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Do Different Methods for Modeling Age-Graded Trajectories  
Yield Consistent and Valid Results? 
 
 
ABSTRACT 
 
Data on age-sequenced trajectories of individuals’ attributes are used for a growing number of 

research purposes.  However, there is no consensus about which method to use to identify the 

number of discrete trajectories in a population or to assign individuals to a specific trajectory 

group.  We modeled real and simulated trajectory data using “naïve” methods, optimal matching, 

grade of membership models, and three types of finite mixture models. We found that these 

methods produced inferences about the number of trajectories that frequently differ (1) from one 

another and (2) from the truth as represented by simulation parameters.  We also found that they 

differed in the assignment of individuals to trajectory groups.  In light of these findings, we argue 

that researchers should interpret results based on these methods cautiously, neither reifying point 

estimates about the number of trajectories nor treating individuals’ trajectory group assignments 

as certain. 
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Do Different Methods for Modeling Age-Graded Trajectories  
Yield Consistent and Valid Results? 
 
Investigators across a wide range of disciplines are concerned with characteristics and processes 

that vary systematically with subjects’ age.  In recent years, researchers have studied age-

sequenced patterns of delinquent behaviors (e.g., Miller, Malone and Dodge 2010), family and 

work roles (e.g., Rindfuss et al. 2010), chronic disabilities (e.g., Gill et al. 2010; Stallard et al. 

2010), popularity (e.g., Moody et al. 2011), research productivity (e.g., Hunter and Leahey 

2010), income (e.g., Rippeyoung and Noonan 2012), and academic achievement (e.g., Pianta et 

al. 2009), to name just a few substantive topics.  In these and other areas of inquiry, scholars 

utilize ideas about trajectories of individual-level attributes, where trajectories are age-

sequenced observations that reflect career, life course, or developmental patterns of stability and 

change for a particular focal attribute.1   

 Despite this widespread interest in trajectories, and despite the growing availability of 

rich age-graded data, there is no consensus about how to describe and model trajectories in the 

social sciences.  When faced with similar data structures—repeated observation of some 

individual-level attribute(s) across ages—different researchers employ different assumptions and 

empirical strategies.  In some cases, they assume there is a single underlying trajectory (around 

which individuals’ observations deviate) and estimate hierarchical or growth curve models.  In 

other cases, researchers assume there are a small number of underlying latent trajectories that 

describe individuals’ experiences.  In the latter case, analysts face two specific challenges: How 

should they identify and enumerate those latent trajectories?  How should they determine which 

latent trajectory best describes each individual’s age-sequenced observations?  As reviewed 

below, a variety of statistical approaches are used to meet these challenges.  In practice, 

researchers typically choose just one of these approaches without considering the consequences 
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of this choice for the validity and reliability of substantive conclusions. 

 In this article, we are concerned with applications in which researchers aim to identify 

and characterize a discrete set of latent trajectories and to classify individuals according to which 

trajectory best describes their age-graded observations.  Our goal is to compare the relative 

validity and reliability of several alternative methods for identifying and describing trajectories 

and for assigning individuals to them.  To this end, we pose four questions:  (1) Do these 

methods lead to similar inferences about the number of latent trajectories that exist in a particular 

population?  (2) Do they yield similar descriptions of the characteristics or qualities of those 

trajectories?  (3) Do they lead to similar decisions about which trajectory best describes each 

individual’s age-graded observations?  (4) Under what circumstances do these alternative 

methods yield the same conclusions and—perhaps most importantly—under what circumstances 

do they yield correct conclusions?  

 On one hand, it would be reassuring if the various methods all yielded valid and 

equivalent conclusions about the number and qualities of trajectories or about which trajectory 

best describes each individual’s age-graded observations.  We would have greater confidence in 

the soundness of any number of substantive scientific projects that have (more or less 

uncritically) elected to use just one of these various methods.  On the other hand, if the choice of 

method does matter for substantive conclusions, and especially if some methods yield more 

accurate conclusions than others, then it will be imperative to understand (1) whether there are 

situations in which the choice of methods is particularly consequential and (2) whether certain 

methods produce more valid results under particular empirical conditions. Our research is 

designed to address both of these issues. 
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Background 

Interest in studying age-graded trajectories has long outpaced the quality of the data available to 

study them.  Careful analysis in any number of substantive domains generally calls for detailed 

data collected at short age intervals over long age spans.  Until recently, however, researchers 

usually settled for data collected at wide intervals and/or over truncated age spans.  For example, 

theories about trajectories of children’s reading ability suggest the need for data collected at 

multiple points each academic year and from early childhood through the teenage years.  In 

practice, researchers evaluating these theories have often had to rely on data collected annually 

(or less frequently) and for just a few academic years.  Recently, however, improved computer 

and data storage technologies, new methods for collecting data, and major investments in 

longitudinal social and economic surveys have combined to produce much richer age-graded 

data sufficient to describe trajectories more completely.  Across many substantive domains, it is 

now increasingly possible to utilize data collected at frequent age intervals over longer spans of 

the life course or career.   

Many analysts assume—at least implicitly, and with limited theoretical rationale—that 

there is just one underlying trajectory of the age-graded attribute of interest, and that individuals’ 

patterns of observations deviate around this single latent trajectory (Kreuter and Muthén 2008).  

Using multilevel or hierarchical linear models, researchers nest age-graded observations within 

individuals and explicitly consider the extent to which focal outcomes vary within individuals 

(i.e., with age) and across individuals (Bryk and Raudenbush 1987).  Using structural equation 

models (SEMs), researchers estimate latent growth curves by modeling the means, variances, 

and co-variances of repeated (across ages) measures (Duncan, Duncan and Strycker 2006; 

MacCallum and Austin 2000; McArdle and Epstein 1987).  For example, Judge and Cable 
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(2011) recently used this multilevel modeling approach to estimate gender differences in 

relationships between trajectories of weight and trajectories of earnings, and Gibbons et al. 

(2012) used an SEM approach to examine the relationship between trajectories of experience 

with discrimination and trajectories of African American adolescents’ self-control.  In many 

cases, the goal of such analyses is to explain between-person variation in patterns of stability and 

change in age-graded attributes. 

In many other cases, researchers assume or hypothesize that more than one latent 

trajectory may underlie observed age-sequenced data.  As we argue below, these studies are 

generally characterized by inductive reasoning, with little or no theoretical basis for expectations 

about how many trajectories there should be, what they should look like, or how individuals 

might be distributed across them.  For example, there is considerable interest in identifying and 

describing distinct life course patterns of criminal offending (e.g., Besemer and Farrington 2012; 

Moffitt 1993) and the consequences for individuals of following particular criminal pathways 

(e.g., Piquero et al. 2010).  Likewise, scholars in a number of related disciplines are interested in 

identifying and describing discrete types of labor force careers in an effort to test ideas about 

things like social mobility (e.g., Chan 1995), the transition to adulthood (Macmillan and Eliason 

2003), and cross-national differences in labor market structures (e.g., Biemann and Wolf 2009). 

When researchers assume or hypothesize that a discrete number of latent trajectories 

underlie their observed age-graded data, they have several methodological options for 

enumerating, identifying, and describing those latent trajectories and for deciding which 

trajectory best describes each individual’s series of observations.  In the section that follows, we 

review six different techniques: “Naïve” classification, three variants of finite mixture models 

(specifically, latent class analysis, group-based trajectory models, and growth mixture models), 
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optimal matching analysis, and grade of membership models.  Our discussion of these techniques 

is meant to be as accessible and non-technical as possible; for more detailed descriptions of these 

methods, including relevant formulas, the interested reader should refer to Bollen and Curran 

(2006a), Abbott and Tsay (2000), Collins and Lanza (2010), and Manton et al. (1992). We end 

the section by arguing that researchers typically select from among these and other available 

methods without good reason and that this choice of method may be consequential for 

substantive results. 

Naïve Approaches 

One popular option for modeling trajectory data is to dictate, a priori, that there is some fixed 

number of trajectories and to use some logical algorithm to classify individual biographies into a 

discrete number of trajectories.  For example, Gustafsson et al. (2010) began with measures of 

individuals’ socioeconomic status (SES) at four points between ages 16 and 43.  After 

dichotomizing those measures, there were 24 = 16 possible SES trajectories.  However, these 

were “reduced to 5 mutually exclusive categories to increase the number of participants in 

subgroups” (p. 615); the five were labeled "Stable high," "Early high/downward mobility," 

"High mobility," "Early low/upward mobility," and "Stable low."  Likewise, Hicks et al. (2010) 

began with measures of individuals’ alcohol dependence at four points between ages 17 and 29 

and assigned individuals to one of five "rationally derived groups" (p. 821) based on the ages at 

which they began and ended their dependence on alcohol.  More recently, Frech and Damaske 

(2012) classified women’s work pathways as either “steady work,” “pulled back, or part-time 

work,” “interrupted, or repeatedly unemployed worker,” or “stay-at-home mother” based on their 

hours and weeks worked and experiences with unemployment over their careers. 

Although such naïve approaches are widely used, Nagin (1999: 141) identifies three 
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major problems with them.  First, there is no way to falsify empirically the number or definition 

of trajectories; they must be assumed a priori.  Second, there is “the risk of simultaneously over- 

and under-fitting the data, thus creating trajectory groups that reflect only random variation and 

failing to identify unusual, but still real, developmental patterns” (141).  Third, such approaches 

offer no way to assess the certainty with which individuals are assigned to trajectory groups.  

That is, naïve approaches provide no empirically falsifiable way to determine the trajectory that 

best describes any given individual’s observations.  Despite these shortcomings, Nagin (1999) 

concedes that in many substantive applications—at least within criminology, which was his 

focus—the logic used to define trajectories and to assign individuals to them seem “generally 

reasonable” (p. 141). The frequency with which naïve estimation strategies are used in the social 

sciences suggests that this is a widely held view.  

Finite Mixture Models 

In recent years, many researchers have turned to finite mixture models as a useful alternative to 

such naïve approaches (e.g., Cheadle, Amato and King 2010; Halpern-Manners, Warren and 

Brand 2009; McLeod and Fettes 2007; Mustillo, Hendrix and Schafer 2012; Petts 2009; Thomas 

2011; Wagmiller et al. 2006; Zimmer et al. 2012). Latent class analysis (LCA), group-based 

trajectory models (GBTMs), and growth mixture models (GMMs) are three different types of 

finite mixture model (e.g., Clogg 1995; Muthén 2004).2  In all three cases, individuals are 

assigned to latent trajectory groups on the basis of their observed experiences or behaviors.3  

Each trajectory group represents a qualitatively distinct latent subpopulation within the data, 

composed of individuals with relatively similar measurements on some age-sequenced variable 

(e.g., employment status or criminal offending or marital status). GMMs allow for residual 

variation within these trajectory groups (i.e., within-class heterogeneity or random effects), 
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whereas LCA and GBTMs assume homogeneity conditional on trajectory group membership. 

In these models, the number of underlying trajectories, their shape, their prevalence 

within the population, and the assignment of individuals to them are all inferred from the data; 

see Bollen and Curran (2006a), Muthén (2004), Nagin (2005), and Appendix A for technical 

details and relevant formulas.  Models with increasing numbers of trajectory classes are typically 

fit in an iterative fashion.  The “preferred model” is then determined using a combination of 

formal and informal criteria.  In many applications, researchers base decisions about the number 

of trajectories on measures of model fit (e.g., BIC, AIC, and/or the Lo-Mendell-Rubin 

Likelihood Ratio Test), the share of cases assigned to the smallest trajectory group, 

interpretability, and model convergence (e.g., Halpern-Manners, Warren and Brand 2009; 

Henselmans et al. 2010; Marcell et al. 2011).  This reliance on multiple criteria may reflect the 

fact that the best-fitting model according to formal criteria can sometimes lead to a large number 

of groups, many of which contain few individuals and/or substantively similar trajectories. In 

some cases, even formal criteria can lead researchers to overestimate the number of latent 

trajectory classes (e.g., Bauer and Curran 2003).   

Optimal Matching Analysis 

Optimal matching (OM) or “sequence analysis” is a method of classifying sequences of 

observations with respect to their similarity.  Although we focus on applications in which those 

sequences are age-graded observations of individuals’ attributes, OM was initially developed for 

analysis of protein and DNA sequences and has been applied in a wide variety of other 

substantive contexts.  Abbott introduced OM for use in social science and historical research in 

the 1980s (Abbott 1983; 1995; Abbott and Forrest 1986; Abbott and Hrycak 1990).  Although 

used for a variety of social science applications, OM has most frequently been employed to study 
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trajectories or sequences of professional or working careers (e.g., Abbott and Hrycak 1990; 

Biemann, Fasang and Grunow 2011; Chan 1995; Halpin and Chan 1998; Han and Moen 1999; 

Stovel, Savage and Bearman 1996). 

OM analyses usually proceed in two steps.  First, every pair of age-graded sequences is 

compared with respect to their “distances,” or the costs associated with transforming one 

sequence into the other via a series of insertions, deletions, and/or substitutions.  Those insertion, 

deletion, and substitution costs can be determined a priori by the analyst using theory or prior 

knowledge, or they can be determined posteriorly using observed transition rates or similar 

criteria (e.g., Lesnard 2008; 2010).  These pairwise comparisons of the n sequences yield an n×n 

matrix of distance scores.  Second, in most social science applications, researchers then subject 

that matrix to some form of cluster analysis in order to group sequences into a discrete (< n) 

number of trajectory categories.  The result is a finite set of trajectory groups with relatively little 

within-group variation in distance scores. As with finite mixture models, determining the optimal 

number of distinct trajectory groups is typically based on both model fit statistics and informal 

criteria like interpretability and the size of the smallest group.  Most recent OM analyses have 

constructed distance matrices using the R package TraMineR (Gabadinho et al. 2011) and 

subjected those matrices to some form of hierarchical cluster analysis (Ward 1963).  See 

Appendix A for more details. 

As noted by Stovel et al. (1996: 394), “[t]he assignment of transformation costs haunts all 

optimal matching analyses.”  The distance between any two trajectories is a function of the costs 

assigned to insertions, deletions, and substitutions, and in many applications, there is no clear 

theoretical or applied basis for setting those costs.  Abbott and Tsay (2000: 11) point out that 

some researchers simply set all of those costs equal to a single value “on the grounds that they 
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lacked any theoretical reason for doing otherwise.”  Wu (2000) discusses several theoretical and 

conceptual issues that arise by virtue of the need to pre-assign insertion, deletion, and 

substitution costs.  For example, he notes that "[a] peculiar property of the OM part of sequence 

analysis is that one obtains the same distance between trajectories if the trajectories move 

'forward' or 'backward' in time."  Lesnard (2010) provides guidance about how costs might be 

more thoughtfully determined, especially in the context of analyzing sequences of temporally-

ordered observations.  However, it seems that most analysts are neither fully aware of the issues 

described by Wu (2000) nor as careful or strategic as Lesnard (2010) argues they should be.   

Grade of Membership Models 

Grade of membership (GoM) models were originally developed to summarize multiple measures 

of health status into a small number of empirically and statistically meaningful groups or “pure 

types” and to identify the extent to which observed individuals belong to each of those groups 

(Manton, Woodbury and Tolley 1994; Woodbury and Manton 1982).  Like finite mixture 

models, GoM analysis is used to estimate the probability of a specific value for a variable 

conditional on belonging to a “pure type.”  Unlike finite mixture models, GoM models also 

estimate coefficients representing the degree to which each individual belongs to each pure type 

(rather than the probability of belonging to a given class).  See Appendix A for more details. 

GoM can be used to summarize multiple, discrete measures of any characteristic, but 

most social scientific applications to date have focused on physical and mental health.  Previous 

efforts to use GoM to summarize repeated measures of the same variable to generate age-graded 

trajectories are rare (see Manton et al. 1987), but application to this type of data is 

straightforward.  Estimated probabilities of a positive response on a given variable for each pure 

type provide the shape of the trajectories and grade of membership scores (ranging from 0.0 to 
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1.0 and summing to 1.0) provide respondent-specific indicators of the degree of (partial) 

membership in each trajectory.  As with other methods, the number of pure types (or trajectories) 

is ascertained by comparing the fit of models with k and k+1 trajectories.  The number of 

estimated parameters equals [N*(k-1)] + (x*k), where N is the number of observations, k is the 

number of groups or pure types, and x is the number of (usually health) indicators, making these 

models far less parsimonious than latent class analysis or other methods of data reduction. 

Unlike most applications of the other methods considered in this article, the goal of GoM 

analysis is not to assign individuals to a single group or trajectory.  Indeed, the fundamental 

motivation underlying GoM, derived from fuzzy set logic, is that heterogeneity in individual 

profiles implies simultaneous membership in multiple groups (pure types) for many people 

(Manton, Woodbury and Tolley 1994).  Information about this heterogeneity that is lost when 

individuals are “forced” into or “assigned” to a single group is retained in GoM, where the 

primary output of interest is the estimated affiliation (grade of membership) with each of the 

pure types.  In many cases, this affiliation is very strong and it is clear to which group an 

individual belongs, but in other cases, it is less clear, with meaningful membership in multiple 

groups (usually two).  Most applications of GoM have thus focused on describing characteristics 

associated with degree of (usually health) profile membership (e.g., Andreotti et al. 2009) or 

have used estimated GoM scores as independent variables in analyses of subsequent outcomes 

(e.g., Portrait, Lindeboom and Deeg 1999).  However, some studies have classified individuals 

into the single group for which estimated grade of membership is strongest (e.g., Cassidy, Pieper 

and Carroll 2001) or into categories that allow for membership in multiple groups (e.g., 

Berkman, Singer and Manton 1989).   

Interchangeable Alternatives? 
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When analysts assume or hypothesize that there are multiple latent trajectories underlying some 

age-sequenced observations, how do they select from among the several methodological tools 

described above?  In some cases, researchers seek to replicate and extend prior work; in these 

cases, it may be reasonable and productive to use the same data and/or analytic techniques.  For 

example, because efforts to identify life-course trajectories of criminal offending have so 

consistently used GBTMs (e.g., Besemer and Farrington 2012; Nagin, Farrington and Moffitt 

1995; Nagin and Land 1993), analysts who wish to engage this literature might reasonably use 

GBTMs as well.  The same is true of the use of GoM to summarize large numbers of health 

indicators (e.g., Andreotti et al. 2009; Berkman et al. 1989; Portrait et al. 1999).  However, we 

suspect that most analysts choose from among the alternatives listed above based on which 

method they first learned, on the availability of colleagues to assist them in utilizing the methods, 

or on their facility with the software packages that implement them.   

Whatever the reason that researchers choose one from among these alternative methods, 

it is clear that few consider the substantive consequences of this choice.  Would Besemer and 

Farrington’s (2012) conclusions about the intergenerational transmission of criminal behavior 

have differed had they used OM instead of GBTMs?  Would Muller et al.’s (2011) conclusions 

about the life course trajectories of people with psychiatric disorders have differed had they used 

GBTMs instead of OM?  Would either set of authors’ findings have been markedly different had 

they used what we label “naïve” approaches?  Or GoM, LCA, or GMMs?   

We know of little published research that has formally considered whether the choice of 

method for analyzing age-graded trajectory data matters for substantive findings.  Robette and 

Bry (2012) recently compared results obtained using different forms of sequence analysis (of 

which OM is the most widely used), and identified variants that converged on consistent results 
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in analyses of a simulated dataset.  Barban and Billari (2012) analyzed both real and simulated 

datasets to compare results obtained from OM and LCA.  They concluded that “the two 

techniques give consistent results in classifying life course trajectories” (pg. 781).  These two 

examples are limited in scope, focusing mainly on variants of sequence analysis.   

