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Do Cryoconite Holes Have the Potential to be Significant
Sources of C, N, and P to Downstream Depauperate
Ecosystems of Taylor Valley, Antarctica?

AbstractElizabeth A. Bagshaw*§
Nutrient recycling occurs in hydrologically isolated cryoconite holes on the glaciers ofMartyn Tranter*
the McMurdo Dry Valleys, Antarctica. Biogeochemical processes enrich the cryoconite

Andrew G. Fountain† holes with solute and nutrients compared to the source sediment and glacier ice. The
Kathleen Welch‡ position of the glacier within the landscape affects the physical and biogeochemical charac-

ter of the cryoconite holes, with those found in more biologically productive areas of theHassan J. Basagic† and
valley having higher concentrations of C, N, and P and higher pH. Comprehensive assess-

W. Berry Lyons‡ ment of the quality and quantity of bioavailable C, N, and P shows that the cryoconite
*Bristol Glaciology Centre, School of holes represent a significant store of nutrient in this depauperate landscape, since the total
Geographical Sciences, University of mass of C and N is similar to that found in the ephemeral streams. The dissolved nutrients
Bristol, University Road, Clifton, Bristol within the holes, and a significant proportion of the particulate store, are released to the
BS8 1SS, U.K.

valley ecosystem via the network of ephemeral streams and perennially ice-covered lakes†Departments of Geography and
as a result of hydrological connection with the supraglacial drainage system. In most cases,Geology, Portland State University, P.O.

Box 751, Portland, Oregon 97207-0751, cryoconite holes are flushed every several years, but during warm periods which occur
U.S.A. with near decadal frequency, all holes connect and flush their contents off the glaciers.
‡Byrd Polar Research Center, Ohio State Simple mass balance modeling shows that an increase in primary productivity observed
University, 1090 Carmack Road,

in Lake Fryxell that followed such a melt event in 2001/2002 can be explained by anColumbus, Ohio 43210-1002, U.S.A.
influx of nutrients (specifically N) generated in the cryoconite holes. These features are§Corresponding author:

liz.bagshaw@bristol.ac.uk hence an integral part of the Dry Valley ecosystem and should be considered in models
of downstream biological processes.

DOI: http://dx.doi.org/10.1657/1938-4246-45.4.440

Introduction

The McMurdo Dry Valleys (MCMDV) of Antarctica are
among the coldest and driest environments on Earth (Doran et al.,
2002) and are analogs for cold, dry, and dusty environments on
Mars (Wentworth et al., 2005; Tranter et al., 2010). Microbial life
thrives throughout the landscape of the MCMDV, despite the ex-
treme climate, in ice-covered lakes, stream channels, poorly devel-
oped soils, small supraglacial lakes (cryolakes), and cryoconite
holes (Priscu, 1999), all of which are critically dependent on glacier
melt for supply of liquid water (Fountain et al., 1999). The ecosys-
tem is also limited by the availability of organic matter and nutrients
(Barrett et al., 2007), and potential sources of bioavailable nutrient
may have significant impacts on the system as a whole. Glacial
meltwaters flow for a few weeks per year within a drainage system
located a few centimeters below the ice surface, even when surface
air temperatures are below freezing (Fountain et al., 2004; Hoffman
et al., 2008). This arises from solar heating of patches of debris
on the ice surface, which melt down and form pools of water called
cryoconite holes (Gribbon, 1979). These features are an important
element in how the glaciers melt (Fountain et al., 2004; Hoffman
et al., 2008). Although cryoconite holes are ubiquitous on exposed
ice (versus snow) zones of glaciers everywhere that melting occurs,
the holes found in the Antarctic are unique because they form an
ice lid that isolates the entombed waters from the atmosphere and
the supraglacial hydrologic system (Fig. 1) (Tranter et al., 2004;
Brandt et al., 2009; Hodson et al., 2013). Once formed, the holes
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freeze completely in winter and in summer melt from within, under
the surface, maintaining the ice lid (Fountain et al., 2004, 2008).
They may remain isolated over multiple melt seasons (Fountain et
al., 2004), although up to 50% become hydrologically connected
each summer (Bagshaw et al., 2007) via subsurface connections
whose origins are unclear, or by melting of the ice lid and exchange
with surface water during extreme melt events.

Cryoconite holes provide habitats for a range of microbial life
in an otherwise hostile supraglacial environment (Wharton et al.,
1981; Tranter et al., 2004; Hodson et al., 2008). The ‘‘sediment’’
that forms the holes is termed cryoconite (Leslie, 1879), is derived
from a variety of local sources (Porazinska et al., 2004; Foreman
et al., 2007), and is generally composed of rock fragments, flakes
of algal material, and microorganisms that are transported onto the
glacier surfaces by prevailing winds (Nylen et al., 2004; Nkem et
al., 2006). The holes are inhabited by a range of organisms, includ-
ing cyanobacteria, rotifers, tardigrades, and ciliates (Wharton et
al., 1981; Porazinska et al., 2004). Phylogenetic studies have sug-
gested that they are derived from the surrounding aquatic ecosys-
tems (Christner et al., 2003). Hydrological isolation promotes recy-
cling of nutrients via autotrophic and heterotrophic organisms
(Bagshaw et al., 2007; Hodson et al., 2010), and understanding
these processes can improve our comprehension of how life oper-
ates at the limits of survival (Cowan and Tow, 2004) and may act
as a model for life in extra-terrestrial environments (Tranter et al.,
2004, 2010).

Solar heating of the sediment in the holes not only melts the
surrounding ice but also results in a series of biogeochemical reac-



FIGURE 1. (A) Development and
(B) examples of ice-lidded cryoconite
holes on the surface of Canada Gla-
cier, and (C) an extracted ice and
sediment core.

tions (Tranter et al., 2004; Bagshaw et al., 2007). These processes
have been most intensively studied on Canada Glacier, a large
glacier in Taylor Valley (see Fig. 2). Cryoconite holes provide at
least 13–15% of glacial meltwater from Canada Glacier (Fountain
et al., 2004, 2008), which is typical of the region (Fountain et al.,

FIGURE 2. Location map of Taylor Valley, Antarctica, and location of samples collected on Taylor, Canada, and Commonwealth Glaciers.
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1998). Subtle changes in geology and climate, governed by location
within Taylor Valley, control the geochemistry and biogeochemis-
try of the ice-covered lakes and the glacier ice (Lyons et al., 2000,
2003). The same is true for cryoconite holes, which reflect the
solute characteristics of the glacier ice in which they are formed



(Porazinska et al., 2004; Tranter et al., 2004; Foreman et al., 2007).
A gradient of biological diversity and productivity also exists across
the valley, with indicators of the highest productivity found in the
easterly lake basins (Virginia and Wall, 1999), and so landscape
position is an important control on nutrient stoichiometry in the
MCMDV (Barrett et al., 2007). This may well be true for cryoconite
holes and hence the meltwater which flows from the glaciers, since
the first-order biogeochemical characteristics of the cryoconite
holes are influenced by the immediate surrounding environments
that are a source of dust and inoculi (Christner et al., 2003; Porazin-
ska et al., 2004). To date, the spatial variation in the nutrient content
and phase in cryoconite holes of the MCMDV has not been exam-
ined. We present a comprehensive survey of the C, N, P, and other
biogeochemical characteristics of cryoconite holes on three glaciers
in Taylor Valley and assess the factors that influence the potential
of glaciers to act as nutrient sources to downstream MCMDV eco-
systems.

