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Do Finite-Size Lyapunov Exponents detect coherent structures?
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Ridges of the Finite-Size Lyapunov Exponent (FSLE) field have been used as indicators of

hyperbolic Lagrangian Coherent Structures (LCSs). A rigorous mathematical link between the

FSLE and LCSs, however, has been missing. Here, we prove that an FSLE ridge satisfying certain

conditions does signal a nearby ridge of some Finite-Time Lyapunov Exponent (FTLE) field,

which in turn indicates a hyperbolic LCS under further conditions. Other FSLE ridges violating our

conditions, however, are seen to be false positives for LCSs. We also find further limitations of the

FSLE in Lagrangian coherence detection, including ill-posedness, artificial jump-discontinuities,

and sensitivity with respect to the computational time step. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4837075]

Originally developed as a diagnostic for multi-scale mix-
ing, the Finite-Size Lyapunov Exponent (FSLE) has also
been broadly used to detect coherent structures in dy-
namical systems. This use of the FSLE is motivated by a
heuristic analogy with the Finite-Time Lyapunov
Exponent (FTLE), a classic measure of particle separa-
tion. Here, we derive conditions under which this analogy
is mathematically justified. We also show by examples,
however, that the FSLE field has several shortcomings
when applied to coherent structure detection.

I. INTRODUCTION

The Finite-Size Lyapunov Exponent (FSLE) is a popular

diagnostic of trajectory separation in dynamical systems. To

define this quantity, one first selects an initial separation

d0 > 0 and a separation factor r > 1 of interest. The separa-

tion time sðx0; d0; rÞ is then defined as the minimal time in

which the distance between a trajectory starting from x0 and

some neighboring trajectory starting d0-close to x0 first

reaches rd0. The FSLE r associated with the location x0 is

then defined as (cf. Aurell et al., 1997; Artale et al., 1997;

and Joseph and Legras, 2002)

r x0; d0; rð Þ :¼
log r

s x0; d0; rð Þ
: (1)

This quantity infers a local separation exponent for each

initial condition x0 over a different time interval of length

sðx0; d0; rÞ. The FSLE field is therefore not linked directly to

the flow map between times t0 and t for any choice of t. In

addition, the FSLE field r x0; d0; rð Þ depends on the choice of

the initial separation and the separation factor.

These dependencies are generally viewed as advantages

of the FSLE, enabling the targeted detection of material

stretching at different spatial scales. The spatial average of

the FSLE field is particularly helpful in describing the

statistics of trajectory separation under finite-size perturba-

tions (Cencini and Vulpiani, 2013).

Beyond Lagrangian statistics, however, the FSLE has

also been used in the detection of specific coherent flow fea-

tures. In particular, ridges of the FSLE field have been pro-

posed as indicators of hyperbolic Lagrangian Coherent

Structures (LCSs), which are most repelling or most attract-

ing material surfaces over a given time interval ½t0; t� (Joseph
and Legras, 2002; d’Ovidio et al., 2004; and Bettencourt,

L�opez, and Hern�andez Garc�ıa, 2013). This idea is based on a

heuristic analogy with the Finite-Time Lyapunov Exponent

(FTLE) field and an observed visual similarity of the FSLE

and FTLE fields, (cf. Lai and T�el, 2011, Sec. 10.5.1 and

Peikert et al. 2014).

Recent results guarantee that certain FTLE ridges do

signal nearby hyperbolic LCSs defined over the same time

interval ½t0; t� (cf. Haller, 2011, 2000; Farazmand and Haller,

2012b; and Karrasch, 2012). These results, however, do not

extend to ridges of r x0; d0; rð Þ in any obvious way, because

the latter ridges involve a range of time scales. Furthermore,

assessing rigorously the stability of material surfaces

requires an accurate characterization of the fate of infinitesi-

mally small perturbations to such surfaces. Using the FSLE

in locating LCSs accurately, therefore, is a diversion from its

original mandate, the description of finite-size perturbations

to trajectories.

Here, we discuss in detail some marked differences

between the FSLE and FTLE that contradict the broadly pre-

sumed equivalence of these two scalar fields. The differences

stem from irregularities of the FSLE field, which include

local ill-posedness, spurious ridges, insensitivity to changes

in the dynamics past the separation time, and intrinsic jump-

discontinuities. Families of such jump-discontinuity surfaces

turn out to be generically present in any nonlinear flow, cre-

ating sensitivity in FSLE computations with respect to the

temporal resolution of the underlying flow data.

We also establish mathematical conditions under which

select FSLE ridges do signal the presence of nearby FTLE

ridges, which in turn mark hyperbolic LCSs under further

conditions. The key tool used in proving this result is a new

separation metric, the Infinitesimal-Size Lyapunov Exponent
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(ISLE), which we introduce here as the d0 ! 0 limit of the

FSLE. We also show examples in which FSLE ridges fail to

satisfy our conditions and indeed do not correspond to

nearby FTLE ridges.

A side-result of our paper is a new ridge definition (cf.

Definition 2) that guarantees structural stability for the ridge

of a scalar field under small perturbations. Such a definition

has apparently been unavailable in the literature and hence

should be of independent interest.

II. NOTATION AND DEFINITIONS

Consider an n-dimensional unsteady vector field vðx; tÞ,
whose trajectories are generated by the dynamical system

_x ¼ vðx; tÞ; x 2 D � Rn: (2)

We assume that vðx; tÞ is of class C3 in its arguments. The

trajectory of Eq. (2) starting from the point x ¼ x0 at time

t ¼ t0 is denoted x t; t0; x0ð Þ, which allows us to define the

flow map as

Ft
t0
ðx0Þ :¼ x t; t0; x0ð Þ:

We will use the Cauchy–Green strain tensor

Ct
t0
ðx0Þ :¼ DFt

t0
ðx0Þ

� �T
DFt

t0
ðx0Þ, a symmetric positive definite

tensor field associated with the flow map. The maximal and

minimal strain eigenvalues and the corresponding strongest and

weakest unit strain eigenvectors of Ct
t0
ðx0Þ satisfy the relations

Ct
t0
ðx0Þemin Ct

t0
ðx0Þ

� �

¼ kmin Ct
t0
ðx0Þ

� �

emin Ct
t0
ðx0Þ

� �

;

Ct
t0
ðx0Þemax Ct

t0
ðx0Þ

� �

¼ kmax Ct
t0
ðx0Þ

� �

emax Ct
t0
ðx0Þ

� �

:

The Finite-Time Lyapunov Exponent (FTLE) over the time

interval ½t0; t� is then defined as

K
t
t0
ðx0Þ :¼

1

2 t� t0ð Þ
logkmax Ct

t0
ðx0Þ

� �

: (3)

The FTLE measures the largest average exponential separa-

tion rate between the trajectory starting at x0 and trajectories

starting infinitesimally close to x0. The separation rates in

this maximization are compared over a common length of

time t� t0ð Þ and hence describe the stretching properties of

the flow map Ft
t0
near x0.