We noted above that “naïve” approaches to identifying latent trajectories (and to 

determining which individuals’ lives are best described by particular latent trajectories) are not 

empirically falsifiable.  We also noted that questions about establishing insertion, deletion, and 

substation costs “haunt” OM analyses; Wu (2000) and others have raised other serious 

conceptual and theoretical issues about this method.  Bauer and Curran (2003) have raised 

questions about the overestimation of the number of latent trajectories in GMMs.  Analysts who 

use GBTMs, OM, GMMs, LCA and GoM sometimes base decisions about the number of latent 

trajectory groups in their data on decidedly informal criteria like interpretability and membership 

size of groups.  Furthermore, these various methods utilize distinct empirical estimating 

strategies for identifying and populating latent trajectory groups.  All of this suggests that (1) 

there may be no single “right” way to model trajectory data, and (2) the choice of method for 

modeling trajectory data may be consequential for substantive findings.     

Do these six methods lead to similar inferences about the number of latent trajectories 

that exist in a particular dataset?  Do they yield similar descriptions of the characteristics or 

qualities of those various trajectories?  Do they lead to similar decisions about which trajectory 

best describes each individual’s age-graded observations?  Beyond these questions—which 

speak to the reliability of empirical findings across methods—under what circumstances do these 

methods typically yield correct conclusions? 

We suspect that—when analyzing the same data—these six methods will yield different 
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inferences about the number of underlying latent trajectories, about the characteristics of those 

trajectories, and about the assignment of individuals to trajectory groups.  We also suspect that 

the extent to which this is true will depend on four specific dimensions of the data and on the 

concept represented by the data.  First, we hypothesize that the reliability and validity of results 

across methods will depend on the number of latent trajectories that actually exist.  If there is a 

small number of latent trajectories, then it seems more plausible that they can be identified using 

“naïve” approaches, and differences in the way that model selection criteria using GBTMs, OM, 

GMMs, LCA, and GoM are influenced by the number of trajectories would seem less 

problematic than when the actual number of trajectories is large.  Second, we expect the 

consistency and accuracy of results across methods to depend on the relative size of trajectory 

groups.  We suspect that each method will have more difficulty accurately identifying smaller 

trajectory groups; thus if individuals are more evenly distributed across groups, we expect 

greater agreement and accuracy across methods.  Third, we expect greater agreement across 

methods when there is less within-trajectory group variability in age-graded observations.  Put 

another way, each method would seem to have an easier time assigning individuals to trajectory 

groups if their age-graded observations more closely resemble the average experience of 

trajectory group members.  Fourth, we expect results to be more consistent across methods when 

observations are made at shorter time intervals.  For example, when modeling data collected 

across 20 years of individuals’ working careers, we would expect more consistent and accurate 

results from analyses based on data collected annually than we would from analyses based on 

data collected every four or five years.  This is a matter of the reliability of within-individual 

observations. 

Our empirical analyses will make one very basic, but important, contribution: We will 
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establish whether “naïve” approaches, GBTMs, OM, GoM, GMMs, and LCA yield the same 

results when analyzing the same data.  As described below, our empirical strategy is also such 

that we will be able to say something about which methods yield correct results.  Importantly, 

our empirical strategy will also permit conclusions about the conditions under which the choice 

of method for analyzing trajectory data may matter for substantive results.   

Data and Methods 

If we were only interested in whether these six methods yield the same results, we could select 

any existing dataset with age-graded observations, estimate the number of latent trajectories, 

make inferences about which individuals belong to each trajectory group, and compare results 

across methods; indeed we carry out this exercise below.  However, this strategy has two 

important shortcomings.  First, it does not allow us to say anything about whether agreement 

across methods varies as a function of important aspects of the data being analyzed.  Perhaps our 

conclusions about the substantive consequences of selecting one method over another are a 

function of the actual number of latent trajectory groups, of the distribution of individuals across 

groups, of the amount of within-trajectory group variability in age-graded attributes, and/or of 

the frequency with which observations are made.  If so, conclusions based on just one dataset 

could be misleading.  Second, the use of real data precludes evaluation of the extent to which 

(and the conditions under which) different methods produce valid results.  This is because it is 

impossible to know with certainty the true number of latent trajectories or the trajectory that 

actually describes each individual’s age-graded observations using real data. 

For the bulk of our analyses we have thus opted to follow Barban and Billari (2012) in 

generating and modeling simulated trajectory data.  This strategy has two key advantages.  First, 

we can simulate multiple datasets that vary systematically with respect to the true number of 
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latent trajectories, the distribution of individuals across trajectories, the amount of within-

trajectory group variability, and the frequency with which each individual’s attributes are 

observed.  By modeling multiple simulated datasets that vary along these dimensions, we can 

determine whether there are particular conditions under which different methods produce more 

(or less) accurate results; this may be useful information for analysts who have only one “real” 

data set to work with.  Second, by modeling simulated data we can compare method-specific 

inferences—about the number of trajectory groups, about the characteristics of those trajectories, 

and about the assignment of individuals to trajectory groups—to the “truth” that was used to 

generate the simulated data. 

Because “naïve” approaches are based primarily on background information about the 

focal substantive topic, we have simulated trajectory data that have some basis in reality.  

Specifically, each of our simulated data sets represents women’s employment status (0 = not 

employed, 1 = employed) between ages 16 and 63.  Because employment status at time t + 1 is 

not independent of employment status at time t, we used a two-state (employed vs. not 

employed) Markov chain to simulate women’s employment trajectories.  Because the probability 

of transitioning from one employment status to another varies over the life course, we establish a 

set of transition matrices in the Markov chain. The baseline parameters—employment 

probabilities and transition matrices—were based loosely on age- and sex-specific employment 

rates as observed in the cross-section in recent years of the Current Population Survey.  Those 

parameters were then allowed to vary across simulations as described below.  Each of our 

simulated datasets includes 2,000 “women” whose employment statuses are observed across a 

48-year span of their lives.  The simulated data sets suffer from no sample attrition or missing 

data.4   In Appendix B we provide a more technical description of our simulation procedures, as 



	

16 
 

well as an example of the R code used to create the simulated data. 

We simulated data sets that varied along four dimensions.  First, we simulated datasets 

that differed with respect to T, the number of latent trajectories that actually underlie the data.  T 

was equal to 1, 2, 4, or 6 across the several data sets.  Second, we simulated datasets that varied 

with respect to D, the distribution of individuals across trajectory groups.  In half of the datasets, 

D was “highly skewed” such that most observations fell into just one trajectory group; in the 

other half of the datasets, D was “uniform” such that individuals were distributed evenly across 

trajectories; of course, the value of D is not defined when T = 1.  Third, we simulated datasets 

that differed with respect to C, the certainty with which individual observations were assigned to 

trajectory groups.  In half of the datasets, C was “high” such that there was very little within-

trajectory group variability in age-sequenced observations; in the other half of the datasets, C 

was relatively low.  Finally, the simulated datasets varied with respect to t, the number of within-

individual observations.  In half of the datasets, t equaled 48, such that women’s employment 

status was observed annually between ages 16 and 63.  In the other half of the datasets, t equaled 

six, such that employment status was observed every 8 years.  Because there were four values of 

T, two values of D, two values of C, and two values of t, we might have simulated 4 × 2 × 2 × 2 

= 32 datasets.  However, the four data sets with T = 1 all have, by definition, the same value of 

D, and so we are left with 28 data sets.  Each dataset was de-identified so that we could perform 

our analyses without knowledge of the true values of T, D, or C for any datasets; however, the 

value of t could be deduced from the size of the data files and is information required to estimate 

the various models. 

Figures 1 through 4 depict each observation in the simulated datasets when T = 1, 2, 4, 

and 6, respectively.  In each dataset, each woman’s employment history between ages 16 and 63 
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is represented by a vertical line, where dark segments represent times when she is not employed 

and white segments represent times when she is employed.  Within datasets, women are first 

sorted by true latent trajectory group membership and then at random within trajectory groups.  

Each figure depicts datasets that vary by the uniformity of the distribution of observations across 

trajectory groups (D), the certainty with which observations are assigned to trajectory groups 

(C), and the age frequency with which observations are made (t).  Figure 1 has only four figures 

because D is a constant when T = 1. 

“Naïve” Approach 

For our “naïve” analyses, we begin by considering three key periods of the life course: Young 

Adulthood (ages 16 through 31), Mid-Life (ages 32 through 47), and Late Adulthood (ages 48 

through 63).  For simulated datasets in which we observe women’s employment status each year 

(t = 48), we thus observe that variable 16 times per life course period.  For datasets in which we 

observe employment status every eight years, we observe that variable only twice per life course 

period.  Within each of these three life course periods, we classify women as “mostly employed” 

during that period if they worked more than 75% of the time (which is to say, 2 out of 2 times 

when t = 6 and 13 or more out of 16 times when t = 48).  Because women could be “mostly 

employed” or “not mostly employed” at each of three periods of the life course, their 

employment histories always followed one of 23 = 8 possible “trajectories.”  However, not all of 

these trajectories are actually observed in each dataset, and some are only infrequently observed.  

Consequently, within each dataset we collapse all trajectories that were observed in fewer than 

5% of the 2,000 cases into a single “Other” category.  In general, this procedure yielded between 

two and four trajectories in each dataset.  For most datasets, the most frequently observed 

trajectory was one in which women were “mostly employed” in Mid-Life but not in Young 
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Adulthood or Late Adulthood.    

Finite Mixture Models 

Our GBTM, LCA, and GMM analyses used Mplus version 6.12 (Muthén and Muthén 2010).  

For all 28 simulated datasets, we iteratively estimated models with T = 1, 2, …, 8 latent 

trajectory classes.5  Across models within datasets, we then compared model fit using a variety 

of formal statistical criteria (e.g., BIC, sample-size adjusted BIC, AIC, the entropy index, the Lo-

Mendell-Rubin adjusted likelihood-ratio test, and the Vuong-Lo-Mendell-Rubin likelihood-ratio 

test). 6   When these statistical criteria failed to converge on a common solution, we gave 

preference to specifications that produced adequately populated classes (e.g., no fewer than 5 

percent of all cases) with fewer trajectory groups.  All models were estimated using maximum 

likelihood, with maximization performed via the EM algorithm. See Appendix Tables C1 

through C3 for further details concerning class enumeration and model fit for GBTMs, GMMs, 

and LCA, respectively. 

A key concern when estimating finite mixture models is the presence of local maxima 

(Hipp and Bauer 2006; McLachlan and Peel 2000).  Likelihood functions for mixture models are 

exceedingly complex (e.g., not always concave), which can sometimes lead to false solutions 

and/or non-convergence problems (e.g., Jung and Wickrama 2007; Muthén 2004; Nagin 2005).  

In an effort to guard against these possibilities, we randomly generated at least 400 sets of 

starting values for every GBTM, LCA, and GMM that we estimated, using the automated 

STARTS routine available in recent versions of Mplus (Muthén and Muthén 2010).  We then 

optimized the 100 best sets, as identified by a comparison of the log-likelihoods. Our final 

estimates were obtained from model estimates in which the highest log-likelihood was replicated 

at least once, suggesting that the global maximum likelihood solution was successfully reached.7  
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This approach is widely used in substantive applications (e.g., McLeod and Fettes 2007). 

Optimal Matching Analyses 

We began our OM analyses by setting the substitution cost of switching between “employed” 

and “not employed” equal to the transition rates between employment states observed in each 

simulated dataset.  Specifically, the transition rate from state i to state j is the probability of 

observing state j at time t+1 given that state i has been observed at time t.  Separately for each 

dataset, we then generated an n×n distance matrix—describing the distance between every pair 

of observed employment history sequences—using the R package TraMineR (Gabadinho et al. 

2011).  Next, and again separately for each dataset, we performed cluster analysis on these 

distance matrices in R using the Ward hierarchical clustering method (Ward 1963). 8   We 

iteratively estimated models with 1, 2, … 20 clusters for each dataset.  Decisions about the 

optimal number of trajectories were based on the Caliński-Harabasz (1974) pseudo F-statistic.9   

However, as in some published applications, we found that the preferred solution using only 

formal fit statistics led to many trajectory groups that looked very similar and that had small 

numbers of observations.  Consequently, as with our finite mixture models, if increasing from k 

to k+1 trajectory groups led to only trivial improvement in model fit and/or yielded trajectory 

groups that included fewer than 5% of the observations, we decided in favor of the model with k 

trajectory groups.10  See Appendix Table C4 for more details on our OM models. 

Grade of Membership Models 

GoM models were estimated using the GOM3 program (Charpentier 1996).  As with finite 

mixture models and OM analyses, the preferred model was chosen by comparing the fit of 

models with k and k+1 trajectories.  Following standard procedure, we used likelihood ratio tests 

to assess improvements in model fit.  We do not use BIC here because it often suggests a model 
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with one trajectory given the large number of parameters estimated for each additional k 

(Manton, Woodbury and Tolley 1994; Portrait, Lindeboom and Deeg 1999).  See Appendix 

Table C5 for further details concerning class enumeration and model fit.   

The fundamental logic of GoM models is not consistent with the allocation of individuals 

to a single group, except in cases where the grade of membership in a given pure type is 

complete (Manton, Woodbury and Tolley 1994) or at least very strong (Berkman, Singer and 

Manton 1989).  However, previous studies have assigned individuals to particular groups and 

used that group membership as an indicator of (usually) health in regression models (e.g., 

Berkman, Singer and Manton 1989; Cassidy, Pieper and Carroll 2001).  We adopt a similar 

strategy to facilitate comparison with the other methods considered.  Specifically, we assign 

cases to the trajectory group for which the ratio of their GoM score to the mean GoM score for 

that trajectory group is highest (Cassidy, Pieper and Carroll 2001).  See Appendix Table C5 for 

additional details. 

Results 

Table 1 reports—separately for each of the 28 datasets—true simulation parameters (i.e., the 

values of T, D, C, and t) and four sets of results for each of the six analytic methods: The inferred 

number of latent trajectory groups (T’), the difference between the inferred and actual numbers 

of trajectory groups (T’-T), and two values of the Rand Index (Rand 1971).  We use the Rand 

Index to assess the performance of models with respect to correctly classifying individuals to 

trajectory groups.  Specifically, for any pair of individuals, if the simulation dictated that both 

members of the pair have the same (or different) underlying employment trajectory and the focal 

analytic method correctly assigned them to the same (or different) trajectory groups, this measure 

adds 1/(2000*1999) to the index for that pair (and 0 otherwise). This process is repeated for all 
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of the 2000*1999 pairs of simulated women.  If the Rand Index (RI) equals 1.00, then the 

method has correctly classified every observation for that dataset.  Any deviation from 1.00 

reflects classification errors.  We report two different values of the Rand Index for each dataset 

and for each method: RI equals the value for the best fitting model, and RI* equals the value for 

a model that specifies the correct number of trajectory groups (T). 

How often do our six analytic methods yield the same estimate of the number of latent 

trajectories underlying these 28 data sets?  As shown in Table 1, across the 28 datasets the six 

methods never all infer the same number of trajectories (T’).  Even excluding the “naïve” 

analyses, the five more statistically rigorous methods never all infer the same number of 

trajectories.  Focusing on any pairwise comparison of two methods, there is only one instance—

the comparison of “naïve” analyses with GBTMs—in which two methods agree more than half 

the time across the 28 datasets about the inferred number of trajectories.  Unfortunately, “naïve” 

analyses and GBTMs most often agree that there are three trajectory groups—which is never a 

valid inference.  Even the three variants of finite mixture modeling—GBTMs, GMMs, and 

LCA—infer the same number of trajectories only about a third of the time. 

How often do these methods yield correct results—that is, how often do their inferences 

about the number of trajectories agree with the simulation parameter T that dictated the true 

number of trajectories?  GoM analyses correctly inferred the number of latent trajectories for 8 

of the 28 datasets; all the other methods performed even worse.  Figure 5 presents histograms of 

the values of T’- T as reported in Table 1.  Most of the time, each method inferred a number of 

latent trajectories that was within plus or minus two of the true value; none of the six methods 

appears to perform any better or worse than the others in this regard.  These are relatively 

“clean” datasets—with no missing data, with no sample attrition, with employment histories of 
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uniform length, and with a seemingly straightforward dichotomous outcome—and so it seems 

unlikely that these methods would perform much better when analyzing “real” data.  

The accuracy of these methods with respect to making inferences about the number of 

underlying trajectory groups varies somewhat as a function of the simulation parameters used to 

generate the data.  First, as shown in Table 1, all six methods tended to underestimate the number 

of trajectories when the true number of trajectories was higher and to overestimate the number of 

trajectories when the true number of trajectories was lower.  Second, each method generally 

inferred a larger number of trajectories when the outcome was observed annually (as compared 

to when it was observed every 8 years).  This seems to be particularly true for the less 

parsimonious GoM models which do not perform as well when the number of “internal 

variables” (observations of employment status in this case) is small (Manton et al. 1992).  

Overall, this suggests that these methods are more likely to produce valid inferences about the 

number of trajectories when age intervals are narrow and when there are few latent trajectories 

underlying the data. Unfortunately, analysts of real data usually have no way of knowing a priori 

whether the latter condition is met. 

Putting aside the inferred number of trajectories, how often do these methods correctly 

sort individuals into trajectory groups? That is, how well do these methods perform with respect 

to trajectory assignment?  In Figure 6, we present histograms of the Rand Index across the 28 

datasets for each method; these values are also included in Table 1.  The value of the Rand Index 

tends to be lower and less variable for the “naïve” approach; the more statistically rigorous 

methods tend to produce similar Rand Index values.  In general, each method is more successful 

at allocating individuals to trajectory groups when age intervals are narrower; when certainty of 

trajectory group assignment was higher; and when individuals were distributed uniformly across 
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trajectory groups. 

To provide a closer inspection of these empirical patterns, we carried out a separate set of 

analyses in which we calculated the mean Rand Index value by simulation parameter and 

methodology.  We then ran one-way ANOVAs to test whether these means varied significantly 

across methodologies, holding particular simulation parameters constant.  Results from these 

analyses—which are shown graphically in Figure 7—suggest that the estimators in question 

produce a similar (and fairly large) number of classification errors, regardless of the empirical 

conditions that we imposed. Mean Rand Index values never exceeded 0.7 and the hypothesis 

tests that we performed were not significant (at least by conventional standards).  Under these 

conditions, it is difficult to identify clear-cut “best” and “worst” methods. 

Part of the misallocation of individuals to trajectory groups can be attributed to errors in 

inferring the correct number of trajectory groups.  The value of the Rand Index cannot equal 1.00 

when the inferred number of trajectories is incorrect.  To more clearly assess the ability of each 

method to allocate individuals to trajectories (net of their accuracy in inferring the number of 

trajectories), we have computed the Rand Index for each dataset and for each method for models 

that stipulate the correct number of trajectories; these values are also reported in Table 1.  

Distributions of the resulting Rand Indexes are shown in Figure 8.  The Rand Index values are 

uniformly higher (except when the model initially inferred the correct number of trajectories), 

but are still not very high.  If we excluded the four data sets in which the true number of 

trajectory groups (T) equals one—and thus where the Rand Index must equal 1.00—the results 

presented in Figure 8 would look very much like the results presented in Figure 6.  

Do the trajectories produced by these several methods look qualitatively similar?  

