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Interictal spiking is seen in the EEG of epileptic patients between
seizures. To date, the roles played by interictal events in seizure
occurrence and in epileptogenesis remain elusive. While interictal
spikes may herald the onset of electrographic seizures, experimen-
tal data indicate that hippocampus-driven interictal events pre-
vent seizure precipitation. Even less clear than the role of interictal
events in seizure occurrence is whether and how interictal spikes
contribute to epileptogenesis. Thus, while plastic changes within
limbic neuronal networks may result from ongoing interictal ac-
tivity, experimental evidence supports the view that epileptogene-
sis is accompanied by a decrease in hippocampus-driven interictal
activity.

The EEG of patients presenting with partial seizures is
characterized by brief, epileptic spikes that are not associated
with evident clinical symptoms. The interictal spiking is valu-
able for diagnosing the epileptic condition, and when required,
for localizing the epileptogenic area. Interictal and ictal dis-
charges in animal models of epileptiform activity consist of
similar (but for duration) neuronal depolarizations, leading to
sustained action potential firing (1–4), suggesting that interictal
and ictal events may reflect similar neuronal mechanisms. More-
over, interictal spikes may herald the onset of electrographic
seizures. However, the precise relationship between interictal
and ictal activity remains ambiguous, as careful studies per-
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formed in patients with temporal lobe epilepsy (TLE) and in
animal models mimicking this condition indicate that the in-
terictal spike rate does not change before seizure onset (5–7).
Finally, it has been proposed that interictal spiking prevents
seizure precipitation in some animal models (8–11).

Even more elusive than interictal–ictal relationship is the
role played by interictal spikes in epileptogenesis, which is the
process leading to the development of an epileptic condition
(12). While it is indisputable that plasticity is a fundamen-
tal characteristic of neuronal networks, as epitomized by the
kindling phenomenon (13), it is unclear whether changes in
synaptic efficacy or formation of new connections result from
ongoing interictal activity. Here, we review data indicating that
interictal spikes can have both anti- and proseizure actions. In
addition, experimental evidence supporting the view that a de-
crease in hippocampal-driven interictal activity contributes to
epileptogenesis in the pilocarpine model of TLE is summa-
rized. The hippocampus (and in particular its CA3 subfield) is
the limbic area that is most prone to generate interictal events,
at least with in vitro preparations (4).

Antiseizure and Proseizure Actions
of Interictal Spikes

Because TLE patients present with seizure discharges in lim-
bic structures, such as the entorhinal cortex (EC) and the hip-
pocampus proper, several electrophysiological studies have been
carried out on rodent brain slices that contain reciprocally in-
terconnected portions of hippocampal and parahippocampal
areas (4) or with isolated brain preparations (11,14,15). As il-
lustrated in Figure 1A, under appropriate conditions (e.g., when
treated with 4-aminopyridine), combined EC–hippocampus
slices generate epileptiform discharges resembling interictal and
ictal events (4). Interictal activity, which is caused by non-N -
methyl-D-aspartate (NMDA) glutamatergic mechanisms, orig-
inates in the CA3 subfield of the hippocampus, spreads via
the CA1/subiculum areas to the EC, and returns to CA3 via
the perforant path/dentate gyrus (Figure 1Ba). In contrast, ic-
tal events—dependent on the activation of both NMDA and
non-NMDA glutamatergic and GABAA receptors—initiate in
the EC and propagate to the hippocampus (Figure 1Bb). The
EC is known to be prone to generate seizures in TLE patients
(16–18). In vitro studies also have shown that ictal discharges
disappear within 1–2 hours, while the CA3-driven interictal
activity occurs throughout the experiment (Figure 1A). More-
over, cutting the Schaffer collaterals, which connect CA3 to
CA1, abolishes interictal spikes in the EC and allows ictal
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FIGURE 1. A: Spontaneous epileptiform activity recorded at hour 1 and 2 during continuous bath application of 4-AP. Simultaneous field
potential recordings were made in the CA3 stratum radiatum, the deep layers of the EC, and the DG cell layer. The interictal discharges
recorded at 1 hour are indicated by arrows; note that after 2 hours of 4-AP application, ictal discharges disappear. Adapted with permission
from J Neurosci. (10) Copyright 1997 Society for Neuroscience. B: Expanded traces of interictal (a) and ictal discharges (b) induced by
4-AP (∼1 hour) in an intact EC–hippocampal combined slice. In a, the interictal discharge initiates in the CA3 region and propagates to
the EC and DG; arrows point to the late components of the interictal discharge recorded in CA3. In b, the ictal discharge is preceded by
an interictal event, with a temporal profile similar to that seen in a; note, however, that the site of origin of the ictal discharge occurs in
EC. Dotted lines in a and b were positioned at the time of the earliest visible deflection in the three-field potential recordings. Adapted with
permission from J Neurosci. (10) Copyright 1997 Society for Neuroscience. C: Effect of cutting the Schaffer collaterals on 4-AP-induced
epileptiform discharges. Field recordings were obtained in an intact EC–hippocampal slice after ictal discharges have stopped occurring
(upper panel) and after Schaffer collateral cut (lower panel); note that this procedure makes CA3-driven interictal events disappear in EC,
while ictal discharges remain unabated. Adapted with permission from J Neurophysiol. (46) Copyright 2000 American Physiological Society.
EC, entorhinal cortex; DG, dentate granule; 4-AP, 4-aminopyridine.

