
Do incentives build robustness in BitTorrent?

Michael Piatek∗ Tomas Isdal∗ Thomas Anderson∗ Arvind Krishnamurthy∗ Arun Venkataramani†

Abstract

A fundamental problem with many peer-to-peer systems

is the tendency for users to “free ride”—to consume re-

sources without contributing to the system. The popular

file distribution tool BitTorrent was explicitly designed to

address this problem, using a tit-for-tat reciprocity strat-

egy to provide positive incentives for nodes to contribute

resources to the swarm. While BitTorrent has been ex-

tremely successful, we show that its incentive mecha-

nism is not robust to strategic clients. Through perfor-

mance modeling parameterized by real world traces, we

demonstrate that all peers contribute resources that do

not directly improve their performance. We use these re-

sults to drive the design and implementation of BitTyrant,

a strategic BitTorrent client that provides a median 70%

performance gain for a 1 Mbit client on live Internet

swarms. We further show that when applied universally,

strategic clients can hurt average per-swarm performance

compared to today’s BitTorrent client implementations.

1 Introduction

A fundamental problem with many peer-to-peer systems

is the tendency of users to “free ride”—consume re-

sources without contributing to the system. In early peer-

to-peer systems such as Napster, the novelty factor suf-

ficed to draw plentiful participation from peers. Sub-

sequent peer-to-peer systems recognized and attempted

to address the free riding problem; however, their fixes

proved to be unsatisfactory, e.g., “incentive priorities” in

Kazaa could be spoofed; currency in MojoNation was

cumbersome; and the AudioGalaxy Satellite model of

“always-on” clients has not been taken up. More re-

cently, BitTorrent, a popular file distribution tool based

on a swarming protocol, proposed a tit-for-tat (TFT)

strategy aimed at incenting peers to contribute resources

to the system and discouraging free riders.

The tremendous success of BitTorrent suggests that

TFT is successful at inducing contributions from ratio-

nal peers. Moreover, the bilateral nature of TFT allows

for enforcement without a centralized trusted infrastruc-

ture. The consensus appears to be that “incentives build

robustness in BitTorrent” [3, 17, 2, 11].

In this paper, we question this widely held belief. To

this end, we first conduct a large measurement study of

real BitTorrent swarms to understand the diversity of Bit-

∗Dept. of Computer Science and Engineering, Univ. of Washington
†Dept. of Computer Science, Univ. of Massachusetts Amherst

Torrent clients in use today, realistic distributions of peer

upload capacities, and possible avenues of strategic peer

behavior in popular clients. Based on these measure-

ments, we develop a simple model of BitTorrent to corre-

late upload and download rates of peers. We parametrize

this model with the measured distribution of peer upload

capacities and discover the presence of significant altru-

ism in BitTorrent, i.e., all peers regularly make contribu-

tions to the system that do not directly improve their per-

formance. Intrigued by this observation, we revisit the

following question: can a strategic peer game BitTor-

rent to significantly improve its download performance

for the same level of upload contribution?

Our primary contribution is to settle this question in

the affirmative. Based on the insights gained from our

model, we design and implement BitTyrant, a modified

BitTorrent client designed to benefit strategic peers. The

key idea is to carefully select peers and contribution rates

so as to maximize download per unit of upload band-

width. The strategic behavior of BitTyrant is executed

simply through policy modifications to existing clients

without any change to the BitTorrent protocol. We eval-

uate BitTyrant performance on real swarms, establish-

ing that all peers, regardless of upload capacity, can sig-

nificantly improve download performance while reduc-

ing upload contributions. For example, a client with

1 Mb/s upload capacity receives a median 70% perfor-

mance gain from using BitTyrant.

How does use of BitTyrant by many peers in a swarm

affect performance? We find that peers individually ben-

efit from BitTyrant’s strategic behavior, irrespective of

whether or not other peers are using BitTyrant. Peers not

using BitTyrant can experience degraded performance

due to the absence of altruisitic contributions. Taken to-

gether, these results suggest that “incentives do not build

robustness in BitTorrent”.

Robustness requires that performance does not de-

grade if peers attempt to strategically manipulate the sys-

tem, a condition BitTorrent does not meet today. Al-

though BitTorrent peers ostensibly make contributions to

improve performance, we show that much of this contri-

bution is unnecessary and can be reallocated or withheld

while still improving performance for strategic users.

Average download times currently depend on significant

altruism from high capacity peers that, when withheld,

reduces performance for all users.

In addition to our primary contribution, BitTyrant, our



efforts to measure and model altruism in BitTorrent are

independently noteworthy. First, although modeling Bit-

Torrent has seen a large body of work (see Section 6),

our model is simpler and still suffices to capture the

correlation between upload and download rates for real

swarms. Second, existing studies recognizing altruism

in BitTorrent consider small simulated settings or few

swarms that poorly capture the diversity of deployed Bit-

Torrent clients, peer capacities, churn, and network con-

ditions. Our evaluation is more comprehensive. We use

trace driven modeling to drive the design of BitTyrant,

which we then evaluate on more than 100 popular, real

world swarms as well as synthetic swarms on PlanetLab.

Finally, we make BitTyrant available publicly as well as

source code and anonymized traces gathered in our large-

scale measurement study.

The remainder of this paper is organized as fol-

lows. Section 2 provides an overview of the BitTor-

rent protocol and our measurement data, which we use

to parametrize our model. Section 3 develops a simple

model illustrating the sources and extent of altruism in

BitTorrent. Section 4 presents BitTyrant, a modified Bit-

Torrent client for strategic peers, which we evaluate in

Section 5. In Section 6, we discuss related work and

conclude in Section 7.

2 BitTorrent overview

This section presents an overview of the BitTorrent pro-

tocol, its implementation parameters, and the measure-

ment data we use to seed our model.

2.1 Protocol

BitTorrent focuses on bulk data transfer. All users in a

particular swarm are interested in obtaining the same file

or set of files. In order to initially connect to a swarm,

peers download a metadata file, called a torrent, from

a content provider, usually via a normal HTTP request.

This metadata specifies the name and size of the file to

be downloaded, as well as SHA-1 fingerprints of the data

blocks (typically 64–512 KB) that comprise the content

to be downloaded. These fingerprints are used to verify

data integrity. The metadata file also specifies the address

of a tracker server for the torrent, which coordinates

interactions between peers participating in the swarm.

Peers contact the tracker upon startup and departure as

well as periodically as the download progresses, usually

with a frequency of 15 minutes. The tracker maintains a

list of currently active peers and delivers a random subset

of these to clients, upon request.

Users in possession of the complete file, called seeds,

redistribute small blocks to other participants in the

swarm. Peers exchange blocks and control information

with a set of directly connected peers we call the lo-

cal neighborhood. This set of peers, obtained from the

Figure 1: Cumulative distribution of raw bandwidth ca-

pacity for BitTorrent peers as well as the “equal split” ca-

pacity distribution for active set peers, assuming clients

use the reference implementation of BitTorrent.

tracker, is unstructured and random, requiring no special

join or recovery operations when new peers arrive or ex-

isting peers depart. The control traffic required for data

exchange is minimal: each peer transmits messages in-

dicating the data blocks they currently possess and mes-

sages signaling their interest in the blocks of other peers.