Looking beyond errors in inferences about the number of trajectories and some misclassification 
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of individuals across trajectory groups, do the methods yield trajectories that follow similar 

pathways?  Our inspection of trends in age-specific employment rates suggests that when 

methods infer the same number of trajectory groups and have relatively high Rand Index values, 

the characteristics of the resulting trajectories are qualitatively similar to one another; 

descriptively, they also look similar to the truth as specified by the simulation parameters.  That 

is, conditional on inferring the correct number of trajectories and on reasonably accurate sorting, 

each method yields similar and valid substantive stories about what the trajectories look like.  Of 

course, in practice researchers typically have no way to assess whether those conditions are 

satisfied. 

Supplemental Analyses of Real Data 

Although we have argued that there are distinct analytic advantages to modeling simulated data 

to address our main research questions, we also recognize the importance of ascertaining how the 

several methods perform using real data.  Could the divergent results we reported in Table 1 and 

Figures 5 and 6 be due to the ultimately artificial nature of our simulated data?  Although we 

cannot assess the accuracy of each method using real data generated by processes that we 

obviously cannot observe or control, might the several methods yield more consistent results 

when the application involves real data analysis? 

To address this question, we analyzed data from the Cambridge Study in Delinquent 

Development (CSDD) (Farrington 1999). Initiated in 1961, the CSDD was a prospective study 

that followed 411 (403 in our analysis due to 8 deaths) working-class boys in London from age 

8/9 through age 31/32.  For each single year of age from 10 through 32, the data indicate whether 

or not each of these 403 boys was convicted of some criminal offense; the most common 

offenses were thefts, burglaries, and stolen cars. The original data provided annual conviction 
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counts, which we then dichotomized for the purposes of our analyses (1 = had a conviction in the 

past year; 0 = otherwise).  The Cambridge data have been used prominently by D'Unger et al. 

(1998), Muthen (2004), Nagin (1999) and others in widely-cited work on trajectory methods. 

Using the same six methods—and following the same model fitting, model selection, and 

other inferential procedures described above—we analyzed the Cambridge data to infer the 

optimal number of latent trajectories of criminal convictions, to describe the shape of these 

trajectories, and to allocate the 403 boys to their most likely latent trajectory group.  Figure 9 

depicts our results by showing the number of trajectory groups, the percentage of cases that were 

allocated to each group, and the average cumulative number of years with convictions at each 

age for members of those groups, separately by estimation strategy.  The estimated group sizes 

for each trajectory are provided in the upper left-hand corner of each plot, along with generic 

letter names which we use to refer to the groups in the discussion below. 

The naïve approach yielded six trajectory groups that differed qualitatively with respect 

to when boys were first convicted and whether or not they ever desisted.  The largest group of 

boys (Group A, which included an estimated 64% of the sample) was never convicted.  On the 

other hand, both GoM and OM inferred that there were only two distinct trajectory groups—a 

very large one (with more than 90% of the boys) that experienced few convictions, and a much 

smaller one (Group B) that experienced a large and growing number of convictions over time.  

The GoM and OM solutions do not distinguish between boys who were never convicted and 

those who experienced only a few convictions. 

Each of the three finite mixture modeling approaches (GBTMs, GMMs, and LCA) 

inferred three trajectory groups, including one large group of boys who were never convicted 

(Group A); the estimated size of that group ranges from 65% to 75% of the sample.  However, 
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the profile of the other groups varies considerably across these three methods.  Whereas LCA 

and GBTMs identified one small group of boys that was convicted a large number of times 

(Group B, accounting for between 4% and 11% of the sample depending on the methodology), 

GMMs inferred two moderate sized groups (19% of 16%) that experienced similar cumulative 

numbers of convictions. Unlike the other five methodologies (and the other two types of finite 

mixture models), GMMs did not identify a “high” conviction group. 

In short, these six methods produced results that differ with respect to the number of 

latent trajectory groups; their relative size; and the qualitative attributes of those groups.  

Although we cannot compare these results to the “truth” (since that truth is unobserved), we can 

conclude that the choice of method for analyzing the Cambridge data has important implications 

for the substantive conclusions one draws about trajectories of criminal convictions. 

Discussion 

Our goal in this article was to assess the relative validity and reliability of six methods for 

identifying and describing latent age-graded trajectories and for assigning individuals to those 

trajectories.  To this end, we posed four questions.  In this section, we review the answers to 

these four specific questions before turning to the limitations of our analyses, describing future 

directions for methodological work, and drawing broader conclusions. 

First, do “naïve” approaches, finite mixture models, optimal matching analyses (OM), 

and grade of membership (GoM) models lead to the same inferences about the number of latent 

trajectories that exist in a population?  Here, the answer is a decided “no.”  Across 28 simulated 

datasets, the methods never drew the same inferences about the number of trajectories.  Even the 

more statistically sophisticated methods—all but the “naïve” analyses—never agreed with one 

another.  Comparing any two methods, those methods rarely agreed on the number of latent 
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trajectories more than a third of the time.  The methods also produced dissimilar results when we 

analyzed “real” data.  Clearly, analysts who draw substantive or theoretical conclusions based on 

the exact number of latent trajectories that underlie some age-graded phenomenon need to 

recognize that their inferences about that number are affected by their choice of methodology.   

Not only did these methods not make the same inferences about the number of 

trajectories underlying simulated data, they also usually produced inferences that were incorrect.  

GoM inferred the correct number of trajectories for 8 of the 28 datasets, but all the other methods 

performed worse.  Most of the time, these methods “missed” by one or two latent trajectories, 

but as we argue below many substantive analyses draw major substantive or theoretical 

conclusions based on the existence, size, or attributes of just one or two latent trajectory groups.  

To be fair, the developers of these several statistical methods recognize and quantify uncertainty 

in inferences about the number of latent trajectories (e.g., Nagin and Tremblay 2005).  Most 

applied researchers, however, tend to reify the point estimate and overlook this uncertainty; for 

example, very few conclude that there are “between three and six” latent trajectories. 

Second, under what conditions or circumstances do these alternative methods yield the 

same conclusions and—perhaps most importantly—under what circumstances do they yield 

correct conclusions?  We found that all six methods tended to underestimate the number of 

trajectories when the true number of trajectories underlying the simulated data was relatively 

high (six) and to overestimate the number of trajectories when the true number was low (one or 

two).  Of course, substantive researchers have no way of knowing in advance how many latent 

trajectories underlie some age-graded sequence of observations; consequently, they have no way 

of knowing whether they are likely under- or over-estimating the number of trajectories.  We 

also found that each method tended to yield more accurate results when the age interval of 
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observation was relatively narrow (i.e., when there were more frequently observations over the 

age range being observed).  This finding should trouble the many substantive researchers who 

have relied on data collected on just a handful of occasions over a wide range of ages. All of this 

implies that these methods may be more likely to produce valid inferences about the number of 

trajectories only when age intervals are narrow and when there is good reason to believe that 

there are few latent trajectories underlying the data.  On the other hand, when there was actually 

just one latent trajectory the various methods generally inferred that there were two or more. 

Third, do these methods lead to the same decisions about which trajectory best describes 

each individual’s age-graded observations?  Again, the answer is “no.”  In part, this is because 

any disagreement between two methods about the inferred number of latent trajectories will 

necessarily lead to discrepancies in which individuals are assigned to the same trajectory groups.  

However, putting this aside, the Rand Index indicated that these methods differed with respect to 

the accuracy of their assignments of individuals to trajectory groups.  As we note below, this 

inaccuracy in sorting individuals can lead to problems for researchers who use trajectory group 

membership as an independent variable in models predicting subsequent outcomes.  Once again, 

the developers of the several statistical methods we considered recognize and quantify 

uncertainty or “fuzziness” in the assignment of individuals to trajectory groups—indeed this is a 

fundamental property of GoM models.  Here again, applied researchers sometimes overlook this 

uncertainty. 

Fourth, do those methods yield similar descriptions of the characteristics or qualities of 

those various trajectories?  In this case the answer is “yes,” at least when they agree about the 

number of latent trajectories and about the assignment of individuals to them.  Our simulated 

data represented women’s employment status histories, and in general, the several methods 



	

29 
 

painted the same broad picture.  However, substantive conclusions about population 

heterogeneity in these patterns—for example, about the existence and attributes of relatively 

uncommon ideal-typical life pathways—will be incorrect when the method used errs in inferring 

the number of trajectories or in sorting individuals into them.  In practice, researchers have no 

way of knowing whether this is the case.      

We might have expanded the scope of our analyses in ways that would make results even 

more useful for substantive researchers as they explore the best method for modeling age-graded 

trajectory data.  First, we have focused only on methods that are used for drawing inferences 

about the discrete number of latent trajectories that underlie observed age-graded data.  A more 

basic question—and one that we have not here addressed—is when and how researchers might 

more confidently reject the hypothesis that there is only one latent trajectory from which each 

individual’s biography deviates to some degree.  Many researchers simply start by assuming that 

there is actually a single latent trajectory around which individual sequences vary, and then 

utilize growth curve models in multilevel or structural equation model frameworks.  Our results 

do not speak to this more basic issue: When should researchers employ any method(s) from this 

entire class of models?  Second, and more practically, all of our analyses pertain to outcomes 

measured dichotomously.  Whether our basic findings would hold for count or continuous 

measures remains to be seen—but see Bauer and Curran (2003) in this regard.  Third, our 

“naïve” analyses might be particularly “naïve.”  We found that “naïve” approaches did about as 

well as more sophisticated methods in inferring the number of trajectories—although they did 

not do as well at sorting individuals into trajectory groups—but actual analysts would likely have 

been more thoughtful in how they performed “naïve” analysis.  For example, they would likely 
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have also considered the mean or total number of years employed in constructing their group 

taxonomy.   

Our conclusions should be disconcerting for researchers who analyze age-graded 

trajectory data using just one method.  Scholars in any number of disciplines and specialties draw 

key substantive and theoretical conclusions based on the number and attributes of latent 

trajectories that appear to underlie their data.  We find that those conclusions may be determined, 

at least in part, by the choice that those scholars make about which method to use and that those 

methods frequently produce invalid results.  What is more, many researchers employ these 

methods as a first step in their empirical work, as an effort to construct a key dependent or 

independent variable.  They infer that there are k trajectory groups, and they then regress some 

outcome Y on a series of indicators of trajectory group membership.  However, our findings 

suggest that there is often a substantial amount of misallocation of individuals to trajectory 

groups.  This means that, for many applications, researchers’ key independent variables are 

measured with an amount of error that is generally difficult for them to quantify or correct.  Even 

if these researchers infer the correct number of trajectory groups, their substantive results may 

thus still be biased by virtue of having utilized one of these methods.  We should note that these 

disconcerting conclusions are based on analyses of data that are unrealistically “clean” in 

important respects: Our simulated datasets do not suffer from problems associated with missing 

data, censored or truncated observations, or panel attrition, for example.  In analyses of “real 

data,” these additional complications and potential sources of bias are overlaid on top of the 

methodological problems we have identified. 

A more fundamental implication of our work is that we need better theory about discrete, 

latent trajectory population subgroups in particular empirical situations.  Most sociological and 



	

31 
 

other analyses use the methods we have considered in a purely inductive manner, letting the data 

and model reveal the number of population subgroups, their membership, and their attributes.  A 

more theoretically-based and deductive approach would begin with specific hypotheses about 

how many population subgroups there are, what sorts of individuals belong to those subgroups, 

and what the character of those subgroups’ trajectories might be.  In this situation, the methods 

we examined might be used to confirm or disconfirm theoretically-motivated hypotheses.  Of 

course, given our empirical findings, analysts would need to be cautious about basing tests of 

such hypotheses on just one of the analytic methods we consider.   

Applied researchers should realize that their choice of method for modeling age-graded 

trajectory data has potentially important consequences for their substantive results.  Regardless 

of which method(s) they use, they also need to take seriously uncertainty in inferred numbers of 

trajectory groups and uncertainty in trajectory group assignment.  As we noted earlier, the 

developers of the various methods we consider are much clearer about these forms of uncertainty 

and about what the results of these forms of analysis mean and do not mean.  However, users of 

these methods too often reify point estimates about the number of latent trajectories, overstate 

the certainty with which individuals “belong” to trajectory groups, and assume (at least 

implicitly) that they would get basically the same results had the selected a different method.  

Until new and better-validated techniques are available, we urge researchers to—at a 

minimum—verify their substantive results by replicating their analyses using multiple methods 

and then take seriously the uncertainty built into those results.  We also encourage them to 

develop stronger theories about whether discrete, latent trajectories can be said to actually and 

meaningfully exist in particular substantive contexts, or whether the clusters of observations they 

are detecting using these methods are simply useful summaries of complex longitudinal data.   
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APPENDIX A 
(To Be Provided Online) 

The technical details of the models used in this paper have been explicated at length elsewhere 

(Abbott and Hrycak 1990; Bauer and Curran 2003; Clogg 1995; Jones and Nagin 2007; Manton 

et al. 1992; Manton, Woodbury and Tolley 1994; Muthén 2004; Muthén and Shedden 1999; 

Nagin 2005; Wu 2000).  In this section, we provide basic estimating equations and associated 

formulae in an effort to (1) spell out their underlying assumptions and (2) provide further details 

about how they are implemented in typical social science applications.  The interested reader is 

encouraged to consult the extensive methodological literature on growth mixture models 

(Muthén 2004), group-based trajectory models (Nagin 2005), latent class analysis (Collins and 

Lanza 2010), grade of membership models (Manton et al. 1992), and optimal matching analysis 

(Lesnard 2010) for a more comprehensive treatment of these topics. 

Growth mixture models and group-based trajectory models 

Growth mixture models and group-based trajectory models can be expressed in general terms 

using SEM matrix notation (Bollen and Curran 2006b): 
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where y is the longitudinal attribute of interest (e.g., employment status across the life course);

)( g
iP  is the probability that individual i belongs to latent group g (where 0)( g

iP  and 
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g
iP ; Λ is a matrix of constants and factor loadings; η  is a vector of growth parameters 

that includes intercepts, slopes, and (in our analyses) quadratic terms; and ε  is vector of error 

terms.  



	

44 
 

The superscripts in Equations 1 and 2 indicate that the growth parameters that define the 

shape of each trajectory are free to vary across the g trajectory groups. When GMMs are fit, the 

within-class variance components in Equation 2 are freely estimated, allowing for residual 

variation within trajectory groups (i.e., random effects).  When GBTMs are estimated, the 

within-class variance components are fixed to zero )0( ζ , implying that individuals’ 

experiences (y) are homogeneous within groups. In some cases, researchers pursue a hybrid 

approach where certain variance components are fixed to 0 and/or constrained to be equal across 

trajectories (see, e.g., McLeod and Fettes 2007).  This is the approach that we employed when 

fitting GMMs. 

Latent class analysis 

In the mixture modeling approaches described above growth parameters are used to characterize 

change over time in the attribute of interest.  In latent class analysis, change is not characterized 

using polynomials and is instead modeled non-parametrically.  This is especially useful when 

respondents’ trajectories are thought to oscillate over time and/or contain sharp discontinuities. 

The basic model for binary outcomes (dropping individual subscripts) can be written as: 



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g
k gyPgyPgPP

1
1 )|1()...|1()()( yY  (3) 

where P(Y = y) is the joint probability of all of the y’s (1,…,k); P(g) is the probability of latent 

class g; and )|1( gyP k   is the probability that yk = 1, conditional on membership in class g. 

Classification probabilities—the latent class equivalent to factor scores—can be calculated 

for LCA models using Bayes’ theorem:  

),...,(

)|()...|()(
)|(

1

1

k

k

yyP

gyPgyPgP
gP y , (4) 

where P(g | y) represents the posterior probability of membership in latent class g, conditional on 
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response pattern y (i.e., the likelihood that an individual belongs to a certain latent class given 

their actual sequence of measurements).  The classification probabilities expressed in Equation 4 

can take on any value between 0 and 1, and may be nonzero for more than one latent class.  This 

is true for the two estimation strategies described above, as well. 

Grade of membership analysis 

Grade of membership models are similar to latent class models (Erosheva 2005; Manton, 

Woodbury and Tolley 1994) and are typically expressed as: 

P(y= ௝݈│k)=∑ ݃௞
௄
௞ୀଵ 	௞௝௟. (5)ߣ

 
Here, P(y=lj|k) is the probability that the value of dichotomous variable y is equal to l for a given 

polytomous outcome j (e.g., the age-specific observations of employment status in our 

application) conditional on membership in class (or type) k. G are the so-called GoM scores 

which range from 0 to 1 and denote individual i’s degree of (partial) membership in state k.  The 

GoM scores are similar to the term P(g) in Equations 3 and 4 and, as in latent class models, gk ≥ 

0 and ∑ ݃௞
௄
௞ୀଵ ൌ 1.  Rather than “latent classes,” k are referred to as “pure types” or “extreme 

profiles” in the GoM literature, reflecting the emphasis on partial membership in different states 

or classes.  λkjl are the estimated probabilities of response l for outcome j for hypothetical 

individuals who belong completely to a single pure state (i.e., λkjl=P(yjl=1 | gk=1.0).  λ are thus 

similar to p(yk|g) in Equations 3 and 4 above.  Given the focus on partial membership (or grade 

of membership) in multiple states, GoM models do not provide estimates of the probability that 

an individual belongs to a single profile, but some researchers have used the estimates of partial 

membership to assign individuals to one profile or pure type (e.g., Berkman, Singer and Manton 

1989; Cassidy, Pieper and Carroll 2001).  To facilitate comparison with the other methods used 
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in this paper, we adopt a similar approach, allocating individuals to the state (trajectory) with the 

highest GoM score (g). 	

 

Optimal Matching Analysis 

Optimal matching (OM) classifies sequences of observations based on their similarity and 

dissimilarity.  OM analyses usually proceed in two steps.  The first step assesses similarity and 

dissimilarity between two sequences by counting the steps of transforming one sequence into 

another.  Let ݕ௞ ൌ ሺݏଵ, ,ଶݏ ,ଷݏ … , ௧ ሺ݇ݏ ௧ሻ be a sequence of attributes, whereݏ ൌ 1,2, . . , ܶሻ denotes 

the ݐth attribute of sequence ݕ௞ ሺ݅ ൌ 1,2, . . . , —ሻ.  OM algorithms are based on three algebrasܭ

substitution, deletion, and insertion—that transform one sequence to another.  Let ܽ௦೟
௦௨௕, ܽ௦೟

ௗ௘௟ , 

and ܽ௦೟
௜௡௦௘௥௧  denote substitution, deletion, and insertion algebras for sequence transformation, 

respectively.  The key procedure is to decide the values of the cost for substitution, deletion, and 

insertion, denoted by ܿሺܽ௦೟
௦௨௕ሻ, ܿሺܽ௦೟

ௗ௘௟ሻ, and ܿሺܽ௦೟
௜௡௦ሻ, respectively.  Let ܣ௜௝ ൌ ܽଵ, ܽଶ, ܽଷ, … , ܽ௅	be 

a series of operator algebras that can be used to transform ݕ௜ to ݕ௝ for ݅ ് ݆ so that the cost of this 

transformation is ܿ൫ܣ௜௝൯ ൌ ∑ ܽ௟
௅
௟ୀଵ .  Because there may be more than one way to transform ݕ௜ to 

 sequences yield a ܭ ௜௝൯ሿ.  These pairwise comparisons of theܣሾܿ൫	௝, the “optimal” cost is minݕ

cost or distance matrix of dimension ܭ ൈ  .ܭ

Second, in most social science applications, researchers then subject that distance matrix 

to some form of cluster analysis in order to group sequences into a discrete (< ܭ) number of 

trajectory categories.  In this article, we used the Ward’s method, a criterion that can be applied 

in agglomerative hierarchical clustering procedure.  Hierarchical clustering procedures do not 

estimate the number of the groups in the data.  Agglomerative hierarchical cluster analysis 

begins with assuming that there are ܭ groups in the data where each individual is in its own 
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cluster and repeats the process by merging individuals so that there are ܭ െ ܭ,1 െ 2,… ,1 

groups.  To merge individuals, the Ward’s method defines the distance between two clusters, A 

and B, as follows: 

2222
),( BA

BA

BA

Bk
Bk

Ak
Ak

BAk
BAk nn

nn
BA mmmymymy 


 


  (6) 

where ky is a longitudinal attribute of interest; Am  and Bm is the center of cluster A and B,  

respectively; and An  and Bn is the number of y in cluster A and B, respectively.  

