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Do island populations have less genetic
variation than mainland populations?

R. FRANKHAM*
Key Centre for Biodiversity and Bioresources, Macquarie University, Sydney, NSW 2109, Australia

Island populations are much more prone to extinction than mainland populations. The reasons
for this remain controversial. If inbreeding and loss of genetic variation are involved, then
genetic variation must be lower on average in island than mainland populations. Published
data on levels of genetic variation for allozymes, nuclear DNA markers, mitochondrial DNA,
inversions and quantitative characters in island and mainland populations were analysed. A

large and highly significant majority of island populations have less allozyme genetic variation
than their mainland counterparts (165 of 202 comparisons), the average reduction being 29 per
cent. The magnitude of differences was related to dispersal ability. There were related differ-
ences for all the other measures. Island endemic species showed lower genetic variation than
related mainland species in 34 of 38 cases. The proportionate reduction in genetic variation
was significantly greater in island endemic than in nonendemic island populations in mammals
and birds, but not in insects. Genetic factors cannot be discounted as a cause of higher
extinction rates of island than mainland populations.
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Introduction

Island populations have a much higher risk of
extinction than mainland populations (Diamond,
1984; Vitousek, 1988; Flesness, 1989; Case et al.,
1992; World Conservation Monitoring Centre, 1992;
Smith et a!., 1993). Recorded extinctions since 1600
show that a majority of extinctions of mammals,
birds and reptiles were of insular forms, and
substantial proportions of extinctions in inverte-
brates and vascular plants were of island forms
(Table 1), even though island species represent a
minority of total species in all groups. For example,
only 20 per cent of all bird species are on islands,
but 90 per cent of bird species driven to extinction
in historic times have been island dwellers (Myers,
1979). Further, substantial proportions of endan-
gered and vulnerable species are of insular species

(Table 2). Endemic species are particularly prone to
extinction or endangerment. Davis et a!. (1986)
reported 55—97 per cent of endemic plant taxa on 13
islands were extinct, endangered, rare or threatened,
and Reid & Miller (1989) described 6—94 per cent
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of endemic plant species as threatened on 15 islands.
Human activities have been the major cause of

species extinctions on islands in the past 50000 years

(Olson, 1989) through over-exploitation, habitat loss
and introduced species. The relative importance of
these factors in recorded extinctions varies according
to the taxonomic group. Reid & Miller (1989) rated
over-exploitation and introduced species as the most
important causes in vertebrates, followed by habitat
loss, whereas the World Conservation Monitoring
Centre (1992) reported introduced animals and
habitat loss to be the most important cause of
animal extinctions, followed by over-exploitation.
Both report substantial proportions of cases where
the cause was unknown. Habitat loss is the most
important cause of endangerment in all vertebrate
taxa, except for reptiles where it is second to over-
exploitation (Reid & Miller, 1989). The role of
disease is not listed in these compilations. However,
there is a growing suspicion that new and changed
diseases represent a significant factor (Diamond,
1984; Dobson & May, 1986; O'Brien & Evermann,
1988; Flesness, 1989).

The reason for the susceptibility of island popula-
tions to extinction is controversial. The coup de grace
is usually delivered by stochastic factors, whether
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Table I Recorded extinctions, 1600 to present

Taxa Island Mainland Ocean Total Per cent island

Mammals* 34 24 — 58 59
Birds* 104 11 — 115 90

Reptilest 20 1 0 21

Amphibianst 0 2 0 2

Fisht 1 22 0 23

95
0
4

Molluscs* 151 40 — 191 79

Invertebratest 48 49 1 98 49

Vascular plantst 139 245 0 384 36

*From World Conservation Monitoring Centre (1992).
tFrom Reid & Miller (1989).

