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Do invasive species perform better in their new ranges?
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Abstract. A fundamental assumption in invasion biology is that most invasive species
exhibit enhanced performance in their introduced range relative to their home ranges. This idea
has given rise to numerous hypotheses explaining ‘‘invasion success’’ by virtue of altered
ecological and evolutionary pressures. There are surprisingly few data, however, testing the
underlying assumption that the performance of introduced populations, including organism size,
reproductive output, and abundance, is enhanced in their introduced compared to their native
range. Here, we combined data from published studies to test this hypothesis for 26 plant and 27
animal species that are considered to be invasive. On average, individuals of these 53 species
were indeed larger, more fecund, and more abundant in their introduced ranges. The overall
mean, however, belied significant variability among species, as roughly half of the investigated
species (N¼ 27) performed similarly when compared to conspecific populations in their native
range. Thus, although some invasive species are performing better in their new ranges, the
pattern is not universal, and just as many are performing largely the same across ranges.

Key words: animal invasion; biogeography; comparative demography; invasion paradox; invasive
species; plant invasion.

INTRODUCTION

Although many species have been introduced outside

of their home ranges, relatively few introduced species

become abundant and widespread in the new ranges

(Mack et al. 2000). Identifying the mechanisms driving

profound invasions when they do occur is the focus of a

large body of empirical and theoretical literature in

invasion biology (van Kleunen et al. 2010a, Blackburn et

al. 2011, Gurevitch et al. 2011), with most hypotheses

assuming that success is acquired as a result of novel

ecological and evolutionary dynamics in the introduced

range. For example, introduced species are hypothesized

to benefit from escaping natural enemies (Mitchell and

Power 2003, Torchin et al. 2003), hybridization with

natives (Ellstrand and Schierenbeck 2000), purging of

genetic load (Facon et al. 2011), novel biochemical

weapons (Callaway and Ridenour 2004), invasional
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meltdowns (Simberloff and Von Holle 1999, Parker et

al. 2006), or interactions among these factors.

As an indicator for whether introduced populations

are benefiting from novel conditions, numerous studies

have focused on whether organism size, fecundity, and

abundance are increased in the new range (Hierro et al.

2005, van Kleunen et al. 2010a). In support, individuals

in introduced populations can indeed be larger (Crawley

1987, Grosholz and Ruiz 2003, Jakobs et al. 2004), more

fecund (Grigulis et al. 2001, Stastny et al. 2005), and

more abundant (Freeland 1990, Hinz and Schwarz-

laender 2004, Prati and Bossdorf 2004, Hierro et al.

2005, Vila et al. 2005, Herrera et al. 2011). These

differences have been linked to novel conditions as a

way of explaining invasion success (e.g., Torchin et al.

2001, Mitchell and Power 2003, Alba and Hufbauer

2012).

In contrast, other studies show no difference in

performance between the native and introduced ranges

(Thébaud and Simberloff 2001, Firn et al. 2011),

sometimes despite large differences in biotic conditions

(e.g., Adams et al. 2009, Lamarque et al. 2012). These

patterns suggest the alternative hypothesis that invasion

success may reflect the inherent properties of certain

species rather than novel conditions. For example, many

invasive species are characterized by traits related to

widespread dispersal and rapid growth (van Kleunen et

al. 2010b), and widely abundant invasive and native

species often share similar traits (Lind and Parker 2010,

van Kleunen et al. 2010a). If invasion success better

reflects species-specific traits rather than novel condi-

tions per se, it suggests that some invasive species may

be ecologically dominant in both their introduced and

native ranges, a prediction that has received surprisingly

little attention in the literature (Firn et al. 2011). For

example, most biogeographical studies of the perfor-

mance of introduced organisms have to date focused on

naturalized but not necessarily highly invasive species

(e.g., Thébaud and Simberloff 2001, Firn et al. 2011), or

on just a few archetypal invaders (e.g., Prati and

Bossdorf 2004, Herrera et al. 2011). We thus currently

lack an understanding of whether highly invasive

species, defined as those exhibiting local dominance

(Richardson et al. 2000b) or negative impacts on native

species (Parker et al. 1999), are experiencing dispropor-

tionate success in their new ranges or performing

similarly regardless of range.