Equation 6 shows that the Ward hierarchical clustering method minimizes the increase in 

the total within-cluster variance.  This method tends to merge clusters with a small number of 

individuals; may be biased toward yielding clusters with similar number of individuals; and is 

sensitive to outliers (Milligan 1980).  

 

Selecting the optimal number of groups 

Techniques for identifying the optimal number of trajectory groups vary across methods. For 

GMMs, GBTMS, and LCA, we fit models in a stepwise fashion that included increasing 

numbers of latent trajectories.  We then compared model fit using a variety of statistical criteria 

(e.g., BIC, sample-size adjusted BIC, AIC, the entropy index, the Lo-Mendell-Rubin LR test, 

and the Vuong-Lo-Mendell-Rubin LR test).  When these criteria failed to converge on a common 

solution, we gave preference to specifications that produced adequately populated classes (e.g., 

no fewer than 5 percent of all cases) with substantively distinct trajectory groups.   Because 

information criteria do not work well for the relatively unparsimonious GoM models—each 

additional pure type requires N additional parameters where N is the sample size—we used 

likelihood ratio tests and the t test proposed by Manton, Woodbury, and Tolley (1994) to select 
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the optimal number of groups.  For OM analyses, following Aassve, Billari, and Piccarretta 

(2007), Anyadike-Danes and McVicar (2010) and Gauthier et al. (2010), the decisions about the 

optimal number of trajectories were based on the Caliński-Harabasz (1974) pseudo F-statistic.



	

49 
 

APPENDIX B 
(To Be Provided Online ) 

In this section we provide more technical detail concerning the method used to simulate the 28 

data sets; below we provide the R code used to simulate one of them.  Depending on her 

previous employment status (0=not employed, 1=employed), the current employment status for a 

simulated woman has a Bernoulli distribution with parameters ݍ଴ଵ and ݍଵ଴, where ݍ଴ଵ and ݍଵ଴ 

are elements of the time-dependent transition matrix for a two-state Markov chain procedure.  

The key step of this simulation procedure is to define a series of 2 ൈ 2  transition matrices 

ܳሺݐሻ ൌ ൤
ሻݐ଴଴ሺݍ ሻݐ଴ଵሺݍ
ሻݐଵ଴ሺݍ ሻݐଵଵሺݍ

൨  to generate different trajectories of employment statuses.  In these 

matrices, ݍ଴଴ is the probability of remaining unemployed for a woman who was unemployed at 

the preceding age;  ݍ଴ଵ  is the probability of becoming employed for a woman who was 

unemployed at the preceding age; ݍଵ଴ is the probability of becoming unemployed for a woman 

who was employed at the preceding age, and ݍଵଵ the probability of remaining employed for a 

woman who was employed at the preceding age.  In fact, we only need to define ݍ଴ଵ and ݍଵ଴ 

because ݍ଴଴ ൅ ଴ଵݍ ൌ 1 and ݍଵଵ ൅ ଵ଴ݍ ൌ 1.  The transition matrix, ܳሺݐሻ, varies across ages, so it 

is sometimes called a non-homogeneous Markov process.  By manipulating (a) the values of ݍ଴ଵ 

and ݍଵ଴; (b) the ways in which they differ across ages; and (c) the share of the 2,000 women 

assigned to follow each trajectory, we produce the 28 datasets depicted in Figures 1 through 4. 

Below we provide the R code used to produce the data set that has T=2 latent trajectory 

groups in which there are 48 observation per women (t=48), in which women are uniformly 

distributed across the two trajectory groups (D=uniform), and in there is relatively little within 

trajectory-group heterogeneity (C=high).   

 
##### FIRST TRAJECTORY GROUP ##### 
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library(Rlab); 
 
t  = 48  #define t (the number of within-individual observations) 
tr = t-1 
n  = 1000;  #define D (the distribution of individuals across groups) 
 
t1=18-17  #define C (the certainty with which individual observations  
t2=24-17  #were assigned to trajectory groups) by specifying a set of 
t3=49-17  #”critical” ages when employment status begins to change. 
t4=55-17; 
 
q01=rep(0.001,tr) 
q10=rep(0.003,tr); 
 
q01[(t1+1):t2]=c(1:(t2-t1)/(t2-t1)) 
q01[(t2+1):t3]=c(rep(0.999, (t3-t2))) 
q01[(t3+1):tr]=c(rep(0.0001, (tr-t3))); 
 
q10[(t3+1):t4]=c(1:(t4-t3)/(t4-t3)) 
q10[(t4+1):tr]=c(rep(0.999, (tr-t4))); 
 
y1 = array(rep(0,t*n),dim=c(n,t)); 
 
for (li in 1:n) 
{ 
   for (lj in 2:tr) 
      { 

y1[li,lj] = y1[li,lj-1]-ifelse(y1[li,lj-1],rbern(1,q10[lj-
1]),rbern(1,q01[lj-1]))*(2*y1[li,lj-1]-1); 

 } 
} 
 
##### SECOND TRAJECTORY GROUP ##### 
 
t  = 48  #define t (the number of within-individual observations) 
tr = t-1 
n  = 1000;  #define D (the distribution of individuals across groups) 
 
t1=26-17  #define C (the certainty with which individual observations 
t2=32-17  #were assigned to trajectory groups) by specifying a set of 
t3=50-17 #”critical” ages when employment status begins to change. 
t4=56-17; 
 
q01=rep(0.0001,tr) 
q10=rep(0.008,tr); 
 
q01[(t1+1):t2]=c(1:(t2-t1)/(t2-t1)) 
q01[(t2+1):t3]=c(rep(0.995, (t3-t2))) 
q01[(t3+1):tr]=c(rep(0.0001, (tr-t3))); 
 
q10[(t3+1):t4]=c(1:(t4-t3)/(t4-t3)) 
q10[(t4+1):tr]=c(rep(0.999, (tr-t4))); 
 
y4 = array(rep(0,t*n),dim=c(n,t)); 
 
for (li in 1:n) 
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{ 
 for (lj in 2:tr) 
 { 
     y4[li,lj] = y4[li,lj-1]-ifelse(y4[li,lj-1],rbern(1,q10[lj-
1]),rbern(1,q01[lj-1]))*(2*y4[li,lj-1]-1); 
 } 
} 
 
data1     = rbind(y1, y4);  
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ENDNOTES 

	
1  Following Elder, Johnson, and Crosnoe (2003), we define trajectories as time-ordered 

sequences of states or roles.  In social science research, time is typically age or calendar year; 

depending on the unit of observation, states usually describe the conditions of people (e.g., 

married, HIV positive, college graduate), countries (e.g., independent, in recession), or other 

units.  In most social science applications, researchers are interested in the timing and frequency 

of transitions between states or roles.  Trajectories are thus defined by the states of which they 

are comprised and the time-ordered transitions between them. 

2 GBTMs are sometimes referred to as latent class growth models (e.g., Muthén 2004). For the 

purposes of this article, we use the acronym GBTM to prevent any confusion with LCA. 

3  Posterior probabilities are used for assignment purposes.  These probabilities provide the 

likelihood that an individual belongs to a particular class given their observed sequence of 

measurements.  

4 We have simulated the data in such a way that at least ten women are employed and at least ten 

are not employed at every age.  Using some of our methods, models could not be estimated when 

all individuals were in the same state (e.g., not employed) at specific ages (e.g., 16). 

5 For the GBTMs and GMMs, we used intercept, slope, and quadratic growth factors to model 

the shape of each latent trajectory. To reduce computational burden and to speed up the 

estimation process, we allowed for residual variation within classes in the GMM analysis (on the 

intercept and slope terms), but we did not allow the variance to vary between classes.  This 

strategy is fairly common in the empirical literature (e.g., Cheadle, Amato and King 2010). 
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6 Technical descriptions of these model fit statistics and their relative performance in finite 

mixture modeling settings can be found in Nylund et al. (2007). Note that we did not examine 

McLachlan and Peel’s (2000) parametric bootstrapped likelihood-ratio test—which has been 

shown to perform well in simulation studies—because it was too computationally demanding 

and because the volume of models being fitted (24 simulated data sets x 8 model specifications = 

192 models per estimator) was too large. 

7 If the best log-likelihood was not replicated, we increased the number of start values to 1000 

and the number of second-stage optimizations to 250, and then re-estimated the model.  

8 We also experimented with three other combinations of substitution costs (e.g., transition rates 

and a constant rate) and clustering methods (e.g., the Ward method and K-means), and the results 

are available upon request. Although model selection decisions vary somewhat depending on 

these combinations of methods, answers to our research questions remain unchanged. 

9	That F-statistic is calculated as (SSb/(k−1))/(SSw/(n−k)), where SSb is the between-cluster sum of 

squares, SSw is the within-cluster sum of squares, k is the number of clusters, and n is the number 

of observations.  Higher values of this measure correspond to improved model fit.	

10 Separately for each data set, for two strategies for setting substitution costs, and for two 

methods of clustering, Appendix Table C4 reports Caliński-Harabasz (1974) pseudo F-statistics 

and the size of the smallest trajectory group for models with 2, 3, … 8  trajectory groups.  We 

use boldface type to indicate our preferred model.   

 



T' T'-T RI RI* T' T'-T RI RI* T' T'-T RI RI*

1 n/a High 6 2 1 0.956 1.000 1 0 1.000 1.000 3 2 0.529 1.000
1 n/a Low 6 2 1 0.873 1.000 3 2 0.784 1.000 4 3 0.495 1.000
1 n/a High 48 2 1 0.998 1.000 3 2 0.390 1.000 2 1 0.500 1.000
1 n/a Low 48 3 2 0.749 1.000 3 2 0.341 1.000 2 1 0.513 1.000

2 Skewed High 6 3 1 0.618 0.622 3 1 0.449 0.922 5 3 0.469 0.637
2 Uniform High 6 3 1 0.517 0.516 3 1 0.599 0.833 6 4 0.667 0.716
2 Skewed Low 6 3 1 0.510 0.516 2 0 0.809 0.809 4 2 0.446 0.503
2 Uniform Low 6 3 1 0.556 0.555 3 1 0.554 0.558 3 1 0.533 0.503
2 Skewed High 48 2 0 0.501 0.501 2 0 0.999 0.999 2 0 0.999 0.999
2 Uniform High 48 2 0 0.602 0.602 2 0 0.998 0.998 2 0 0.998 0.998
2 Skewed Low 48 3 1 0.479 0.510 5 3 0.347 0.528 2 0 0.534 0.534
2 Uniform Low 48 3 1 0.611 0.624 3 1 0.589 0.645 5 3 0.557 0.531

4 Skewed High 6 3 -1 0.405 0.405 3 -1 0.520 0.561 4 0 0.624 0.624
4 Uniform High 6 3 -1 0.319 0.319 3 -1 0.655 0.552 5 1 0.460 0.475
4 Skewed Low 6 3 -1 0.516 0.516 2 -2 0.616 0.635 5 1 0.627 0.623
4 Uniform Low 6 4 0 0.565 0.565 2 -2 0.598 0.722 5 1 0.463 0.461
4 Skewed High 48 3 -1 0.458 n/a1 3 -1 0.899 0.962 5 1 0.795 0.761
4 Uniform High 48 3 -1 0.422 n/a1 4 0 0.944 0.944 4 0 0.577 0.577
4 Skewed Low 48 4 0 0.575 0.575 4 0 0.725 0.725 2 -2 0.573 0.606
4 Uniform Low 48 4 0 0.658 0.658 4 0 0.767 0.767 2 -2 0.501 0.443

6 Skewed High 6 4 -2 0.433 0.433 4 -2 0.642 0.626 5 -1 0.719 0.712
6 Uniform High 6 3 -3 0.470 n/a1 3 -3 0.621 0.623 5 -1 0.804 0.811
6 Skewed Low 6 4 -2 0.581 0.581 4 -2 0.624 0.562 6 0 0.677 0.677
6 Uniform Low 6 4 -2 0.630 n/a1 4 -2 0.665 0.607 6 0 0.785 0.785
6 Skewed High 48 3 -3 0.504 n/a1 5 -1 0.941 0.862 5 -1 0.952 0.882
6 Uniform High 48 3 -3 0.538 n/a1 5 -1 0.919 0.957 2 -4 0.442 0.916
6 Skewed Low 48 4 -2 0.652 n/a1 5 -1 0.737 0.745 3 -3 0.624 0.733
6 Uniform Low 48 4 -2 0.721 n/a1 5 -1 0.832 0.842 3 -3 0.664 0.788

1 In these instances, it was not possible to compute the Rand Index for the model that specifies the correct number of trajectories.

Optimal Matching

Note: Each row pertains to a different simulated dataset that includes records for 2,000 women whose employment status (1=employed, 0=not employed) was observed between ages 16 and 63. These
24 datasets vary with respect to the number of actual latent trajectories that describe women's employment histories (T ), the uniformity of the distribution of women across those trajectories (D ), the
certainty with which women were assigned to trajectories (C ), and the number of times that women's employment status was observed between ages 16 and 63 (t ). For each of the methods used to
model these trajectories, we report the inferred number of latent trajectories (T'), the difference between the actual and inferred number of trajectories (T'-T), the value of the Rand Index for the best
fitting model (RI), and the value of the Rand Index for the model that specifies the correct number of trajectories (RI*). The Rand Index indicates how accurately each method allocates women to
trajectory groups, where 1.0 indicates perfectly accurate sorting.  See text for details of the simulation technique and the modeling strategies.
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"Naïve" Approach Group-Based Trajectory Models

Table 1. Inferred Number of Trajectory Groups and Accuracy of Sorting of Observations into Trajectory Groups, by Analytic Method and Specification of 
Simulation Parameters

Inferred ResultsSimulation Parameters



T' T'-T RI RI* T' T'-T RI RI* T' T'-T RI RI*

1 n/a High 6 2 1 0.741 1.000 1 0 1.000 1.000 1 0 1.000 1.000
1 n/a Low 6 2 1 0.667 1.000 1 0 1.000 1.000 1 0 1.000 1.000
1 n/a High 48 2 1 0.500 1.000 5 4 0.207 1.000 5 4 0.242 1.000
1 n/a Low 48 2 1 0.545 1.000 5 4 0.206 1.000 6 5 0.173 1.000

2 Skewed High 6 3 1 0.447 0.918 2 0 0.500 0.500 2 0 0.951 0.951
2 Uniform High 6 2 0 0.834 0.834 2 0 0.518 0.518 3 1 0.753 0.834
2 Skewed Low 6 2 0 0.517 0.517 2 0 0.806 0.806 1 -1 0.820 0.821
2 Uniform Low 6 2 0 0.558 0.558 2 0 0.543 0.543 2 0 0.523 0.523
2 Skewed High 48 4 2 0.459 0.999 4 2 0.581 0.500 7 5 0.340 0.999
2 Uniform High 48 3 1 0.873 0.998 4 2 0.769 0.874 6 4 0.670 0.998
2 Skewed Low 48 4 2 0.377 0.540 3 1 0.443 0.501 5 3 0.371 0.540
2 Uniform Low 48 4 2 0.571 0.640 4 2 0.578 0.554 4 2 0.569 0.641

4 Skewed High 6 2 -2 0.541 0.513 2 -2 0.514 0.521 2 -2 0.647 0.641
4 Uniform High 6 3 -1 0.463 0.446 2 -2 0.540 0.784 2 -2 0.545 0.752
4 Skewed Low 6 4 0 0.625 0.625 2 -2 0.615 0.533 2 -2 0.618 0.639
4 Uniform Low 6 4 0 0.478 0.478 2 -2 0.447 0.722 2 -2 0.454 0.737
4 Skewed High 48 4 0 0.839 0.839 3 -1 0.743 0.676 7 3 0.759 0.868
4 Uniform High 48 4 0 0.579 0.579 7 3 0.868 0.818 5 1 0.934 0.954
4 Skewed Low 48 5 1 0.680 0.676 3 -1 0.572 0.578 7 3 0.662 0.682
4 Uniform Low 48 5 1 0.450 0.488 3 -1 0.640 0.691 5 1 0.767 0.793

6 Skewed High 6 4 -2 0.722 0.713 2 -4 0.404 n/a1 3 -3 0.637 0.620
6 Uniform High 6 2 -4 0.436 0.798 3 -3 0.621 0.622 3 -3 0.617 0.756
6 Skewed Low 6 2 -4 0.402 0.636 2 -4 0.381 0.613 3 -3 0.534 0.562
6 Uniform Low 6 2 -4 0.412 0.718 3 -3 0.665 0.746 4 -2 0.688 0.689
6 Skewed High 48 5 -1 0.914 0.860 3 -3 0.723 n/a1 8 2 0.848 0.869
6 Uniform High 48 5 -1 0.916 0.956 4 -2 0.704 0.769 6 0 0.968 0.968
6 Skewed Low 48 6 0 0.744 0.744 2 -4 0.564 0.629 5 -1 0.745 0.744
6 Uniform Low 48 5 -1 0.831 0.831 4 -2 0.715 0.719 6 0 0.841 0.841

1 In these instances, it was not possible to compute the Rand Index for the model that specifies the correct number of trajectories.

Grade of Membership Latent Class AnalysisGrowth Mixture Models
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Note: Each row pertains to a different simulated dataset that includes records for 2,000 women whose employment status (1=employed, 0=not employed) was observed between ages 16 and 63. These
24 datasets vary with respect to the number of actual latent trajectories that describe women's employment histories (T ), the uniformity of the distribution of women across those trajectories (D ), the
certainty with which women were assigned to trajectories (C ), and the number of times that women's employment status was observed between ages 16 and 63 (t ). For each of the methods used to
model these trajectories, we report the inferred number of latent trajectories (T'), the difference between the actual and inferred number of trajectories (T'-T), the value of the Rand Index for the best
fitting model (RI), and the value of the Rand Index for the model that specifies the correct number of trajectories (RI*). The Rand Index indicates how accurately each method allocates women to
trajectory groups, where 1.0 indicates perfectly accurate sorting.  See text for details of the simulation technique and the modeling strategies.
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Table 1. (Continued) Inferred Number of Trajectory Groups and Accuracy of Sorting of Observations into Trajectory Groups, by Analytic Method and Specification 
of Simulation Parameters
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Figure 1: Simulated data, by number of time intervals (t), uniformity of distribution across trajec-
tories (D), and certainty of trajectory group assignment (C). All simulated data sets include T = 1
trajectory group. Each figure depicts 2,000 women’s employment histories from ages 16 through
63. For each woman, dark line segments represent spells of not being employed and white line
segments represent spells of employment. See text for details about how these simulated data were
generated.