We refer to the set of peers to which a BitTorrent client

is currently sending data as its active set. BitTorrent uses

a rate-based TFT strategy to determine which peers to in-

clude in the active set. Each round, a peer sends data to

unchoked peers from which it received data most rapidly

in the recent past. This strategy is intended to provide

positive incentives for contributing to the system and in-

hibit free-riding. However, clients also send data to a

small number of randomly chosen peers who have not

“earned” such status. Such peers are said to be optimisti-

cally unchoked. Optimistic unchokes serve to bootstrap

new peers into the TFT game as well as to facilitate dis-

covery of new, potentially better sources of data. Peers

that do not send data quickly enough to earn reciproca-

tion are removed from the active set during a TFT round

and are said to be choked.

Modulo TCP effects and assuming last-hop bottleneck

links, each peer provides an equal share of its available

upload capacity to peers to which it is actively sending

data. We refer to this rate throughout the paper as a peer’s

equal split rate. This rate is determined by the upload

capacity of a particular peer and the size of its active

set. In the official reference implementation of BitTor-

rent, active set size is proportional to
√

upload capacity

(details in Appendix); although in other popular BitTor-

rent clients, this size is static.

2.2 Measurement

BitTorrent’s behavior depends on a large number of pa-

rameters: topology, bandwidth, block size, churn, data

availability, number of directly connected peers, active

TFT transfers, and number of optimistic unchokes. Fur-

thermore, many of these parameters are a matter of pol-



Implementation Percentage share

Azureus 47%
BitComet 20%
µtorrent 15%
BitLord 6%

Unknown 3%
Reference 2%

Remaining 7%

Table 1: BitTorrent implementation usage as drawn from

measurement data.

icy unspecified by the BitTorrent protocol itself. These

policies may vary among different client implementa-

tions, and defaults may be overridden by explicit user

configuration. To gain an understanding of BitTorrent’s

behavior and the diversity of implementations in the

wild, we first conducted a measurement study of live Bit-

Torrent swarms to ascertain client characteristics.

By making use of the opportunistic measurement tech-

niques presented by Madhyastha et al. [14], we gather

empirical measurements of BitTorrent swarms and hosts.

Our measurement client connected to a large number of

swarms and waited for an optimistic unchoke from each

unique peer. We then estimated the upload capacity of

that client using the multiQ tool [10]. Previous char-

acterizations of end-host capacities of peer-to-peer par-

ticipants were conducted by Saroiu, et al. [18]. We up-

date these results using more recent capacity estimation

tools. We observed 301,595 unique BitTorrent IP ad-

dresses over a 48 hour period during April, 2006 from

3,591 distinct ASes across 160 countries. The upload ca-

pacity distribution for typical BitTorrent peers is given in

Figure 1 along with the distribution of equal split rates

that would arise from peers using the reference BitTor-

rent implementation with no limit on upload rates.

3 Modeling altruism in BitTorrent

In this section, we examine two questions relevant to un-

derstanding how incentives impact performance in Bit-

Torrent: how much altruism is present, and what are the

sources of altruism? The first question suggests whether

or not strategizing is likely to improve performance while

the second informs design. Answering these questions

for real world swarms is complicated by the diversity of

implementations and a myriad of configuration parame-

ters. Here, we take a restricted view and develop a model

of altruism arising from our observed capacity distribu-

tion and the default parameter settings of the reference

implementation of BitTorrent.

We make several assumptions to simplify our analysis

and provide a conservative bound on altruism. Because

our assumptions are not realistic for all swarms, our mod-

eling results are not intended to be predictive. Rather, our

results simply suggest potential sources of altruism and

the reasons they emerge in BitTorrent swarms today. We

exploit these sources of altruism in the design of our real

world strategic client, discussed in Section 4.

• Representative distribution: The CDF shown in Fig-

ure 1 is for the bandwidth capacity of observed IP ad-

dresses over many swarms. The distribution of a typ-

ical swarm may not be identical. For instance, high

capacity peers tend to finish more quickly than low

capacity peers, but they may also join more swarms

simultaneously. If they join only a single swarm and

leave shortly after completion, the relative proportion

of low capacity peers would increase over the lifetime

of a swarm.

• Uniform sizing: Peers, other than the modified client,

use the active set sizing recommended by the reference

BitTorrent implementation. In practice, other BitTor-

rent implementations are more popular (see Table 1)

and have different active set sizes. As we will show,

aggressive active set sizes tend to decrease altruism,

and the reference implementation uses the most ag-

gressive strategy among the popular implementations

we inspected. As a result, our model provides a con-

servative estimate of altruism.

• No steady state: Active sets are comprised of peers

with random draws from the overall upload capacity

distribution. If churn is low, over time TFT may match

peers with similar equal split rates, biasing active set

draws. We argue in the next section that BitTorrent is

slow to reach steady-state, particularly for high capac-

ity peers.

• High block availability: Swarm performance is lim-

ited by upload capacity, i.e., peers will always be able

to find interesting data to download. We find that al-

though the reference BitTorrent implementation is de-

signed to ensure high availability of interesting blocks,

in practice, static active set sizing in some clients may

degrade block availability for high capacity peers.

These assumptions allow us to model altruism in Bit-

Torrent in terms of the upload capacity distribution only.

The model is built on expressions for the probability

of TFT reciprocation, expected download rate, and ex-

pected upload rate. In this section, we focus on the main

insights provided by our model. The precise expressions

are listed in detail in the Appendix.

3.1 Tit-for-tat matching time

Since our subsequent modeling results assume that

swarms do not reach steady state, we first examine the

convergence properties of the TFT strategy used to match

peers of similar capacity. By default, the reference Bit-

Torrent client optimistically unchokes two peers every

30 seconds in an attempt to explore the local neighbor-

hood for better reciprocation pairings. Since all peers are



Figure 2: Assuming a peer set of infinite size, the ex-

pected time required for a new peer to discover enough

peers of equal or greater equal split capacity to fill its

active set.

performing this exploration concurrently, every 30 sec-

onds a peer can expect to explore two candidate peers

and be explored by two candidate peers. Since we know

the equal split capacity distribution, we can express the

probability of finding a peer with equal or greater equal

split capacity—in a given number of 30 second rounds.

Taking the expectation and multiplying it by the size of

the active set gives an estimate of how long a new peer

will have to wait before filling its active set with such

peers.

Figure 2 shows this expected time for our observed

bandwidth distribution. These results suggest that TFT

as implemented does not quickly find good matches for

high capacity peers, even in the absence of churn. For

example, a peer with 6,400 KB/s upload capacity would

transfer more than 4 GB of data before reaching steady

state. In practice, convergence time is likely to be even

longer. We consider a peer as being “content” with a

matching once its equal split is matched or exceeded by a

peer. However, one of the two peers in any matching that

is not exact will be searching for alternates and switching

when they are discovered, causing the other to renew its

search. The long convergence time suggests a potential

source of altruism: high capacity clients are forced to

peer with those of low capacity while searching for better

peers via optimistic unchokes.

3.2 Probability of reciprocation

A node Q sends data only to those peers in its active

transfer set, reevaluated every 10 seconds. If a peer P
sends data to Q at a rate fast enough to merit inclusion

in Q’s active transfer set, P will receive data during the

next TFT round, and we say Q reciprocates with P .

Reciprocation from Q to P is determined by two fac-

tors: the rate at which P sends data to Q and the rates

at which other peers send data to Q. If all other peers in

Q’s current active set send at rates greater than P , Q will

not reciprocate with P .