discharges to be reestablished in this area (Figure 1C). There-
fore, CA3-driven interictal activity can reduce, rather than sus-
tain, the ability of the EC to generate ictal events (10).

The antiseizure action exerted by interictal activity (9,19)
can be mimicked by electrical stimuli at rates that are similar to
those of the CA3-driven interictal activity (i.e., approximately
1 Hz). In addition, an inverse relationship between ictal and
interictal discharges occurs in hippocampal slices when using
drugs (e.g., baclofen) that depress interictal spikes (20,21). Ev-
idence from the in vitro isolated guinea pig brain, indicates
that periodic interictal spiking in the piriform cortex prevents
involvement of this region by seizure-like activity generated
in the EC–hippocampus during transient GABAergic impair-
ment (11). Finally, interictal spikes are known to be followed
by a prolonged period of inhibition (22) in which the threshold
for the generation of an epileptic discharge is increased—an ef-
fect found both in models of epileptiform activity (23) and in
patients with neocortical epilepsy (24).

The role of interictal spikes, however, is not as straight-
forward as indicated by the results reviewed above. Early ex-
periments performed using focal discharges induced in vivo by
convulsant drugs showed that interictal discharges sometimes
accelerate before the onset of seizure (1). Moreover, initial stud-
ies in the kindling model suggested that interictal spikes become
more frequent as the kindling process evolves and may increase
prior to the appearance of spontaneous seizures (25,26). This
evidence, however, was not confirmed by continuously moni-
toring of the EEG in kindled animals (27). More recently, anal-
ysis of the epileptiform activity induced by 4-aminopyridine in
the EC revealed that local interictal spikes, which are largely
contributed by GABAA receptor-mediated conductances, lead
to electrographic seizure onset (4). As illustrated in Figure 2 (A
and B panels), the onset of an ictal discharge recorded intra-
cellularly from EC neurons is characterized by a long-lasting
depolarization, resembling what is seen during an interictal
event generated within the EC network. The similarity between
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FIGURE 2. A and B: Field and intracellular (potassium-acetate–filled microelectrode) recordings from the EC demonstrate two types of
activity during 4-AP application. Slow interictal and ictal discharges are identified with asterisks and an open circle, respectively. Note the sim-
ilarities between the isolated interictal discharge (Ba) and the onset of the ictal event (Bb). Adapted with permission from J Neurophysiol. (47)
Copyright 1998 American Physiological Society. C: When the neuronal membrane is depolarized by intracellular injection of steady positive
current (−55 mV), the amplitude of sustained ictal depolarization decreases, while the initial long-lasting depolarization becomes hyperpolar-
izing as compared with the recording obtained at resting membrane potential (−70 mV). When the membrane is hyperpolarized by intracel-
lular injection of steady negative current (−80 mV) both long-lasting depolarization and ictal depolarization increase in amplitude as compared
with the samples obtained at resting membrane potential. The time occupied by this initial long-lasting depolarization is indicated by the con-
tinuous line on top of the −55 mV trace. Adapted with permission from J Neurophysiol. (47) Copyright 1998 American Physiological Society.
EC, entorhinal cortex; DG, dentate granule; 4-AP, 4-aminopyridine.

the local interictal discharge and the event recorded at seizure
onset is further supported by evidence showing that ictal dis-
charge onset consists of a hyperpolarization when the neuron
is depolarized with steady current injection (Figure 2C). Thus,
in this in vitro model of limbic seizures, ictal depolarizations
paradoxically originate from a hyperpolarizing event. Interic-
tal spiking also has been observed ahead of ictal discharges in
the isolated guinea pig brain preparation during short-lasting
bicuculline treatment (15). Hence, interictal spikes may exert
either a protective or precipitating role with respect to seizure
generation.