An alternative assessment of separation in the flow is

provided by the Finite-Size Lyapunov exponent (FSLE). As

already noted in the Introduction, for a fixed separation fac-

tor r > 1, and initial separation d0 > 0, the separation time

sðx0; d0; rÞ is defined as

sðx0; d0; rÞ

¼ min
jx1�x0j¼d0

jt� t0j : t > t0; jFt
t0
ðx1Þ � Ft

t0
ðx0Þj ¼ rd0

n o

;

(4)

fromwhich the FSLE field rðx0; d0; rÞ is computed as in Eq. (1).

The only setting in which FSLE and FTLE are directly

related by a formula is that of linear dynamical systems.

Such systems exhibit spatially homogeneous separation

properties at all scales, and hence the quantities r, s and Kt
t0

are all independent of the initial condition x0 and the initial

separation d0. Therefore, for linear systems we obtain

rðrÞ ¼ K
t0þsðrÞ
t0

for the common FSLE and FTLE values that all trajectories

share.

For nonlinear systems, however, the separation time s

will also depend on the initial condition x0 and the initial

separation d0. As a consequence, the FSLE and FTLE fields

will no longer be computable from each other, no matter

what integration time is used in the FTLE.

More generally, the philosophy behind computing FSLE

is not in line with classical, observation-driven assessments

of flow properties between fixed initial and final times. All

basic concepts in dynamical systems and Lagrangian contin-

uum mechanics build on properties of the flow map and

hence fall in the latter observational category. Specifically,

material surfaces that show locally extreme repulsion or

attraction over a fixed observational period (i.e., hyperbolic

LCSs) have no immediate connection with the FSLE field.

III. NON-EQUIVALENCE OF THE FSLE AND FTLE
FIELDS

Despite the above conceptual differences between the

FTLE and FSLE, they are often assumed to be operationally

equivalent. Below, we give several reasons why such an

equivalence cannot hold in general.

A. Ill-posedness of FSLE

While the FTLE is well-defined for any choice of its

arguments (any initial condition and integration time), the

FSLE is not defined at x0 if the local separation around x0
never reaches r-times the initial separation over the duration

of the available velocity data. This affects more and more

initial conditions as r is increased.

Consider, for instance, the transient saddle flow

_x1 ¼ �x1 þ sðtÞð1þ x1Þ;

_x2 ¼ x2 � sðtÞx2;
(5)

with a smooth function s(t) that is strictly monotone increas-

ing over the time interval ½a; b�, with sðtÞ ¼ 0 for t � a and

sðtÞ ¼ 1 for t � b > a > 0. The flow (5) represents a smooth

transition from a stagnation point flow to a parallel shear

flow over the time interval ½a; b�.
Two trajectories of Eq. (5) starting from y0 ¼ y10; y

2
0

� �

and x0 ¼ x10; x
2
0

� �

at time t0 ¼ 0 satisfy the estimate

jFt
0ðy0Þ � Ft

0ðx0Þj � jy10 � x10j þ jy20 � x20je
Ð t

0 ð1�sðsÞÞ ds

� jy10 � x10j þ jy20 � x20je
b � jy0 � x0je

b:

Therefore, for any choice of the initial separation

d0 ¼ jy0 � x0j, the final separation of the trajectories will

never be larger than d0e
b, and hence the FSLE field
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r x0; d0; rð Þ is undefined for any r > eb. At the same time, the

FTLE field Kt
0ðx0Þ is well-defined for any choice of t and x0.

In exploring an a priori unknown flow, the identification

of the maximal meaningful r value for which the FSLE is

well-defined can be a costly numerical process.

B. Insensitivity of FSLE to later changes in the flow

Past the separation time sðx0; d0; rÞ, the FSLE will become

insensitive to any further changes in stretching rates along a tra-

jectory Ft
t0
x0ð Þ. By contrast, the FTLE, when computed over

increasing integration times, keeps monitoring the same trajec-

tory beyond the time sðx0; d0; rÞ, continually revising the aver-

aged largest exponential stretching rate along Ft
t0
x0ð Þ.

For instance, consider the incompressible flow

_x1 ¼ �x1 � sðtÞ
x1

coshðx2Þ
2
;

_x2 ¼ x2 þ sðtÞtanh x2;

(6)

with the smooth function s(t) again defined as in Eq. (5).

This flow turns from a linear saddle into a nonlinear saddle

gradually over the ½a; b� time interval. Therefore, computing

the FSLE field r x0; d0; rð Þ from t0 ¼ 0 with any r � ea gives

r x0; d0; rð Þ ¼ 1;

for any choice of x0 and d0. Therefore, irrespective of the

later transition of the flow from linear to nonlinear, a compu-

tation of the FSLE field will return r � 1 for a range of r val-

ues. This range grows exponentially with the magnitude of

a. Again, in case of an a priori unknown flow, one is

unaware of flow structures and their temporal changes, and

would precisely like to use the FSLE to obtain information

about these unknown factors. Exploring all possible choices

of the separation factor r to obtain this information is clearly

a tedious procedure.

By contrast, over a fixed time interval of observation

½0; t�, the FTLE field Kt
t0
ðx0Þ will correctly assess the uniform

linear separation rate for times up to t¼ a, then starts reflect-

ing the developing inhomogeneity in separation by highlight-

ing the stable manifold of the nonlinear saddle as a ridge for

times t > a (see Fig. 1).

C. Inherent jump-discontinuities of FSLE

While the FTLE is defined through the explicit formula

(3), the FSLE field (1) relies on the separation time s defined

implicitly by Eq. (4). Solutions of such implicit equations

generally admit discontinuities, and the FSLE field is no

exception to this rule.