Table 2 Endangered and vulnerable species (from Reid & Miller, 1989)

Taxa Island Mainland Ocean Total Per cent island

Mammals 48 159 9 216 22
Birds 87 91 0 178 49

Reptiles 21 41 6 68 31

Amphibians 0 14 — 14 0
Fish 21 443 0 464 5
Invertebrates 338 371 2 711 48
Vascular plants 2706 3985 0 6691 40

demographic, environmental, catastrophic, or gene-
tic. Pimm (1991) and other ecologists stress the
susceptibility of small island populations to demo-

graphic and environmental stochasticity. However,
the susceptibility of island populations is predicted

on genetic grounds (Frankham, 1995a). Oceanic
island populations are expected to lose genetic varia-
tion at foundation (as few as a single individual in

self-fertilizing species, or a pair in nonselfing
species). Both oceanic and land-bridge islands
should lose genetic variation after foundation as
they typically have lower population sizes than main-
land populations.

Genetic variation is the raw material for evolu-
tionary change (Frankel & Soulé, 1981). Genetic
variation allows populations to evolve in response to
environmental change, whether that be new/changed

diseases, parasites, predators and competitors, or
greenhouse warming, ozone layer depletions, or
other results of pollution, Pre-existing genetic varia-
tion is critical for short-term evolutionary change
(Ayala, 1965; R. Frankham, E. Lowe, M. E.
Montgomery, L. M. Woodworth, & D. A. Briscoe,
unpublished data) as the waiting times for new
favourable mutations are high unless population
sizes are very large. The IUCN (World Conservation

Union) has recognized genetic diversity as one of
three levels of biological diversity requiring conser-
vation (McNeely et a!., 1990).

Genetic variation on islands is determined by the
net effects of loss at foundation, subsequent loss
caused by finite population size since foundation,
and gains arising from secondary immigration and
new mutations (Jaenike, 1973). Natural selection
influences the loss of genetic variation; selection for
a favourable allele will increase rate of loss, whereas

heterozygote advantage may slow it.
A single population size bottleneck is predicted to

reduce heterozygosity and evolutionary potential by
1/2Ne where Ne is the effective size of the bottleneck

generation (James, 1971). For example, if an oceanic
island population is founded from a single pair,
heterozygosity is expected to be immediately
reduced by 25 per cent. Populations that have been
subjected to bottlenecks usually have reduced allo-
zyme variation (see Leberg, 1992; Hartl & Pucek,
1994) and quantitative genetic variation (Robertson,
1966; James, 1971; Frankham, 1980; Franklin, 1980;
Brakefield & Saccheri, 1994). Conversely, Bryant et
al. (1986) and López-Fanjul & Villaverde (1989)
reported higher quantitative genetic variation for
characters related to fitness in bottlenecked popula-
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tions. However, bottlenecked populations show
reduced evolutionary potential (R. Frankham, P. R.
England, K. E. L. Lees & D. A. Briscoe, unpub-
lished data).

Heterozygosity for neutral alleles is expected to
show an approximately exponential decay with
generations in finite populations, as described by
eqn 1

H,1H0 = [1—1/2Nel'et12

where H1 is the heterozygosity at time t, H0 the origi-

nal heterozygosity, Ne the effective population size,
and t the number of generations (Crow & Kimura,
1970). A feature of this relationship is that the vari-
ance in heterozygosity is expected to increase in
small populations, such that the relationship can be
obscured unless there are many genetic markers and

many replicates.
A correlation between heterozygosity and effec-

tive population size is also expected for loci under
heterozygote advantage selection in finite popula-
tions. The effect of heterozygote advantage on
fixation probability depends on the equilibrium
frequency of the alleles (Robertson, 1962). Selection
retards fixation for alleles with equilibrium frequen-
cies in the 0.2—0.8 range. Conversely, selection
accelerates fixation for alleles with equilibrium
frequencies outside this range. Hence, heterozygote
advantage in finite populations will slow fixation for
some alleles and accelerate it for others. Alleles
subject to natural selection approach effective
neutrality as the effective population size drops, i.e.
when the selection coefficient drops below lI2Ne

(Wright, 1931; Kimura, 1983). Selection on indivi-
dual alleles detected by electrophoresis or DNA
sequence is generally weak, so they will be subject to
genetic drift unless population sizes are very large
(Robertson, 1962; Kimura, 1983; Ohta, 1992; Satta
et al., 1994).