Methods
STUDY SITE

Taylor Valley is located in southern Victoria Land, East Ant-
arctica, is 34 km long, 12 km wide, and trends east–west. The
western end is blocked by Taylor Glacier, an outlet of the East
Antarctic Ice Sheet (EAIS), and the eastern end is open to the Ross
Sea (Fig. 2). Taylor Valley has been intensively monitored since
1993 as part of the Long Term Ecological Research (LTER) pro-
gram (Priscu, 1999). Meteorological conditions, stream flow, gla-
cier mass balance, and lake levels are monitored annually (Fountain
et al., 1999; McKnight et al., 1999; Priscu et al., 1999; Virginia
and Wall, 1999). Mean annual temperatures range from �15 to
�23 �C. Mean annual wind speeds are 3.1 m s�1 (Doran et al.,
2002), and mean annual accumulation is �10 cm water equivalent
(w.e.) (Fountain et al., 2010). The climate is controlled by the
prevailing east–west winds, which blow from the Ross Sea or de-
scend from the EAIS. Westerly katabatic winds can reach speeds
of 37 m s�1, resulting in significant eolian transport of soil and
other debris onto the surfaces of the glaciers (Sabacka et al., 2012),
and increase local temperatures by up to 4.3 �C (Nylen et al., 2004).
Mean summer (November to January) temperatures are �6 �C
(Foreman et al., 2004). This is sufficient, when coupled with 24-
h sunlight and high incident radiation, to cause melting of the polar
glaciers and the moats around the edges of the ice-covered lakes.
The summer thaw promotes the onset of a period of short, intense
biological activity in lakes, streams, soils, and cryoconite holes
(McKnight et al., 1999; Barrett et al., 2004; Tranter et al., 2004;
Doran et al., 2008).

The glaciers of Taylor Valley have mean ice temperatures of
�18 �C and limited surface melting (Fountain et al., 1998). Up to
80% of ablation is due to sublimation. Between 1995 and 1997,
total ablation on horizontal ice surfaces ranged from 5.2 to 7.8 cm
water equivalent (w.e.) (Lewis et al., 1999; Hoffman et al., 2008).
Accumulation ranges from 10 to 50 mm w.e. per year (Fountain
et al., 2010). Three glaciers were chosen for study, Taylor, Canada,
and Commonwealth, which span the length of the valley (Fig. 2).
Taylor Glacier, the easternmost extension of the EAIS, is located
in the Lake Bonney Basin; Commonwealth Glacier is closest to
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the Ross Sea and in the Lake Fryxell Basin; and Canada Glacier
is in the Lake Hoare Basin in the center of the valley.

SAMPLE COLLECTION AND PROCESSING

Frozen cryoconite holes were sampled at regular intervals
along transects across each glacier surface in the austral summer
of 2005–2006. The majority of samples was collected on Canada
Glacier (90), whereas 30 were collected on each of Taylor and
Commonwealth Glaciers (Fig. 2). All sampling locations were
recorded using handheld GPS. Hole dimensions (depth, diameter
of minor and major axis) were also measured. A 20-cm-diameter
core was collected from the center of each frozen hole using a
SIPRE corer. Drilling ceased when clean glacier ice below the
debris layer was encountered. Cores were stored in Ziploc bags,
which had previously been triple-rinsed with deionized water. They
were transferred to the field laboratory in Taylor Valley and stored
frozen until processing up to 30 days later. Five cores of glacier
ice (which contained no cryoconite), drilled to a depth of 40 cm,
were collected from the transects on each glacier and treated in the
same manner as the cryoconite holes. From late December onwards,
meltwater was present in some of the cryoconite holes. In this
situation, the ice lid was removed and treated as above, and then
a meltwater sample was sucked out with vacuum pump and tubing
that had been rinsed six times with meltwater prior to sample collec-
tion. A grab sample of sediment was then scooped from the base of
the hole with clean plastic gloves. Only one hole on Commonwealth
Glacier contained liquid water at the time of sampling, compared
with 34 on Canada Glacier and 10 on Taylor Glacier.

Ice and cryoconite hole core samples were melted at room
temperature in the Ziploc bags in which they were collected. Melt-
water was syringed from the top of the bags, leaving the sediment
at the base; 150 mL of melt was filtered through 0.4 �m Nucleopore
membranes that were triple-flushed with deionized water and then
sample water. The fourth aliquot of filtrate was stored in 60–100
mL Nalgene bottles pre-rinsed with deionized water. These samples
were examined for major ions (Ca2�, Mg2�, Na�, K�, Cl�,
SO4

2�, and NO3
�), inorganic nutrients (NH4

�, NO3
�, PO4

3�,
NO2

�, and SiO2), and pH/conductivity/O2. The pH, conductivity,
and O2 were determined within one hour of sample melt following
standard procedures (McQuaker et al., 1983). Another 100 mL
was passed through pre-combusted Whatman GF/F for dissolved
organic carbon (DOC) and total dissolved nitrogen (TDN) analysis,
to which 1 mL concentrated HCl was added as a biocide. The
samples were stored in combusted amber glass bottles. All filtrates
were refrigerated at �4 �C and remained cool during transport. The
reserved cryoconite sediments were drained, weighed, and frozen at
�20 �C in 60 mL pre-rinsed bottles. They remained frozen until
analysis 8 months later.

ANALYSIS

Ca2�, Mg2�, Na�, K�, Cl�, SO4
2�, and NO3

� were ana-
lyzed using a Dionex DX-120 Ion Chromatograph. Analysis was
conducted between one and eight weeks after collection at the Crary
Lab, McMurdo Station. Precision was �5% for all ions. The quanti-
fication limits, taken as the concentration of the lowest standard,
were (in �eq L�1): Ca2� 2.0; Mg2� 5.0; Na� 2.0; K� 0.20; Cl�



0.6; SO4
2� 0.4; and NO3

� 0.07. DOC was determined using a
Shimadzu TOC-V CPN Total Organic Carbon Analyzer with a
high sensitivity catalyst. The detection limit for DOC was 0.2 mg
L�1 C, precision was �0.1 mg L�1 C, and the mean standard
error of duplicate samples was 6.4%. Inorganic nutrients were de-
termined on a Brann and Luebbe SEAL colorimetric Autoanalyser
3 at the University of Bristol, approximately 8 months after sample
collection. The quantification limits were: NH4

� 0.9; NO3
� 1.0;

PO4
3� 0.6; NO2

� 0.1 �eq L�1; and SiO2 2.1 �mol L�1. Samples
were blank-corrected to account for the prolonged storage time.
Accuracy was determined against VWR spectrosol standards and
was �0.2 �eq L�1. Dissolved inorganic carbon (DIC, primarily
HCO3

�) was assumed to be equal to alkalinity and was determined
by subtracting the sum of the measured positive equivalents from
the sum of the measured negative equivalents.

Sediment samples were thawed and excess water removed
under suction, then weighed into ceramic crucibles and baked at
120 �C for 12 h. Samples were reweighed to determine pre-baked
water content as a proxy for porosity, and then suspended in water
for laser particle size analysis (0.3 to 300 �m) using a Malvern
Mastersizer Micro 2.12. A calibrated standard of known particle
size was run after every 10 samples, and the largest gravel particles
were excluded from analysis.

The organic C and N content of the cryoconite was determined
using a Eurovector EA3000 Elemental Analyser, calibrated with
certified acetanilide [C6H5NH(COCH3)]. The detection limit was
10 ppm, and the working range was from 0.01 to 100% organic C
or organic N. Precision was dependent on range, being 0.10% �

0.01%, 1.00% � 0.02%, 10.00% � 0.10%, and 50.00% � 0.30%.
The inorganic carbon (or carbonate) content was measured on a
Strohlein Coulomat 702 Analyser, calibrated with certified barium
carbonate. The detection limit was 1 ppm as DIC, and precision
was �0.5%. Output from both instruments was validated with a
Eurovector reference soil standard.