To illustrate this, we consider the system

_x1 ¼ �0:1p sin px1cos px2;

_x2 ¼ 0:1p cos px1sin px2;
(7)

a specific steady version of the double-gyre flow introduced

by Shadden, Lekien, and Marsden (2005).

Fig. 2(a) shows the FSLE field computed over one of

the two gyres in the flow with separation factor r¼ 6.

Jump-discontinuities along a large family of curves are read-

ily observed. These discontinuities become even more appa-

rent in the middle plot, where we graph FSLE values along

the line x2;spec ¼ 0:48 and x1 2 0; 0:5½ �.
To identify the root cause behind such jump-

discontinuities, we focus on one of the jump locations at

x1;dis � 0:1583, indicated by the vertical line in Fig. 2(b)

around which a discontinuity is observed. In Fig. 2(c), we

graph the time evolution of the largest relative particle sepa-

ration dðt; x0Þ=d0 for two nearby initial conditions, one on

the left and one on the right of the x1;dis � 0:1583 line. This

plot reveals a tangency between the dðt; x1;dis; x2;specÞ=d0
curve and the r¼ 6 horizontal line. A consequence of this

tangency is a sizable jump in the separation time (i.e., the

smallest solution of the equation dðs; x0Þ=d0 ¼ 6) as initial

conditions are varied across x1;dis.

As we establish later in this paper, the above jump-

discontinuities of the FSLE field are typical. They generically

occur along families of codimension-one surfaces in the phase

space of a nonlinear dynamical system (cf. Proposition 1).

D. Sensitivity of FSLE field with respect to temporal
resolution

The presence of jump-discontinuities in the FSLE field

may appear to be a strictly cosmetic issue. However, jumps in

FIG. 1. FSLE and FTLE fields for the flow (6), with initial time t0 ¼ 0 and

transition between a ¼ 0:5 and b ¼ 0:6. (a) FSLE field for r ¼ 1:5. (b)
FTLE field for T¼ 1.
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sðx0; d0; rÞ result in a sensitivity of FSLE calculations with

respect to the temporal resolution of the available flow data.

Indeed, Fig. 2(c) shows that under a course step size in t,

the first crossing of the dðtÞ=d0 ¼ 6 line by the particle-

separation history curve will be missed altogether for an

open set of initial conditions. Instead of the correct separa-

tion time, a larger separation time will be recorded. The

resulting error will typically be substantially larger than the

time-step used in the computation.

LaCasce (2008) has already observed that FSLE statis-

tics show sensitivity with respect to the temporal resolution

in the range of smaller d0 scales. Such sensitivity can be

gradually reduced for analytic and numerical model flows by

selecting smaller and smaller time steps. Step-size reduction,

however, is not an option for in situ observational flow data,

which comes with a fixed (and typically course) temporal re-

solution (LaCasce, 2008).

By contrast, the FTLE field is everywhere continuous in

the time parameter t and the initial condition x0.

Furthermore, errors in an FTLE computation are typically of

higher order with respect to the computational time step used

in integrating the velocity field.

E. Spurious ridges of FSLE

Even in regions where the FSLE field is well-defined

and continuous, FSLE ridges may signal false positives for

repelling LCSs. Because of significant changes in the flow

after the separation time is reached by key trajectories, the

FSLE field may even produce such spurious ridges along

trenches of the FTLE field.

As an example, consider a two-dimensional model for

moving unsteady separation along a horizontal free-slip wall.

The velocity field derives from the stream-function

Hamiltonian

Hðt; xÞ ¼ �L tanhðq2x2Þ tanhðq1ðx1 � atÞÞ; (8)

where L characterizes the strength of the separation; q1 and

q2 control how localized the impact of separation is on the

flow; and a defines the horizontal speed at which the separa-

tion moves. The flow, therefore, becomes steady in a frame

that moves horizontally with speed a.

We fix the parameters L ¼ 4; q1 ¼ 5; q2 ¼ 1, and

a¼ 10, and choose the maximal length of observation time

as T ¼ t� t0 ¼ 2. For this choice of parameters, Fig. 3

shows the instantaneous velocity field for the model (8) at

t¼ 0.

Selecting the separation factor as r ¼ 2:3, we observe in
Fig. 4(a) an FSLE ridge along the x1-axis, starting at about

0.3. Since the separation point moves to the right, initial

positions with larger and larger x1-values experience sep-

aration at later and later times. As a result, the height of

the FSLE ridge along the x1 axis shows large variation.

The separation-time plot in Fig. 4(b) highlights this fur-

ther, indicating a separation-time valley with increasing

bottom-height.

At the same time, by the localized nature of the separa-

tion, only a short segment of the x1 axis will generate a ridge

for the FTLE field for any choice of the integration time.

This axis segment is the subset of initial conditions showing

the most net separation over the time interval T. The rest of

the x1-axis is in fact an FTLE trench, as seen in Fig. 4(c).

FIG. 2. (a) Lines of discontinuities in the FSLE field of the autonomous dou-

ble gyre flow (7). (b) A cross section of the discontinuities along the

x2;spec ¼ 0:48 line. (c) The root cause of the jump-discontinuity at

x1;dis � 0:1583: a tangency of the particle-separation history curve with the

r¼ 6 horizontal line.

FIG. 3. Instantaneous velocity field for the moving separation flow (8).
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For longer integration times, an increasingly long subset of

the x1-axis becomes an FTLE valley, while two nearby

FTLE ridges parallel approach it (Fig. 4(d)). Thus, one can-

not even argue that the FSLE ridge can at least be continued

into a nearby, unique FTLE ridge.

IV. THE INFINITESIMAL-SIZE LYAPUNOV EXPONENT
(ISLE)

The examples of Sec. III illustrate the need to clarify the

relationship between the FSLE and FTLE fields. The first

challenge is that the FSLE is inherently linked to trajectory

separation resulting from a finite-size initial perturbation d0

to the initial condition x0. By contrast, the FTLE describes

the separation of trajectories starting infinitesimally close to

x0. To close this conceptual gap between the two quantities,

we define the infinitesimal analog of FSLE by taking the

d0 ! 0 limit in its definition.