To determine whether individuals of invasive intro-

duced species are generally larger, more fecund, or more

abundant in their novel ranges, we quantitatively

evaluated population data from both the native and

introduced range for 53 introduced species that are

considered to be invasive, including 36 species catego-

rized as among the ‘‘World’s Worst Invasive Alien

Species’’ (Lowe et al. 2004). This set of species is not

intended to be exhaustive or rank species based on their

impact, but rather to represent a group of introduced

species that have had well-documented impacts on

biological diversity or human activities. We searched

the literature to find performance data in both the

introduced and native ranges for a diverse array of plant

growth forms, including herbs, shrubs, and trees, and a

range of animals, including birds, amphibians, reptiles,

fishes, and invertebrates, broadening the taxonomic

focus of previous studies. We also asked whether any

differences in demography were explained by the time

elapsed since initial introduction, and whether a species’

introduction was intentional or accidental, as both of

these factors are also thought to help explain relative

success of invasive populations (Richardson et al. 2000a,

Miller et al. 2002, Pyšek and Jarošı́k 2005, Chrobock et

al. 2011).

MATERIAL AND METHODS

Literature review

As a starting point for collecting data on species

considered to be invasive, we used a list of ‘‘100 of the

World’s Worst Invasive Alien Species’’ (Lowe et al.

2004), which are described as having a ‘‘serious impact

on biological diversity and/or human activities.’’ We

excluded eight microbial species from the list because

their life histories and morphologies would make

demographic comparisons difficult relative to other

taxa. We also excluded three mammals (domestic cats

Felis catus, goats Capra hircus, and pigs Sus scrofa) that

have been domesticated for so long that the identifica-

tion of free-ranging native populations was not possible.

For each of the remaining 89 species, we searched in

ISI Web of Science (1960–present) to obtain data for the

following metrics in both native and introduced popula-

tions: (1) individual organism size (e.g., biomass, length

per individual, or some standardized measure of size such

as stem width, and other metrics), (2) organism repro-

ductive traits (e.g., offspring per individual, gonadoso-

matic index, inflorescence size, seed mass, seed bank, and

other traits), and (3) population abundance (e.g., density,

cover, biomass, and other values). We also searched the

references of returned papers for additional sources and

prominent invasive species’ web sites (e.g., the Global

Invasive Species Database). Importantly, because we

wanted to examine the traits of species under the

conditions they would typically experience in a natural

setting in both ranges, we excluded studies conducted in

artificial settings, such as greenhouses, common garden or

field experiments, and laboratory experiments.

We further expanded our data set by collecting

comparative data for additional introduced species that

were not on the list of the World’s Worst Invasive Alien

Species. This search returned data for an additional 16

species (15 plant species), all of which are also

considered ‘‘invasive’’ by various sources (e.g., Randall

2002) (available online).21 One important distinction

between the data we compiled on some of the World’s

21 www.invasiveplantatlas.org
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Worst Invaders and the latter search is that many of the

papers we found documenting the performance of the

World’s Worst Invaders were conducted by different

researchers across ranges, and thus were not explicitly

focused on making biogeographical comparisons. In

contrast, all studies uncovered in our second search were

explicitly interested in making biogeographical compar-

isons using the same methods in both ranges. Thus, in

addition to expanding our data set, this second group of

‘‘targeted’’ comparative biogeographical studies (here-

after termed BIO studies) served to evaluate whether

patterns seen in the World’s Worst invaders (hereafter

termed WW studies) could be artifacts of varying

experimental methodology across studies. Overall, we

found comparable data from both the native and the

introduced range for a total of 53 species (37 on the list

of the WW studies, and 16 from more targeted BIO

studies), from 221 publications, and over 100 countries

and territories (see Supplement).

From each study we recorded the mean value for each

metric of interest, with population or site as the unit of

replication. A single paper could thus have multiple

entries for the same metric if they investigated multiple

populations per range. We entered data directly from

tables where possible, or calculated the means from

figures. If temporal data were presented, we took the

mean of all data points. Some metrics were measured in

multiple formats within and across ranges. Population

abundance data, for example, could be variously

presented as density, cover, and/or biomass per area.