The concentration and comparative bioavailability of P in the
cryoconite sediment was assessed via sequential extraction (Hod-
son et al., 2004). Five operationally defined P fractions were mea-
sured: loosely adsorbed (extracted with 1 mol L�1 MgCl2); Fe and
Al hydroxide bound (extracted with 0.1 mol L�1 NaOH); calcite
and apatite bound (extracted with 1 mol L�1 HCl); organic bound
(extracted with 30% H2O2); and the residual phase (extracted with
acidified K2Cr2O7). Extractions were performed on 18 samples
using the following method. The cryoconite (0.2 g) was shaken
continuously for 16 h in a centrifuge tube with 12 mL of extractant
(in the first instance, 1 mol L�1 MgCl2), using an end to end shaker.
After shaking, the tubes were centrifuged at 2600 rpm for 12 min,
and the supernatant was filtered through 0.45 �m cellulose nitrate
membrane filters and collected. An additional 12 mL of extractant
was added to the same sediment, shaken for 2 h, and the centrifuga-
tion and filtration procedures were repeated. Finally, 12 mL of
deionized water were added to the sediment and shaken for 2 h
before centrifugation and filtration as above. The sediment was
then treated with the next extractant and the procedure repeated.
The supernatant from the organic-bound extraction required boiling
with 1 mol L�1 NaOH (pH 10.5) to remove excess oxidizing agent
before analysis. The residual P fraction was extracted using acidi-
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fied potassium dichromate, autoclaved at 121 �C at 15 psi for 1 h,
and then cooled and filtered through 0.45 �m cellulose nitrate
membrane filters before dilution in a 1:14 ratio with deionized
water. The filtered supernatants were analyzed using the molybde-
num blue method on a Shimadzu UV-Mini 1240 Spectrophotome-
ter at 880 nm wavelength. Some 4 mL of extract was mixed with
0.64 mL of combined reagent (5 mol L�1 H2SO4, K(SbO)C4H4O6,
(NH4)6MO7O24, and ascorbic acid), and the resulting blue color
was analyzed. Potassium dihydrogen phosphate standards, with the
same matrix as the samples, were prepared, ranging from 0 to 1
ppm P. The detection limit was 0.1 ppm P and precision was �5%.
Results are reported in units of �g Pg�1 of cryoconite, and correc-
tions for deionized water blanks were made. Blanks had very high
and variable concentrations for the organic fraction, with a mean of
57% of the total P measured, although some corrections approached
85% of the total P measured. The high blank values were thought
to arise from possible contamination during the prolonged boiling
or incomplete removal of excess oxidizing agent. Hence, values of
P in the organic fraction reported here are best estimates only.

Results and Discussion
PHYSICAL PROPERTIES OF CRYOCONITE HOLES

The largest (radius 38 � 18 cm) and deepest (47 � 22 cm)
cryoconite holes were found on Taylor Glacier, whereas the holes
on Commonwealth and Canada Glaciers were about 20 � 15 cm in
radius and about 18 � 6 cm depth (Table 1). Cryoconite sediment
thickness was relatively uniform on all glaciers, in agreement with
previous studies in the Antarctic and in Svalbard (Porazinska et
al., 2004; Cook et al., 2010), although thicknesses (�0.8 cm) were
generally greater than Arctic holes (0.3 � 0.1 cm; Telling et al.,
2012). Maximum thicknesses (up to 10 cm) were found on Taylor
Glacier. The majority (�90%) grain size distribution of cryoconite
sediment was sand (�50 �m) with some silt (2�23 �m). On
Taylor Glacier the sediment had the highest proportion of large
particles, with 69% of particles �160 �m, compared with Canada
Glacier, 57% �160 �m, and with Commonwealth Glacier, 12%
particles �160 �m, furthest down-valley (Fig. 3).

The spatial pattern of particle size distributions supports ear-
lier findings from eolian sediment traps at 1 m height on the glaciers
(Lancaster, 2002). The proportion of sand-sized particles (�50 �m)
in the sediment traps ranged from 5% on Commonwealth to 16%
on Canada and 21% on Taylor Glaciers (Lancaster, 2002). That
the particle size in the cryoconite sediment is larger than the sedi-
ment traps reflects the difference in sediment transport between
saltation and suspension. A later study with passive eolian traps
and counters situated closer to the surface, at 30 cm height, found
that �1% material captured was �50 �m (Sabacka et al., 2012).
The relationship between longitude (down-valley distance) and me-
dian grain size in the cryoconite holes is significant (P � 0.00, F
� 22, d.f. � 1; Fig. 4). Higher wind speeds are much more com-
mon up-valley at the western end of Taylor Valley (Nylen et al.,
2004), and it has been shown that 95% of eolian material at 30 cm
height is transported by down-valley winds, generally southwester-
lies in excess of 20 m s�1 (Sabacka et al., 2012). The majority of
the larger cryoconite sediment is thus transported by katabatic



TABLE 1

Mean dimensions of cryoconite holes (cm), total area of ablation zone (km2), and percentage area covered by cryoconite holes
(after Fountain et al., 2004).

Total hole Sediment Ablation % hole
Radius depth thickness zone area coverage n

Commonwealth 19.4 17.4 0.85 10.9 4.8 30
s.d. 8.97 6.60 2.31
Canada 22.8 18.5 1.13 8.5 4.5 90
s.d. 13.2 7.19 2.48
Taylor 37.7 46.7 0.50 61.3 3.4 30
s.d. 20.4 16.2 2.36

storms, when particulate deposition is high and coarser debris may
be saltated or blown onto the glacier surface.

ICE CHEMISTRY

The mean chemical composition of the ice sampled from the
three glaciers is dominated by NaCl (Table 2). Marine aerosols are
a significant source of solute to glacier ice, transported into Taylor
Valley on up-valley sea breezes that are common in summer (Nylen
et al., 2004). Commonwealth Glacier, closest to the Ross Sea (Fig.
2), has the highest concentration of Cl�, then Canada Glacier, and
finally Taylor Glacier, furthest from the coast, contains the lowest
Cl� concentration. The total dissolved solute concentration also
follows this pattern, although there are subtleties in the relative ion
concentrations, as shown below. Our concentrations, taken from
ice cores of up to 40 cm depth, are more dilute than those of Lyons
et al. (2003), who collected ice cores to a depth of 5 cm. To evaluate
the importance of marine aerosols as the source of solutes to the ice
and cryoconite, we calculated mean enrichment factors as follows
(Chester, 2000):

FIGURE 3. Grain-size distribution
of cryoconite hole debris from Com-
monwealth, Canada, and Taylor
Glaciers.
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EFx �
X / Cl�ice

X / Cl�seawater
, (1)

where the EF is the enrichment factor of species x, and X is the
concentration of species x, relative to the Cl� of ice and seawater.
Chloride is used because it generally behaves conservatively in
solution. We assume, given the number of samples collected and
the analytical uncertainties, that EF that are 1.0 � 0.2 are not
enriched (EF � 1.2) or depleted (EF � 0.8) relative to sea salt.