Interictal Spikes and Epileptogenesis

Interictal spiking is the first sign of an epileptic discharge ap-
pearing after status epilepticus (SE) in animals committed to
develop seizures (28–30). However, it is unknown whether
this activity reflects an altered neuronal network unable to
impede the ongoing epileptogenic process or a sign of incipi-
ent seizure activity. Moreover, investigators ignore whether and
how interictal discharges change in their occurrence, shape,
and underlying mechanisms during the period that follows SE.
Indeed, after pilocarpine-induced SE, CA3-driven interictal ac-
tivity in unable to control ictal discharges recorded during 4-
aminopyridine treatment: electrographic seizures originating in
the epileptic EC occur throughout the experiment, while they

disappear in slices from nonepileptic control animals (31). In
contrast, the kindling phenomenon and the development of
mirror foci suggest that activity-dependent changes in synaptic
transmission along with formation of new synaptic connec-
tions represent potential epileptogenic factors. In this context,
recurrent interictal events could play a role in epileptogenesis,
perhaps through the induction of activity-dependent synaptic
plasticity mechanisms.

A point that merits critical evaluation is the assessment of
mechanisms underlying the impairment of hippocampal net-
works generating interictal activity after SE. It is known that
TLE patients display mesial temporal (or Ammon’s horn) scle-
rosis. This condition, which is characterized by a rather selective
loss of neurons in specific limbic areas (32,33), also is found in
animal models of TLE (34–36). Experimental evidence sug-
gests that in the presence of Ammon’s horn sclerosis, both cell
loss and the consequent synaptic reorganization contribute to
epileptogenesis (37–40). In the model of self-sustaining SE, le-
sions are extensive in the hippocampus and CA3 pyramidal cells
numbers are reduced to approximately 50% of control values
(41). However, in spite of such damage, the hippocampus is still
able to generate interictal spikes (29). A decrease in hippocam-
pal network function associated with cell damage also occurs in
pilocarpine-treated epileptic animals (31,4). Recurrent limbic
seizures persist in this model when mossy fiber sprouting, but
not neuronal damage, is reduced by protein synthesis inhibition
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(42). Therefore, neuronal damage after SE may play a role in
epileptogenesis.

In line with the hypothesis that neuronal damage may in-
fluence epileptogenesis following SE, cell damage and synapse
loss in the CA3/CA1 areas of pilocarpine-treated animals ap-
pear to be associated with decreased control exerted on EC ex-
citability by hippocampal output activity. Moreover, it recently
has been shown that decreased hippocampal output activity
in epileptic animals reflects a diminished excitatory transfer to
CA3 pyramidal cells (43,44). The hypothesis has been tested
with intrinsic optical signal imaging of the stimulus-induced
responses in slices of pilocarpine-treated epileptic rats, demon-
strating that intrinsic optical signals in CA3 were lower than in
nonepileptic control slices following dentate gyrus stimulation.
However, comparable responses were observed in both epileptic
and nonepileptic animals when stimuli were delivered directly
in CA3 (45). This decreased network-driven excitation may af-
fect the ability of CA3 to generate effective interictal outputs
that are able to control epileptiform synchronization in the EC,
thus contributing to epileptogenesis.

Conclusions

The control of EC epileptiform excitability by hippocampal
output activity suggests that interictal discharges may interfere
with ictal events. If true, rhythmic, low-frequency stimulation
of an epileptic brain may protect against seizures. This evidence,
however, is at odds with what has been obtained in some mod-
els of epileptiform discharge, in which interictal events lead
to electrographic seizures. The discrepancy may be explained
by viewing interictal spiking as a heterogeneous phenomenon
that reflects the involvement of different neuronal networks and
mechanisms (e.g., synaptic conductances) in different regions of
an epileptic brain. Finally, detailed studies of interictal spiking
occurring after SE are required before attempting to establish
its role in epileptogenesis.
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