Figure 2: Simulated data, by number of time intervals (t), uniformity of distribution across trajectories (D), and certainty of trajectory
group assignment (C). All data sets include T = 2 trajectory groups. Each figure depicts 2,000 women’s employment histories from ages
16 through 63. For each woman, dark line segments represent spells of not being employed and white line segments represent spells
of employment. Within figures, women are sorted by their latent trajectory group membership. See text for details about how these
simulated data were generated.



Figure 3: Simulated data, by number of time intervals (t), uniformity of distribution across trajectories (D), and certainty of trajectory
group assignment (C). All data sets include T = 4 trajectory groups. Each figure depicts 2,000 women’s employment histories from ages
16 through 63. For each woman, dark line segments represent spells of not being employed and white line segments represent spells
of employment. Within figures, women are sorted by their latent trajectory group membership. See text for details about how these
simulated data were generated.



Figure 4: Simulated data, by number of time intervals (t), uniformity of distribution across trajectories (D), and certainty of trajectory
group assignment (C). All data sets include T = 6 trajectory groups. Each figure depicts 2,000 women’s employment histories from ages
16 through 63. For each woman, dark line segments represent spells of not being employed and white line segments represent spells
of employment. Within figures, women are sorted by their latent trajectory group membership. See text for details about how these
simulated data were generated.
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Figure 7: Mean Rand Index values by methdology and simulation parameter. Point estimates are given by the solid circles;50% and
95% confidence intervals are given by the thick and thin lines, respectively. The solid gray lines provide the mean Rand Index values
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given above. See text for more details.
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Appendix Table C1. Fit Statistics for Group-Based Trajectory Models
( FOR PEER REVIEW ONLY; TO BE AVAILABLE ON-LINE UPON PUBLICATION )
Bolded Results Indicate Preferred Model

Data Smallest
Set # T D C t T' Group AIC BIC aBIC Entropy VLMR p LMR p

1 2 Uniform High 48 1 100% 49286.2 49303.0 49293.5 — — —
2 50% 27591.8 27631.0 27608.8 1.00 0.00 0.00
3 24% 27018.3 27079.9 27044.9 0.87 0.00 0.00
4 22% 26470.0 26554.1 26506.4 0.80 0.07 0.07
5 15% 25986.7 26093.1 26032.8 0.81 0.00 0.00
6 9% 25514.1 25642.9 25569.8 0.84 0.00 0.00
7 9% 25165.8 25317.0 25231.3 0.84 0.00 0.00
8 9% 24796.5 24970.1 24871.6 0.85 0.00 0.00

2 2 Uniform High 6 1 100% 7591.0 7607.8 7598.2 — — —
2 41% 6715.6 6754.8 6732.5 0.55 0.00 0.00
3 10% 6706.3 6767.9 6733.0 0.85 0.00 0.00
4 3% 6710.1 6794.1 6746.5 0.85 0.59 0.59
5 1% 6717.6 6824.1 6763.7 0.78 0.79 0.80
6 0% 6725.5 6854.3 6781.3 0.79 0.66 0.66
7 1% 6733.5 6884.7 6798.9 0.76 0.34 0.34
8 0% 6741.5 6915.1 6816.6 0.80 — 0.01

3 2 Skewed High 48 1 100% 34794.3 34811.1 34801.5 — — —
2 10% 27151.3 27190.6 27168.3 1.00 0.00 0.00
3 10% 26086.6 26148.2 26113.3 0.78 0.00 0.00
4 10% 25299.0 25383.0 25335.4 0.78 0.00 0.00
5 10% 24577.0 24683.4 24623.1 0.82 0.00 0.00
6 10% 24215.5 24344.4 24271.3 0.86 0.00 0.00
7 7% 24008.2 24159.5 24073.7 0.87 0.00 0.00
8 6% 23741.6 23915.2 23816.7 0.92 0.01 0.01

4 2 Skewed High 6 1 100% 6110.4 6127.2 6117.6 — — —
2 15% 6005.5 6044.7 6022.4 0.61 0.00 0.00
3 10% 5995.3 6056.9 6022.0 0.73 0.00 0.00
4 10% 5996.9 6080.9 6033.2 0.65 0.04 0.04
5 4% 6002.6 6109.0 6048.7 0.54 0.12 0.13
6 1% 6010.5 6139.3 6066.2 0.65 1.00 1.00
7 0% 6018.5 6169.7 6083.9 0.69 0.99 0.99
8 0% 6026.5 6200.1 6101.6 0.65 — 0.00

5 2 Uniform Low 48 1 100% 41354.5 41371.3 41361.7 — — —
2 34% 36184.4 36223.6 36201.4 0.85 0.04 0.04
3 24% 32899.8 32961.4 32926.4 0.87 0.00 0.00
4 18% 31603.6 31687.6 31640.0 0.87 0.00 0.00
5 9% 30692.4 30798.8 30738.5 0.87 0.00 0.00
6 9% 30009.1 30137.9 30064.9 0.86 0.04 0.04
7 7% 29357.1 29508.3 29422.5 0.87 0.01 0.01
8 8% 28678.2 28851.9 28753.4 0.88 0.00 0.00

6 2 Uniform Low 6 1 100% 5281.1 5297.9 5288.4 — — —
2 18% 5197.2 5236.4 5214.2 0.88 0.00 0.00
3 8% 5164.7 5226.3 5191.3 0.77 0.00 0.00
4 0% 5169.9 5253.9 5206.2 0.63 0.00 0.00
5 2% 5176.9 5283.4 5223.0 0.44 0.61 0.61
6 2% 5184.8 5313.6 5240.5 0.40 0.39 0.39
7 0% 5192.8 5344.0 5258.2 0.43 — 0.68
8 0% 5200.8 5374.4 5275.9 0.51 0.02 0.02

Simulation Parameters Fit Statistics



7 2 Skewed Low 48 1 100% 35605.2 35622.0 35612.5 — — —
2 43% 31313.6 31352.8 31330.6 0.82 0.00 0.00
3 23% 29969.9 30031.5 29996.6 0.82 0.00 0.01
4 15% 28853.1 28937.1 28889.4 0.82 0.01 0.01
5 11% 28128.9 28235.3 28175.0 0.85 0.02 0.02
6 6% 27546.2 27675.0 27601.9 0.86 0.06 0.06
7 5% 26949.2 27100.5 27014.7 0.86 0.00 0.00
8 5% 26536.2 26709.9 26611.4 0.86 0.14 0.14

8 2 Skewed Low 6 1 100% 4940.6 4957.4 4947.9 — — —
2 7% 4850.4 4889.6 4867.4 0.75 0.00 0.00
3 6% 4851.3 4912.9 4877.9 0.76 0.22 0.23
4 4% 4853.7 4937.8 4890.1 0.79 0.00 0.00
5 3% 4860.7 4967.1 4906.7 0.82 0.00 0.00
6 0% 4868.6 4997.4 4924.3 0.81 1.00 1.00
7 1% 4876.6 5027.8 4942.0 0.71 — 0.45
8 0% 4884.6 5058.2 4959.7 0.83 — 1.00

9 4 Uniform High 48 1 100% 51241.9 51258.7 51249.1 — — —
2 48% 39770.1 39809.3 39787.0 0.98 0.00 0.00
3 25% 32039.9 32101.5 32066.6 0.99 0.00 0.00
4 20% 29390.7 29474.7 29427.0 0.97 0.00 0.00
5 9% 28911.4 29017.8 28957.4 0.94 0.05 0.05
6 6% 28585.4 28714.3 28641.2 0.94 0.00 0.00
7 6% 28256.1 28407.4 28321.6 0.94 0.00 0.00
8 6% 28005.2 28178.9 28080.4 0.91 0.02 0.02

10 4 Uniform High 6 1 100% 6161.8 6178.6 6169.1 — — —
2 38% 5970.8 6010.0 5987.8 0.37 0.00 0.00
3 5% 5966.0 6027.6 5992.7 0.63 0.00 0.00
4 12% 5969.0 6053.0 6005.3 0.53 0.08 0.08
5 2% 5974.1 6080.5 6020.1 0.65 0.03 0.04
6 0% 5982.1 6110.9 6037.8 0.69 0.00 0.00
7 0% 5990.1 6141.3 6055.5 0.71 0.96 0.96
8 0% 5998.1 6171.7 6073.2 0.73 0.01 0.01

11 4 Skewed High 48 1 100% 44300.1 44316.9 44307.3 — — —
2 33% 34760.3 34799.5 34777.3 0.97 0.00 0.00
3 16% 29790.2 29851.8 29816.9 0.99 0.00 0.00
4 6% 28557.8 28641.8 28594.2 0.97 0.00 0.00
5 8% 27775.0 27881.5 27821.1 0.88 0.02 0.02
6 10% 27242.1 27370.9 27297.8 0.87 0.01 0.01
7 6% 26656.9 26808.1 26722.4 0.89 0.01 0.01
8 5% 26357.7 26531.3 26432.8 0.90 0.00 0.00

12 4 Skewed High 6 1 100% 6176.1 6192.9 6183.4 — — —
2 30% 5980.6 6019.8 5997.6 0.42 0.00 0.00
3 6% 5973.1 6034.7 5999.8 0.71 0.00 0.00
4 8% 5977.0 6061.0 6013.4 0.74 0.00 0.00
5 0% 5981.9 6088.4 6028.0 0.75 0.10 0.10
6 4% 5989.8 6118.6 6045.5 0.65 0.57 0.58
7 0% 5997.7 6148.9 6063.1 0.58 0.06 0.06
8 0% 6005.7 6179.3 6080.8 0.62 0.00 0.00

13 4 Uniform Low 48 1 100% 56951.4 56968.2 56958.7 — — —
2 47% 43879.7 43918.9 43896.7 0.92 0.00 0.00
3 17% 39254.3 39315.9 39281.0 0.94 0.00 0.00
4 13% 36747.5 36831.5 36783.8 0.93 0.01 0.01
5 14% 35186.5 35292.9 35232.6 0.91 0.00 0.00
6 3% 34393.4 34522.2 34449.2 0.92 0.01 0.01



7 3% 33483.5 33634.7 33549.0 0.92 0.08 0.08
8 3% 32743.3 32917.0 32818.5 0.92 0.00 0.00

14 4 Uniform Low 6 1 100% 7584.2 7601.0 7591.5 — — —
2 38% 7020.8 7060.0 7037.8 0.74 0.00 0.00
3 4% 6994.0 7055.6 7020.6 0.77 0.00 0.00
4 10% 6988.0 7072.1 7024.4 0.57 0.03 0.04
5 7% 6992.6 7099.0 7038.7 0.75 0.08 0.09
6 0% 6999.6 7128.4 7055.3 0.76 0.12 0.13
7 0% 7007.4 7158.6 7072.8 0.76 0.27 0.27
8 0% 7015.3 7188.9 7090.4 0.68 0.20 0.20

15 4 Skewed Low 48 1 100% 46810.4 46827.2 46817.7 — — —
2 37% 38569.2 38608.4 38586.1 0.89 0.00 0.00
3 19% 35989.0 36050.7 36015.7 0.87 0.01 0.01
4 11% 33347.7 33431.7 33384.0 0.91 0.00 0.00
5 5% 31577.2 31683.7 31623.3 0.91 0.01 0.02
6 3% 30770.5 30899.3 30826.3 0.92 0.00 0.00
7 5% 30036.1 30187.3 30101.5 0.91 0.01 0.01
8 5% 29374.0 29547.6 29449.1 0.90 0.00 0.00

16 4 Skewed Low 6 1 100% 6249.7 6266.5 6257.0 — — —
2 29% 6154.1 6193.3 6171.1 0.66 0.00 0.00
3 3% 6135.9 6197.5 6162.5 0.87 0.00 0.00
4 1% 6123.4 6207.4 6159.8 0.92 0.00 0.00
5 0% 6125.8 6232.2 6171.9 0.85 0.12 0.12
6 0% 6130.2 6259.0 6185.9 0.85 1.00 1.00
7 0% 6137.1 6288.3 6202.6 0.86 0.04 0.04
8 0% 6145.0 6318.6 6220.1 0.83 0.64 0.64

17 6 Uniform High 48 1 100% 77862.9 77879.7 77870.2 — — —
2 16% 50821.3 50860.5 50838.2 1.00 0.00 0.00
3 16% 42307.2 42368.8 42333.9 0.98 0.00 0.00
4 16% 36699.2 36783.2 36735.6 0.98 0.00 0.00
5 16% 33287.0 33393.4 33333.0 0.97 0.00 0.00
6 11% 31975.8 32104.7 32031.6 0.97 0.00 0.00
7 5% 30764.2 30915.4 30829.6 0.97 0.00 0.00
8 2% 30220.6 30394.2 30295.7 0.97 0.10 0.11

18 6 Uniform High 6 1 100% 9239.3 9256.1 9246.6 — — —
2 16% 7289.4 7328.6 7306.4 0.96 0.00 0.00
3 16% 7048.5 7110.1 7075.2 0.78 0.00 0.00
4 3% 7030.3 7114.3 7066.6 0.90 0.00 0.00
5 2% 7033.9 7140.3 7079.9 0.88 0.22 0.23
6 0% 7038.7 7167.5 7094.5 0.74 0.03 0.03
7 0% 7044.6 7195.8 7110.0 0.82 0.46 0.47
8 0% 7051.2 7224.8 7126.3 0.78 0.21 0.21

19 6 Skewed High 48 1 100% 64248.1 64264.9 64255.4 — — —
2 7% 46829.9 46869.1 46846.8 1.00 0.00 0.00
3 7% 37878.7 37940.3 37905.4 0.97 0.00 0.00
4 7% 32860.9 32945.0 32897.3 0.98 0.00 0.00
5 7% 30141.7 30248.1 30187.7 0.97 0.00 0.00
6 7% 29529.9 29658.7 29585.6 0.91 0.00 0.00
7 6% 29098.0 29249.2 29163.5 0.91 0.09 0.09
8 5% 28476.3 28649.9 28551.4 0.92 0.00 0.00

20 6 Skewed High 6 1 100% 8303.2 8320.0 8310.5 — — —
2 7% 7232.6 7271.8 7249.5 0.98 0.00 0.00
3 7% 6984.3 7045.9 7011.0 0.70 0.00 0.00
4 7% 6958.3 7042.3 6994.7 0.80 0.00 0.00
5 2% 6964.1 7070.5 7010.2 0.67 0.18 0.19



6 1% 6971.4 7100.2 7027.2 0.70 0.02 0.02
7 0% 6979.3 7130.5 7044.8 0.58 1.00 1.00
8 2% 6987.1 7160.8 7062.3 0.70 1.00 1.00

21 6 Uniform Low 48 1 100% 78487.2 78504.0 78494.4 — — —
2 16% 57761.3 57800.5 57778.3 1.00 0.00 0.00
3 17% 46037.7 46099.3 46064.4 0.96 0.00 0.00
4 16% 42600.1 42684.1 42636.4 0.95 0.00 0.00
5 13% 40255.8 40362.2 40301.9 0.95 0.00 0.00
6 13% 39129.9 39258.7 39185.7 0.93 0.13 0.14
7 8% 38385.7 38536.9 38451.1 0.93 0.12 0.12
8 5% 37443.1 37616.8 37518.3 0.93 0.02 0.02

22 6 Uniform Low 6 1 100% 9914.8 9931.6 9922.0 — — —
2 14% 8708.5 8747.7 8725.5 0.95 0.00 0.00
3 16% 8250.9 8312.5 8277.6 0.76 0.00 0.00
4 5% 8211.1 8295.1 8247.4 0.83 0.00 0.00
5 4% 8200.1 8306.6 8246.2 0.90 0.00 0.00
6 3% 8202.4 8331.2 8258.2 0.84 0.54 0.54
7 3% 8209.5 8360.7 8274.9 0.87 0.09 0.10
8 2% 8217.3 8390.9 8292.4 0.81 0.76 0.76

23 6 Skewed Low 48 1 100% 63448.6 63465.5 63455.9 — — —
2 8% 50010.4 50049.6 50027.4 1.00 0.00 0.00
3 8% 41983.1 42044.7 42009.8 0.94 0.00 0.00
4 8% 39009.0 39093.0 39045.3 0.92 0.00 0.00
5 7% 36391.9 36498.3 36437.9 0.93 0.03 0.03
6 3% 35899.6 36028.4 35955.4 0.94 0.41 0.42
7 7% 34380.4 34531.6 34445.8 0.90 0.06 0.07
8 3% 33725.6 33899.3 33800.8 0.91 0.00 0.00

24 6 Skewed Low 6 1 100% 8307.6 8324.4 8314.8 — — —
2 7% 7456.1 7495.3 7473.1 0.97 0.00 0.00
3 7% 7303.1 7364.7 7329.8 0.78 0.00 0.00
4 7% 7278.8 7362.8 7315.1 0.80 0.00 0.00
5 0% 7274.5 7380.9 7320.5 0.87 0.00 0.00
6 2% 7273.0 7401.8 7328.8 0.86 0.78 0.79
7 0% 7278.5 7429.7 7344.0 0.72 0.00 0.00
8 0% 7283.9 7457.6 7359.1 0.70 1.00 1.00



Appendix Table C2. Fit Statistics for Growth Mixture Models
( FOR PEER REVIEW ONLY; TO BE AVAILABLE ON-LINE UPON PUBLICATION )
Bolded Results Indicate Preferred Model

Data Smallest
Set # T D C t T' Group AIC BIC aBIC Entropy VLMR p LMR p

1 2 Uniform High 48 1 100% 27131.2 27181.6 27153.0 — — —
2 43% 25893.5 25966.3 25925.0 0.96 0.06 0.07
3 19% 24758.8 24854.0 24800.0 0.96 0.00 0.00
4 12% 24581.6 24699.2 24632.5 0.91 0.00 0.00
5 8% 24573.1 24713.1 24633.6 0.86 0.18 0.19
6 3% 24365.7 24528.2 24436.0 0.85 0.49 0.50
7 0% 24375.0 24559.8 24454.9 0.88 — 0.51
8 4% 24144.3 24351.5 24234.0 0.90 0.00 0.00

2 2 Uniform High 6 1 100% 6718.2 6768.6 6740.0 — — —
2 6% 6712.8 6785.6 6744.3 0.91 0.00 0.00
3 7% 6715.4 6810.6 6756.6 0.82 0.01 0.01
4 3% 6722.0 6839.6 6772.9 0.85 0.01 0.01
5 1% 6729.8 6869.8 6790.4 0.73 1.00 1.00
6 0% 6737.7 6900.1 6808.0 0.87 0.51 0.51
7 0% 6745.8 6930.7 6825.8 0.72 1.00 1.00
8 0% 6753.5 6960.8 6843.2 0.79 0.00 0.00

3 2 Skewed High 48 1 100% 25442.9 25493.3 25464.7 — — —
2 41% 24551.8 24624.6 24583.3 0.78 0.48 0.49
3 7% 24307.8 24403.0 24349.0 0.89 0.00 0.00
4 6% 24227.2 24344.8 24278.1 0.81 0.00 0.00
5 3% 24021.3 24161.3 24081.9 0.86 0.12 0.12
6 6% 23856.7 24019.1 23927.0 0.83 — 0.98
7 10% 23760.7 23945.5 23840.7 0.82 — 1.00
8 1% 23647.8 23855.0 23737.4 0.84 0.00 0.00