Definition 1. We define the Infinitesimal-Size Lyapunov

Exponent (ISLE) as

r0 x0; rð Þ :¼ lim
d0!0

r x0; d0; rð Þ:

For the FSLE field to provide a meaningful measure of tra-

jectory separation at x0, the ISLE field must be well-defined

at x0, i.e., its defining limit must exist. This is a prerequisite

(albeit no guarantee) for the FSLE to detect hyperbolic LCSs

reliably.

We now present a result on the existence, computation

and relevance of the limit defining r0: In formulating these

results, we will use the infinitesimal analog s0ðx0; rÞ of the

finite-size separation time sðx0; d0; rÞ; defined as

s0ðx0; rÞ :¼ min jt� t0j : t > t0; kmax Ct
t0
ðx0Þ

� �

¼ r2
n o

:

Theorem 1 (Relation of ISLE to FSLE). Assume that

kmaxðC
t0þs0ðx0;rÞ
t0 ðx0ÞÞ is a simple eigenvalue and

@tkmax C
t0þs0ðx0;rÞ
t0 ðx0Þ

� �

6¼ 0: (9)

Then the following hold:

(i) The ISLE field r0 x0; rð Þ is well-defined and C2 at the

point x0, and can be computed as

r0 x0; rð Þ ¼ K
t0þs0 x0;rð Þ
t0 x0ð Þ ¼

log r

s0 x0; rð Þ
; (10)

with Kt
t0
denoting the FTLE field defined in Eq. (3).

(ii) The FSLE field r x0; d0; rð Þ is also well-defined and C2

at the point x0, and satisfies

r x0; d0; rð Þ ¼ r0 x0; rð Þ þ O d0ð Þ: (11)

Proof. See Appendix A. w
Remark 1. Theorem 1 shows that computing the ISLE

field, wherever it is well-defined, gives a close and smooth

approximation to the FSLE field in the same domain. The

advantage of the ISLE is that it is a pointwise indicator of

finite-scale deformation, independent of the choice of initial

grid size. This makes the ISLE field amenable to further

mathematical analysis.

Remark 2. As we show in Appendix A, condition (9)

can also be written in the equivalent form

hDFt
t0
ðx0Þemax Ct

t0
ðx0Þ

� �

; S Ft
t0
ðx0Þ; t

� �

	 DFt
t0
ðx0Þemax Ct

t0
ðx0Þ

� �

ijt¼t0þs0ðx0;rÞ
6¼ 0; (12)

where DFt
t0
ðx0Þ denotes the flow gradient, and Sðx; tÞ

¼ 1
2
rvðx; tÞ þ rvðx; tÞð ÞT
h i

is the Eulerian rate-of-strain ten-

sor. Formula (12) reveals that the ISLE and FSLE fields are

well-defined and smooth at initial locations x0 where the direc-

tion of largest Lagrangian strain is notmapped by the linearized

flow map into a direction of zero instantaneous Eulerian strain.

The non-degeneracy condition (9) (or, equivalently,

(12)) will fail along codimension-one surfaces of initial con-

ditions in the phase space. The following proposition spells

this fact out in more precise terms.

Proposition 1 (Degeneracy of FSLE along hypersurfa-

ces). The non-degeneracy condition (9) for the well-

posedness of the FSLE field is generically violated along

families of ðn� 1Þ-dimensional hypersurfaces in the flow do-

main D � Rn. These hypersurfaces satisfy

FIG. 4. An FSLE ridge with large height-variation that does not correspond

to an FTLE ridge. (a) and (b) FSLE and separation time distribution for the

moving separation flow (8) with separation factor r ¼ 2:3. Note that the

whole of the x1 axis is a ridge for the FSLE field (a), as confirmed by the

separation time field (b). (c) and (d) The FTLE fields for the integration

times T ¼ 0:3 and T ¼ 0:65 admit a trench along most of the x1 axis.
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@tkmax Ct
t0
ðx0Þ

� �

¼ 0; @2
t kmax Ct

t0
ðx0Þ

� �

6¼ 0;

@x0kmax Ct
t0
ðx0Þ

� �

6¼ 0; (13)

with the times t ¼ t0 þ s0ðx0; rÞ substituted after the differen-
tiations in Eq. (13).

Proof. See Appendix A. w
Remark 3. The hypersurfaces defined by formula (13)

define locations of jump-discontinuities for the FSLE field.

In a neighborhood of these surfaces, the FSLE will show

sensitive dependence on the numerical step-size used in its

computation. This generalizes our observations made in

Section III D from a specific two-dimensional, steady flow

model to unsteady flows of arbitrary dimension. The result-

ing sensitivity with respect to the temporal resolution of

the data will be particularly pronounced near hyperbolic

LCSs, where the separation time sðx0; d0; rÞ is low, and

hence errors in its computation will cause significant errors

in the FSLE.

Example 1. In the double-gyre flow (7), the jump condi-

tion (13) holds along one-dimensional curves, as is apparent

from Fig. 5. As a consequence, the ISLE field is not smooth

along these locations, which results in jump-discontinuities

in the FSLE field along crossing curves (cf. Fig. 2).

V. RIDGES AS INVARIANT MANIFOLDS UNDER THE
GRADIENT FLOW

Ridges of the FTLE field are expected to signal hyper-

bolic LCSs, as initially proposed in Haller (2001) (see also

Shadden, 2011 and Peacock and Haller, 2013). While this

expectation is often justified, more recent work has revealed

that FTLE ridges may also produce both false negatives and

false positives in LCS detection (Haller, 2011). False posi-

tives can be filtered out by verifying further conditions along

FTLE ridges (Haller, 2011, 2000; Farazmand and Haller,

2012b; and Karrasch, 2012). False negatives can be avoided

by using more advanced, variational LCS methods that do

not rely on FTLE ridges. These methods are supported by

theorems and render LCSs in a parametrized form, as solu-

tions of differential equations (Haller and Beron Vera, 2012

and Farazmand and Haller, 2012a, 2013).

By analogy with FTLE ridges, FSLE ridges have also

been assumed to signal hyperbolic LCSs (Joseph and Legras,

2002; d’Ovidio et al., 2004; Lehahn et al., 2007;

Bettencourt, L�opez, and Hern�andez Garc�ıa, 2013; and Lai

and T�el, 2011). In view of the differences between the FSLE

and FTLE surveyed in Sec. III, a strict analogy between the

ridges of the two fields cannot hold. Below we establish con-

ditions under which an FSLE ridge does signal a nearby

FTLE ridge, on which further hyperbolicity tests can be per-

formed to ascertain the existence of a hyperbolic LCS in the

flow.