Figure 3 gives the probability of reciprocation in terms

Figure 3: Reciprocation probability for a peer as a func-

tion of raw upload capacity as well as reference BitTor-

rent equal split bandwidth. Reciprocation probability is

not strictly increasing in raw rate due to the sawtooth in-

crease in active set size (see Table 2 in Appendix).

of both raw upload capacity and, more significantly, the

equal split rate. The sharp jump in reciprocation prob-

ability suggests a potential source of altruism in BitTor-

rent: equal split bandwidth allocation among peers in the

active set. Beyond a certain equal split rate (∼14 KB/s in

Figure 3), reciprocation is essentially assured, suggesting

that further contribution may be altruistic.

3.3 Expected download rate

Each TFT round, a peer P receives data from both TFT

reciprocation and optimistic unchokes. Reciprocation is

possible only from those peers in P ’s active set and de-

pends on P ’s upload rate, while optimistic unchokes may

be received from any peer in P ’s local neighborhood, re-

gardless of upload rate. In the reference BitTorrent client,

the number of optimistic unchoke slots defaults to 2 and

is rotated randomly. As each peer unchokes two peers

per round, the expected number of optimistic unchokes

P will receive is also two for a fixed local neighborhood

size.

Figure 4 gives the expected download throughput for

peers as a function of upload rate for our observed band-

width distribution. The sub-linear growth suggests sig-

nificant unfairness in BitTorrent, particularly for high ca-

pacity peers. This unfairness improves performance for

the majority of low capacity peers, suggesting that high

capacity peers may be able to better allocate their upload

capacity to improve their own performance.

3.4 Expected upload rate

Having considered download performance, we turn next

to upload contribution. Two factors can control the up-

load rate of a peer: data availability and capacity limit.

When a peer is constrained by data availability, it does

not have enough data of interest to its local neighborhood

to saturate its capacity. In this case, the peer’s upload ca-

pacity is wasted and utilization suffers. Because of the

dependence of upload utilization on data availability, it

is crucial that a client downloads new data at a rate fast



Figure 4: Expectation of download performance as a

function of upload capacity. Although this represents a

small portion of the spectrum of observed bandwidth ca-

pacities, ∼80% of samples are of capacity ≤ 200 KB/s.

enough, so that the client can redistribute the downloaded

data and saturate its upload capacity. We have found that

indeed this is the case in the reference BitTorrent client

because of the square root growth rate of its active set

size.

In practice, most popular clients do not follow this dy-

namic strategy and instead make active set size a config-

urable, but static, parameter. For instance, the most pop-

ular BitTorrent client in our traces, Azureus, suggests a

default active set size of four—appropriate for many ca-

ble and DSL hosts, but far lower than is required for high

capacity peers. We explore the impact of active set sizing

further in Section 4.1.

3.5 Modeling altruism

Given upload and download throughput, we have all the

tools required to compute altruism. We consider two def-

initions of altruism intended to reflect two perspectives

on what constitutes strategic behavior. We first consider

altruism to be simply the difference between expected

upload rate and download rate. Figure 5 shows altruism

as a percentage of upload capacity under this definition

and reflects the asymmetry of upload contribution and

download rate discussed in Section 3.3. The second def-

inition is any upload contribution that can be withdrawn

without loss in download performance. This is shown in

Figure 6.

In contrast to the original definition, Figure 6 suggests

that all peers make altruistic contributions that could

be eliminated. Sufficiently low bandwidth peers almost

never earn reciprocation, while high capacity peers send

much faster than the minimal rate required for recipro-

cation. Both of these effects can be exploited. Note

that low bandwidth peers, despite not being reciprocated,

still receive data in aggregate faster than they send data.

This is because they receive indiscriminate optimistic un-

chokes from other users in spite of their low upload ca-

pacity.

Figure 5: Expected percentage of upload capacity which

is altruistic as defined by Equation 5 as a function of rate.

The sawtooth increase is due to the sawtooth growth of

active set sizing and equal split rates arising from integer

rounding (see Table 2).

Figure 6: Expected percentage of upload capacity which

is altruistic when defined as upload capacity not resulting

in direct reciprocation.

3.6 Validation

Our modeling results suggest that at least part of the al-

truism in BitTorrent arises from the sub-linear growth

of download throughput as a function of upload rate.

We validate this key result using our measurement data.

Each time a BitTorrent client receives a complete data

block from another peer, it broadcasts a ‘have’ mes-

sage indicating that it can redistribute that block to other

peers. By averaging the rate of have messages over the

duration our measurement client observes a peer, we can

infer the peer’s download rate. Figure 7 shows this in-

ferred download rate as a function of equal split rate, i.e.,

the throughput seen by the measurement client when op-

timistically unchoked. This data is drawn from our mea-

surements and includes 63,482 peers.

These results indicate an even higher level of altruism

than that predicted by our model (Figure 4). Note that

equal split rate, the parameter of Figure 7, is a conserva-

tive lower bound on total upload capacity, shown in Fig-

ure 4, since each client sends data to many peers simulta-

neously. For instance, peers contributing ∼250 KB/s to

our measurement client had an observed download rate

of 150 KB/s. Our model suggests that such contribution,

even when split among multiple peers, should induce a



Figure 7: Measured validation of sub-linear growth in

download throughput as a function of rate. Each point

represents an average taken over all peers with measured

equal split capacity in the intervals between points.

download rate of more than 200 KB/s. We believe this

underestimate is due to more conservative active set sizes

in practice than those assumed in our model.

4 Building BitTyrant: A strategic client

The modeling results of Section 3 suggest that altruism

in BitTorrent serves as a kind of progressive tax. As

contribution increases, performance improves, but not

in direct proportion. In this section, we describe the

design and implementation of BitTyrant, a client opti-

mized for strategic users. We chose to base BitTyrant

on the Azureus client in an attempt to foster adoption, as

Azureus is the most popular client in our traces.

If performance for low capacity peers is disproportion-

ately high, a strategic user can simply exploit this unfair-

ness by masquerading as many low capacity clients to

improve performance [4]. Also, by flooding the local

neighborhood of high capacity peers, low capacity peers

can inflate their chances of TFT reciprocation by domi-

nating the active transfer set of a high capacity peer. In

practice, these attacks are mitigated by a common client

option to refuse multiple connections from a single IP

address. Resourceful peers might be able to coordinate

multiple IP addresses, but such an attack is beyond the

capabilities of most users. We focus instead on practical

strategies that can be employed by typical users.

The unfairness of BitTorrent has been noted in previ-

ous studies [2, 5, 7], many of which include protocol re-

designs intended to promote fairness. However, a clean-

slate redesign of the BitTorrent protocol ignores a differ-

ent but important incentives question: how to get users

to adopt it? As shown in Section 3, the majority of Bit-

Torrent users benefit from its unfairness today. Designs

intended to promote fairness globally at the expense of

the majority of users seem unlikely to be adopted. Rather

than focus on a redesign at the protocol level, we focus

on BitTorrent’s robustness to strategic behavior and find

that strategizing can improve performance in isolation

while promoting fairness at scale.

4.1 Maximizing reciprocation

The modeling results of Section 3 and the operational

behavior of BitTorrent clients suggest the following three

strategies to improve performance.