4 2 Skewed High 6 1 100% 6011.7 6062.1 6033.5 — — —
2 31% 6000.4 6073.2 6031.9 0.67 0.00 0.00
3 9% 6003.9 6099.1 6045.1 0.49 0.48 0.48
4 3% 6008.6 6126.2 6059.5 0.53 0.23 0.23
5 1% 6014.7 6154.8 6075.3 0.61 0.00 0.00
6 2% 6022.7 6185.1 6093.0 0.43 0.00 0.00
7 1% 6030.7 6215.5 6110.7 0.64 0.00 0.00
8 1% 6038.6 6245.8 6128.3 0.54 1.00 1.00

5 2 Uniform Low 48 1 100% 27600.2 27650.6 27622.0 — — —
2 40% 27083.5 27156.4 27115.0 0.76 0.00 0.00
3 15% 26813.1 26908.3 26854.3 0.77 0.03 0.03
4 9% 26744.8 26862.4 26795.7 0.83 0.09 0.09
5 9% 26613.2 26753.3 26673.8 0.76 0.26 0.27
6 0% 26628.4 26790.8 26698.7 0.86 — 0.86
7 0% 26535.4 26720.2 26615.4 0.75 0.23 0.23
8 4% 26347.3 26554.6 26437.0 0.81 0.00 0.00

6 2 Uniform Low 6 1 100% 5189.8 5240.2 5211.6 — — —
2 11% 5175.6 5248.4 5207.1 0.83 0.00 0.00
3 9% — — — 0.77 — —
4 1% 5182.0 5299.6 5232.9 0.69 0.00 0.00
5 0% 5189.1 5329.1 5249.7 0.49 0.52 0.53
6 1% 5197.1 5359.5 5267.4 0.52 0.00 0.00
7 0% 5205.0 5389.8 5285.0 0.46 — 0.99
8 2% 5212.9 5420.1 5302.6 0.37 — 0.17
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7 2 Skewed Low 48 1 100% 26353.2 26403.6 26375.0 — — —
2 45% 25912.0 25984.9 25943.6 0.76 0.00 0.00
3 20% 25714.9 25810.1 25756.1 0.76 0.04 0.05
4 2% 25623.4 25741.1 25674.4 0.83 0.46 0.47
5 2% 25389.4 25529.5 25450.0 0.84 0.15 0.16
6 0% 25329.7 25492.1 25400.0 0.82 0.11 0.12
7 2% 25392.4 25577.2 25472.3 0.88 — 0.93
8 0% 25285.1 25492.4 25374.8 0.81 — 0.96

8 2 Skewed Low 6 1 100% 4861.4 4911.8 4883.2 — — —
2 11% 4858.1 4931.0 4889.7 0.64 0.00 0.00
3 2% 4859.5 4954.7 4900.7 0.73 0.00 0.00
4 1% 4866.1 4983.7 4917.0 0.75 0.00 0.00
5 2% 4872.9 5012.9 4933.5 0.54 0.00 0.00
6 0% 4880.7 5043.1 4951.0 0.53 0.00 0.00
7 0% 4888.7 5073.5 4968.7 0.72 1.00 1.00
8 0% 4896.7 5103.9 4986.4 0.61 — 1.00

9 4 Uniform High 48 1 100% 30148.5 30198.9 30170.3 — — —
2 20% 28612.1 28684.9 28643.6 0.98 0.00 0.00
3 9% 27937.2 28032.4 27978.4 0.93 0.00 0.00
4 19% 27187.6 27305.3 27238.5 0.91 0.00 0.00
5 0% 27047.6 27187.7 27108.2 0.92 0.00 0.00
6 10% 26458.5 26620.9 26528.8 0.90 0.00 0.00
7 6% 26429.0 26613.8 26508.9 0.87 0.00 0.00
8 1% 26450.7 26658.0 26540.4 0.86 0.10 0.11

10 4 Uniform High 6 1 100% 5980.3 6030.7 6002.1 — — —
2 18% 5971.9 6044.7 6003.4 0.69 0.01 0.01
3 24% 5975.2 6070.4 6016.4 0.33 0.02 0.03
4 14% 5981.1 6098.7 6032.0 0.48 0.43 0.44
5 2% 5986.2 6126.2 6046.8 0.59 1.00 1.00
6 3% 5994.2 6156.7 6064.5 0.52 0.24 0.24
7 0% 6002.2 6187.1 6082.2 0.66 — 0.02
8 0% 6010.1 6217.4 6099.8 0.61 1.00 1.00

11 4 Skewed High 48 1 100% 28460.6 28511.0 28482.4 — — —
2 47% 26897.8 26970.6 26929.3 0.95 0.00 0.00
3 13% 26415.2 26510.4 26456.4 0.92 0.00 0.00
4 6% 26022.2 26139.8 26073.1 0.85 0.60 0.61
5 4% 25783.2 25923.3 25843.8 0.96 0.00 0.00
6 3% 25757.2 25919.6 25827.5 0.93 0.89 0.89
7 4% 25554.8 25739.6 25634.8 0.83 — 0.87
8 2% 25492.2 25699.4 25581.8 0.87 0.22 0.23

12 4 Skewed High 6 1 100% 5990.8 6041.2 6012.6 — — —
2 23% 5980.0 6052.8 6011.5 0.67 0.00 0.00
3 7% 5981.3 6076.5 6022.5 0.75 0.00 0.00
4 4% 5986.9 6104.5 6037.8 0.72 0.32 0.33
5 3% 5994.2 6134.2 6054.7 0.59 0.86 0.86
6 1% 6002.1 6164.5 6072.4 0.60 — 0.00
7 0% 6010.0 6194.9 6090.0 0.60 — 0.98
8 0% 6018.1 6225.3 6107.8 0.68 — 0.86

13 4 Uniform Low 48 1 100% 30406.0 30456.4 30427.9 — — —
2 41% 29500.0 29572.8 29531.5 0.83 0.00 0.00
3 20% 29185.3 29280.5 29226.5 0.84 0.00 0.00
4 18% 28894.1 29011.7 28945.0 0.77 — 0.93
5 5% 28550.2 28690.2 28610.8 0.83 0.42 0.43
6 4% 28321.8 28484.2 28392.1 0.81 0.14 0.15



7 2% 28366.5 28551.3 28446.4 0.81 0.23 0.23
8 0% 28143.1 28350.3 28232.7 0.81 0.07 0.07

14 4 Uniform Low 6 1 100% 7101.1 7151.5 7122.9 — — —
2 14% 7003.9 7076.7 7035.4 0.80 0.00 0.00
3 4% 6998.6 7093.8 7039.8 0.86 0.01 0.01
4 10% 7000.1 7117.7 7051.0 0.57 1.00 1.00
5 0% 7005.3 7145.3 7065.9 0.64 1.00 1.00
6 0% 7012.1 7174.5 7082.4 0.63 0.03 0.03
7 0% 7020.1 7205.0 7100.1 0.66 — 0.95
8 5% 7027.9 7235.2 7117.6 0.47 — 0.00

15 4 Skewed Low 48 1 100% 27564.5 27614.9 27586.4 — — —
2 44% 26811.0 26883.8 26842.5 0.74 0.02 0.02
3 16% 26478.7 26573.9 26519.9 0.77 0.00 0.00
4 2% 26358.2 26475.8 26409.1 0.78 0.70 0.71
5 4% 26227.9 26367.9 26288.5 0.90 0.55 0.55
6 2% 26136.4 26298.8 26206.7 0.75 0.42 0.42
7 2% 26041.0 26225.8 26121.0 0.68 0.18 0.18
8 1% 25926.7 26134.0 26016.4 0.86 0.55 0.55

16 4 Skewed Low 6 1 100% 6166.0 6216.4 6187.8 — — —
2 22% 6140.2 6213.0 6171.7 0.89 0.00 0.00
3 4% 6130.3 6225.5 6171.5 0.54 0.00 0.00
4 0% 6134.7 6252.3 6185.6 0.62 0.00 0.00
5 0% 6139.2 6279.2 6199.8 0.80 1.00 1.00
6 0% 6142.4 6304.8 6212.7 0.63 1.00 1.00
7 0% 6150.2 6335.0 6230.2 0.86 — 0.69
8 0% 6159.0 6366.2 6248.7 0.48 — 0.00

17 6 Uniform High 48 1 100% 30650.6 30701.0 30672.4 — — —
2 37% 29507.6 29580.4 29539.1 0.87 0.00 0.00
3 13% 28826.0 28921.2 28867.2 0.83 0.00 0.00
4 14% 28014.0 28131.6 28064.9 0.84 0.00 0.00
5 3% 28031.1 28171.1 28091.7 0.88 0.01 0.01
6 0% 27941.0 28103.5 28011.3 0.89 0.00 0.00
7 4% 27441.7 27626.5 27521.7 0.88 0.00 0.00
8 0% 27287.9 27495.2 27377.6 0.84 — 0.52

18 6 Uniform High 6 1 100% 7369.2 7419.6 7391.0 — — —
2 41% 7056.2 7129.0 7087.7 0.85 0.00 0.00
3 16% 7041.0 7136.2 7082.2 0.75 0.01 0.01
4 6% 7040.2 7157.8 7091.1 0.82 0.00 0.00
5 3% 7044.7 7184.8 7105.3 0.67 0.25 0.25
6 0% 7051.0 7213.5 7121.3 0.87 0.09 0.09
7 0% 7057.0 7241.8 7137.0 0.84 — 0.00
8 0% 7065.9 7273.2 7155.6 0.85 — 0.00

19 6 Skewed High 48 1 100% 28901.3 28951.7 28923.1 — — —
2 17% 27592.9 27665.8 27624.5 0.94 0.00 0.00
3 15% 26517.1 26612.3 26558.3 0.88 0.00 0.00
4 0% 26421.8 26539.4 26472.7 0.87 0.00 0.00
5 4% 26305.5 26445.5 26366.1 0.85 0.38 0.39
6 0% 26145.9 26308.4 26216.2 0.77 — 0.31
7 0% 25930.7 26115.5 26010.7 0.91 0.01 0.01
8 3% 25733.5 25940.7 25823.2 0.88 0.01 0.01

20 6 Skewed High 6 1 100% 7213.6 7264.0 7235.4 — — —
2 7% 6978.4 7051.2 7009.9 0.99 0.00 0.00
3 7% 6966.0 7061.2 7007.2 0.94 0.00 0.00
4 7% 6969.5 7087.1 7020.4 0.74 — 0.55
5 2% 6975.7 7115.8 7036.3 0.76 0.24 0.25



6 2% 6983.9 7146.3 7054.2 0.62 — 0.78
7 2% 6991.5 7176.3 7071.5 0.59 — 0.57
8 0% 6999.6 7206.8 7089.3 0.70 1.00 1.00

21 6 Uniform Low 48 1 100% 34128.1 34178.5 34149.9 — — —
2 24% 33068.5 33141.3 33100.0 0.95 0.00 0.00
3 11% 32050.5 32145.7 32091.7 0.83 0.00 0.00
4 9% 31690.3 31807.9 31741.2 0.79 0.00 0.00
5 0% 31482.4 31622.5 31543.0 0.82 0.42 0.42
6 4% 31437.7 31600.2 31508.0 0.82 0.00 0.00
7 0% 31195.9 31380.7 31275.9 0.82 — 0.96
8 2% 30826.7 31033.9 30916.4 0.80 0.23 0.23

22 6 Uniform Low 6 1 100% 8507.9 8558.3 8529.7 — — —
2 29% 8270.1 8342.9 8301.6 0.64 0.00 0.00
3 18% 8205.3 8300.5 8246.5 0.76 0.62 0.63
4 9% 8187.1 8304.8 8238.0 0.75 0.03 0.03
5 9% 8198.8 8338.9 8259.4 0.58 0.65 0.65
6 5% 8196.0 8358.4 8266.3 0.58 1.00 1.00
7 5% 8201.7 8386.6 8281.7 0.54 0.22 0.22
8 0% 8215.9 8423.1 8305.6 0.50 — 0.24

23 6 Skewed Low 48 1 100% 30682.2 30732.6 30704.1 — — —
2 48% 29495.1 29567.9 29526.6 0.75 0.00 0.00
3 18% 29209.7 29304.9 29250.9 0.75 0.24 0.24
4 6% 28989.5 29107.1 29040.4 0.74 0.03 0.04
5 2% 28799.0 28939.0 28859.6 0.83 0.12 0.12
6 2% 28712.9 28875.4 28783.2 0.71 0.59 0.60
7 0% 28593.5 28778.3 28673.5 0.80 0.00 0.00
8 2% 28422.7 28630.0 28512.4 0.80 0.77 0.77

24 6 Skewed Low 6 1 100% 7373.8 7424.2 7395.6 — — —
2 6% 7308.7 7381.5 7340.2 0.96 0.00 0.00
3 8% 7283.9 7379.1 7325.1 0.63 0.00 0.00
4 6% 7275.9 7393.5 7326.8 0.89 0.00 0.00
5 0% 7278.5 7418.5 7339.1 0.73 0.00 0.00
6 0% 7284.7 7447.2 7355.0 0.74 — 0.03
7 0% 7290.3 7475.1 7370.3 0.81 — 0.00
8 0% 7298.4 7505.6 7388.0 0.79 0.76 0.76



Appendix Table C3. Fit Statistics for Latent Class Analyses
( FOR PEER REVIEW ONLY; TO BE AVAILABLE ON-LINE UPON PUBLICATION )
Bolded Results Indicate Preferred Model

Data Smallest
Set # T D C t T' Group AIC BIC aBIC Entropy VLMR p LMR p

1 2 Uniform High 48 1 100% 41572.1 41840.9 41688.4 — — —
2 50% 25037.1 25580.4 25272.2 1.00 0.00 0.00
3 23% 24145.3 24963.1 24499.2 1.00 0.00 0.00
4 23% 23319.6 24411.7 23792.2 0.99 0.00 0.00
5 13% 22772.0 24138.6 23363.4 1.00 0.00 0.00
6 13% 22399.3 24040.4 23109.5 0.99 0.00 0.00
7 8% 22232.8 24148.3 23061.7 0.96 0.13 0.13
8 7% 22052.1 24242.1 22999.9 0.95 0.00 0.00

2 2 Uniform High 6 1 100% 7034.0 7067.6 7048.5 — — —
2 44% 6708.4 6781.3 6740.0 0.60 0.00 0.00
3 25% 6711.3 6823.3 6759.8 1.00 0.00 0.00
4 22% 6718.9 6870.1 6784.3 0.70 0.04 0.04
5 0% 6732.5 6923.0 6814.9 0.74 0.64 0.65
6 1% 6746.3 6976.0 6845.7 0.67 0.68 0.68
7 0% 6760.3 7029.2 6876.7 0.71 0.90 0.90
8 0% 6774.3 7082.4 6907.6 0.84 0.22 0.22

3 2 Skewed High 48 1 100% 31211.3 31480.2 31327.7 — — —
2 10% 24259.0 24802.3 24494.1 1.00 0.00 0.00
3 10% 22744.8 23562.6 23098.7 1.00 0.00 0.00
4 10% 21845.1 22937.3 22317.7 0.99 0.00 0.00
5 10% 21430.6 22797.3 22022.1 0.99 0.03 0.03
6 7% 21239.0 22880.1 21949.2 0.98 0.00 0.00
7 8% 21078.6 22994.1 21907.6 0.98 0.00 0.00
8 5% 20941.9 23131.9 21889.7 0.97 0.76 0.76

4 2 Skewed High 6 1 100% 6081.9 6115.5 6096.4 — — —
2 11% 5990.8 6063.6 6022.3 0.85 0.00 0.00
3 14% 5996.8 6108.8 6045.3 0.84 0.78 0.79
4 7% 6006.8 6158.0 6072.2 0.79 0.23 0.23
5 5% 6017.8 6208.2 6100.2 0.60 0.10 0.10
6 1% 6031.1 6260.8 6130.5 0.66 0.17 0.17
7 0% 6045.0 6313.8 6161.3 0.58 0.39 0.39
8 0% 6059.0 6367.0 6192.3 0.55 1.00 1.00

5 2 Uniform Low 48 1 100% 39904.6 40173.4 40020.9 — — —
2 34% 33865.6 34408.9 34100.7 0.98 0.00 0.00
3 24% 30342.8 31160.5 30696.7 0.98 0.00 0.00
4 19% 28857.2 29949.4 29329.9 0.96 0.00 0.00
5 10% 27793.2 29159.9 28384.7 0.97 0.11 0.11
6 10% 27042.1 28683.2 27752.3 0.98 0.74 0.74
7 11% 26438.9 28354.4 27267.8 0.97 0.71 0.71
8 8% 26108.0 28298.0 27055.7 0.98 0.00 0.00

6 2 Uniform Low 6 1 100% 5155.4 5189.0 5170.0 — — —
2 34% 5131.2 5204.1 5162.8 0.28 0.01 0.01
3 4% 5139.1 5251.2 5187.6 0.57 0.00 0.00
4 4% 5150.6 5301.9 5216.1 0.63 0.31 0.31
5 1% 5164.0 5354.5 5246.4 0.79 0.68 0.69
6 1% 5177.8 5407.4 5277.1 0.86 0.11 0.11
7 1% 5191.7 5460.5 5308.0 0.97 0.04 0.04
8 0% 5205.7 5513.7 5339.0 0.85 0.48 0.48

Fit StatisticsSimulation Parameters



7 2 Skewed Low 48 1 100% 33586.7 33855.5 33703.0 — — —
2 37% 28776.0 29319.3 29011.1 1.00 0.00 0.00
3 16% 26984.0 27801.7 27337.9 0.95 0.00 0.00
4 10% 25549.6 26641.8 26022.2 0.99 0.00 0.00
5 8% 24746.7 26113.3 25338.1 0.99 0.01 0.01
6 5% 24205.9 25846.9 24916.1 0.99 0.00 0.00
7 4% 23835.2 25750.7 24664.2 0.98 0.77 0.77
8 4% 23676.0 25866.0 24623.7 0.98 0.00 0.00

8 2 Skewed Low 6 1 100% 4806.2 4839.8 4820.8 — — —
2 8% 4804.1 4876.9 4835.6 0.68 0.13 0.14
3 11% 4812.0 4924.0 4860.5 0.54 0.05 0.06
4 1% 4824.8 4976.0 4890.2 0.63 0.37 0.38
5 1% 4838.2 5028.6 4920.6 0.99 0.21 0.22
6 0% 4852.1 5081.7 4951.5 0.88 0.81 0.82
7 0% 4866.1 5134.9 4982.4 0.72 0.43 0.44
8 1% 4880.0 5188.1 5013.4 0.85 0.04 0.04

9 4 Uniform High 48 1 100% 49758.7 50027.6 49875.1 — — —
2 48% 37563.6 38106.9 37798.8 0.98 0.00 0.00
3 25% 29696.5 30514.2 30050.4 1.00 0.00 0.00
4 21% 26825.4 27917.6 27298.1 1.00 0.00 0.00
5 13% 26309.8 27676.4 26901.2 1.00 0.00 0.00
6 9% 25897.5 27538.5 26607.6 0.99 0.79 0.79
7 11% 25588.9 27504.4 26417.9 0.97 0.00 0.00
8 8% 25268.0 27458.0 26215.7 0.99 0.16 0.16