Various ridge definitions are used in topology and visu-

alization (cf. Eberly et al., 1994) for a general survey and

Schindler et al. (2012) for an LCS-related review). Here, we

introduce a new definition that is particularly well-suited for

ridge-continuation from one scalar field to another.

Specifically, we view ridges of a scalar function f(x) as

codimension-one attracting invariant manifolds of the gradi-

ent dynamical system associated with f(x). The following

definition formalizes this view in mathematical terms, moti-

vated by the FTLE-ridge extraction technique devised by

Mathur et al. (2007).

Definition 2 (Ridge). Let f : Rn ! R be a class Cp

function with p � 2. Let M � Rn be a compact,

codimension-one manifold, whose boundary @M is a com-

pact, codimension-two manifold without boundary. We call

M a ridge for the function f if bothM and @M are normally

attracting invariant manifolds for the gradient dynamical

system

_x ¼ rf ðxÞ: (14)

By invariance of a manifold, we mean that trajectories

of Eq. (14) starting in the manifold never leave it in either

time direction. This implies that the gradient vector field

rf ðxÞ is contained in the tangent space TxM at each point

x 2 M. In addition, at each x 2 @M, we must also have

rf ðxÞ 2 Tx@M.

By normal attraction for M, we mean that contraction

rates normal to M dominate any possible contraction rates

along M (Fenichel, 1971). Normal attraction for @M repre-

sents the same requirement, also implying that any contrac-

tion rate within @M must be weaker than contraction rates

within M normal to its boundary @M.

Sketched in Fig. 6(a), the manifold forming the ridge

M is robust under small perturbations to f in the following

sense.

Proposition 2 (Persistence of ridges). A ridge in the

sense of Definition 2 perturbs smoothly into a nearby

C1-close ridge under a small enough C1 perturbation to the

function f ðxÞ:
Proof. See Appendix B. w
The advantage of Definition 2 is that it guarantees

robustness for the ridge based on powerful persistence results

for normally hyperbolic invariant manifolds (see Proposition

2). Other available ridge definitions do not provide a well-

defined set of conditions for ridge-persistence under changes

in the underlying scalar field; only partial results exist for

specific cases (Damon, 1999; Norgard and Bremer, 2013).

FIG. 5. An occurrence of the first two FSLE jump-conditions in (13) along

the x2;spec ¼ 0:48 line in the double-gyre flow (7). The third jump-condition

in (13) is also satisfied, as the FTLE field does not have a stationary point at

this location.
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On the other hand, verifying Definition 2 on a ridge-

candidate set M involves the computation of Lyapunov-type

numbers that guarantee normal hyperbolicity (Fenichel, 1971).

Computing these numbers can be laborious, requiring the nu-

merical solution of trajectories of the gradient system (14) inM.

This computational complexity is absent in the frequent

case when all forward-time limit sets for trajectories of

Eq. (14) in M are fixed points. In that case, it is sufficient to

verify that the normal attraction rate to M and to @M at

each fixed point dominates any potential tangential contrac-

tion rate within these manifolds at the fixed point. This is

because Lyapunov-type numbers associated with a trajectory

coincide with the Lyapunov-type numbers computed on the

limit set of the trajectory (Fenichel, 1971).

In the case of a one-dimensional ridge-candidate M, all

limit sets of system (14) within M are necessarily fixed

points, see Fig. 6(b). Then, we obtain the following readily

verifiable ridge criterion that does not require the numerical

solution of the gradient system (14).

Proposition 3 (Existence of one-dimensional ridges).

Let f : R2 ! R be a class C2 function, and let M � R2 be

a compact curve with boundary. Assume that

(i) rf ðxÞ 2 TxM for all x 2 M;

(ii) rf ðxÞ ¼ 0 and kmax r2f ðxÞ
� �

< 0 for both points

x 2 @M.

(iii) For all points x0 2 M, where rf ðx0Þ ¼ 0, the

Hessian r2f ðx0Þ has simple eigenvalues, with the

smaller eigenvalue satisfying

kmin r2f ðx0Þ
� �

< 0; emin r2f ðx0Þ
� �

?Tx0M:

Then M is a ridge for the function f in the sense of

Definition 2.

Proof. See Appendix B. w
Remark 4. As seen in Fig. 6 and as required by condition

(2) of Proposition 3, a one-dimensional ridge in the sense of

Definition 2 is necessarily a curve connecting two local max-

ima of a scalar field f(x) and containing at least one more

critical point of rf ðxÞ in its interior.

Remark 5. As noted by Schindler et al. (2012), requiring

one of the eigenvectors of the Hessian r2f ðxÞ of a scalar

field f(x) to be parallel to a ridge M at all points x 2 M
leads to an over-constrained ridge definition. Our Definition

2 implies that one of the eigenvectors ofr2f ðx0Þ is automati-

cally parallel to M at any critical point x0 of f(x). This fol-

lows from the fact that M is an invariant manifold for the

gradient flow _x ¼ rf ðxÞ, and hence Tx0M is necessarily an

invariant subspace for the linearized gradient flow _y

¼ r2f ðx0Þy at any critical point x0 2 M of the function f(x).

Condition (iii) of Proposition 3 simply adds the requirement

that the ridge-parallel eigenvector at x0 should be the eigen-

vector corresponding to the smaller eigenvalue of the

Hessian r2f ðx0Þ.

VI. WHEN DOES AN FSLE RIDGE SIGNAL A NEARBY
FTLE RIDGE?

The following result establishes that an FSLE ridge indi-

cates a nearby FTLE ridge, provided that the initial separa-

tion distance d0 is small enough, and the ISLE separation

times s0 x; rð Þ along the FSLE ridge are close enough to a

constant value in the C2 norm.