• Maximize reciprocation bandwidth per connection:

All things being equal, a node can improve its per-

formance by finding peers that reciprocate with high

bandwidth for a low offered rate, dependent only on

the other peers of the high capacity node. The recipro-

cation bandwidth of a peer is dependent on its upload

capacity and its active set size. By discovering which

peers have large reciprocation bandwidth, a client can

optimize for a higher reciprocation bandwidth per con-

nection.

• Maximize number of reciprocating peers: A client can

expand its active set to maximize the number of peers

that reciprocate until the marginal benefit of an addi-

tional peer is outweighed by the cost of reduced recip-

rocation probability from other peers.

• Deviate from equal split: On a per-connection basis, a

client can lower its upload contribution to a particular

peer as long as that peer continues to reciprocate. The

bandwidth savings could then be reallocated to new

connections, resulting in an increase in the overall re-

ciprocation throughput.

The modeling results indicate that these strategies are

likely to be effective. The largest source of altruism

in our model is unnecessary contribution to peers in a

node’s active set. The reciprocation probability shown in

Figure 3 indicates that strategically choosing equal split

bandwidth can reduce contribution significantly for high

capacity peers with only a marginal reduction in recip-

rocation probability. A peer with equal split capacity of

100 KB/s, for instance, could reduce its rate to 15 KB/s

with a reduction in expected probability of reciprocation

of only 1%. However, reducing from 15 KB/s to 10 KB/s

would result in a decrease of roughly 40%.

The reciprocation behavior points to a performance

trade-off. If the active set size is large, equal split

capacity is reduced, reducing reciprocation probability.

However, an additional active set connection is an addi-

tional opportunity for reciprocation. To maximize per-

formance, a peer should increase its active set size un-

til an additional connection would cause a reduction in

reciprocation across all connections sufficient to reduce

overall download performance.

If the equal split capacity distribution of the swarm is

known, we can derive the active set size that maximizes

the expected download rate. For our observed bandwidth

distribution, Figure 8 shows the download rate as a func-

tion of the active set size for a peer with 300 KB/s upload

capacity as well as the active set size that maximizes it.

The graph also implicitly reflects the sensitivity of recip-



Figure 8: Left: The expected download performance of a client with 300 KB/s upload capacity for increasing active

set size. Right: The performance-maximizing active set size for peers of varying rate. The strategic maximum is linear

in upload capacity, while the reference implementation of BitTorrent suggests active size ∼
√

rate. Although several

hundred peers may be required to maximize throughput, most trackers return fewer than 100 peers per request.

rocation probability to equal split rate.

Figure 8 is for a single strategic peer and suggests that

strategic high capacity peers can benefit much more by

manipulating their active set size. Our example peer with

upload capacity 300 KB/s realizes a maximum down-

load throughput of roughly 450 KB/s. However, increas-

ing reciprocation probability via active set sizing is ex-

tremely sensitive—throughput falls off quickly after the

maximum is reached. Further, it is unclear if active set

sizing alone would be sufficient to maximize reciproca-

tion in an environment with several strategic clients.

These challenges suggest that any a priori active set

sizing function may not suffice to maximize download

rate for strategic clients. Instead, they motivate the dy-

namic algorithm used in BitTyrant that adaptively mod-

ifies the size and membership of the active set and the

upload bandwidth allocated to each peer (see Figure 9).

In both BitTorrent and BitTyrant, the set of peers that

will receive data during the next TFT round is decided by

the unchoke algorithm once every 10 seconds. BitTyrant

differs from BitTorrent as it dynamically sizes its active

set and varies the sending rate per connection. For each

peer p, BitTyrant maintains estimates of the upload rate

required for reciprocation, up, as well as the download

throughput, dp, received when p reciprocates. Peers are

ranked by the ratio dp/up and unchoked in order until the

sum of up terms for unchoked peers exceeds the upload

capacity of the BitTyrant peer.

The rationale underlying this unchoke algorithm is

that the best peers are those that reciprocate most for the

least number of bytes contributed to them, given accurate

information regarding up and dp. Implicit in the strategy

are the following assumptions and characteristics:

• The strategy attempts to maximize the download rate

for a given upload budget. The ranking strategy cor-

responds to the value-density heuristic for the knap-

sack problem. In practice, the download benefit (dp)

and upload cost (up) are not known a priori. The up-

For each peer p, maintain estimates of expected download

performance dp and upload required for reciprocation up.

Initialize up and dp assuming the bandwidth

distribution in Figure 2.

dp is initially the expected equal split capacity of p.

up is initially the rate just above the step in the

reciprocation probability.

Each round, rank order peers by the ratio dp/up and unchoke

those of top rank until the upload capacity is reached.

d0

u0

,
d1

u1

,
d2

u2

,
d3

u3

,
d4

u4
| {z }

choose k |
Pk

i=0
ui ≤ cap

, ...

At the end of each round for each unchoked peer:

If peer p does not unchoke us: up ← (1 + δ)up

If peer p unchokes us: dp ← observed rate.

If peer p has unchoked us for the last r rounds:

up ← (1− γ)up

Figure 9: BitTyrant unchoke algorithm

date operation dynamically estimates these rates and,

in conjunction with the ranking strategy, optimizes

download rate over time.

• BitTyrant is designed to tap into the latent altruism in

most swarms by unchoking the most altruistic peers.

However, it will continue to unchoke peers until it ex-

hausts its upload capacity even if the marginal utility

is sub-linear. This potentially opens BitTyrant itself to

being cheated, a topic we return to later.

• The strategy can be easily generalized to handle con-

current downloads from multiple swarms. A client can

optimize the aggregate download rate by ordering the

dp/up ratios of all connections across swarms, thereby



dynamically allocating upload capacity to all peers.

User-defined priorities can be implemented by using

scaling weights for the dp/up ratios.

The algorithm is based on the ideal assumption

that peer capacities and reciprocation requirements are

known. We discuss how to predict them next.

Determining upload contributions: The BitTyrant

unchoke algorithm must estimate up, the upload contri-

bution to p that induces reciprocation. We initialize up

based on the distribution of equal split capacities seen

in our measurements, and then periodically update it de-

pending on whether p reciprocates for an offered rate.

In our implementation, up is decreased by γ = 10% if

the peer reciprocates for r = 3 rounds, and increased by

δ = 20% if the peer fails to reciprocate after being un-

choked during the previous round. We use small multi-

plicative factors since the spread of equal split capacities

is typically small in current swarms. Although a natu-

ral first choice, we do not use a binary search algorithm,

which maintains upper and lower bounds for upload con-

tributions that induce reciprocation, because peer recip-

rocation changes rapidly under churn and bounds on

reciprocation-inducing uploads would eventually be vi-

olated.

Estimating reciprocation bandwidths: For peers that

unchoke the BitTyrant client, dp is simply the rate at

which data was obtained from p. Note that we do not

use a packet-pair based bandwidth estimation technique

as suggested by Bharambe [2], but rather consider the

average download rate over a TFT round. Based on our

measurements, not presented here due to space limita-

tions, we find that packet-pair based bandwidth estimates

do not accurately predict peers’ equal split capacities due

to variability in active set sizes and end-host traffic shap-

ing. The observed rate over a longer period is the only

accurate estimate, a sentiment shared by Cohen [3].