10 4 Uniform High 6 1 100% 6058.4 6092.0 6073.0 — — —
2 21% 5951.9 6024.7 5983.4 1.00 0.00 0.00
3 8% 5956.2 6068.2 6004.7 0.53 0.03 0.03
4 13% 5967.7 6118.9 6033.1 0.69 0.16 0.17
5 0% 5980.2 6170.7 6062.7 0.83 0.42 0.43
6 0% 5994.0 6223.6 6093.3 0.74 0.84 0.84
7 1% 6007.9 6276.8 6124.3 0.55 0.09 0.10
8 0% 6021.9 6330.0 6155.2 0.65 0.99 0.99

11 4 Skewed High 48 1 100% 42538.5 42807.3 42654.8 — — —
2 33% 32496.0 33039.3 32731.2 0.98 0.00 0.00
3 16% 27484.5 28302.2 27838.3 1.00 0.00 0.00
4 15% 25774.0 26866.2 26246.7 1.00 0.00 0.00
5 6% 24780.7 26147.4 25372.2 0.99 0.00 0.00
6 6% 24132.3 25773.4 24842.5 0.98 0.00 0.00
7 5% 23875.9 25791.5 24704.9 0.98 0.00 0.00
8 6% 23677.1 25867.0 24624.8 0.98 0.81 0.81

12 4 Skewed High 6 1 100% 6096.6 6130.2 6111.2 — — —
2 29% 5972.5 6045.3 6004.0 0.49 0.00 0.00
3 2% 5979.6 6091.6 6028.0 0.80 0.00 0.00
4 0% 5989.3 6140.5 6054.7 0.64 0.20 0.21
5 0% 5999.5 6189.9 6081.9 0.69 0.47 0.48
6 0% 6010.9 6240.5 6110.2 0.70 0.21 0.21
7 0% 6024.8 6293.6 6141.1 0.79 0.57 0.57
8 0% 6038.7 6346.8 6172.1 0.82 0.39 0.40

13 4 Uniform Low 48 1 100% 53569.2 53838.0 53685.5 — — —
2 45% 41862.0 42405.3 42097.1 0.99 0.00 0.00
3 22% 36984.8 37802.5 37338.6 0.99 0.00 0.00
4 17% 34389.0 35481.2 34861.7 0.98 0.00 0.00
5 12% 32717.6 34084.2 33309.0 0.99 0.00 0.00
6 10% 31777.8 33418.8 32487.9 0.98 0.76 0.76



7 11% 31009.8 32925.3 31838.7 0.98 0.00 0.00
8 6% 30399.7 32589.6 31347.4 0.98 0.01 0.01

14 4 Uniform Low 6 1 100% 7233.3 7266.9 7247.8 — — —
2 34% 7015.8 7088.7 7047.4 0.50 0.00 0.00
3 4% 6985.7 7097.7 7034.2 0.66 0.00 0.00
4 16% 6996.0 7147.2 7061.4 0.70 0.43 0.43
5 3% 7007.5 7197.9 7089.9 0.78 0.11 0.11
6 2% 7020.8 7250.5 7120.2 0.54 0.37 0.37
7 1% 7034.6 7303.5 7151.0 0.91 0.66 0.67
8 0% 7048.6 7356.7 7181.9 0.73 0.01 0.01

15 4 Skewed Low 48 1 100% 44721.5 44990.3 44837.8 — — —
2 45% 36573.9 37117.2 36809.0 1.00 0.00 0.00
3 25% 33340.2 34158.0 33694.1 0.98 0.00 0.00
4 13% 30804.5 31896.7 31277.2 0.98 0.00 0.00
5 5% 28985.5 30352.1 29576.9 0.99 0.00 0.00
6 5% 28200.7 29841.8 28910.9 0.98 0.00 0.00
7 5% 27545.5 29461.0 28374.4 0.99 0.01 0.01
8 5% 26926.6 29116.5 27874.3 0.98 0.06 0.06

16 4 Skewed Low 6 1 100% 6176.3 6209.9 6190.9 — — —
2 24% 6116.7 6189.6 6148.2 0.96 0.00 0.00
3 2% 6109.7 6221.7 6158.2 0.97 0.01 0.01
4 2% 6116.6 6267.8 6182.0 0.74 0.14 0.14
5 1% 6124.2 6314.7 6206.7 0.74 0.08 0.08
6 1% 6134.2 6363.9 6233.6 0.79 0.17 0.17
7 1% 6147.9 6416.7 6264.2 0.67 0.62 0.62
8 0% 6161.7 6469.8 6295.1 0.71 0.31 0.31

17 6 Uniform High 48 1 100% 77048.8 77317.7 77165.2 — — —
2 16% 48806.1 49349.4 49041.2 1.00 0.00 0.00
3 17% 40524.5 41342.2 40878.3 0.99 0.00 0.00
4 16% 35150.1 36242.3 35622.7 1.00 0.00 0.00
5 16% 31385.5 32752.1 31976.9 0.98 0.00 0.00
6 13% 29963.7 31604.8 30673.9 1.00 0.00 0.00
7 5% 28730.6 30646.1 29559.6 0.99 0.78 0.78
8 2% 28278.7 30468.6 29226.4 1.00 0.72 0.72

18 6 Uniform High 6 1 100% 9148.8 9182.4 9163.3 — — —
2 17% 7190.6 7263.4 7222.1 0.98 0.00 0.00
3 16% 7027.4 7139.4 7075.8 0.98 0.00 0.00
4 0% 7028.4 7179.6 7093.8 0.96 0.01 0.01
5 0% 7037.8 7228.2 7120.2 0.81 0.20 0.21
6 0% 7049.4 7279.0 7148.8 0.85 0.08 0.09
7 0% 7062.5 7331.4 7178.9 0.84 0.27 0.28
8 0% 7076.4 7384.5 7209.7 0.69 0.56 0.56

19 6 Skewed High 48 1 100% 62766.2 63035.0 62882.5 — — —
2 8% 45172.5 45715.8 45407.6 1.00 0.00 0.00
3 7% 36272.7 37090.5 36626.6 1.00 0.00 0.00
4 7% 31492.8 32584.9 31965.4 0.99 0.00 0.00
5 7% 28159.0 29525.6 28750.4 0.99 0.00 0.00
6 7% 27380.1 29021.1 28090.3 0.99 0.00 0.00
7 6% 26858.7 28774.2 27687.7 0.99 0.00 0.00
8 6% 26345.9 28535.9 27293.7 0.98 0.00 0.00

20 6 Skewed High 6 1 100% 8281.3 8314.9 8295.8 — — —
2 7% 7084.0 7156.8 7115.5 0.99 0.00 0.00
3 7% 6963.6 7075.6 7012.0 0.96 0.00 0.00
4 7% 6969.5 7120.7 7034.9 0.98 0.09 0.10
5 4% 6979.1 7169.5 7061.5 0.89 0.11 0.11



6 4% 6991.1 7220.8 7090.5 0.88 0.02 0.02
7 3% 7004.5 7273.3 7120.8 0.90 0.63 0.63
8 1% 7018.3 7326.4 7151.6 0.78 0.84 0.84

21 6 Uniform Low 48 1 100% 77093.4 77362.3 77209.8 — — —
2 17% 54259.1 54802.4 54494.2 1.00 0.00 0.00
3 17% 44196.4 45014.1 44550.3 1.00 0.00 0.00
4 16% 40457.3 41549.5 40930.0 0.99 0.00 0.00
5 11% 38060.7 39427.4 38652.2 0.99 0.00 0.00
6 10% 36801.4 38442.4 37511.6 0.99 0.00 0.00
7 5% 35566.4 37481.9 36395.3 0.99 0.22 0.23
8 5% 34881.3 37071.3 35829.0 0.98 0.72 0.72

22 6 Uniform Low 6 1 100% 9821.3 9854.9 9835.9 — — —
2 16% 8387.9 8460.7 8419.4 0.94 0.00 0.00
3 16% 8194.9 8306.9 8243.4 0.97 0.00 0.00
4 11% 8177.6 8328.8 8243.0 0.98 0.00 0.00
5 4% 8184.6 8375.0 8267.0 0.83 0.01 0.01
6 4% 8195.5 8425.1 8294.8 0.70 0.24 0.25
7 4% 8207.0 8475.9 8323.4 0.69 0.15 0.15
8 0% 8221.0 8529.0 8354.3 0.71 0.14 0.14

23 6 Skewed Low 48 1 100% 62075.6 62344.4 62191.9 — — —
2 8% 47873.8 48417.1 48109.0 1.00 0.00 0.00
3 8% 40128.7 40946.4 40482.6 1.00 0.00 0.00
4 8% 36752.0 37844.2 37224.7 1.00 0.00 0.00
5 7% 34224.7 35591.4 34816.2 0.99 0.00 0.00
6 7% 32803.8 34444.9 33514.0 0.97 0.72 0.72
7 7% 32003.1 33918.7 32832.1 0.99 0.84 0.84
8 5% 31313.2 33503.1 32260.9 0.99 0.75 0.75

24 6 Skewed Low 6 1 100% 8260.0 8293.6 8274.5 — — —
2 7% 7337.0 7409.8 7368.5 0.97 0.00 0.00
3 8% 7286.7 7398.8 7335.2 0.98 0.00 0.00
4 4% 7276.5 7427.8 7342.0 0.99 0.00 0.00
5 0% 7282.1 7472.5 7364.5 0.72 0.25 0.26
6 0% 7288.3 7517.9 7387.7 0.98 0.03 0.03
7 0% 7299.5 7568.3 7415.8 0.75 0.28 0.28
8 0% 7311.6 7619.7 7444.9 0.76 0.11 0.11



Appendix Table C4. Fit Statistics for Optimal Matching Models
( FOR PEER REVIEW ONLY; TO BE AVAILABLE ON-LINE UPON PUBLICATION )
Bolded Results Indicate Preferred Model

Data Smallest Smallest Smallest Smallest
Set # T D C t T' Fa

Group Fa
Group Fa

Group Fa
Group

1 2 Uniform High 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 7833.1 49.9% 10863.1 49.9% 7243.7 49.9% 9852.5 49.9%
3 5066.6 24.8% 7538.2 19.3% 4385.6 12.4% 6060.4 15.9%
4 4576.2 21.3% 7420.2 19.3% 3610.6 11.8% 4825.6 15.4%

2 2 Uniform High 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1326.9 34.2% 1813.5 41.4% 1836.6 37.4% 1827.9 41.4%
3 2493.5 27.9% 2445.6 32.6% 2432.4 9.5% 2620.4 32.7%
4 3856.1 9.5% 2991.4 8.2% 4111.0 9.5% 3270.1 8.2%
5 5612.4 8.0% 6462.3 8.2% 5727.0 8.0% 6136.4 8.2%
6 6841.3 4.6% 10612.1 4.7% 6664.3 4.6% 10928.7 4.7%
7 8182.3 0.8% 11496.7 0.7% 8283.0 0.8% 11759.7 0.7%
8 10597.2 0.5% 13961.5 0.7% 10596.1 0.5% 14205.6 0.7%

3 2 Skewed High 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 2689.7 10.0% 3991.1 10.1% 2537.9 10.0% 3883.5 10.0%
3 2650.0 10.0% 3511.3 10.0% 2073.5 10.0% 2696.6 10.0%
4 2419.4 10.0% 3148.2 10.0% 2040.5 10.0% 2175.9 10.0%

4 2 Skewed High 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1129.5 13.9% 2340.8 43.0% 1249.8 48.3% 2345.1 43.0%
3 2275.0 13.9% 2491.4 14.2% 2411.6 13.9% 2416.0 14.3%
4 3782.8 8.4% 3635.2 7.0% 3952.6 8.4% 3581.3 7.0%
5 4536.7 6.4% 5540.0 6.5% 4666.8 6.4% 5712.6 6.5%
6 5120.9 1.6% 7526.2 1.4% 5098.8 0.8% 7587.3 1.4%
7 6271.8 0.8% 8213.8 0.8% 6504.5 0.8% 8242.1 0.8%

5 2 Uniform Low 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 936.0 12.9% 1060.1 38.3% 1114.0 26.0% 847.1 48.6%
3 1248.9 12.9% 948.9 28.6% 1256.2 23.8% 864.8 24.9%
4 1219.3 12.9% 942.9 18.1% 1140.9 23.7% 885.7 17.5%
5 1306.2 9.8% --- --- 1073.7 7.0% 739.1 14.9%
6 1250.1 6.7% --- --- --- --- 677.6 12.7%
7 1199.7 4.2% --- --- --- --- --- ---

6 2 Uniform Low 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1428.3 16.7% 1541.2 21.3% 1535.8 16.7% 1500.7 21.3%
3 3201.7 16.7% 3289.0 15.0% 3033.9 16.7% 3370.6 15.0%
4 4423.9 4.3% 4086.9 4.3% 4808.8 4.3% 3879.1 4.3%
5 5632.4 2.9% 6484.9 2.9% 5976.9 2.9% 5713.0 2.9%

7 2 Skewed Low 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1460.0 31.5% 1154.8 35.7% 953.0 44.2% 809.6 45.8%
3 1255.5 24.5% 1116.7 26.8% 1063.6 11.9% 781.4 23.4%
4 1111.7 10.6% 869.5 18.0% 1000.2 11.9% 589.2 21.8%
5 --- ------ --- --- 947.0 11.9% --- ---

8 2 Skewed Low 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1850.7 40.4% 2998.4 31.4% 1576.8 13.9% 2770.0 31.4%
3 5131.4 13.9% 5728.8 14.5% 5064.2 13.9% 5466.3 14.5%
4 6230.9 4.6% 8652.9 4.6% 5692.1 4.6% 8528.6 4.6%
5 6615.9 1.0% 9210.4 1.0% 6573.4 1.0% 8634.5 1.0%
6 7728.2 0.8% 11600.1 0.8% 8607.9 0.8% 9926.1 0.8%

Simulation Parameters Fit Statistics

Substitution Costs Substitution Costs Substitution Costs Substitution Costs

Ward Clustering K-Means Clustering Ward Clustering K-Means Clustering

Based on
Transition Rates,

Based on
Transition Rates,

Based on
Constant Rates,

Based on
Constant Rates,



9 4 Uniform High 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1627.0 47.6% 1610.2 31.2% 1753.9 49.7% 1460.2 30.3%
3 2700.7 25.0% 2347.0 25.0% 3013.5 25.0% 2663.4 24.8%
4 3233.3 22.4% 2716.9 23.2% 3495.0 23.1% 2806.7 22.9%
5 2951.4 10.5% 2369.5 14.5% 2965.4 11.7% 2284.8 13.4%
6 2785.1 10.5% 2217.0 9.3% 2666.1 10.7% 2068.8 8.5%

10 4 Uniform High 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1723.2 21.6% 2190.3 39.4% 1869.0 21.0% 2235.7 39.4%
3 2855.1 21.6% 3449.3 21.3% 2758.3 21.0% 3505.2 21.3%
4 3900.9 5.1% 3866.7 4.8% 4052.3 5.1% 4004.5 4.8%
5 4998.9 4.7% 6770.4 4.8% 4998.3 4.7% 6776.9 4.8%
6 5752.2 0.8% 9049.5 2.2% 5900.0 0.8% 9206.1 2.2%
7 6960.3 0.6% 9310.1 0.4% 7238.6 0.6% 9334.0 0.4%

11 4 Skewed High 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 2018.4 17.4% 2699.3 18.9% 1741.0 32.5% 1993.5 20.0%
3 2217.7 17.4% 2413.9 18.0% 2483.9 15.1% 2412.6 17.5%
4 2243.7 16.3% 2133.5 16.5% 2339.8 5.7% 2037.4 16.4%
5 2373.2 5.5% --- --- 2339.5 5.7% 1948.8 15.4%
6 2322.0 5.5% --- --- --- --- --- ---
7 2242.0 5.5% --- --- --- --- --- ---

12 4 Skewed High 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1159.5 14.5% 2180.6 38.2% 1384.6 40.3% 2213.6 38.2%
3 1761.2 14.5% 2543.9 14.6% 1818.0 9.6% 2575.7 14.6%
4 4095.3 9.7% 4028.3 9.7% 4162.6 9.6% 3997.3 9.8%
5 4235.9 4.4% 5225.0 4.6% 4235.9 4.4% 5150.9 4.6%
6 4971.3 2.4% 8505.8 2.4% 4857.9 2.4% 8518.0 2.4%
7 --- --- 10274.1 0.7% --- --- 10337.4 0.7%

13 4 Uniform Low 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 2089.2 39.3% 1846.9 49.8% 977.1 14.3% 1336.5 42.9%
3 1746.5 18.3% 1878.2 20.3% 1264.7 14.3% 1490.6 19.9%
4 1783.5 17.6% 1556.1 18.8% 1330.2 11.1% 1183.3 18.7%
5 --- --- 1603.4 15.7% 1426.2 11.1% 1116.5 15.9%
6 --- --- --- --- 1346.8 11.1% --- ---
7 --- --- --- --- 1343.4 11.1% --- ---

14 4 Uniform Low 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1522.8 43.3% 1494.1 32.7% 1869.3 31.7% 1399.7 32.7%
3 1965.8 17.0% 1802.7 15.4% 2481.5 15.1% 1656.9 15.4%
4 3467.4 15.3% 2394.2 11.6% 3227.7 11.9% 2349.9 11.6%
5 3758.0 5.7% 3377.6 5.9% 3628.6 5.7% 3183.7 5.9%
6 4993.3 3.2% 4338.6 3.8% 5156.9 3.2% 4339.8 3.8%
7 7673.8 3.2% 7673.8 3.2% 7543.3 3.2% 7345.7 3.2%

15 4 Skewed Low 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1604.4 33.4% 1126.9 40.4% 1146.7 40.5% 961.8 39.3%
3 1328.1 5.0% 1272.1 24.8% 1095.3 12.3% 839.6 18.5%
4 1337.7 5.0% 884.0 23.7% 1155.2 5.5% 671.2 19.2%
5 --- --- 1130.5 5.9% 1114.2 5.5% --- ---
6 --- --- --- --- 1129.8 5.5% --- ---

16 4 Skewed Low 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1750.7 24.5% 1338.0 26.6% 1900.3 24.5% 1442.1 26.6%
3 2831.9 19.8% 2426.3 21.1% 2508.6 19.5% 2521.5 21.1%
4 3487.8 5.5% 2745.8 5.6% 3324.1 5.5% 2876.1 5.6%
5 4716.7 5.4% 4179.1 4.0% 4064.7 5.4% 4021.6 4.0%
6 5811.8 2.0% 6661.5 2.3% 4706.5 2.0% 5572.4 2.3%
7 6825.4 1.5% --- --- 6426.8 0.7% --- ---

17 6 Uniform High 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 6244.1 16.6% 8424.7 16.2% 4575.1 16.6% 6686.7 16.2%
3 6067.5 16.6% 9226.6 16.0% 4142.5 16.6% 4749.2 15.5%
4 5855.9 16.6% 7166.3 15.4% 4397.3 16.6% 5327.8 15.5%



5 --- --- 6588.5 15.4% 4843.2 16.6% --- ---
6 --- --- --- --- 4595.7 3.2% --- ---
7 --- --- --- --- 4643.9 3.2% --- ---

18 6 Uniform High 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 3109.6 12.9% 4479.7 16.4% 2783.5 12.7% 631.4 40.6%
3 3815.3 12.9% 5687.3 16.4% 3682.9 12.7% 4936.2 16.4%
4 5261.3 12.9% 7427.3 15.4% 4419.7 12.7% 6462.8 15.4%
5 6159.2 5.4% 7150.8 3.6% 4868.2 7.7% 6684.0 3.6%
6 7081.5 2.8% 6981.1 1.9% 6016.1 2.8% 6563.1 2.0%
7 8955.9 1.9% --- --- 8338.4 2.8% --- ---