The predicted relationship between genetic varia-
tion and effective population size given in eqn 1 has
been verified for allozyme genetic variation in
experimental populations of Drosophila (M. E.
Montgomery, R. K. Nurthen, L. M. Woodworth, D.
A. Briscoe & R. Frankham, in preparation).
Further, there are clear associations between popu-
lation size and genetic variation in wildlife, both
within and among species (reviewed by Frankham,
1996). For example, Soulé (1976) observed a corre-
lation of 0.70 between allozyme heterozygosity and
the logarithm of population size for animal species,

explaining 1/2 of the variation in heterozygosity.
Differences between island populations and main-
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land ones are expected to be greater when the
number of founders is smallest, when the population
size differences are greatest, and when the immigra-
tion rates are lowest. Differences should be greater
for small rather than large islands, for species with
lower dispersal rates, and for distant rather than
near islands (Jaenike, 1973). Reversal of the differ-
ence is expected when mainland populations are
derived from island populations (e.g. after glacia-

(1) tion), and where island populations are larger than
mainland populations.

Endemic island species have no mainland counter-
parts, yet they represent the oldest and most differ-

entiated island populations. According to eqn 1, they
would be expected to have proportionately lower
genetic variation than island species with mainland
representatives as their time since foundation from a
mainland population will typically be greater than
for nonendemic island populations.

Surprisingly, the evidence on genetic variation in
island populations is equivocal. Selander & Johnson
(1973) and Selander (1976) indicated there were
differences, whereas Nevo (1978) reported that
island populations of vertebrates had lower levels of
genetic variation than mainland populations, but
invertebrates did not show a significant difference.
Conversely, the most recent comprehensive review
by Nevo et al. (1984) found no significant difference
for either group, though there was a trend in the
predicted direction. Kilpatrick (1981) and Berry
(1986) concluded that there were differences in
mammals, while Boag (1988) concluded that island
and mainland bird species do not differ. All these
compilations were based on a small number of
studies. Given the importance of the issue to the
understanding of the susceptibility of island popula-
tions to extinction, it is critical that this issue be
resolved.

The hypothesis that genetic factors contribute to
the higher extinction rate of island populations
predicts that island populations of sexually repro-
ducing species will have, on average, lower levels of
genetic variation than comparable mainland popula-
tions. Further, endemic island populations should
have lower genetic variation than nonendemic island
populations. The objective of this study was to test

these hypotheses by reviewing and analysing
published evidence.

Collection and analyses of data

Data were obtained from a literature survey of
publications where comparisons were made of
genetic variation in mainland and island populations
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of the same species, usually with the same loci
surveyed. Literature was surveyed by checking all
relevant previous reviews and the papers they
referred to, by performing a keyword search of
Biological Abstracts on CD ROM 1992—95, and by
checking references that those papers made to other
relevant studies. Data from all relevant studies were

analysed using sign tests (see below). Marine species
were excluded as island populations belong to the
same continuous habitat over which they often
disperse widely (Stepien & Rosenblatt, 1991; Fevol-
den, 1992). All data were on independent popula-
tions, apart from those for Peromyscus polionotus
where the same two island populations were studied
by Selander et a!. (1971), Garten (1976) and Brewer
et a!. (1990). The mean of the three studies was used
in the sign tests (heterozygosities of 3.33 and 6.97
per cent for island populations vs. 6.98 per cent for
mainland). The data of Bock & McCracken (1988)
on island populations of green iguanas from Gatun
Lake were not included as the island populations
were not isolated from the surrounding mainland
population; animals from nearby mainland popula-
tions nest annually on the islands. The data of
Wendel et a!. (1992) on island vs. mainland popula-
tions of cotton (Gossypium hirsutum) were not
analysed as its distribution is believed to be strongly
influenced by human colonization and trade.
Johnson & Selander (1971) reported an overall
figure of 2.3 per cent heterozygosity for two island
populations of Dipodomys compactus, with no indivi-
dual details of sample sizes. The Mustang Island
population was monomorphic. One of two popula-
tions on Padre Island was monomorphic, whereas
the other Padre Island population was polymorphic
for one of 18 loci, with two alleles at frequencies of
0.33 and 0.67 (heterozygosity = 2.46 per cent). A
heterozygosity of 1.23 per cent was attributed to
Padre Island (mean of 0.00 and 2.46 per cent). Only
pooled data for several islands were reported for
Drosophila nebulosa and D. tropicalis (Powell, 1975)
so these were each treated as one island for the
purposes of sign tests.