Of course, this estimate is not available for peers that

have not uploaded any data to the BitTyrant client. In

such cases, BitTyrant approximates dp for a given peer

p by measuring the frequency of block announcements

from p. The rate at which new blocks arrive at p provides

an estimate of p’s download rate, which we use as an es-

timate of p’s total upload capacity. We then divide the

estimated capacity by the Azureus recommended active

set size for that rate to estimate p’s equal split rate. This

strategy is likely to overestimate the upload capacities

of unobserved peers, serving to encourage their selection

from the ranking of dp/up ratios. At present, this pref-

erence for exploration may be advantageous due to the

high end skew in altruism. Discovering high end peers

is rewarding: between the 95th and 98th percentiles, re-

ciprocation throughput doubles. Of course, this strategy

may open BitTyrant itself to exploitation, e.g., if a peer

rapidly announces false blocks. We discuss how to make

BitTyrant robust in Sections 4.3 and 5.

4.2 Sizing the local neighborhood

Existing BitTorrent clients maintain a pool of typically

50–100 directly connected peers. The set is sized to be

large enough to provide a diverse set of data so peers can

exchange blocks without data availability constraints.

However, the modeling results of Section 4.1 suggest

that these typical local neighborhood sizes will not be

large enough to maximize performance for high capacity

peers, which may need an active set size of several hun-

dred peers to maximize download throughput. Maintain-

ing a larger local neighborhood also increases the num-

ber of optimistic unchokes received.

To increase the local neighborhood size in BitTyrant,

we rely on existing BitTorrent protocol mechanisms and

third party extensions implemented by Azureus. We re-

quest as many peers as possible from the centralized

tracker at the maximum allowed frequency. Recently,

the BitTorrent protocol has incorporated a DHT-based

distributed tracker that provides peer information and is

indexed by a hash of the torrent. We have increased the

query rate of this as well. Finally, the Azureus imple-

mentation includes a BitTorrent protocol extension for

gossip among peers. Unfortunately, the protocol exten-

sion is push-based; it allows for a client to gossip to its

peers the identity of its other peers but cannot induce

those peers to gossip in return. As a result, we cannot

exploit the gossip mechanism to extract extra peers.

A concern when increasing the size of the local neigh-

borhood is the corresponding increase in protocol over-

head. Peers need to exchange block availability infor-

mation, messages indicating interest in blocks, and peer

lists. Fortunately, the overhead imposed by maintaining

additional connections is modest. In comparisons of Bit-

Tyrant and the existing Azureus client described in Sec-

tion 5, we find that average protocol overhead as a per-

centage of total file data received increases from 0.9% to

1.9%. This suggests that scaling the local neighborhood

size does not impose a significant overhead on BitTyrant.

4.3 Additional cheating strategies

We now discuss more strategies to improve download

performance. We do not implement these in BitTyrant

as they can be thwarted by simple fixes to clients. We

mention them here for completeness.

Exploiting optimistic unchokes: The reference Bit-

Torrent client optimistically unchokes peers randomly.

Azureus, on the other hand, makes a weighted random

choice that takes into account the number of bytes ex-

changed with a peer. If a peer has built up a deficit in

the number of traded bytes, it is less likely to be picked

for optimistic unchokes. In BitTorrent today, we observe



that high capacity peers are likely to have trading deficits

with most peers. A cheating client can exploit this by dis-

connecting and reconnecting with a different client iden-

tifier, thereby wiping out the past history and increasing

its chances of receiving optimistic unchokes, particularly

from high capacity peers. This exploit becomes ineffec-

tive if clients maintain the IP addresses for all peers en-

countered during the download and keep peer statistics

across disconnections.

Downloading from seeds: Early versions of BitTor-

rent clients used a seeding algorithm wherein seeds up-

load to peers that are the fastest downloaders, an algo-

rithm that is prone to exploitation by fast peers or clients

that falsify download rate by emitting ‘have’ messages.

More recent versions use a seeding algorithm that per-

forms unchokes randomly, spreading data in a uniform

manner that is more robust to manipulation.

Falsifying block availability: A client would prefer

to unchoke those peers that have blocks that it needs.

Thus, peers can appear to be more attractive by falsi-

fying block announcements to increase the chances of

being unchoked. In practice, this exploit is not very ef-

fective. First, a client is likely to consider most of its

peers interesting given the large number of blocks in a

typical swarm. Second, false announcements could lead

to only short-term benefit as a client is unlikely to con-

tinue transferring once the cheating peer does not satisfy

issued block requests.

5 Evaluation

To evaluate BitTyrant, we explore the performance im-

provement possible for a single strategic peer in synthetic

and current real world swarms as well as the behavior

of BitTyrant when used by all participants in synthetic

swarms.

Evaluating altruism in BitTorrent experimentally and

at scale is challenging. Traditional wide-area testbeds

such as PlanetLab do not exhibit the highly skewed band-

width distribution we observe in our measurements, a

crucial factor in determining the amount of altruism.

Alternatively, fully configurable local network testbeds

such as Emulab are limited in scale and do not incorpo-

rate the myriad of performance events typical of opera-

tion in the wide-area. Further, BitTorrent implementa-

tions are diverse, as shown in Table 1.

To address these issues, we perform two separate eval-

uations. First, we evaluate BitTyrant on real swarms

drawn from popular aggregation sites to measure real

world performance for a single strategic client. This pro-

vides a concrete measure of the performance gains a user

can achieve today. To provide more insight into how Bit-

Tyrant functions, we then revisit these results on Planet-

Lab where we evaluate sensitivity to various upload rates

Figure 10: CDF of download performance for 114 real

world swarms. Shown is the ratio between download

times for an existing Azureus client and BitTyrant. Both

clients were started simultaneously on machines at UW

and were capped at 128 KB/s upload capacity.

and evaluate what would happen if BitTyrant is univer-

sally deployed.

5.1 Single strategic peer

To evaluate performance under the full diversity of real-

istic conditions, we crawled popular BitTorrent aggrega-

tion websites to find candidate swarms. We ranked these

by popularity in terms of number of active participants,

ignoring swarms distributing files larger than 1 GB. The

resulting swarms are typically for recently released files

and have sizes ranging from 300–800 peers, with some

swarms having as many as 2,000 peers.

We then simultaneously joined each swarm with a Bit-

Tyrant client and an unmodified Azureus client with rec-

ommended default settings. We imposed a 128 KB/s up-

load capacity limit on each client and compared comple-

tion times. This represents a relatively well provisioned

peer for which Azureus has a recommended active set

size. A CDF of the ratio of original client completion

time to BitTyrant completion time is given in Figure 10.

These results demonstrate the significant, real world per-

formance boost that users can realize by behaving strate-

gically. The median performance gain for BitTyrant is a

factor of 1.72 with 25% of downloads finishing at least

twice as fast with BitTyrant. We expect relative perfor-

mance gains to be even greater for clients with greater

upload capacity.

These results provide insight into the performance

properties of real BitTorrent swarms, some of which limit

BitTyrant’s effectiveness. Because of the random set of

peers that BitTorrent trackers return and the high skew

of real world equal split capacities, BitTyrant cannot al-

ways improve performance. For instance, in BitTyrant’s

worst-performing swarm, only three peers had average

equal split capacities greater than 10 KB/s. In contrast,

the unmodified client received eight such peers. Total

download time was roughly 15 minutes, the typical min-

imum request interval for peers from the tracker. As a re-



Figure 11: Download times and sample standard devia-

tion comparing performance of a single BitTyrant client

and an unmodified Azureus client on a synthetic Planet-

Lab swarm.

sult, BitTyrant did not recover from its initial set of com-

paratively poor peers. To some extent, performance can

be based on luck with respect to the set of initial peers

returned. More often than not, BitTyrant benefits from

this, as it always requests a comparatively large set of

peers from the tracker.