The large EF (�2) values in Table 2 show that glacier ice is
clearly enriched in Ca2� � K� � Mg2� � SO4

2� when compared
with sea salt. These ions are derived from the dissolution of dust
during ice melt (Lyons et al., 2003). Glacier ice in Taylor Valley
is particle-rich by polar ice-sheet standards (5–100 mg L�1), with
concentrations at least two orders of magnitude higher than most
other Antarctic snow and ice, which are typically in the range of
0.002–0.015 mg L�1 (Lyons et al., 2003). The relatively high dust
loading in the MCMDV snow and ice is derived from the valley
floor and sidewalls. The general availability of dust for eolian trans-



TABLE 2

Mean major ion, organic carbon, and inorganic nutrient concentrations for glacier ice and cryoconite hole waters on Commonwealth,
Canada, and Taylor Glaciers, with enrichment factors (EF) calculated according to Equation (1).

Cl� NO3
� SO4

2� Na� K� Mg2� Ca2� HCO3
� DOC NH4

� NO2
� DIN DON PO4

3� SiO2

Glacier ice
Commonwealth
Mean 17.8 0.23 4.40 15.6 2.28 11.3 15.5 21.9 0.29 2.18 * 0.04 * * 1.99*
St dev 4.45 0.06 1.51 3.27 0.52 2.53 5.64 9.58 0.20 * * 0.01 * * *
EF 1 ND 2.38 1.02 6.83 3.23 23.1 ND ND ND ND ND ND ND ND
� 0 ND 0.23 0.04 0.14 0.08 2.63 ND ND ND ND ND ND ND ND
n 5 5 5 5 5 5 5 5 5 1 5 1 1
Canada
Mean 9.21 0.41 3.45 6.00 1.54 11.0 6.51 12.0 0.34 * 0.06 0.03 * * *
St dev 2.97 0.12 1.98 1.97 0.50 2.96 2.55 2.46 0.20 * * 0.01 * * *
EF 1 ND 3.61 0.76 8.94 6.15 18.7 ND ND ND ND ND ND ND ND
� 0 ND 0.91 0 0.01 0.33 1.28 ND ND ND ND ND ND ND ND
n 5 5 5 5 5 5 5 5 5 5 1 5 1 5
Taylor
Mean 5.07 0.12 1.33 4.31 1.46 4.72 2.51 5.53 0.44 * 0.08 0.01 * * *
St dev 2.40 0.04 0.43 2.00 0.62 5.52 1.46 5.72 0.18 * 0.12 0.01 * * *
EF 1 ND 2.54 0.99 15.35 4.78 13.2 ND ND ND ND ND ND ND ND
� 0 ND 0.38 0.01 0.72 3.33 1.41 ND ND ND ND ND ND ND ND
n 5 5 5 5 5 4 5 5 5 4 3 4 1 3

Cryoconite hole waters (sampled when frozen)
Commonwealth
Mean 187 5.75 57.2 138 20.7 101 203 212 0.79 0.51* 0.04 0.05 0.17 0.19* 14.1
St dev 158 20.2 46.5 110 9.78 62.3 127 119 0.38 1.32 0.05 0.07 0.15 0.27 7.01
EF 1 2.43 1.24 0.84 0.84 0.85 1.23 0.9 0.18 ND ND ND ND ND ND
� 0 6.43 0.07 0.01 0.3 0.18 0.13 0.09 0.01 ND ND ND ND ND ND
n 26 24 26 26 26 26 26 26 26 16 12 18 21 22 26
Canada
Mean 91.9 6.45 51.1 56.5 15.9 49.8 231 202 0.72 0.97 0.35 0.07 0.20 * 10.6
St dev 93.2 23.3 63.1 46.9 9.02 41.1 145 102 0.32 1.39 0.47 0.08 0.20 * 7.23
EF 1 1.59 1.49 0.94 1.03 0.45 3.55 1.69 0.21 ND ND ND ND ND ND
� 0 4.1 0.05 0.17 0.46 0.05 1.13 0.66 0.06 ND ND ND ND ND ND
n 89 89 89 89 89 89 89 89 87 73 85 89 77 18 89
Taylor
Mean 18.6 1.77 17.7 19.0 4.37 22.9 55.9 63.3 0.41 0.78* 0.15 0.04 0.16 * 7.74
St dev 16.8 2.29 22.0 14.3 1.94 14.9 31.8 31.2 0.17 0.77* 0.15 0.07 0.11 * 3.75
EF 1 4.13 3.61 1.20 0.82 1.32 6.05 3.11 0.25 ND ND ND ND ND ND
� 0 1.10 0.69 0.17 0.34 0.59 1.38 0.47 0.11 ND ND ND ND ND ND
n 20 20 20 20 20 20 20 20 14 14 19 14 10 3 20

*Denotes a sample below the detection limit, ND denotes no data. Concentrations are in �eq per liter, except DOC, DON, and DIN, which are
in mg C or N per liter.

port increases with distance from the coast, due to factors such as
decreasing snowfall and decreasing soil moisture (Barrett et al.,
2007), and higher wind speeds, which can transport more material
(see above).

MAJOR ION CHEMISTRY OF CRYOCONITE HOLES

The major ion content of the water or ice within the cryoconite
holes arises largely from solute scavenged from glacier ice as the
hole melts in during its annual cycle, and from chemical interac-
tions between ice melt and eolian debris, which forms the hole.
Once the debris is deposited and encased in a cryoconite hole, it
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may remain there for years (Tranter et al., 2004), so allowing
greater chemical weathering of the mineral surfaces. The EF for
the cryoconite holes was calculated using Equation (1) but substi-
tuting Cl� in the cryoconite hole (CH) for Cl� in the ice:

EFx �
X / Cl�CH

X / Cl�ice
. (2)

Water from cryoconite holes on Commonwealth Glacier had
EF for major ions close to 1, showing little enrichment (Table 2).
Those on Canada Glacier were enriched in SO4

2�, Ca2�, and DIC,
but depleted in Mg2�, whereas holes on Taylor Glacier were more
enriched in all four species. The higher EF from Taylor Glacier



FIGURE 4. Median grain size of cryoconite debris compared to longitude on Commonwealth, Canada, and Taylor Glaciers.

may be explained by longer residence times (hydrologic isolation)
of water and sediment in the larger holes (Bagshaw et al., 2007),
which promotes greater dissolution despite the coarser grain size
(see Fig. 4).

It is likely that the salinity of the cryoconite sediment is one
of the key controls on the overall ion concentrations in the holes.
Sediment deposited on Taylor Glacier is likely to originate from
medial moraines or nunataks upwind of the glacier (Speirs et al.,
2008), whereas sediment on Canada and Commonwealth Glaciers
more likely originates from the soils on the valley floor (Witherow
et al., 2006). These soils have variable salinity, from 127 �S cm�1

in the Lake Hoare Basin to 549 �S cm�1 at Lake Fryxell Basin
and 706 �S cm�1 at Lake Bonney Basin (Barrett et al., 2004). The
salinity effect is confounded by the different wetting histories that
the sediment has experienced before it is incorporated into the
cryoconite hole. Soils that first contact meltwater in the hole are

TABLE 3

Mean C, N, and P, plus C:N:P content of soils (data from Barrett et al., 2007) and cryoconite hole debris in the three lake basins. More
than 90% of C in the cryoconite holes is organic, thus it is directly compared with soil organic carbon.