Rather than arbitrarily selecting one of these metrics, we

kept all measures of performance, and we made

biogeographical comparisons only for metrics that were

measured in both ranges. We first calculated the mean

for each unique metric (e.g., cover, density, mass per

organism, and so forth) in the introduced and native

ranges, respectively, and then calculated the log response

ratio of performance for each unique metric in the

introduced divided by the native range. Positive values

indicate increased performance in the introduced range,

and negative values indicate decreased performance.

Each unique metric was assigned to one of three

different categories reflecting broad parameters thought

to be important to invasion success: organism size,

reproductive performance, and population abundance

(see Supplement).

Statistical analyses

Observations from multiple unique metrics were

nested within species, and the number of comparisons

varied among species; thus we used a Bayesian

hierarchical model to estimate mean species’ parameters

and overall ‘‘hyperparameters’’ describing the overall

effect size (Appendix). A Bayesian model is ideal for

meta-analyses where observations are nested within

higher groups, some groups have few observations,

and designs are unbalanced (Sutton and Abrams 2001,

Conlon et al. 2007). In contrast, traditional meta-

analyses use bootstrapping resampling to estimate

confidence intervals, and thus confidence intervals

cannot be estimated for species with a single comparison

of performance in the introduced vs. native range.

Bayesian hierarchical models, however, still provide

posterior credible intervals for all parameters even when

individual sample sizes are small; thus all data can be

used to inform the overall means. Another important

difference is that rather than threshold P values

associated with traditional frequentist statistical ap-

proaches, the Bayesian approach results in exact

probabilities of a certain outcome. In this case, we were

interested in the probability of increased performance in

the introduced range; thus we assessed statistical

significance as the posterior probability that the log

response ratio of performance in the introduced over the

native range was greater than zero.

Within a species, observations were allowed to vary

around the species mean with normally distributed

errors:

yij ; Nð�bi;r
2Þ

where yij is the jth observation of species i, b̄i is the mean

of species i, and r2 is within-species variance. To

estimate the effects of organism type (i.e., plant/animal)

and WW/BIO status on species’ log response ratios

(RR), we included an additional level of hyperparam-

eters in the model where species means were modeled as

a function of organism type and WW/BIO status:

�bi ; lþ Dorganismi þ cWW=BIOi

where l is the overall mean, D is the effect of being a

plant vs. animal, and c is the effect of being a World’s

Worst invader vs. a BIO invader. Thus, prior to

estimating effects of organism type and World’s Worst

status, observations were nested within species to

account for the fact that observations within a species

are likely correlated and therefore not independent.

Redundant parameterization was used to speed

convergence of parameters (Gelman and Hill 2007).

All modeled parameters were assigned uninformative

priors from a wide normal distribution (l ¼ 0, r2 ¼
1000). These priors represent a conservative a priori

uncertainty as to whether nonnative species respond

better, worse, or the same in their introduced ranges

(e.g., Firn et al. 2011). We used four Monte Carlo

Markov chains; each chain had a ‘‘burn-in’’ of 10 000

iterations. Convergence of chains was verified using

probability density plots. Posterior distributions of

mean log response ratios for each species and the overall

mean were generated by saving every 10th value of

10 000 MCMC samples from the posterior distribution.

To indicate the degree to which a species mean was

‘‘shrunk’’ to the overall mean because of few observa-

tions within a species, we estimated pooling factors for

each species in the analysis following Gelman and Hill

(2007). If significant shrinkage was observed, we ran

unpooled models to calculate the exact change in the
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estimated effect size due to Bayesian modeling (Gelman

and Hill 2007), and then we compared pooled and

unpooled models to estimate whether the results were

qualitatively different.

