in general engineering in 1996 from the
University of Illinois at Urbana-Champaign.
She has extensive experience in high-tech
industries. She is keenly interested in personal
productivity; she has written two books on
managing email overload and is currently re-
searching individual programmer productivity.
She is currently pursuing a MS in computer

science at the University of British Columbia under Gail Murphy.

Vibhav Garg received the bachelor’s degree in electronics engineer-
ing from Bangalore University, India, the master’s degree in informa-
tion technology from Bond University, Australia, and the master’s
degree in computer science from Columbia University. He is keenly
interested in languages, compilers, and software engineering issues.
He is a currently a Senior Consultant at CGI Technologies Inc.

Thomas Zimmermann received the diploma
degree in computer science from the University
of Passau in 2004. He is currently a PhD can-
didate at Saarland University in Germany and
an assistant professor in the Department of
Computer Science at the University of Calgary.
In 2006, he was a summer intern at Microsoft
Research where he analyzed the bug database
of Windows Server 2003. His research inter-
ests are in software evolution, mining software

repositories, empirical software engineering, program analysis, and
development tools. He is a student member of the IEEE and the
IEEE Computer Society.

Gail C. Murphy received the BSc degree in
computing science from the University of Alber-
ta in 1987 and the MS and PhD degrees in
computer science and engineering from the
University of Washington in 1994 and 1996,
respectively. From 1987 to 1992, she worked as
a software designer in industry. She is currently
an associate professor in the Department of
Computer Science at the University of British
Columbia. Her research interests are in soft-

ware evolution, software design, and source code analysis. She is a
member of the IEEE Computer Society.

Nachiappan Nagappan received the BTech
degree from the University of Madras in 2001
and the MS and PhD degrees from North Caro-
lina State University in 2002 and 2005, respec-
tively. He is a researcher in the Software Relia-
bility Research Group at Microsoft Research.
His research interests include software reliabili-
ty and measurement, statistical modeling, and
defect analysis. He is a member of the IEEE
and the ACM.

Alfred V. Aho is Lawrence Gussman Professor
of Computer Science in the Department of
Computer Science at Columbia University. His
research interests include software engineering,
programming languages, compilers, and algo-
rithms. Aho received a PhD in electrical engi-
neering and computer science from Princeton
University. He is a Fellow of the American As-
sociation for the Advancement of Science, the
ACM, and the IEEE.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