OC (%) TC (%) IC (%) N (%) P (%) C:N N:P

Soil Hole Hole Soil Hole Soil Hole Soil Hole Soil Hole

Fryxell 0.04 0.35 0.06 0.002 0.05 0.07 0.05 25 8.2 0.06 2.39
s.d. 0.004 0.12 0.01 0.0001 0.02 0.006 0.02 2.7 7.0 0.01 2.21
Hoare 0.02 0.18 0.08 0.004 0.02 0.03 0.04 7 7.0 0.28 1.89
s.d. 0.004 0.23 0.11 0.0004 0.03 0.001 0.01 6.3 1.2 0.16 6.64
Bonney 0.02 0.06 0.02 0.003 0.02 0.03 0.05 6.4 3.5 0.28 0.94
s.d. 0.003 0.01 * 0.002 0.01 0.002 0.04 6.5 1.2 0.25 0.55

*Only one sample from Taylor Glacier analyzed for IC.
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likely to be very saline, but if they have previously been exposed
to water, for example, in a stream bed or at the base of an ice cliff,
they are likely to be much less saline. The EF therefore depends
on the potential of the debris for new silicate dissolution and the
concentration of evaporite minerals other that NaCl, such as CaSO4

(Lyons et al., 2000).

PARTICULATE ORGANIC C AND N

The rank order of organic C and N in the cryoconite sediment,
Commonwealth � Canada � Taylor (Table 3), is the same as
found in the surrounding soils in the respective basins, as would
be anticipated since the sediment is locally sourced. However, there
is several times more organic C (total carbon [TC] – total inorganic
carbon [TIC]) in the cryoconite sediment than in the soils, by a
factor of �7 on Canada Glacier (0.29 cf. 0.04%), �5 on Common-
wealth Glacier (0.10 cf. 0.02%), and �2 on Taylor Glacier (0.04



cf. 0.02%). The percentage composition of N in the cryoconite
sediment and Dry Valley soil is small (�0.05%), but there is none-
theless �25 times more N in Commonwealth cryoconite (0.05 cf.
0.002%), and �5 times more in Canada and Taylor cryoconite
(0.02 cf. 0.004 and 0.003%, respectively) than in the soils.

Soils in the Lake Fryxell Basin are the most productive in
Taylor Valley, as indicated by the higher algal mat density and
greater microbial abundance (Virginia and Wall, 1999; Barrett et
al., 2004; McKnight et al., 2007). Observations of windblown algal
flakes were most frequent on the surface of Commonwealth Gla-
cier, and mat-like material was frequently observed in the cryocon-
ite from Commonwealth Glacier but not on the other two glaciers.
The mean pH of the holes can be used as a crude proxy for net
photosynthesis in closed systems (Tranter et al., 2004), with higher
pH associated with greater degrees of net photosynthesis [Equation
(3)]. The mean pH of Commonwealth Glacier cryoconite hole
waters was 6.98, compared with 6.45 and 6.10 on Canada and
Taylor Glaciers, respectively (ANOVA test, p � 0.007). This crude
proxy for net photosynthesis reflects the rank order of the overall
organic C and N content of the cryoconite sediment.

HCO�
3 → OH� � Corg � O2 (3)

DISSOLVED C AND N SPECIES

The highest concentrations of dissolved C and N were found
in cryoconite hole waters on Commonwealth Glacier (3.5 mg C
L�1, 0.17 mg N L�1), and the lowest on Taylor Glacier (0.85 mg
C L�1, 0.16 mg N L�1) (Table 2). The difference in total dissolved
carbon (TDC) concentrations is significant between the glaciers,
although TDN concentrations are similar (ANOVA Kruskal-Wallis
TC p � 0.014, total nitrogen (TN) p � 0.606). Most of the dis-
solved C is inorganic, with mean proportions ranging from 60 (Tay-
lor) to 76% (Commonwealth). By contrast, most of the dissolved
nitrogen is organic, with average values ranging from 69 (Canada)
to 78% (Taylor). N concentrations in glacier ice are at or below
detection limits, with no detectable dissolved organic nitrogen
(DON), and dissolved inorganic N (DIN) concentrations of 0.01
to 0.04 mg L�1. The mean EF of NO3

� in the cryoconite hole
waters ranges from 1.6 (Canada) to 4.1 (Taylor). DOC is detectable
in the ice on all three glaciers, ranging from 0.29 to 0.44 mg C
L�1. Blanks were below detection limit, ranging from 0.01 to 0.1
mg C L�1. The values recorded in the cryoconite hole waters are
thus significantly higher than the glacier ice. However, the EF of
DOC in the cryoconite hole waters is depleted on all three glaciers
(0.18 on Commonwealth, 0.21 on Canada, and 0.25 on Taylor),
suggesting that DOC has been removed from the cryoconite holes
over time. This observation is consistent with recent work on gla-
ciers in Alaska and northeastern U.S.A., which reports that glacial
DOC, although present in relatively low concentrations, is labile
(Hood et al., 2009; Stubbins et al., 2012). Photolytic degradation
of DOC is also possible (Mopper et al., 1991), although the ice
lids significantly limit the proportion of solar radiation that reaches
the waters below.

Together, these data suggest that there is significant biogeo-
chemical cycling as a result of microbial activity in the cryoconite
holes. Depletion of DOC is indicative of heterotrophic activity and
bacterial production (Foreman et al., 2007), while enrichment in
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NO3
� suggests that net nitrification is occurring, as has been found

in streams in Taylor Valley (Gooseff et al., 2004; McKnight et al.,
2004), in the maritime Antarctic (Hodson, 2006), and in cryoconite
holes in Svalbard (Hodson et al., 2005, 2008). Nitrogen fixation
has been observed in cryoconite holes in Svalbard (Telling et al.,
2011) and in sediment contained within the lake ice cover in Taylor
Valley (Paerl and Priscu, 1998), so it is reasonable to suggest that
it also occurs in the cryoconite holes of Taylor Valley glaciers.
Paradoxically, nitrification occurs when NO3

� concentrations are
low (Telling et al., 2011) and most likely when microbial produc-
tion is high during the peak summer ablation season, which explains
the high particulate N and organic C in cryoconite debris. By con-
trast, denitrification occurs during the autumn freeze (Tranter et
al., 2004). Comparison of samples collected when the holes were
completely frozen with those that contained meltwater beneath the
ice lid further supports this hypothesis. NO3

� concentrations in
cryoconite holes containing liquid water at the time of sampling
were depleted with respect to glacier ice (EF � 0.28 on Canada
Glacier), whereas the holes sampled earlier in the season when
they were completely frozen were enriched (EF � 1.6 on Canada
Glacier; Table 2). Hence, successive annual cycles of nitrification
and denitrification may result in higher concentrations of labile N
in the cryoconite holes overall, and often higher NO3

� concentra-
tions in the waters of the cryoconite holes, but this depends on the
time of sampling.

DIP, DOP, AND PHASE ASSOCIATION OF PARTICULATE
BOUND P

Concentrations of dissolved inorganic phosphorus (DIP) and
dissolved organic phosphorus (DOP) were below detection limits
(�0.6 �eq L�1 and 0.2 �mol L�1, respectively) in all ice and
cryoconite hole water/ice samples (Table 2). The Lakes Bonney
and Hoare in Taylor Valley are among the most P-limited aquatic
ecosystems on Earth (Foreman et al., 2004; Barrett et al., 2007;
Bate et al., 2008), despite the pools of inorganic P in the glacial
tills (Bate et al., 2008). The low concentrations of DIP and DOP
in cryoconite hole waters (Table 2) suggest that they too may be
P-limited (Tranter et al., 2004). Much higher concentrations of P
are found in the cryoconite debris (Table 4). Between 24% (Can-
ada) and 45% (Taylor) of total P is bound in the residual fraction,
which may not be bioavailable on annual timescales. The remainder
of the particulate P is potentially bioavailable. The most readily
available phase, that extracted by MgCl2, comprises just 0.06% of
total P on Commonwealth Glacier, but 0.12 and 0.18% on Canada
and Taylor Glaciers, respectively. This quantity of P may poten-
tially fix �100 times the amount of C (Redfield, 1958), thus even
small amounts are significant to the biological function of the cryo-
conite hole ecosystem. The availability of the remaining P fractions
(NaOH and HCl extractable, organic, and residual) is dependent
on the chemical characteristics of microenvironments within the
cryoconite debris. For example, to utilize the next most available
fraction (extracted with NaOH), alkaline conditions are needed,
which might occur during periods of high photosynthesis. There
is a relatively large proportion of NaOH-extractable P in the Com-
monwealth cryoconite, 7.2%, compared to 1.9 and 1.5 on Canada
and Taylor, respectively. Acidic conditions may extract mineral-
bound phases (HCl extractable) (Liang et al., 2010), which contrib-



TABLE 4

Concentration of P (�g Pg�1 debris) in each sequential extract, with the relative percentage of total P. The highest concentrations of P
are found in extracts from Commonwealth Glacier sediment, which also has the highest proportion of bioavailable P.