We ran separate models for each data category of size,

reproduction, and population abundance; and then a

final model for the pooled data set of all observations

combined. Pooling data across the different metrics

increased the number of replicates within species

substantially, allowing us to accurately model both the

species and overall means. To specifically examine the

hypothesis that introduced species exhibit increased

performance in their introduced ranges, we calculated

the one-tailed probability that the log response ratio was

.0 (P(RR) . 0) for each species within each data

category, for all group means, the overall mean, and for

the pooled data set. We also used contrasts to compare

means for WW plants against BIO plants, which

provided some estimate of whether methodological

differences were driving any observed patterns. A second

contrast of WW plants vs. WW animals tested whether

plants vs. animals were more likely to exhibit enhanced

performance.

In addition to the mean response across ranges, we

also examined whether variability in size, reproduction,

and abundance differed in the introduced compared to

the native range. Some work has suggested larger

variability in the introduced range (Jakobs et al. 2004,

Hinz et al. 2012), potentially reflecting higher plasticity

or postintroduction evolution in introduced populations

(Blossey and Nötzold 1995, Bossdorf et al. 2005). For

this comparison, we removed any species with fewer

than three replicates per unique metric and then

calculated the coefficient of variation (CV) of each

metric for each species, resulting in 46 comparisons

across 20 species, which we then further collapsed into

mean (6 SE) values for each species. We then plotted

the introduced range CV against the native range CV,

with values above the 1:1 line having higher population

level variance in the introduced range and vice versa.

For each species, we also estimated the date of

introduction to the region of interest from the source

paper or through other published sources. Similarly, we

also listed whether each species was accidentally or

intentionally introduced when information was avail-

able. We then used a Bayesian t test, allowing for nested

parameters as described above, assessing whether

intentionally introduced species performed better in

their new ranges relative to accidentally introduced

species. Three species were intentionally introduced into

some locations, but accidentally introduced into others,

resulting in more than 53 species in this comparison. To

assess whether differential performance attenuated with

residence time, we regressed the log response ratio of

each unique metric against time since invasion separate-

ly for each introduced population or metric against the

mean value for that metric across all reported values in

the native range. We also analyzed whether performance

for plants/animals differed by mode of introduction or

residence time using a single ANCOVA with mode of

introduction and plant/animal status as fixed factors,

and residence time as a covariate. Bayesian analyses

were conducted using JAGS v3.2 and the ‘‘rjags’’

package in R v2.13 (Plummer 2012).

RESULTS

Hierarchical Bayesian modeling showed that these 53

invasive species were strongly likely (P(RR.0) � 0.942)

to be larger and more fecund in their introduced ranges

relative to conspecifics in their native ranges, but less

likely (P(RR.0) ¼ 0.860) to be more abundant (Fig. 1).

For size specifically, there was a high probability

(P(RR.0) ¼ 0.962) that the 35 introduced species for

which we found size data were larger in their new

ranges. However, only World’s Worst (WW) invaders

(both animals and plants) were strongly likely (P(RR.0)

� 0.974) to show larger sizes, whereas plants from the

targeted biogeographical studies (BIO) showed no

tendency to be larger in their introduced ranges

(P(RR.0)¼ 0.310; Fig. 1). At the species level, 23 species

were at least 92% likely to be larger in the introduced

range, whereas 12 species were likely to be of similar

size in the introduced and native range (i.e., 50%
credible intervals crossing zero). Notably, however,

there were some uncertainties in the species-level

estimates, as evidenced by pooling factors �0.90 for

numerous species (Appendix: Table A1), suggesting

significant ‘‘shrinkage’’ to the group mean. To analyze

the extent to which this might influence the results, we

re-ran the analysis as an unpooled model using only the

raw means. The Bayesian estimated mean response

ratio for each species differed from the raw mean by

only 0.01 6 0.44 (mean 6 SD) across all 35 species.

Moreover, only nine species had raw means that did not

fall within the Bayesian credible intervals, and the

difference between the estimated and raw means for

these species was only�0.13 6 0.71. Thus, it is unlikely

that shrinkage due to small sample size for some species

dramatically influenced the estimates of size at the

overall or species level.

We found comparably collected reproductive data for

only 21 species, but across these species there was a high

probability (P(RR.0) ¼ 0.942) of increased reproductive

performance in the introduced range (Fig. 1). In contrast

to size comparisons, increased reproductive performance

was driven by differences for both BIO and WW plants,

but not WW animals. At the species level, only four

species were at least 95% likely to exhibit greater

reproductive performance in their introduced range,

whereas 12 species had reproductive traits that did not

differ substantially between native and introduced

ranges (Fig. 1). Reproductive performance comparisons

were not influenced by shrinkage (Appendix: Table A1).