Theorem 2 (Continuation of FSLE ridges into FTLE

ridges). Let M be a ridge of the FSLE field r x; d0; rð Þ in the

sense of Definition 2. Assume that in a compact neighbor-

hood U of M, we have

@tkmaxðC
t0þs0ðx;rÞ
t0 ðxÞÞ 6¼ 0; jjs0 x; rð Þ � �s0jjC2 � e; x 2 U;

(15)

for appropriate constants �s0 > 0 and 0 � e, and with jj 
 jjC2

referring to the C2 norm. Then, for e; d0 sufficiently small,

the FTLE field Kt0þ�s0
t0

xð Þ has a ridge �M that is Oðe; d0Þ
C1-close to M.

Proof. See Appendix B. w
Remark 6. Theorem 2 implies that there is an open set of

�s0 values for which the Kt0þ�s0
t0

xð Þ field will admit a nearby

ridge. Indeed, small enough changes in the constant �s0 will

not affect the statement of the theorem.

Remark 7. By formula (10), the second condition in Eq.

(15) is equivalent to

�

�

�

�

1

�r
�

1

r x0; rð Þ

�

�

�

�

C2

�
e

log r
; �r :¼

log r

�s0
:

Therefore, one may equivalently require small enough varia-

tions in the reciprocal of ISLE field r x0; rð Þ in the C2 norm

within a compact neighborhood U of the ridge M. This in

turn can be enforced by requiring small enough variations in

the FSLE field along M by formula (11).

FIG. 6. (a) Codimension-one, normally attracting invariant manifold with a

normally attracting boundary for the gradient flow (14). (b) The geometry of

the gradient flow (14) near a one-dimensional ridgeM.
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Remark 8. By Fenichel’s results (Fenichel, 1971), the

FTLE ridge is only guaranteed to be Oðe; d0ÞC
1-close to the

original FSLE ridge. This means that the two ridges are

pointwise close and their tangent spaces at these points are

also close. Closeness of the curvatures of the two ridges,

however, does not immediately follow in our setting.

Remark 9. Assume that the FSLE field is of class Cs

with s � 2, and its ridge is a Cp differentiable manifold with

p � 2. Then the maximum degree of smoothness guaranteed

for a nearby FTLE ridge will be

q ¼ min s� 1; p; min
x02Z0

Int
kmin r2f ðx0Þ

� �

kmax r2f ðx0Þ
� �

" # !

by the theory of normally hyperbolic invariant manifolds

(Fenichel, 1971). Here, we have used the set

Z0 ¼ x0 2 M : rf ðx0Þ ¼ 0; kmin r2f ðx0Þ
� �	

< kmax r2f ðx0Þ
� �

< 0g;

as well as the notation Int 
½ � for the integer part of a positive
real number. The quotient kmin r2f ðx0Þ

� �

=kmax r2f ðx0Þ
� �

is

just the Lyapunov-type number introduced by Fenichel

(1971), computed at stationary values x0 of f along M. The

minimum of these Lyapunov-type numbers potentially limits

the differentiability of the nearby FTLE ridge further, as

seen from the formula defining q. In general, the larger the

minimal Lyapunov-type number along the FSLE ridge, the

more robust the ridge is under perturbations, i.e., the larger

d0 and � can be selected in the statement of Theorem 2.

Example 2. The moving separation example in Sec. III E

shows that large variations in the height of FSLE ridges do

indeed result in the non-persistence of these ridges in the FTLE

field. In this example, a large variation in s0 is observed along

the ISLE ridge defined by x2 ¼ 0, see Fig. 7. As a result, no con-

stant �s0 satisfying (15) can be selected for small values of e > 0.

Theorem 2 and Remark 9 show that FSLE ridges with small

enough variations in their ISLE values in the C2 norm, and with

large enough transverse steepness at their peaks, give rise to

nearby FTLE ridges. Example 2 shows that in flows violating

this requirement, either no or several C1-close FTLE ridges may

exist. Therefore, the types of conditions required in Theorem 2

are indeed necessary for FSLE ridges to be meaningful in hyper-

bolic LCS detection, even though the constants arising in these

conditions are not readily computable from our proof.

VII. INFERRING HYPERBOLIC LCS FROM FSLE
RIDGES

While select FSLE ridges signal the presence of nearby

FTLE ridges by Theorem 2, this does not imply that there is

always a corresponding hyperbolic LCS in the flow. Indeed,

simple examples show that an FTLE ridge may simply indi-

cate locations of locally maximal shear (Haller, 2002, 2011).

More recent variational methods enable the direct extrac-

tion of hyperbolic LCSs as parametrized curves (Farazmand

and Haller, 2012a). Further generalizations extend this com-

putational advantage to parabolic and elliptic LCSs as well

(Haller and Beron Vera, 2012, 2013).

These high-end detection techniques also require addi-

tional computational investment that ensures the accurate so-

lution of differential equations derived from the eigenvector

fields of the Cauchy–Green strain tensor. For a rough first

assessment of hyperbolic LCSs, one may simply check addi-

tional criteria along FTLE ridges to conclude the existence

of nearby hyperbolic LCSs. We refer the reader to (Haller

2011, 2000; Farazmand and Haller, 2012b; and Karrasch

2012) for such criteria.

Conversely, given a spatial scale of interest, a prelimi-

nary FSLE analysis might be helpful in determining a rele-

vant time scale of integration to be used in variational LCS

methods.

VIII. CONCLUSIONS

Using the Infinitesimal-Size Lyapunov Exponent

(ISLE), we have established a link between certain ridges of

the FSLE field and those of the FTLE field. Specifically,

FSLE ridges with moderate ISLE variations and high normal

steepness at their peaks signal nearby FTLE ridges, as long

as the time-derivative of the largest eigenvalue of the

Cauchy-Green strain tensor is nonzero in a neighborhood of

these FSLE ridges (cf. Theorem 2 and Remark 9). This non-

zero derivative condition will, however, be violated along

families of hypersurfaces in the phase space, over which the

FSLE field admits jump-discontinuities.

Families of such FSLE jump-surfaces are generically

present in any nonlinear flow (Proposition 1), creating sensi-

tivity in FSLE computations with respect to the temporal re-

solution of the underlying flow data (cf. Remark 3). This

sensitivity may even impact the accuracy of FSLE statistics,

as has already been observed for float experiments in the

ocean (LaCasce, 2008).