Another circumstance for which BitTyrant cannot sig-

nificantly improve performance is a swarm whose ag-

gregate performance is controlled by data availability

rather than the upload capacity distribution. In the wild,

swarms are often hamstrung by the number of peers seed-

ing the file—i.e., those with a complete copy. If the ca-

pacity of these peers is low or if the torrent was only

recently made available, there may simply not be enough

available data for peers to saturate their upload capac-

ities. In other words, if a seed with 128 KB/s capac-

ity is providing data to a swarm of newly joined users,

those peers will be able to download at a rate of at most

128 KB/s regardless of their capacity. Because many

of the swarms we joined were recent, this effect may

account for the 12 swarms for which download perfor-

mance differed by less than 10%.

These scenarios can hinder the performance of Bit-

Tyrant, but they account for a small percentage of our

observed swarms overall. For most real swarms today,

users can realize significant performance benefits from

the strategic behavior of BitTyrant.

Although the performance improvements gained from

using BitTyrant in the real world are encouraging, they

provide little insight into the operation of the system at

scale. We next evaluate BitTyrant in synthetic scenar-

ios on PlanetLab to shed light on the interplay between

swarm properties, strategic behavior, and performance.

Because PlanetLab does not exhibit the highly skewed

bandwidth distribution observed in our traces, we rely on

application level bandwidth caps to artificially constrain

the bandwidth capacity of PlanetLab nodes in accor-

dance with our observed distribution. However, because

PlanetLab is often oversubscribed and shares bandwidth

equally among competing experiments, not all nodes are

capable of matching the highest values from the observed

distribution. To cope with this, we scaled by 1/10th both

the upload capacity draws from the distribution as well as

relevant experimental parameters such as file size, initial

unchoke bandwidth, and block size. This was sufficient

to provide overall fidelity to our intended distribution.

Figure 11 shows the download performance for a sin-

gle BitTyrant client as a function of rate averaged over six

trials with sample standard deviation. This experiment

was hosted on 350 PlanetLab nodes with bandwidth ca-

pacities drawn from our scaled distribution. Three seeds

with combined capacity of 128 KB/s were located at UW

serving a 5 MB file. We did not change the default seed-

ing behavior, and varying the combined seed capacity

had little impact on overall swarm performance after ex-

ceeding the average upload capacity limit. To provide

synthetic churn with constant capacity, each node’s Bit-

Tyrant client disconnected immediately upon completion

and reconnected immediately.

The results of Figure 11 provide several insights into

the operation of BitTyrant.

• BitTyrant does not simply improve performance, it

also provides more consistent performance across

multiple trials. By dynamically sizing the active set

and preferentially selecting peers to optimistically un-

choke, BitTyrant avoids the randomization present

in existing TFT implementations, which causes slow

convergence for high capacity peers (Section 3.1).

• There is a point of diminishing returns for high ca-

pacity peers, and BitTyrant can discover it. For clients

with high capacity, the number of peers and their avail-

able bandwidth distribution are significant factors in

determining performance. Our modeling results from

Section 4.1 suggest that the highest capacity peers may

require several hundred available peers to fully max-

imize throughput due to reciprocation. Real world

swarms are rarely this large. In these circumstances,

BitTyrant performance is consistent, allowing peers to

detect and reallocate excess capacity for other uses.

• Low capacity peers can benefit from BitTyrant. Al-

though the most significant performance benefit comes

from intelligently sizing the active set for high capac-

ity peers (see Figure 8), low capacity peers can still im-

prove performance with strategic peer selection, pro-

viding them with an incentive to adopt BitTyrant.

• Fidelity to our specified capacity distribution is con-

sistent across multiple trials. Comparability of exper-

iments is often a concern on PlanetLab, but our re-

sults suggest a minimum download time determined

by the capacity distribution that is consistent across

trials spanning several hours. Further, the consistent

performance of BitTyrant in comparison to unmodi-



fied Azureus suggests that the variability observed is

due to policy and strategy differences and not Planet-

Lab variability.

5.2 Many BitTyrant peers

Given that all users have an individual incentive to be

strategic in current swarms, we next examine the perfor-

mance of BitTyrant when used by all peers in a swarm.

We consider two types of BitTyrant peers: strategic and

selfish. Any peer that uses the BitTyrant unchoking al-

gorithm (Figure 9) is strategic. If such a peer also with-

holds contributing excess capacity that does not improve

performance, we say it is both strategic and selfish. Bit-

Tyrant can operate in either mode. Selfish behavior may

arise when users participate in multiple swarms, as dis-

cussed below, or simply when users want to use their up-

load capacity for services other than BitTorrent.

We first examine performance when all peers are

strategic, i.e., use BitTyrant while still contributing ex-

cess capacity. Our experimental setup included 350

PlanetLab nodes with upload capacities drawn from our

scaled distribution simultaneously joining a swarm dis-

tributing a 5 MB file with combined seed capacity of

128 KB/s. All peers departed immediately upon down-

load completion. Initially, we expected overall perfor-

mance to degrade since high capacity peers would finish

quickly and leave, reducing capacity in the system. Sur-

prisingly, performance improved and altruism increased.

These results are summarized by the CDFs of completion

times comparing BitTyrant and the unmodified Azureus

client in Figure 12. These results are consistent with

our model. In a swarm where the upload capacity distri-

bution has significant skew, high capacity peers require

many connections to maximize reciprocation. BitTyrant

reduces bootstrapping time and results in high capacity

peers having higher utilization earlier, increasing swarm

capacity.

Although BitTyrant can improve performance, such

improvement is due only to more effective use of altruis-

tic contribution. Because BitTyrant can detect the point

of diminishing returns for performance, these contribu-

tions can be withheld or reallocated by selfish clients.

Users may choose to reallocate capacity to services other

than BitTorrent or to other swarms, as most peers par-

ticipate in several swarms simultaneously [7]. While

all popular BitTorrent implementations support down-

loading from multiple swarms simultaneously, few make

any attempt to intelligently allocate bandwidth among

them. Those that do so typically allocate some amount

of a global upload capacity to each swarm individu-

ally, which is then split equally among peers in statically

sized active sets. Existing implementations cannot accu-

rately detect when bandwidth allocated to a given swarm

should be reallocated to another to improve performance.

In contrast, BitTyrant’s unchoking algorithm transitions

naturally from single to multiple swarms. Rather than al-

locate bandwidth among swarms, as existing clients do,

BitTyrant allocates bandwidth among connections, opti-

mizing aggregate download throughput over all connec-

tions for all swarms. This allows high capacity BitTyrant

clients to effectively participate in more swarms simul-

taneously, lowering per-swarm performance for low ca-

pacity peers that cannot.

To model the effect of selfish BitTyrant users, we re-

peated our PlanetLab experiment with the upload capac-

ity of all high capacity peers capped at 100 KB/s, the

point of diminishing returns observed in Figure 11. A

CDF of performance under the capped distribution is

shown in Figure 12. As expected, aggregate performance

decreases. More interesting is the stable rate of diminish-

ing returns BitTyrant identifies. As a result of the skewed

bandwidth distribution, beyond a certain point peers that

contribute significantly more data do not see significantly

faster download rates. If peers reallocate this altruis-

tic contribution, aggregate capacity and average perfor-

mance are reduced, particularly for low capacity peers.