On average, there was a lower probability (P(RR.0)¼
0.860) that introduced species were more abundant in

their new ranges, as all three groups (WW plants, WW
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animals, and BIO plants) were only moderately likely to

be more abundant in their introduced range (P(RR.0) �
0.734). Similar to findings for reproductive traits, the

patterns were weaker for WW animals (P(RR.0) ¼
0.734) than WW plants (P(RR.0)¼ 0.894). Only 8 of 33

species were strongly likely to be more abundant in their

new ranges (P(RR.0) � 0.90), seven of which were

plants, and 13 showed no tendency to be more or less

abundant across geographic ranges (Fig. 1). Shrinkage

effects were negligible (Appendix: Table A1).

FIG. 1. Response ratios depicting medians with 50% and 95% Bayesian credible intervals (CI) of 53 invasive species for various
responses in native and introduced ranges: organism size, reproduction, and population abundance (data not available for all
responses for all species). The x-axis is the log of the ratio of measurements in the introduced (away) vs. measurements in the native
(home) ranges. Positive numbers indicate enhanced performance in the introduced range. Numbers to the right of credible intervals
indicate the one-tailed probability that the response ratio is .0. WW species are from the World’s Worst Invasive Aliens list; BIO
species are from targeted biogeographical comparisons. Note that some credible intervals are smaller than the symbols and thus not
visible.
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When we pooled data from all three separate metrics,

there was a high probability (P(RR.0) ¼ 0.962) of

increased performance in the new range across all 53

species (Fig. 2). Overall, both BIO plants and WW

plants were likely to perform better in the introduced

range (P(RR.0) � 0.95), while WW animals showed a

weaker trend (P(RR.0) � 0.78). When broken down by

species, 15 of 53 invasive species were strongly likely to

perform better in their new ranges (P(RR.0) � 0.91), but

27 showed no tendency to perform better or worse in

their introduced ranges (i.e., 50% credible intervals

crossing zero; Fig. 2). There were no shrinkage effects

(Appendix: Table A1). Contrasts also showed that WW

plants were likely to perform better than BIO plants,

FIG. 2. Response ratios depicting medians with 50% and 95% Bayesian credible intervals (CI) for 53 individual species for
pooled responses across the categories of size, reproduction, and abundance. Positive numbers indicate enhanced performance in
the introduced (away) range. Numbers to the right of credible intervals indicate the one-tailed probability that the response ratio is
greater than zero. WW are species from the World’s Worst Invasive Aliens list; BIO are species from targeted biogeographical
comparisons.
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and WW plants were likely to perform better than WW

animals (Appendix: Fig. A1). In addition, with relatively

few exceptions, there was roughly equal variance in

introduced vs. native populations across all metrics

(Appendix: Fig. A2).

There were no performance differences due to mode

of introduction, as both accidentally (N ¼ 27) and

intentionally (N ¼ 28) introduced species showed on

average a similarly increased performance in their new

ranges (Fig. 3). Additionally, time since introduction did

not appear to be a strong factor in performance, as there

was no relationship between the performance differen-

tial of individual populations and the estimated number

of years since they were introduced (R2 ¼ 0.003, P ¼
0.40, linear regression; Fig. 3). There were also no

significant effects when we partitioned these data by

plant/animal status and by mode of introduction in a

single ANCOVA (all P � 0.18).

DISCUSSION

While our overall result suggests that invasive species

perform better in their introduced relative to their native

range, there was considerable variation across species.

Across all data for 53 species, we found a 96% likelihood

of enhanced performance in their introduced ranges,

including strong increases in organism size (P(RR.0) ¼
0.96), and reproductive performance (P(RR.0) ¼ 0.94),

along with a more modest increase in abundance

(P(RR.0) . 0.86; Fig. 1). These patterns suggest that

the process of introduction or novel conditions in new

ranges can enhance performance, at least for some

species. Although support for this phenomenon is

increasing at the species level (e.g., Herrera et al.