In addition to jump-discontinuities and the associated

temporal sensitivity, we have also identified further disad-

vantages of the FSLE field in detecting Lagrangian coher-

ence. These include ill-posedness for ranges of the

separation parameter r, insensitivity to changes in the flow

once the separation time s is reached, and non-existence of

nearby FTLE ridges in the case of FSLE ridges with substan-

tial variation in their heights. We have illustrated all these

issues with the FSLE in simple examples.

These findings suggest that the simplicity of computing

FSLE comes at a price. If the objective is the accurate and

threshold-free detection of hyperbolic LCSs, then more

recent variational LCS techniques offer multiple advantages

over FSLE-based coherence detection. While these varia-

tional techniques require a higher computational investment,

they do provide a full and rigorous detection of all types of

LCSs, including hyperbolic, parabolic, and elliptic LCSs
FIG. 7. The separation time distribution for the moving separation flow (8)

with separation factor r ¼ 2:3.
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(Haller and Beron Vera, 2012; Beron Vera et al., 2013; and

Haller and Beron Vera, 2013). This is to be contrasted with

the substantial cost of varying two free parameters and with

the remaining uncertainty in the results, if LCSs are to be

inferred from the FSLE field without further mathematical

analysis. On the upside, given a spatial scale of interest,

FSLE may help in identifying the integration times to be

used in variational LCS methods.

In summary, the use of the FSLE in hyperbolic LCS

detection requires caution. Only flows with high temporal re-

solution and limited unsteadiness can be reliably analyzed.

In addition, only ridges with moderate variations in their

height and with high enough normal steepness at their peaks

can be guaranteed to signal nearby LCSs. Even in such

flows, the FSLE field will show sensitivity near hypersurfa-

ces defined by the equation @tkmax C
t0þs0ðx;rÞ
t0 ðxÞ

� �

¼ 0: This
sensitivity is the highest near hyperbolic LCSs, as these lead

to low values of the separation time, whose reciprocal values

magnify errors in the FSLE field.
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APPENDIX A: PROOF OF THEOREM 1, REMARK 2,
AND PROPOSITION 1

1. Proof of Theorem 1

The separation time sðx0; d0; rÞ at the initial condition x0
is the smallest positive solution of the equation

r2d20 ¼ jFt0þs

t0
ðy0Þ � Ft0þs

t0
ðx0Þj

2

¼ jDFt0þs

t0
ðx0Þ y0 � x0ð Þ þ O jy0 � x0j

2
� �

j2

¼ d
2
0he x0ð Þ; DFt0þs

t0
ðx0Þ

h iT

DFt0þs

t0
ðx0Þe x0ð Þi þ O d

3
0

� �

¼ d
2
0he x0ð Þ;C

t0þs

t0
ðx0Þe x0ð Þi þ O d

3
0

� �

; (A1)

where

e x0ð Þ ¼
y0 � x0

jy0 � x0j
;

is the unit vector pointing from x0 towards y0. Dividing (A1)

by d20, we obtain

he x0ð Þ;C
t0þs

t0
ðx0Þe x0ð Þi þ O d0ð Þ ¼ r2; (A2)

which is equivalent to Eq. (A1) for all d0 > 0.

By continuity of all quantities involved in Eq. (A2), the

limit sðx0; rÞ ¼ limd0!0 sðx0; d0; rÞ must coincide with the

minimal solution s of the equation

he x0ð Þ;C
t0þs

t0
ðx0Þe x0ð Þi ¼ r2: (A3)

To explore the solvability of the limiting equation (A3),

recall that the Cauchy–Green strain tensor Ct0þs

t0 ðx0Þ is sym-

metric, positive definite, and satisfies Ct0
t0ðx0Þ ¼ I, with I

denoting the identity matrix. Consequently, s0ðx0; rÞ
:¼ sðx0; 0; rÞ is the smallest positive solution of Eq. (A3) if

e x0ð Þ is chosen as the unit dominant eigenvector

emaxðC
t0þs0ðx0;rÞ
t0 ðx0ÞÞ of the associated Cauchy–Green strain

tensor. In that case, an equivalent equation for the smallest

positive root of Eq. (A3) is given by

kmaxðC
t0þs0ðx0;rÞ
t0 ðx0ÞÞ ¼ r2; (A4)

which implies the formula (10) and hence proves statement

(i) of Theorem 1 with the exception of the claim of C2

smoothness.

To prove statement (ii) of Theorem 1 and the C2 smooth-

ness in statement (i), we want to continue the solution of Eq.

(A2) smoothly from d0 ¼ 0 to d0 > 0 values. By the implicit

function theorem, this continuation requires precisely condition

(9) to hold. Also, the continued solution will be C2 smooth by

the implicit function theorem, given that the right-hand side of

Eq. (2), and hence the flow map, are assumed to be C3 smooth.

Consequently, statement (ii) of Theorem 1 follows.

2. Proof of Remark 2

Observe that the derivative in the non-degeneracy condi-

tion (9) can be computed as

@skmaxðC
t0þs

t0
ðx0ÞÞ

¼ @shemaxðC
t0þs

t0
ðx0ÞÞ;C

t0þs

t0
ðx0ÞemaxðC

t0þs

t0
ðx0ÞÞi

¼ hemaxðC
t0þs

t0
ðx0ÞÞ; @sC

t0þs

t0
ðx0ÞemaxðC

t0þs

t0
ðx0ÞÞi; (A5)

where we have used the fact that

@semax Ct0þs

t0
ðx0Þ

� �

?emax Ct0þs

t0
ðx0Þ

� �

;

given that jemax Ct0þs

t0 ðx0Þ
� �

j � 1: Furthermore, we have

@sC
t0þs

t0
ðx0Þjs0ðx0;rÞ ¼ @sðDF

t0þs

t0
ðx0ÞÞ

T
DFt0þs

t0
ðx0Þ

h

þðDFt0þs

t0
ðx0ÞÞ

T@sðDF
t0þs

t0
ðx0ÞÞ













s0ðx0;rÞ

:

#

(A6)

We recall that the deformation gradient DFt0þs

t0 ðx0Þ satisfies
the equations of variation

@sðDF
t0þs

t0
ðx0ÞÞ ¼ @xvðF

t0þs

t0
ðx0Þ; sÞDF

t0þs

t0
ðx0Þ: (A7)

Substituting expression (A7) into Eq. (A6), then the resulting

equation into Eq. (A5) shows that conditions (9) and (12) are

indeed equivalent, as claimed in Remark 2.