This is reflected in comparing the performance of sin-

gle clients under the scaled distribution (Figure 11) and

single client performance under the scaled distribution

when constrained (Figure 12). The average completion

time for a low capacity peer moves from 314 to 733 sec-

onds. Average completion time for a peer with 100 KB/s

of upload capacity increases from 108 seconds to 190.

While BitTyrant can improve performance for a single

swarm, there are several circumstances for which its use

causes performance to degrade.

• If high capacity peers participate in many swarms or

otherwise limit altruism, total capacity per swarm de-

creases. This reduction in capacity lengthens down-

load times for all users of a single swarm regardless

of contribution. Although high capacity peers will see

an increase in aggregate download rate across many

swarms, low capacity peers that cannot successfully

compete in multiple swarms simultaneously will see a

large reduction in download rates. Still, each individ-

ual peer has an incentive to be strategic as their per-

formance improves relative to that of standard clients,

even when everyone is strategic or selfish.

• New users experience a lengthy bootstrapping period.

To maximize throughput, BitTyrant unchokes peers

that send fast. New users without data are boot-

strapped by the excess capacity of the system only.

Bootstrapping time may be reduced by reintroducing

optimistic unchokes, but it is not clear that selfish

peers have any incentive to do so.

• Peering relationships are not stable. BitTyrant was de-

signed to exploit the significant altruism that exists in



Figure 12: Left: CDFs of completion times for a 350 node PlanetLab experiment. BitTyrant and the original,

unmodified client assume all users contribute all of their capacity. Capped BitTyrant shows performance when high

capacity, selfish peers limit their contribution to the point of diminishing returns for performance. Right: The impact

of selfish BitTyrant caps on performance. Download times at all bandwidth levels increase (cf. Figure 11) and high

capacity peers gain little from increased contribution. Error bars give sample standard deviation over six trials.

BitTorrent swarms today. As such, it continually re-

duces send rates for peers that reciprocate, attempt-

ing to find the minimum rate required. Rather than

attempting to ramp up send rates between high capac-

ity peers, BitTyrant tends to spread available capacity

among many low capacity peers, potentially causing

inefficiency due to TCP effects [16].

To work around this last effect, BitTyrant advertises

itself at connection time using the Peer ID hash. With-

out protocol modification, BitTyrant peers recognize one

another and switch to a block-based TFT strategy that

ramps up send rates until capacity is reached. BitTyrant

clients choke other BitTyrant peers whose block request

rates exceeds their send rates. By gradually increasing

send and request rates to other BitTyrant clients, fairness

is preserved while maximizing reciprocation rate with

fewer connections. In this way, BitTyrant provides a de-

ployment path leading to the conceptually simple strat-

egy of block-based TFT by providing a short-term in-

centive for adoption by all users—even those that stand

to lose from a shift to block-based reciprocation.

We do not claim that BitTyrant is strategyproof, even

when extended with block-based TFT, and leave open for

future work the question of whether further strategizing

can be effective. However, a switch to block-based TFT

among mutually agreeing peers would place a hard limit

on altruism and limit the range of possible strategies.

6 Related work

Modeling and analysis of BitTorrent’s current incentive

mechanism and its effect on performance has seen a

large body of work since Cohen’s [3] seminal paper.

Our effort differs from existing work in two fundamental

ways. First is the conclusion: we refute popular wis-

dom that BitTorrent’s incentive mechanism makes it ro-

bust to strategic peer behavior. Second is the method-

ology: most existing studies consider small or simulated

settings that poorly capture the diversity of deployed Bit-

Torrent clients, strategic peer behavior, peer capacities,

and network conditions. In contrast, we explore BitTor-

rent’s strategy space with our implementation of a strate-

gic client and evaluate it using analytical modeling, ex-

periments under realistic network conditions, and testing

in the wild.

The canonical TFT strategy was first evaluated by Ax-

elrod [1], who showed using a competition that the strat-

egy performs better than other submissions when there

are many repeated games, persistent identities, and no

collusion. Qiu and Srikant [17] specifically study Bit-

Torrent’s rate-based TFT strategy. They show that if

peers strategically limit their upload bandwidth (but split

it equally) while trying to maximize download, then, un-

der some bandwidth distributions, the system converges

to a Nash equilibrium where all peers upload at their ca-

pacity. These results might lead one to believe that Bit-

Torrent’s incentive mechanism is robust as it incentivizes

users to contribute their entire upload capacities. Unfor-

tunately, our work shows that BitTorrent fails to attain

such an equilibrium for typical file sizes in swarms with

realistic bandwidth distributions and churn, which Bit-

Tyrant exploits through strategic peer and rate selection.

Bharambe et al. [2] simulate BitTorrent using a syn-

thetically generated distribution of peer upload capaci-

ties. They show the presence of significant altruism in

BitTorrent and propose two alternate peer selection al-

gorithms based on (i) matching peers with similar band-

width, and (ii) enforcing TFT at the block level, a strat-

egy also proposed by [9]. Fan et al. propose strate-

gies for assigning rates to connections [5], which when

adopted by all members of a swarm would lead to fair-

ness and minimal altruism. The robustness of these

mechanisms to strategic peer behavior is unclear. More

importantly, these proposals appear to lack a convinc-

ing evolution path—a peer adopting these strategies to-



day would severely hurt its download throughput as the

majority of deployed conformant clients will find such a

peer unattractive. In contrast, we demonstrate that Bit-

Tyrant can drastically reduce altruism while improving

performance for a single strategic client today, incenting

its adoption.

Shneidman et al. [19] identify two forms of strategic

manipulation based on Sybil attacks [4] and a third based

on uploading garbage data. Liogkas et al. [12] propose

downloading only from seeds and also identify an ex-

ploit based on uploading garbage data. Locher et al.

investigate similar techniques, i.e., ignoring rate limits

of tracker requests to increase the number of available

peers and connecting to as many peers as possible [13].

However, there exist straightforward fixes to minimize

the impact of such “byzantine” behavior. A third exploit

by Liogkas et al. involves downloading only from the

fastest peers, but the strategy does not take into account

the upload contribution required to induce reciprocation.

In contrast, BitTyrant maximizes download per unit of

upload bandwidth and can drastically reduce its upload

contribution by varying the active set size and not shar-

ing its upload bandwidth uniformly with active peers.

Hales and Patarin [8] argue that BitTorrent’s robust-

ness is not so much due to its TFT mechanism, but more

due to human or sociological factors that cause swarms

with a high concentration of altruistic peers to be pre-

served over selfish ones. They further claim that releas-

ing selfish clients into the wild may therefore not degrade

performance due to the underlying natural selection. Val-

idating this hypothesis requires building and releasing a

strategic and selfish client—one of our contributions.

Massoulie and Vojnovic [15] model BitTorrent as a

“coupon replication” system with a particular focus on

efficiently locating the last few coupons. One of their

conclusions is that altruism is not necessary for BitTor-

rent to be efficient. However, their study does not ac-

count for strategic behavior on the part of peers.

Other studies [2, 7, 11] have pointed out the presence

of significant altruism in BitTorrent or suggest preserv-

ing it [11]. In contrast, we show that the altruism is not

a consequence of BitTorrent’s incentive mechanism and

can in fact be easily circumvented by a strategic client.