The null hypothesis is that island populations do
not differ from mainland populations or have more
variation, and the alternative hypothesis is that
island populations have less genetic variation than
comparable mainland populations. Consequently,
one-tailed x2 sign tests were used. Statistical analyses

were performed on average heterozygosity values.
Preference was given to using gene diversity
(expected Hardy—Weinberg heterozygosity) as this is
least affected by sample size. Where this was not
available observed heterozygosity was used in analy-

ses. Data where both the mainland and the island
populations had no genetic variation are included in
Table 3, but were not used in the sign test as they
are not informative.

Two sign tests were performed on the allozyme
data for nonendemic populations, one where every
island population was compared against the mean of
its corresponding mainland populations, and a
second where the mean of islands was compared
with the mean of mainland populations for the same
study. The latter test covers the possibility that there
was migration to one island, and the other island
populations were derived from that population. A
Kruskal—Wallis test was used to determine whether
taxa differed in the ratio of island to mainland
heterozygosities. As ratios are not normally distrib-
uted, nonparametric statistics were used to compare
them throughout this study. Statistical analyses were
performed using the MINITAB statistical package
release 7. The ratios of heterozygosities for island:
mainland populations of the different taxa were
obtained by calculating mean heterozygosities for
islands and mainland populations of each taxa and
then computing the ratio of these.

Similar comparisons were made of genetic varia-
tion in endemic island species and the most related
mainland species or group that was available. The
data of Johnson et a!. (1989) on Hawaiian honey-
creepers were based on very small sample sizes for
both island and mainland species, though 36 loci
were typed. Further, there was uncertainty regarding
the appropriate mainland species to use for
comparisons. Taxonomic data presented in the
paper indicated that the family Emberizidae was the
appropriate mainland group, so this was used.
Analyses were also performed using the mean of the
families Emberizidae and Fringillidae as the main-
land group. Only pooled data for the two island
populations of the endemic Peromyscus sejugis were
reported, so these data have been treated as a single
point for sign tests. Avantazi et al. (1994) describe
two endemic species of mites on the Canary Islands,
but only one is reported here as their taxonomic
separation is doubtful; they shared the same alleles
at 14 allozyme loci and frequencies were similar at
the one polymorphic locus. For the endemic plants
in the genus Crepidiastrum, the 'mainland' species
for comparison come from the much larger main
Japanese islands (Ito & Ono, 1990).

Comparisons of the ratio of heterozygosity in
island:mainland populations were carried out for
endemic vs. nonendemic species for the full data set,
and for different taxa using Mann—Whitney
nonparametric tests.

The Genetical Society of Great Britain, Heredity, 78, 311—327,
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Table 3 Allozyme genetic variation in island (Is) and mainland (M) populations, characterized as gene diversity (He

percentage), observed heterozygosity (H0 percentage), allelic diversity (A) and percentage of loci polymorphic (P)

M > Is:

The Genetical Society of Great Britain, Heredity, 78, 311—327.

Isvs.M H0 H0 A P ReferenceSpecies M <15*

Mammals 82:20

Alces alces 1st
M

2.6
2.0

8.6
9.8

1:1 Ryman et a!. (1980)

Canis lupus Is

M
3.9

8,7

4.0
6.1

1.08
1.20

8.0

20.0
1:0 Wayne et a!. (1991b)

Cervus elaphurus atlanticus Is

M
0.0

0.0
0.0
0.0

— Gyllensten et a!. (1983)

Cert'us elaphurus scoticus Is
M

2.6
3.3

14.3

13.1

1:0 Gyllensten eta!. (1983)

Lemur macaco Is

M
3.4
7.0

3.3
3.3

1.25
1.33

25.0
33.3

1:0 Arnaud et a!. (1992)

Macaca fascicularis Is
M

5.2
9.9

22.7
40.2

7:0 Kondo et a!. (1993)

Macacafrscata Is

M
1.4

1.8

1.05
1.15

3.6
12.9

1:1 Nozawaetal. (1975)