MgCl2 NaOH HCl H2O2 Residual

Commonwealth 0.28 33.5 140 155 133
s.d. 0.00 12.2 43.9 24.4 80.0
% of total P 0.06 7.23 30.3 33.6 28.8
n 2 5 5 5 5

Canada 0.41 6.67 115 144 84.3
s.d. 0.31 3.27 48.1 88.4 141
% of total P 0.12 1.90 32.8 41.2 24.0
n 5 12 18 18 17

Taylor 0.86 6.98 95.3 153 214
s.d. 0.06 0.95 18.3 5.16 182
% of total P 0.18 1.49 20.3 32.5 45.6
n 2 2 4 3 5

ute 30% of the total P on Commonwealth, 32% on Canada, and
20% on Taylor Glaciers. These conditions may occur, for example,
in microenvironments within the debris that are predominantly het-
erotrophic (Gahoonia and Nielsen, 1992).

The organic P fraction is estimated to contribute 30–40% of
the total P on the three glaciers, and only becomes available as
microbes degrade the organic material in the cryoconite hole. Parti-
culate organic P is recycled through respiration, but the virtual
absence of direct consumers in the cryoconite hole microbial com-
munities limits the rapidity of this process (Stibal et al., 2008). An
alternative method of extracting P from organic material is via
enzymatic mechanisms. Phosphatase activity has been detected in
cryoconite holes on glaciers in the Arctic (Stibal et al., 2009) and
the Antarctic (Foreman et al., 2007), indicating that microbes can
cleave phosphate from complex P-containing organic molecules.
Phosphatase activity is also detected in the ice-covered lakes of
Taylor Valley (Dore and Priscu, 2001) and is a strategy that has
been proposed as a means of coping with P deficiency (Stibal et
al., 2009). Stibal et al. (2009) estimated that the store of organic
P in cryoconite on Werenskioldbreen, Svalbard, may be turned over
in 46–180 days and is sufficient to supply the entire supraglacial
community over the ablation season. Phosphatase activity on Com-
monwealth Glacier was higher than on Taylor and Hughes Glaciers
(see Fig. 2) (Foreman et al., 2007). Our data, which shows that
readily bioavailable P in cryoconite is lower at Commonwealth
than at Taylor Glacier, is consistent with these observations, since
utilization of organic P sources is most required in cryoconite holes
on glaciers at the eastern end of Taylor Valley.

The physiochemical form of P in MCMDV cryoconite sedi-
ment agrees with the patterns found in cryoconite at Werenskiold-
breen, Svalbard (Stibal et al., 2008), although total concentrations
of P are lower since allochthonous sources in the Dry Valleys are
less abundant than in Svalbard. The total P content of cryoconite
at Werenskioldsbreen was 2.2 mg P g�1, compared with 0.09 to
0.69 mg P g�1 in Taylor Valley. There are different relative propor-
tions of potentially bioavailable and less available P in the soils of
each glacier basin. Soils of the Lake Fryxell Basin have higher P
concentrations in all fractions than those in the Lake Bonney Basin
(Blecker et al., 2006), and up to 8 times more labile P (Bate et
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al., 2008). The cryoconite holes on Commonwealth Glacier are
therefore likely to receive local debris with higher concentrations
of total P and higher proportions of bioavailable P than Taylor
Glacier, which is consistent with results of the extractions (Table
4). The relative lack of loosely adsorbed or labile P (0.06%) is most
likely an indication of the increased levels of biological activity
in the cryoconite holes on Commonwealth Glacier, which rapidly
exhausts the most readily available P, instead fixing the P into
organic fractions. The lack of detectable DOP or DIP in the holes
(Table 2) also suggests that any available P is quickly utilized by
microbial communities. The dissolved and particulate P data show
that microbial communities existing in the cryoconite holes are
stressed by a lack of immediately bioavailable P, but that they are
likely able to respond to stress by producing phosphatase in order
to extract P from the potentially large stores of particulate organic
P in the cryoconite.

EFFECT OF GEOGRAPHY ON CHARACTERISTICS OF
CRYOCONITE HOLES

There is a clear gradient in the geochemical characteristics of
cryoconite holes across the three glaciers, which are situated along
the length of Taylor Valley (Fig. 2), in common with other land-
scape components within the valley (Lyons et al., 2000; Welch et
al., 2010). Of the sampled cryoconite holes, those on Taylor Gla-
cier, at the western end of the valley, are larger and deeper, with
the largest particles and waters that are most enriched in ions from
mineral dissolution. They have the lowest concentrations of marine-
derived aerosols, and the lowest particulate organic carbon and
nitrogen. The waters have the lowest pH, which, when used as a
proxy for photosynthesis, suggests low biological activity. This is
supported by the highest proportion of easily available particulate
P, the highest ratios of DOC:DIC and DON:DIN, the lowest total
DOC and dissolved nitrogen (DN), and the highest enrichment of
NO3

� with respect to glacier ice, indicating low uptake by active
microbial communities. The opposite is true for cryoconite holes on
Commonwealth Glacier, and those on Canada Glacier are generally
intermediate.

This pattern maps clearly onto the position of each glacier



within the landscape, and the relative influence of local climate.
We have demonstrated that the highest wind speeds are found at
the western end of the valley, as a result of a microclimate domi-
nated by katabatic winds (Nylen et al., 2004; Speirs et al., 2010),
which control the deposition of material that forms the cryoconite
holes onto the glacier surfaces. The first-order control on biological
productivity of the cryoconite holes is also the relative position
within the landscape and the associated impact of the climate.
Higher snowfall at the easterly (seaward) end of the valley increases
soil moisture in the Lake Fryxell Basin, which supports higher
biological productivity in the valley floor ecosystem components
(Virginia and Wall, 1999). Since the cryoconite holes are princi-
pally seeded by the immediate surrounding area (Christner et al.,
2003), a greater proportion of biological material, including micro-
organisms, fragments of algal mat, and other organic matter, will be
deposited on glaciers at the eastern end of the valley. This promotes
elevated levels of biological activity compared to cryoconite holes
at the western end of the valley, and hence relative depletion in
easily accessible phases of particulate C, N, and P, reduced DIC
and DIN, and augmented accumulation of DOC and DON. An
accumulation of algal material on Falconer Ridge (T. Nylen, per-
sonal communication), at the sidewalls of Commonwealth Glacier,
further enhances this effect by delivering additional algal material
to the glacier surface for incorporation into cryoconite holes, and
maximizes the observed differences in biological activity at oppo-
site ends of the valley.