7 Conclusion

We have revisited the issue of incentive compatibility

in BitTorrent and arrived at a surprising conclusion: al-

though TFT discourages free riding, the bulk of BitTor-

rent’s performance has little to do with TFT. The dom-

inant performance effect in practice is altruistic contri-

bution on the part of a small minority of high capac-

ity peers. More importantly, this altruism is not a con-

sequence of TFT; selfish peers—even those with mod-

est resources—can significantly reduce their contribution

and yet improve their download performance. BitTorrent

works well today simply because most people use client

software as-is without trying to cheat the system.

Although we have shown that selfishness can hurt

swarm performance, whether or not it will do so in prac-

tice remains unclear. The public release of BitTyrant

provides a test. Perhaps users will continue to donate

their excess bandwidth, even after ensuring the maxi-

mum yield for that bandwidth. Perhaps users will be-

have selfishly, causing a shift to a completely different

design with centrally enforced incentives. Perhaps strate-

gic behavior will induce low bandwidth users to invest

in higher bandwidth connections to compensate for their

worse performance, yielding better overall swarm perfor-

mance in the long run. Time will tell. These uncertainties

leave us with the still open question: do incentives build

robustness in BitTorrent?

The BitTyrant source code and distribution are pub-

licly available at:

http://BitTyrant.cs.washington.edu/

Acknowledgments

We thank our shepherd, Jinyang Li, and the anonymous

reviewers for their comments. This work was supported

by NSF CNS-0519696 and the ARCS Foundation.

References

[1] R. Axelrod. The Evolution of Cooperation. Basic Books,
1985.

[2] A. Bharambe, C. Herley, and V. Padmanabhan. Analyz-
ing and Improving a BitTorrent Network’s Performance
Mechanisms. In Proc. of INFOCOM, 2006.

[3] B. Cohen. Incentives build robustness in BitTorrent. In
Proc. of IPTPS, 2003.

[4] J. R. Douceur. The Sybil attack. In Proc. of IPTPS, 2002.

[5] B. Fan, D.-M. Chiu, and J. Liu. The Delicate Tradeoffs in
BitTorrent-like File Sharing Protocol Design. In Proc. of
ICNP, 2006.

[6] GNU Scientific Library. http://www.gnu.org/
software/gsl/.

[7] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of BitTorrent-like
systems. In Proc. of IMC, 2005.

[8] D. Hales and S. Patarin. How to Cheat BitTorrent and
Why Nobody Does. Technical Report UBLCS 2005-12,
Computer Science, University of Bologna, 2005.

[9] S. Jun and M. Ahamad. Incentives in BitTorrent induce
free riding. In Proc. of P2PECON, 2005.

[10] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss.
MultiQ: Automated detection of multiple bottleneck ca-
pacities along a path. In Proc. of IMC, 2004.

[11] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest
First and Choke Algorithms are Enough. In Proc. of IMC,
2006.

[12] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploit-
ing BitTorrent for fun (but not profit). In Proc. of IPTPS,
2006.

http://BitTyrant.cs.washington.edu/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/


Label Definition Meaning

ω 2 Number of simultaneous optimistic unchokes per peer

λ 80 Local neighborhood size (directly connected peers)

b(r) Figure 1 Probability of upload capacity rate r
B(r)

∫ r

0
b(r)dr Cumulative probability of a upload capacity rate r

active(r) ⌊
√

0.6r⌋ − ω Size (in peers) of the active transfer set for upload capacity rate r
split(r) r

active(r)+ω
Per-connection upload capacity for upload capacity rate r

s(r) Figure 1 Probability of an equal split rate r using mainline active(r) sizing

S(r)
∫ r

0
s(r)dr Cumulative probability of an equal-split rate r

Table 2: Functions used in our model and their default settings in the official BitTorrent client.

[13] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
Riding in BitTorrent is Cheap. In Proc. of HotNets, 2006.

[14] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. An-
derson, A. Krishnamurthy, and A. Venkataramani. iPlane:
An information plane for distributed services. In Proc. of
OSDI, 2006.

[15] L. Massoulié; and M. Vojnović. Coupon replication sys-
tems. SIGMETRICS Perform. Eval. Rev., 33(1):2–13,
2005.

[16] R. Morris. TCP behavior with many flows. In Proc. of
ICNP, 1997.

[17] D. Qiu and R. Srikant. Modeling and performance anal-
ysis of BitTorrent-like peer-to-peer networks. In Proc. of
SIGCOMM, 2004.

[18] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proc.
of Multimedia Computing and Networking, 2002.

[19] J. Shneidman, D. Parkes, and L. Massoulié. Faithfulness
in internet algorithms. In Proc. of PINS, 2004.

A Modeling notes

All numerical evaluation was performed with the GSL

numerics package [6]. Refer to Section 3 for assump-

tions and Table 2 for definitions.

Upload / download: Probability of reciprocation for a

peer P with upload capacity rP from Q with rQ:

p recip(rP , rQ) = 1 − (1 − S(rP ))active(rQ) (1)

Expected reciprocation probability for capacity r:

recip(r) =

∫

b(x)p recip(r, x)dx (2)

Expected download and upload rate for capacity r:

D(r) = active(r)

[
∫

b(x)p recip(r, x)split(x)dx

]

+

ω

[
∫

b(x)split(x)dx

]

(3)

U(r) = min
(

r, (active(r) + ω) D(r)
)

(4)

Altruism: Altruism when defined as the difference be-

tween upload contribution and download reward

altruism gap(r) = max
(

0, U(r) − D(r)
)

(5)

Altruism per connection when defined as upload contri-

bution not resulting in direct reciprocation.

altruism conn(r) =
∫

(

b(x)
(

(1 − p recip(r, x))split(r)+ (6)

p recip(r, x) max(0, split(r) − split(x))
)

)

dx

Total altruism not resulting in direct reciprocation.

altruism(r) = (active(r) + ω)altruism conn(r) (7)

Convergence: Probability of a peer with rate r discover-

ing matched TFT peer in n iterations:

c(r, n) = 1 − S(r)n 2ω (8)

Time to populate active set with matched peers given up-

load capacity r. Note, s = split(r), and T = 30s is the

period after which optimistic unchokes are switched.

convergence time(r) = (9)

T · active(r)
(

c(s, 1)+

∞
∑

n=2

n c(s, n)

n−1
∏

i=1

(1 − c(s, i))
)

Unchoke probability: The distribution of number of op-

timistic unchokes is binomial with success probability ω
λ

.

Because overhead is low, λ ≫ active(r) in BitTyrant, we

approximate λ − active(r) by λ. The expected number

of optimistic unchokes per round is ω.

Pr[unchokes = x] =

(

λ

x

)

(ω

λ

)x (

1 − ω

λ

)(λ−x)

(10)

∴ E[unchokes] = λ
ω

λ
= ω


	Introduction
	BitTorrent overview
	Protocol
	Measurement

	Modeling altruism in BitTorrent
	Tit-for-tat matching time
	Probability of reciprocation
	Expected download rate
	Expected upload rate
	Modeling altruism
	Validation

	Building BitTyrant: A strategic client
	Maximizing reciprocation
	Sizing the local neighborhood
	Additional cheating strategies

	Evaluation
	Single strategic peer
	Many BitTyrant peers

	Related work
	Conclusion
	Modeling notes