Macaca fuscata Is
M

0.5

2.3

3.1
14.6

1:0 Nozawa et al. (1991)

Macrotus waterhousii Is
M

3.0
2.7

4.0
2.1

1.19

1.16

4.8
7.9

0:1 Greenbaum & Baker (1976)

Mastomys eiytholeucus Is
M

9.0

24.6
6.0

16.2

1.2

1.42
20.0
39.4

1:0 Duplantier et al. (1990)

Mastoinys huberti Is
M

10,0

24.4

7.0

16.2

1.25

1.58

20.0
48.0

1:0 Duplantier et al. (1990)

Melomys cervinipes 1st
M

1.0

5.1

1.08

1.21

8.3

20.8

1:0 Leung et a!. (1993)

Mus musculus Is
M

3.6

7.4

1.20

1.33

14.5

30.2

17:2 Berry & Peters (1977)

Mus musculus Is
M

7.7
7.4

1.33

1.33

36.4
34.9

0:1 Berry et a!. (1978)

Mus musculus Is
M

3.4

7.4

1.07
1.33

7.7

30.2

1:0 Berry et a!. (1979)

Mus musculus Is
M

13.0

8.2

38.9
27.2

0:3 Berry et al. (1981)

Mus musculus Is
M

9.4

8.8

1.33

1.3

25.4
27.0

2:3 Navajas y Navarro &
Britton-Davidian (1989)

Panthera leo leo Crater
M

2.2

3.3

1.12
1.22

10.0

17.5

1:0 Packer et a!. (1991)

Pantherapardus Is
M

1.4

3.1

4.0

10.0

1:0 Miththapala eta!. (1991)

Perameles gunii Is
M

0.0
0.0

0.0
0.0

1.0

1.0

0.0
0.0

— Sherwin eta!. (1991)

Peromyscus eremicus Is
M

1.3

4.0
8.6

11.6

2:0 Avise et a!. (1974a)

Peromyscus gossypinus Is
M

9.9
9.9

1.7

1.7

41.3
38.9

3:3 Boone et a!. (1993)

Peroinyscus leucopus Is
M

6.8
8.0

16.7
22.6

3:0 Browne (1977)

Peromyscus maniculatus Is

M
6.6
8.3

1.37

1.64

29.0
43.0

7:1 Gill (1980)

Peromyscus maniculatus Is

M

4.2

9.6

16.7

27.6

6:0 Aquadro & Kilpatrick (1981)
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Table3 Continued

M>Is:

Species Is vs. M He H0 A P M <J* Reference

Peromyscus polionotus Is 4.9 — Selander et a!. (1971)
M 6.3

Peromyscus polionotus Is 5.9 — Garten (1976)
M 5.2

Peromyscuspolionotus Is 4.6 3.6 1.12 11.5 2:0 Brewer et a!. (1990)
M 9,4 8.6 1.35 27.5

Rattusfuscipes Is 1.0 1.03 3.1 10:0 Schmitt (1978)
M 5.3 1.18 17.9

Rattus rattus Is 2.7 10.0 5:3 Patton et a!. (1975)
M 3.1 8.1

Sigmodon hispidus Is 2.1 1.05 4.5 1:0 Johnson & Selander (1972)
M 2.2 1.09 8.6

Sorex cinereus Is 5.6 5.4 1.22 12.9 4:1 Stewart & Baker (1992)
M 7.9 7.8 1.43 15.6

Spennophilus spilosoma Is 0.9 3.4 1:0 Cothran et al. (1977)
M 9.0 30.1

Birds 21:6

Aplonis cantoroides Is 0.9 1.1 1.06 5.6 3:0 Corbin eta!. (1974)
M 2.6 2.1 1.06 5.6

Aplonis metallica Is 4.1 4.0 1.19 11.1 4:1 Corbin et al. (1974)
M 4.9 4.9 1.22 11.1

Cal!ipep!a californica Is 2.9 2.2 1.16 13.5 1:0 Zink et a!. (1987)
M 4.0 3.4 1.26 18.9

Empidonax difficilis Is 3.4 3.7 1.12 9.8 1:0 Johnson & Marten (1988)
M 5.6 5.4 1.29 22.6