2011), to our knowledge this is the first evidence of this

pattern across numerous invasive species, disparate

plant and animal taxa, and utilizing a suite of

performance metrics. Importantly, the general patterns

of increased performance of introduced populations

belied substantial variation among taxa and species.

Increases in overall performance were stronger for

plants vs. animals (Fig. 2; Appendix: Fig. A1), and

roughly half the species we investigated showed little

evidence of increased performance. This finding suggests

considerable uncertainty in assuming that invasive

species are performing better in their new ranges, and

most invasive species might be performing relatively

similarly despite potentially large differences in ecolog-

ical and evolutionary conditions (Hufbauer and Torchin

2007).

Our findings indicated that plants performed consis-

tently better in the introduced range, but animals often

had smaller differences in performance. In contrast,

previous literature reviews have suggested that both

plants and animals exhibit increased performance in

their introduced ranges. For example, a literature review

by Hinz and Schwarzlaender (2004) found evidence that

plants often exhibited increased performance in their

introduced ranges, while a separate study by Freeland

(1990) found that populations of six introduced mam-

mal species in Australia were often more abundant than

their respective native populations. Moreover, Jeschke

and Strayer (2005) found that introduced animals were

more likely than plants to establish and spread in their

new ranges. Our findings could reflect the potential to

gather more precise data on plants, which ‘‘stand still

and wait to be counted’’ (Harper 1977). However, the

same result could occur if plants are generally more

plastic than animals (Bradshaw 1972), leading to a

greater ability to respond to new conditions in the

introduced range.

Interestingly, WW plants performed better in their

introduced ranges than did BIO plants. This pattern

could reflect real differences among the investigated

species or methodological differences among studies.

For example, species on the list of the World’s Worst

Invasive Aliens may indeed be more ‘‘invasive,’’ hence

their inclusion on the list. One caveat, however, is that

most of the studies we found for WW species were

separate studies for each range and were generally

FIG. 3. Comparison of performance (all metrics combined)
between accidentally (N ¼ 27) and intentionally (N ¼ 28)
introduced species (A) in their introduced vs. native range, and
(B) plotted vs. time since introduction.
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conducted by disparate research groups, likely using

different methodologies. Thus, it is possible that the

WW comparisons could be biased toward finding larger

differences if only the most problematic populations of

introduced species were intentionally selected for study.

In contrast, the same research groups conducted the

BIO studies in both ranges with the express intent of

determining differences in performance. Thus, BIO

studies often controlled for environmental differences

across ranges and sampled haphazardly among popula-

tions to minimize the possibility of selecting ‘‘outlier’’

populations (e.g., Herrera et al. 2011). Despite these

methodological differences, there were few differences in

variability among BIO–WW populations (Appendix:

Fig. A2), and qualitative patterns for WW plants and

BIO plants were similar with the exception of organism

size. Thus, even if biases in WW plant studies

overestimated the magnitude of increased reproduction,

abundance, and overall performance, they did not

fundamentally change the sign of the effect.

Roughly half the species included in our study (27/53)

performed similarly when compared to conspecifics in

their native range (Fig. 2). This result suggests that most

introduced species might be performing relatively

similarly across ranges despite profound differences in

ecological or evolutionary pressures. Indeed, Firn et al.

(2011) evaluated home and away abundances of 26 plant

species across 39 sites in eight countries and found no

consistent increase in plant abundance. Similarly, our

study showed only a relatively modest likelihood of

increased abundance in the introduced range. This

similarity is made more striking by the fact that Firn

et al. (2011) studied mostly ‘‘noninvasive’’ species (only

10 of the 26 species were considered invasive), whereas

all 26 plant species in our study are considered invasive.

Our results also match well with Firn et al. (2011) when

we examined the dramatic species-level variation in

performance in both ranges. In both studies, roughly

half of the investigated species had similar performance

between the native and introduced ranges (Fig. 2).