19 6 Skewed High 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 4312.8 7.5% 6602.1 7.5% 3073.1 7.5% 4829.9 7.5%
3 5247.9 7.5% 8640.6 7.2% 3329.0 7.5% 5333.4 7.4%
4 5163.6 7.5% 7344.5 7.2% 3659.5 7.5% 5203.8 7.2%
5 5660.6 7.5% 6580.3 7.2% 4273.0 7.5% 4708.6 7.2%
6 5310.0 7.5% --- --- 4042.7 7.5% --- ---
7 5071.2 2.8% --- --- 3910.5 7.5% --- ---

20 6 Skewed High 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 2135.4 7.6% 875.5 46.7% 1836.1 7.7% 981.6 46.7%
3 2353.1 7.6% 2962.3 7.2% 2286.3 7.7% 2707.8 7.2%
4 3530.8 7.6% 3911.0 7.2% 2927.7 7.7% 3609.8 7.2%
5 6024.6 7.6% 5664.3 7.2% 5804.2 7.7% 4903.9 7.2%
6 7042.7 4.0% 7627.7 4.1% 6507.8 4.0% 6682.3 4.1%
7 8677.2 3.9% 10107.1 3.9% 7597.8 3.9% 9700.2 3.9%

21 6 Uniform Low 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 4003.7 16.2% 4969.5 15.7% 3036.2 15.3% 4149.0 15.8%
3 4158.3 16.2% 5651.4 15.5% 2996.6 15.3% 3951.7 15.6%
4 4083.2 16.2% 4991.1 15.6% 2850.4 15.3% 3337.5 15.6%
5 3727.9 7.8% 4343.7 11.1% --- --- --- ---

22 6 Uniform Low 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 2460.5 18.5% 2578.7 15.1% 2277.2 18.6% 2187.0 15.1%
3 2680.1 18.5% 2573.2 14.9% 2557.5 18.6% 2127.6 14.9%
4 2809.9 13.9% 3052.0 14.9% 2805.8 11.2% 2551.8 14.9%
5 3326.8 6.9% 3587.4 11.1% 3092.5 11.2% 2996.5 11.1%
6 5039.2 6.9% 3882.8 3.9% 4152.1 7.5% 3132.7 3.9%
7 5636.1 3.7% 4742.6 3.3% 4471.1 3.7% 3548.6 3.1%
8 6338.1 3.1% --- --- 5127.2 3.7% --- ---

23 6 Skewed Low 48 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 2897.7 7.1% 4331.0 7.1% 2207.7 7.1% 3474.4 7.2%
3 3067.6 7.1% 3957.2 7.0% 2105.3 7.1% 2826.2 7.2%
4 2972.4 7.1% 4303.1 7.0% 2038.8 7.1% 2474.4 7.0%
5 2972.4 7.1% 3485.0 7.0% --- --- --- ---
6 --- --- 3106.4 7.0% --- --- --- ---
7 --- --- 3064.2 7.0% --- --- --- ---

24 6 Skewed Low 6 1 --- 100.0% --- 100.0% --- 100.0% --- 100.0%
2 1678.5 6.8% 450.7 21.9% 1435.8 7.2% 480.5 21.9%
3 2171.7 6.8% 1894.6 7.1% 1691.7 7.2% 503.3 16.5%
4 3175.9 6.8% 2628.0 7.1% 2150.0 7.2% 2426.2 7.1%
5 3631.4 6.8% 3347.7 7.1% 2988.9 7.2% 2874.2 6.4%
6 3987.7 4.5% 4241.3 4.7% 3569.9 3.5% 3499.1 4.7%
7 4735.8 3.4% 5425.4 3.3% 4111.4 3.5% 4217.7 2.4%
8 5323.5 2.1% 6023.8 2.1% --- --- 5408.0 2.1%
8 0.0 7018.3 7326.4 # 0.8 0.84

a Caliński-Harabasz (1974) pseudo F-statistic



Appendix Table C5. Fit Statistics for Grade of Membership Analyses
( FOR PEER REVIEW ONLY; TO BE AVAILABLE ON-LINE UPON PUBLICATION )
Bolded Results Indicate Preferred Model

2 x Change in LL, Change in df, LR Test, t Testa

Data LL = Log Model w/ T' Model w/ T' Model w/ T' Model w/ T'
Set # T D C t T' Likelihood df vs Model w/ T'-1 vs Model w/ T'-1 vs Model w/ T'-1 vs Model w/ T'-1

1 2 Uniform High 48 1 -20,738 2,047   — — — —
2 -10,758 4,094   19,960.5             2,047                  0.00 135.8                  
3 -9,486 6,141   2,543.2               2,047                  0.00 7.3                      
4 -8,438 8,188   2,095.9               2,047                  0.22 0.8                      
5 -7,699 10,235 1,477.7               2,047                  1.00 (9.6)                     
6 -6,834 12,282 1,730.4               2,047                  1.00 (5.2)                     
7 -6,389 14,329 889.9                  2,047                  1.00 (21.8)                   
8 -6,045 16,376 688.8                  2,047                  1.00 (26.9)                   

2 2 Uniform High 6 1 -3,511 2,005   — — — —
2 -1,924 4,010   3,174.2               2,005                  0.00 16.4                    
3 -1,013 6,015   1,822.3               2,005                  1.00 (3.0)                     
4 -758 8,020   509.8                  2,005                  1.00 (31.4)                   
5 -686 10,025 143.8                  2,005                  1.00 (46.4)                   
6 -438 12,030 496.8                  2,005                  1.00 (31.8)                   
7 -215 14,035 445.5                  2,005                  1.00 (33.5)                   
8 -245 16,040 (59.6)                   2,005                  n/ab n/ab

3 2 Skewed High 48 1 -15,558 2,047   — — — —
2 -10,898 4,094   9,318.5               2,047                  0.00 72.5                    
3 -8,896 6,141   4,005.5               2,047                  0.00 25.5                    
4 -7,629 8,188   2,533.8               2,047                  0.00 7.2                      
5 -7,020 10,235 1,217.4               2,047                  1.00 (14.6)                   
6 -6,361 12,282 1,317.1               2,047                  1.00 (12.7)                   
7 -5,961 14,329 801.0                  2,047                  1.00 (24.0)                   
8 -5,671 16,376 580.8                  2,047                  1.00 (29.9)                   

4 2 Skewed High 6 1 -3,035 2,005   — — — —
2 -2,330 4,010   1,408.9               2,005                  1.00 (10.2)                   
3 -937 6,015   2,787.7               2,005                  0.00 11.3                    
4 -501 8,020   871.0                  2,005                  1.00 (21.6)                   
5 -405 10,025 192.4                  2,005                  1.00 (43.7)                   
6 -187 12,030 436.3                  2,005                  1.00 (33.8)                   
7 -121 14,035 131.8                  2,005                  1.00 (47.1)                   
8 -78 16,040 86.0                    2,005                  1.00 (50.2)                   

5 2 Uniform Low 48 1 -19,904 2,047   — — — —
2 -14,596 4,094   10,616.5             2,047                  0.00 81.7                    
3 -12,049 6,141   5,094.1               2,047                  0.00 37.0                    
4 -10,532 8,188   3,034.1               2,047                  0.00 13.9                    
5 -9,602 10,235 1,859.9               2,047                  1.00 (3.0)                     
6 -8,701 12,282 1,802.9               2,047                  1.00 (3.9)                     
7 -8,195 14,329 1,010.4               2,047                  1.00 (19.0)                   
8 -7,636 16,376 1,119.0               2,047                  1.00 (16.7)                   

6 2 Uniform Low 6 1 -2,572 2,005   — — — —
2 -1,499 4,010   2,145.3               2,005                  0.01 2.2                      
3 -1,164 6,015   669.9                  2,005                  1.00 (26.7)                   
4 -347 8,020   1,634.5               2,005                  1.00 (6.2)                     
5 -520 10,025 (346.0)                 2,005                  n/ab n/ab

6 -226 12,030 588.2                  2,005                  1.00 (29.0)                   
7 -132 14,035 188.1                  2,005                  1.00 (43.9)                   
8 -129 16,040 5.5                      2,005                  1.00 (60.1)                   

7 2 Skewed Low 48 1 -16,745 2,047   — — — —
2 -12,641 4,094   8,209.5               2,047                  0.00 64.2                    
3 -10,511 6,141   4,260.2               2,047                  0.00 28.3                    
4 -9,170 8,188   2,680.4               2,047                  0.00 9.2                      
5 -8,127 10,235 2,087.4               2,047                  0.26 0.6                      
6 -7,566 12,282 1,121.3               2,047                  1.00 (16.6)                   
7 -7,096 14,329 940.8                  2,047                  1.00 (20.6)                   
8 -6,763 16,376 665.0                  2,047                  1.00 (27.5)                   

Simulation Parameters Fit Statistics



8 2 Skewed Low 6 1 -2,397 2,005   — — — —
2 -1,140 4,010   2,514.6               2,005                  0.00 7.6                      
3 -415 6,015   1,450.1               2,005                  1.00 (9.5)                     
4 -339 8,020   152.0                  2,005                  1.00 (45.9)                   
5 -271 10,025 135.3                  2,005                  1.00 (46.9)                   
6 -152 12,030 237.3                  2,005                  1.00 (41.6)                   
7 -88 14,035 128.2                  2,005                  1.00 (47.3)                   
8 -150 16,040 (122.7)                 2,005                  n/ab n/ab

9 4 Uniform High 48 1 -24,831 2,047   — — — —
2 -16,600 4,094   16,462.1             2,047                  0.00 117.5                  
3 -11,727 6,141   9,746.4               2,047                  0.00 75.6                    
4 -9,478 8,188   4,498.8               2,047                  0.00 30.9                    
5 -8,858 10,235 1,239.0               2,047                  1.00 (14.2)                   
6 -8,280 12,282 1,157.0               2,047                  1.00 (15.9)                   
7 -7,781 14,329 996.7                  2,047                  1.00 (19.3)                   
8 -7,304 16,376 954.5                  2,047                  1.00 (20.3)                   

10 4 Uniform High 6 1 -3,023 2,005   — — — —
2 -1,921 4,010   2,203.9               2,005                  0.00 3.1                      
3 -747 6,015   2,347.6               2,005                  0.00 5.2                      
4 -578 8,020   339.2                  2,005                  1.00 (37.3)                   
5 -346 10,025 463.0                  2,005                  1.00 (32.9)                   
6 -545 12,030 (396.4)                 2,005                  n/ab n/ab

7 -122 14,035 845.5                  2,005                  1.00 (22.2)                   
8 -223 16,040 (203.2)                 2,005                  n/ab n/ab

11 4 Skewed High 48 1 -21,221 2,047   — — — —
2 -14,183 4,094   14,076.3             2,047                  0.00 103.8                  
3 -10,948 6,141   6,470.5               2,047                  0.00 49.8                    
4 -9,161 8,188   3,573.6               2,047                  0.00 20.6                    
5 -8,351 10,235 1,620.7               2,047                  1.00 (7.1)                     
6 -7,500 12,282 1,700.4               2,047                  1.00 (5.7)                     
7 -7,125 14,329 750.6                  2,047                  1.00 (25.2)                   
8 -6,699 16,376 852.7                  2,047                  1.00 (22.7)                   

12 4 Skewed High 6 1 -3,042 2,005   — — — —
2 -1,576 4,010   2,932.1               2,005                  0.00 13.3                    
3 -894 6,015   1,365.4               2,005                  1.00 (11.1)                   
4 -976 8,020   (164.6)                 2,005                  n/ab n/ab

5 -319 10,025 1,314.5               2,005                  1.00 (12.1)                   
6 -291 12,030 54.6                    2,005                  1.00 (52.9)                   
7 -736 14,035 (888.9)                 2,005                  n/ab n/ab

8 -235 16,040 1,001.6               2,005                  1.00 (18.6)                   

13 4 Uniform Low 48 1 -26,737 2,047   — — — —
2 -18,689 4,094   16,095.5             2,047                  0.00 115.4                  
3 -15,374 6,141   6,630.4               2,047                  0.00 51.2                    
4 -12,750 8,188   5,247.1               2,047                  0.00 38.5                    
5 -11,521 10,235 2,457.6               2,047                  0.00 6.1                      
6 -10,705 12,282 1,633.1               2,047                  1.00 (6.8)                     
7 -9,949 14,329 1,510.6               2,047                  1.00 (9.0)                     
8 -9,194 16,376 1,511.1               2,047                  1.00 (9.0)                     

14 4 Uniform Low 6 1 -3,611 2,005   — — — —
2 -2,213 4,010   2,795.8               2,005                  0.00 11.5                    
3 -1,930 6,015   566.0                  2,005                  1.00 (29.7)                   
4 -677 8,020   2,504.8               2,005                  0.00 7.5                      
5 -455 10,025 445.4                  2,005                  1.00 (33.5)                   
6 -348 12,030 213.4                  2,005                  1.00 (42.7)                   
7 -268 14,035 160.3                  2,005                  1.00 (45.4)                   
8 -323 16,040 (109.5)                 2,005                  n/ab n/ab

15 4 Skewed Low 48 1 -22,313 2,047   — — — —
2 -16,269 4,094   12,087.8             2,047                  0.00 91.5                    
3 -13,910 6,141   4,718.5               2,047                  0.00 33.2                    
4 -11,396 8,188   5,028.0               2,047                  0.00 36.3                    
5 -10,059 10,235 2,674.1               2,047                  0.00 9.1                      
6 -9,184 12,282 1,749.7               2,047                  1.00 (4.8)                     
7 -8,438 14,329 1,491.1               2,047                  1.00 (9.4)                     
8 -8,039 16,376 797.9                  2,047                  1.00 (24.0)                   



16 4 Skewed Low 6 1 -3,082 2,005   — — — —
2 -1,907 4,010   2,350.8               2,005                  0.00 5.2                      
3 -1,645 6,015   523.8                  2,005                  1.00 (31.0)                   
4 -535 8,020   2,219.6               2,005                  0.00 3.3                      
5 -627 10,025 (184.8)                 2,005                  n/ab n/ab

6 -279 12,030 697.7                  2,005                  1.00 (26.0)                   
7 -226 14,035 104.8                  2,005                  1.00 (48.9)                   
8 -224 16,040 4.1                      2,005                  1.00 (60.6)                   

17 6 Uniform High 48 1 -38,476 2,047   — — — —
2 -22,091 4,094   32,771.7             2,047                  0.00 192.0                  
3 -16,186 6,141   11,808.7             2,047                  0.00 89.7                    
4 -12,512 8,188   7,349.5               2,047                  0.00 57.3                    
5 -9,861 10,235 5,301.4               2,047                  0.00 39.0                    
6 -9,075 12,282 1,572.4               2,047                  1.00 (7.9)                     
7 -8,574 14,329 1,000.7               2,047                  1.00 (19.3)                   
8 -8,287 16,376 574.8                  2,047                  1.00 (30.1)                   

18 6 Uniform High 6 1 -4,568 2,005   — — — —
2 -2,368 4,010   4,401.6               2,005                  0.00 30.5                    
3 -1,370 6,015   1,995.2               2,005                  0.56 (0.2)                     
4 -604 8,020   1,532.9               2,005                  1.00 (8.0)                     
5 -396 10,025 415.9                  2,005                  1.00 (34.5)                   
6 -364 12,030 63.7                    2,005                  1.00 (52.1)                   
7 -272 14,035 184.5                  2,005                  1.00 (44.1)                   
8 -252 16,040 40.0                    2,005                  1.00 (54.4)                   

19 6 Skewed High 48 1 -31,335 2,047   — — — —
2 -20,658 4,094   21,355.0             2,047                  0.00 142.7                  
3 -14,534 6,141   12,246.8             2,047                  0.00 92.5                    
4 -11,315 8,188   6,438.0               2,047                  0.00 49.5                    
5 -9,265 10,235 4,100.5               2,047                  0.00 26.6                    
6 -8,460 12,282 1,610.0               2,047                  1.00 (7.2)                     
7 -8,058 14,329 803.6                  2,047                  1.00 (23.9)                   
8 -7,321 16,376 1,474.7               2,047                  1.00 (9.7)                     

20 6 Skewed High 6 1 -4,135 2,005   — — — —
2 -2,691 4,010   2,887.3               2,005                  0.00 12.7                    
3 -1,894 6,015   1,594.4               2,005                  1.00 (6.9)                     
4 -812 8,020   2,163.5               2,005                  0.01 2.5                      
5 -404 10,025 815.4                  2,005                  1.00 (22.9)                   
6 -678 12,030 (547.1)                 2,005                  n/ab n/ab

7 -141 14,035 1,073.2               2,005                  1.00 (17.0)                   
8 -227 16,040 (171.3)                 2,005                  n/ab n/ab

21 6 Uniform Low 48 1 -38,499 2,047   — — — —
2 -24,205 4,094   28,586.8             2,047                  0.00 175.1                  
3 -17,713 6,141   12,984.7             2,047                  0.00 97.2                    
4 -15,299 8,188   4,828.1               2,047                  0.00 34.3                    
5 -13,290 10,235 4,017.6               2,047                  0.00 25.7                    
6 -12,502 12,282 1,575.5               2,047                  1.00 (7.9)                     
7 -11,644 14,329 1,717.0               2,047                  1.00 (5.4)                     
8 -10,866 16,376 1,555.4               2,047                  1.00 (8.2)                     

22 6 Uniform Low 6 1 -4,905 2,005   — — — —
2 -2,824 4,010   4,160.8               2,005                  0.00 27.9                    
3 -2,088 6,015   1,473.1               2,005                  1.00 (9.0)                     
4 -1,333 8,020   1,510.5               2,005                  1.00 (8.4)                     
5 -1,112 10,025 441.4                  2,005                  1.00 (33.6)                   
6 -933 12,030 358.4                  2,005                  1.00 (36.6)                   
7 -846 14,035 173.3                  2,005                  1.00 (44.7)                   
8 -842 16,040 8.5                      2,005                  1.00 (59.3)                   

23 6 Skewed Low 48 1 -30,990 2,047   — — — —
2 -21,065 4,094   19,850.4             2,047                  0.00 135.3                  
3 -16,075 6,141   9,978.8               2,047                  0.00 77.3                    
4 -14,002 8,188   4,147.1               2,047                  0.00 27.1                    
5 -11,903 10,235 4,198.0               2,047                  0.00 27.6                    
6 -10,767 12,282 2,270.5               2,047                  0.00 3.4                      
7 -10,142 14,329 1,250.0               2,047                  1.00 (14.0)                   
8 -9,323 16,376 1,639.6               2,047                  1.00 (6.7)                     



24 6 Skewed Low 6 1 -4,124 2,005   — — — —
2 -2,645 4,010   2,958.4               2,005                  0.00 13.6                    
3 -2,263 6,015   762.9                  2,005                  1.00 (24.3)                   
4 -1,510 8,020   1,506.3               2,005                  1.00 (8.4)                     
5 -733 10,025 1,554.2               2,005                  1.00 (7.6)                     
6 -611 12,030 243.8                  2,005                  1.00 (41.3)                   
7 -323 14,035 577.5                  2,005                  1.00 (29.3)                   
8 -304 16,040 36.6                    2,005                  1.00 (54.8)                   

a t-test as per Manton, Woodbury, and Tolley (1994: 173)
b Test cannot be performed.