CRYOCONITE HOLES AS C, N, AND P RESERVOIRS

The MCMDV contain depauperate ecosystems in which biotic
communities are limited by physical constraints, access to organic
matter, and nutrient availability (Zeglin et al., 2009). Nutrients are
often in low quantities and in proportions outside the ratios required
for balanced growth (Barrett et al., 2007). Overall, rates of micro-
bial activity are directly related to the quality and quantity of avail-
able organic matter (Barrett et al., 2006; Zeglin et al., 2009). Any
process that serves to maximize the production of organic matter
and nutrient storage is thus important on the landscape scale, partic-
ularly if the organic matter and nutrient are potentially exportable

TABLE 5

Total dissolved (TD), dissolved inorganic (DI), dissolved organic (DO), and particulate (TP) C, N, and P (kg) stored on the surface of the
three glaciers, and in different Taylor Valley landscape components (stream and soil data from http://www.mcmlter.org and Barrett et

al., 2007). Totals were estimated using mean concentrations and the area covered by each landscape element.

DOC DIC TDC DON DIN TDN TPC TPN TPP

Commonwealth 68.0 220 287 12.1 4.32 16.4 27,400 3910 3670
Standard error 38.4 91.2 201 13.1 5.22 26.6 18,500 2410 1680
Canada 4.66 13.8 18.5 0.99 0.46 1.46 1370 230 270
Standard error 2.20 4.74 10.8 1.41 0.51 2.65 1760 232 86
Taylor 366 542 910 135 38.5 173 11,000 3670 8630
Standard error 228 366 835 52.3 48.4 228 2470 1920 7450
All glaciers 886 2450 3340 203 75.8 280 153,000 25,830 33,200
Standard error 480 1010 2280 196 90.7 431 124,000 18,500 18,800
All streams 6.00 64.1 70.1 ND ND 8.00 120,000 10,000 ND
Standard error 1.08 10.4 17.1 2.47 12,000 1000
All soils n/a n/a n/a n/a n/a n/a 13,000,000 11,100,000 7,390,000
Standard error n/a n/a n/a n/a n/a n/a 2,330,000 758,000 1,110,000
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in the future via increased hydrological connectivity between land-
scape elements (Ball et al., 2011; Levy et al., 2011). We have
shown unequivocally that the biological processes that occur in
cryoconite holes increase the C and N content of cryoconite with
respect to the soils, and the dissolved fractions with respect to
glacier ice. Next, we quantify the magnitude of the dissolved and
particulate C, N, and P stored in the cryoconite holes and assess
the significance of this reservoir to the Dry Valley ecosystem as
whole.

The total mass of sediment stored in the cryoconite holes on
each glacier can be estimated from the average sediment depth,
the estimated area of the ablation zone, and the percentage of the
glacier ablation area that is occupied by cryoconite holes on each
glacier (see Table 1). In these calculations we assume a mean dry
cryoconite particle density of 2.64 g cm�3 and mean porosity of
33%. The values for total cryoconite sediment mass are 18,400,
7830, and 760 tonnes for Taylor, Commonwealth, and Canada Gla-
ciers, respectively. The total mass of particulate organic carbon
(POC), particulate organic nitrogen (PON), total phosphorus (TP),
and particulate organic phosphorus (POP) in cryoconite on each
glacier can then be calculated from the total debris mass, given the
mean %C, %N, and %P in the debris, as shown in Tables 3 and
4. The calculated values are 11,000, 27,400, and 1370 kg for POC;
3670, 3920, and 230 kg for PON; 2800, 1220, and 110 kg for POP;
and 8620, 3620, and 270 kg for TP, respectively (see Table 5).
Our estimates of POC and PON for Canada Glacier are higher than
those of Foreman et al. (2007), largely because they estimated that
the sediment layer was only a few millimeters in depth, whereas
our measurements show that they are consistently of the order of
a centimeter.

The average water depth of the holes, the percentage of the
accumulation area covered, and the mean dissolved C and N con-
centrations can be combined to calculate the total dissolved C and
N reservoir in the cryoconite holes on each glacier (Table 5). The
calculated values are 900, 286, and 18.5 for TDC, and 175, 16.4,
and 1.46 kg for TDN, respectively (Table 5). The TDC and TDN
stores are typically 2–3 orders of magnitude smaller than the partic-
ulate reservoirs, and the ratio of solid phase to dissolved reservoir



decreases from Commonwealth to Taylor Glaciers. Comparison of
the ratios of dissolved to particulate stores for each glacier suggests
that biological activity is more efficient at scavenging C and N
from the dissolved phase into the solid phase at Commonwealth
� Canada � Taylor Glaciers. There is considerable uncertainty in
these estimates, particularly with respect to dissolved and particu-
late N (Table 5). Nevertheless, they provide a useful assessment
of the relative magnitude of the C, N, and P stores on the glaciers
in relation to other landscape units.

Soils cover �105 km2 of the floor of Taylor Valley (Burkins
et al., 2001). Permafrost is found at a near constant depth of 10–30
cm across the valley (Virginia and Wall, 1999), and we consider
the top 20 cm to be the location of the potentially biologically
active store of C, N, and P. The mean C, N, and P by weight are
0.03, 0.003, and 0.02%, respectively (Burkins et al., 2001; Barrett
et al., 2007) (Table 3). Thus, assuming porosity of 30% (measured
mean water content), and particle density of 2.64 g cm�3, the total
stores of C, N, and P are 12,900, 1110, and 7390 tonnes, respec-
tively. The other significant biologically active landscape compo-
nents in Taylor Valley are the ephemeral streams, which cover an
area �0.2 km2. The steam algal mats have an estimated carbon
density of �600 g C m�2 (Burkins et al., 2001). The organic C
stored in the algal mats is therefore �120,000 kg. The C:N ratio
in the algal mats is 11–13 (Lee Stanish, personal communication),
so we estimate that the likely N store is of the order of 10,000 kg.

Comparing these pools, we see that the cryoconite holes (and
hence the glacier surfaces) represent a store of C and N that is
slightly larger than that of the algal mats located in ephemeral
stream beds, but only 1.2% of C, 2.3% of N, and 0.5% of the P
stored in the soils (Fig. 5). However, the C, N, and P in the cryocon-
ite holes are much more accessible to the hydrological drainage
system than that in the soils, and present in more bioavailable
fractions. The cryoconite holes play an active part in the annual
hydrological cycle (for example, contributing 13–15% of runoff
from Canada Glacier; Fountain et al., 2008) and hence are con-
nected to other parts of the ecosystem, whereas the majority of the

FIGURE 5. Estimated stores (tonnes) of
particulate C, N, and P in different land-
scape components of Taylor Valley, with
example fluxes of N from the glaciers and
streams into Lake Fryxell. *Eolian flux
data from Sabacka et al. (2012) show the
mean flux of C, N, and P recorded in sedi-
ment traps in the central Lake Hoare Basin.
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soil environments remain disconnected (Doran et al., 2008). Even
the benthic fraction of the holes is relatively mobile, since con-
nected cryoconite holes can have their sediment flushed into supra-
glacial streams (Fountain et al., 2004). The proportion of sediment
liberated from the cryoconite holes varies according to the magni-
tude of surface melting, but in a ‘‘warm summer,’’ when the major-
ity of cryoconite holes lose their ice lids and are flushed out (Fore-
man et al., 2004), a large proportion of the sediment store of C, N,
and P is mobile. This means that it can play a part in contemporary
biological processes.