Similar equivocal findings for species within the models

for organism size, reproductive traits, and pooled

analyses emphasize our primary conclusion that al-

though invaders may on average be performing better,

the overall pattern appears to be driven by relatively few

introduced species exhibiting strong differences. Hence,

the widely presumed ‘‘away-field advantage’’ for intro-

duced species (e.g., Callaway and Ridenour 2004) may

be relatively uncommon or fairly small in magnitude,

even among a group of introduced species considered

invasive.

One critical finding of our work is that we were not

able to find comparative data for a majority of species

labeled as the world’s worst invaders (60%, or 53/89). In

particular, there was a general lack of data from the

native ranges of species, pointing out that invasion

biologists still need more studies from the native ranges

of introduced species to better understand the invasion

process. Although this has been pointed out repeatedly

(Hierro et al. 2005, van Kleunen et al. 2010a), the lack of

data from the native range indicates a continued

systematic bias toward studying invaders primarily in

their introduced ranges. Funding may in part drive this

discrepancy, as agencies may be more likely to support

research on a species novel to a range, rather than

something that is considered native. However, by

partnering with scientists around the world and by

forming international research networks (e.g., the U.S.

National Science Foundation supported the Global

Invasions Network that led to this paper), and by

engaging in citizen-science efforts such as the ‘‘Global

Garlic Mustard’’ survey (available online)22 data from

the native range of introduced species may become more

accessible, advancing a more rigorous understanding of

invasion dynamics.

Our comparison of intentionally vs. accidentally

introduced species suggests that both pathways generate

invaders that are likely to flourish in their new ranges.

However, these comparisons may have juxtaposed

species that have already passed through important

filters (human selection and environmental filtering) that

would have accentuated differences in mode of intro-

duction. For example, intentionally introduced species

often exhibit better performance in their new ranges if

humans carefully select species to be compatible with the

new environment (Mack 2000, Chrobock et al. 2011).

Likewise, accidental introductions would presumably

not have this selection effect, but the well-established

species in our study have already passed nonrandomly

through the environmental filters that can prevent

invasions (Pyšek et al. 2011). Thus, it is possible that

differences in mode of introduction are more important

in the establishment phase of introductions than the

already established species we investigated.

Our data examining temporal dynamics of invasion

did not show strong patterns of residence time. In

contrast, some invasion models predict that after an

initial population expansion phase, the success of an

introduced species may diminish over time either due to

an accumulation of natural enemies (Hawkes 2007,

Blakeslee et al. 2009, Mitchell et al. 2010), or from

environmental changes, such as is in the case of the

recent collapse of the Argentine ant (Linepithema

humile) in New Zealand (Cooling et al. 2012). However,

we did not see a tendency for species to converge toward

similar performance in the introduced and native ranges

over time (Fig. 3), although we note that we still need

more studies on long-established introduced species to

fully flesh out this pattern.

In conclusion, although our data generally support

the idea that invasive species exhibit increased perfor-

mance in their introduced range, roughly half of the

invasive species we investigated performed similarly

22 http://www.garlicmustard.org/
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between the home and away ranges. One implication of

this finding is that novel ecological and evolutionary

conditions in the introduced range may only partly

explain success in a new range. Indeed, there has been

much recent progress in determining the traits that make

some species invasive across a range of environmental

conditions, with growing evidence that many successful

introduced species share similar traits with successful

native species (Pyšek and Richardson 2007, Lind and

Parker 2010, van Kleunen et al. 2010b). Coupled with

our findings and those of Firn et al. (2011), this

highlights the notion that species’ traits, and particularly

the interaction between traits and environmental con-

text, may be a better predictor of invasion success than

novel conditions alone.
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Pyšek, P., and D. M. Richardson. 2007. Traits associated with
invasiveness in alien plants: where do we stand?. Pages 97–
125 in W. Nentwig, editor. Biological invasions. Springer,
New York, New York, USA.

Randall, R. 2002. A global compendium of weeds. Meredith,
Australia.

Richardson, D. M., N. Allsopp, C. M. D’Antonio, S. J. Milton,
and M. Rejmanek. 2000a. Plant invasions–the role of
mutualisms. Biological Reviews 75:65–93.
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Supplement

Studies used in the analysis plus performance data from the introduced and native ranges of 53 species (Ecological Archives
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