3. Proof of Proposition 1

First, note that points violating the conditions for the

well-posedness of the FSLE satisfy the two scalar equations
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kmaxðC
t0þs0
t0

ðx0ÞÞ � r2 ¼ 0; (A8)

@tkmaxðC
t0þs0
t0

ðx0ÞÞ ¼ 0: (A9)

Assume that an isolated solution ð�s0; �x0Þ exists to this system

of equations, such that �s0 > 0 is also the minimal solution of

Eq. (A8) for �x0. Then, by definition, �s0ð�x0Þ is the separation

time for the initial condition �x0 with separation factor r.

Furthermore, this separation time violates the non-degeneracy

condition (9). Since being a minimal solution is an open prop-

erty and Eq. (A8) is continuous in its arguments, any solutions

ðs0; x0Þ of system (A8) and (A9) close enough to ð�s0; �x0Þ will
also define a separation time and its corresponding location.

We would like to argue that a set of nearby solutions to

Eq. (9) generically exists and forms a smooth, ðn� 1Þ-
dimensional surface in the space of the ðs0; x0Þ variables. To
this end, we let x10 denote the first coordinate of x0 and let

x
ðn�1Þ
0 denote the remaining ðn� 1Þ coordinates of x0, so that

x0 ¼ ðx10; x
ðn�1Þ
0 Þ. We seek to establish that near the solution

ð�s0; �x10; �x
ðn�1Þ
0 Þ, the system of Eqs. (A8) and (A9) will con-

tinue to admit a smooth solution of the form

ðs0; x
1
0Þ ¼ ð�s0; �x

1
0Þ þ h x

ðn�1Þ
0 � �x

ðn�1Þ
0 Þ;

�

where h : U � Rn�1 ! R
2 is a smooth function with

hð0Þ ¼ 0, defined in a neighborhood U of the origin

0 2 Rn�1. This follows from a direct application of the

implicit function theorem to Eqs. (A8) and (A9), provided that

det
@tkmaxðC

t
t0
ðx0ÞÞ @x1

0
kmaxðC

t
t0
ðx0ÞÞ

@2
t kmaxðCt

t0
ðx0ÞÞ @x1

0
@tkmaxðCt

t0
ðx0ÞÞ

 !













t¼t0þ�s0;x0¼�x0

6¼ 0:

(A10)

By Eq. (A9), the first diagonal entry of the matrix in Eq.

(A10) is zero, and hence Eq. (A10) is equivalent to

@2
t kmaxðC

t
t0
ðx0ÞÞ@x1

0
kmaxðC

t
t0
ðx0ÞÞ 6¼ 0; t¼ t0 þ�s0; x0 ¼ �x0:

This latter condition is satisfied as long as (1) kmaxðCt
t0
ð�x0ÞÞ

has a non-degenerate temporal maximum at the degenerate

separation time �s0ð�x0Þ separation, and (2) the maximal

eigenvalue kmaxðCt
t0
ðx0ÞÞ varies strictly in the x10 direction.

Condition (1) holds by the first inequality in Eq. (13).

Condition (2) can always be satisfied by a possible reorder-

ing of the coordinates of the vector x0, given that the second

inequality in Eq. (13) is assumed to hold.

APPENDIX B: PROOF OF PROPOSITION 2,
PROPOSITION 3, AND THEOREM 2

1. Proof of Proposition 2

Elements of this flow geometry sketched in Fig. 6 were

studied by Fenichel (1971), who established general persist-

ence results for compact, normally hyperbolic invariant

manifolds under small perturbations. These results imply

that @M smoothly and uniquely persists in the form of a

nearby attracting, invariant manifold @M under small

perturbations. Furthermore, M can be slightly enlarged into

a normally attracting, inflowing invariant manifold N
beyond its boundary. (An inflowing invariant manifold is a

manifold tangent to the underlying vector field, such that the

vector field points strictly inwards along the boundary of the

manifold.) By Fenichel (1971), such a manifold N also per-

sists smoothly (but typically not uniquely) as an attracting,

inflowing invariant manifold �N .

Now @M necessarily lies in the domain of attraction of
�N , which is only possible if @M � �N . Then the closure of

the interior of @M within �N , which we denote by �M, is a

codimension-one, normally attracting invariant manifold

such that its boundary satisfies @ �M ¼ @M. Consequently,

the original manifold M has smoothly perturbed into �M
under small enough perturbations, as claimed.

2. Proof of Proposition 3

Condition (1) of Proposition 3 ensures that the

codimension-one manifold M is invariant under the flow of

Eq. (14). Condition (2) ensures that the boundary points

(which are necessarily fixed points by the invariance of M)

are attracting along M. Condition (3) ensures that at the

fixed points of the gradient flow (14) contained in M, the

contraction rates normal to M dominate any possible con-

traction rate inside M. Since the asymptotic normal attract-

ing properties of trajectories coincide with those of their

limit sets (Fenichel, 1971), normal attraction for the whole

of M � R2 follows from the fact that normal attraction

holds at all fixed points of Eq. (14) inside M.

3. Proof of Theorem 2

The first condition in Eq. (15) ensures that both the

FSLE and ISLE fields remain well-defined and smooth in the

whole compact neighborhood U. Then, by the second condi-

tion in Eq. (15), we can write

rðx; d0; rÞ ¼ r0ðx; rÞ þ O2ðd0Þ ¼ K
t0þs0ðx0;rÞ
t0 ðxÞ

þ O2ðd0Þ ¼ K
t0þ�s0þOðeÞ
t0 ðxÞ þ O2ðd0Þ

¼ K
t0þ�s0
t0

ðxÞ þ O2ðe; d0Þ;

where the O2ðd0Þ and O2ðe; d0Þ terms denote a small, C2 per-

turbation to the function Kt0þ�s0
t0

ðxÞ. As a result, we have

_x ¼ rKt0þ�s0
t0

ðxÞ ¼ @xrðx; d0; rÞ þ O1ðe; d0Þ; (B1)

in the compact neighborhood U of M, with O1ðe; d0Þ denot-
ing terms that are Oðe; d0ÞC

1-small.

Then, by Proposition 2, the dynamical system (B1)

admits a ridge ~M in the sense of Definition 2, which is

Oðe; d0ÞC
1-close to M, as claimed.
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