Present day models of ecosystem processes in the MCMDV
tend to combine the contribution from the cryoconite holes with
that from the ephemeral streams (Moorhead et al., 2005; Barrett
et al., 2008; Doran et al., 2008), which potentially allows misinter-
pretation of important processes controlling nutrient cycling. How-
ever, we have shown the total cryoconite hole store of C and N is
larger (Table 5) than that in the streams and thus should be consid-
ered as a separate entity. The 2001/2002 ‘‘warm year’’ is used to
illustrate the potential impact of a nutrient flush from cryoconite
holes to the ice-covered lakes. In the summer of 2001/2002, abnor-
mally warm air temperatures induced an extreme melt event in
Taylor Valley (Foreman et al., 2004). Ephemeral stream discharge
was at a record high, lake levels rose (Doran et al., 2008), soil
moisture increased (Barrett et al., 2008), supraglacial streams were
widespread (Fortner et al., 2005), and the majority of cryoconite
holes lost their ice lids and connected to the supraglacial drainage
system (Fountain et al., 2004). There was significant mass loss at
all elevations on the glaciers during the warm summer (Fountain
et al., 2008), which fueled increases in ephemeral stream discharge
of as much as 6000-fold (http://www.mcmlter.org), so we anticipate
that much of the nutrient stored in the cryoconite holes was flushed
from the glacier in this large meltwater pulse. In the year following
the ‘‘flood,’’ primary production (PP) in the top 5 m of Lake Fryxell
increased by 12.8 �g C L�1 d�1 from the long-term average of
2.4 �g C L�1 d�1 (Foreman et al., 2004). Foreman et al. (2004)
hypothesized that this increase was fueled by nutrient previously
stored in the cryoconite holes.



In order to examine this hypothesis, we used a simple mass
balance model to estimate the nutrient requirements of this increase
in PP and the potential sources (Appendix). The total N required
to support the observed increase in PP is 1640 kg. The likely contri-
bution from streams is 730 kg N, although there may be additional
PON input from algal mat scouring associated with higher
streamflows (McKnight et al., 1999). The dissolved nitrogen (DN)
content of the cryoconite holes is negligible in comparison to that
in the lake (�10 kg; Table 5), but the potential contribution of
particulate N from the cryoconite sediment is 2700 kg. Supporting
an increase in PP in Lake Fryxell would thus require less than 20%
of the total N store on Canada and Commonwealth Glaciers to be
flushed from the holes into the lake. This is certainly plausible,
given the magnitude of the melt and the observed flushing of the
cryoconite holes. Our model is constrained by a number of assump-
tions, namely that PP occurs at the mean rate for 30 days, and that
the nutrient requirement follows the Redfield ratio. We also have
no way of estimating the actual contribution of cryoconite sediment
to the lake during the warm year. We also have ignored the micro-
bial recycling loop within the lake, diffusion across the chemocline,
the potential of N inputs from stream hyporheic zones (Gooseff
et al., 2002), and direct contributions from melting permafrost or
groundwater seeps (Harris et al., 2007; Wall, 2007). However, we
believe that these simple calculations illustrate the importance of
considering cryoconite hole biogeochemical processes, along with
those in the streams, soils, and lakes, when modeling ecosystem
processes in the MCMDV.

Conclusions
Our assessment of the nutrient status and store in cryoconite

holes of three glaciers in Taylor Valley has shown that there is
active biogeochemical cycling as a result of microbial activity, and
that this results in a larger proportion of bioavailable C, N, and P
present in the cryoconite than exists in the source material, with
2–7 times more POC, 5–25 times more particulate nitrogen (PN),
and up to 8 times more labile P. The position of the parent glacier
within the Taylor Valley landscape exerts a key control on the
geochemical character of the holes, since the holes are seeded by
the surrounding environment. Mean DOC and DON concentrations
in the holes are 0.4–0.8 and 0.2 mg L�1, respectively, and estimates
of the total quantity of dissolved carbon and nitrogen on the glacier
surfaces are 3340 and 280 kg, respectively. The cryoconite sedi-
ment fraction represents a much larger nutrient store than the water/
ice layer, where total particulate carbon (TPC) comprises up to
0.35% of the sediment, total primary nitrogen (TPN) up to 0.05%,
and total particulate phosphorus (TPP) 0.05%, and hence the total
store of C, N, and P in the cryoconite holes of Taylor Valley is
150,000, 25,800 and 33,200 kg, respectively. The magnitude of the
cryoconite nutrient reservoir is similar to that found in the ephem-
eral streams, but smaller than the total quantity present in the poorly
developed soils that cover much of the Dry Valley landscape, where
C and N stores are approximately 80 and 40 times larger, respec-
tively. Crucially, however, the fractions present in the cryoconite
holes are more bioavailable to microorganisms, and also more mo-
bile. A proportion of the cryoconite sediment store will be flushed
to downstream aquatic ecosystems during the summer melt, when
about 50% of cryoconite holes connect to the near-surface supragla-
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cial drainage system (Fountain et al., 2004, 2008). The meltwaters
and material from the cryoconite holes pass through the ephemeral
stream network to oligotrophic, perennially ice-covered lakes. Dur-
ing warm summers, which occur with approximately decadal fre-
quency (Ball et al., 2011), the majority of the cryoconite holes
are flushed and their contents are redistributed throughout the Dry
Valley ecosystem mosaic. Simple calculations show that an in-
crease in primary productivity recorded in the ice-covered Lake
Fryxell in the summer following the 2001/2002 warm period could
be supported by an influx of nutrient from cryoconite holes, and
hence cryoconite holes are an integral part of the Dry Valley eco-
system.
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APPENDIX

Chemical Mass Balance Model
Redfield stoichiometry can be used to estimate the nutrient

requirements for the increase in particulate production (PP) in Lake
Fryxell, following the 2001/2002 warm event (Redfield, 1958).
Over a 30-day growing season, a PP rate of 12.8 �g C L�1 d�1

in the top 5 m of Lake Fryxell requires 1640 kg N. This is a
maximum estimate, since this calculation does not account for the
likely nutrient recycling that occurs in the surface waters of the
lake. We calculate the probable sources of this N as follows: The
concentration of particulate organic nitrogen (PON) in the top 5 m
of the lake at the end of winter prior to the flood (27 October 2001)
was 15.7 �g L�1, while dissolved inorganic nitrogen (DIN) was
negligible at 0.02 � M�1 (data from http://www.mcmlter.org).
The volume of the surface 5 m of water in Lake Fryxell is 2.8 �

1010 L, and hence the PON in the surface lake waters was of the
order of 445 kg, and the DIN was �1 kg. Doran et al. (2008)
estimated that the total stream water input to Lake Fryxell during
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the flood year was 2.5 � 109 L (from Canada, Aiken, Von Guerard,
Harnish, Crescent, and Delta streams), and the mean N in stream
waters was 0.3 mg L�1 (http://www.mcmlter.org). The total nitro-
gen (TN) input from the streams is thus approximately 730 kg N.
This input from the streams when compared to the background
total organic nitrogen (TON) content of the lake surface water is
still �500 kg less than the N required for the observed levels of
PP. The dissolved nitrogen (DN) content of the cryoconite holes
is negligible in comparison to that in the lake (�10 kg; Table 5),
but the larger particulate nitrogen (PN) store was likely flushed
during this flood event. The topography of Canada and Common-
wealth Glaciers is such that approximately half the holes on Canada
and two-thirds on Commonwealth will drain to Lake Fryxell, so
the potential total particulate nitrogen (TPN) input to the lake from
cryoconite is approximately 2700 kg.


	Do Cryoconite Holes Have the Potential to be Significant Sources of C, N, and P to Downstream Depauperate Ecosystems of Taylor Valley, Antarctica?
	Let us know how access to this document benefits you.
	Citation Details
	Authors

	tmp.1390934814.pdf.4cSIq