Fringilla coelebs Is 4.3 1.21 18.7 9:5 Baker et a!. (1990)
M 5.2 1.34 24.3

Lagopus lagopus Is 6.9 20.3 3:0 Gyllensten et a!. (1985)
M 8.0 26.0

Reptiles 20:6
Anolis carolinensis Is 6.0 17.0 0:1 Webster et a!. (1972)

M 5.7 13.9
Lacerta sicula Is 4.4 16.8 4:0 Gorman et a!. (1975)

M 9.0 36.3

Trachydosaurus rugosus Is 12.3 11.9 1.33 29.5 7:0 Sarre eta!. (1990)
M 16.1 14.3 1.62 36.1

Uta stansburiana Is 4.9 26.2 9:5 Soulé & Yang (1973)
M 5.3 28.7 McKinney et a!. (1972)

Fish 3:0
Astyanax mexicanus Cave 3.6 1.22 13.7 3:0 Avise & Selander (1972)

Surface 11.2 2.13 37.3

Amphibians 2:0
Bufo terrestris americanus Is Is <M Abramoff et a!. (1964)

M
Bufo viridis Is 2.9 1.12 12.0 1:0 Dessauer eta!. (1975)

M 13.3 1.65 42.3

J3ufo woodhousiifow!eri Is 1.1 1.14 14.3 1:0 Hranitz et a!. (1993)
M 3.0 1.14 14.3

Molluscs 2:0
Cerion bendalli Is 4.8 14.3 2:0 Woodruff (1975)

M 5.4 19.0

The Genetical Society of Great Britain, Heredity, 78, 311—327.
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Species

Insects

Drosophila equinoxialis caribbensis

Drosophila immigrans

Drosophila nebulosa

Drosophila simulans

Drosophila subobscura

Drosophila tropicalis

Drosophila willistoni

Philaenus spumarius

Plants

Atherosperma moschatum

Campanula punctata

Ciyptomeria japonica

Eichhornia paniculata

Pinus banksiana

Pinus resinosa

Pinus torreyana

Quercus petraea

Turnera ulmifolia

Overall

* Ratio of cases where mainland populations have higher vs. lower genetic variation than island populations, based on He,

or H0.
tlslands in lakes.
tisland population larger than mainland, and source for it after last glacial.

§Quantitative data not reported.

Results

Nonendemic species

Comparisons of genetic variation in island and main-
land populations of the same species are given in
Table 3. In a highly significant majority of cases
(165:37) mainland populations had higher heterozy-
gosities than island populations of the same species

The Genetical Society of Great Britain, Herediy, 78, 311—327.

(x = 81.1, P<0.00005), the mean reduction being 29

per cent. Allelic diversity and percentage polymor-
phism also showed higher genetic variation of main-
land than island populations. Mammals, birds,
reptiles, insects and plants all showed significantly
higher levels of genetic variation in mainland than
island populations. Other groups showed similar
trends, but had few data. If studies are only counted

Isvs.M He H0 A P Reference
M>Is:
M<Is*

23:4
5:0

0:1

1:0

2:0

4:1

1:0

5:1

5:1

12:1

2:0

6:0

Ayala et a!, (1974)

Steiner et a!. (1976)

Powell (1975)

Steiner et al. (1976)

Cabrera et al. (1980)

Powell (1975)

Ayala eta!. (1971)

Saura et a!, (1973)

Is 17.1 45.1

M 22.2 60.9
Is 11.5 2.24 70.6
M 9.3 1.82 52.9

Is 17.0
M 18.8
Is 7.3 1.46 36.6

M 16,2 2.17 55.6
Is 14.8
M 18.3
Is 16.7

M 19.8
Is 16.2 48.8
M 18.4 54.2
Is 6.2 1.52 35.7

M 8.7 1.86 50.0

Is 26.1 10.2 1.83 62.8

M 28.6 8.1 2.24 78.0

Is 4.3 1.30 26.4
M 11.7 1.70 46.8

M 17.8 15.3 2.38 47.4

Is 19.5 18.6 2.60 47.6

Is 3.0 2.0 1.07 7.6

M 9.0 7.8 1.27 23.8

1st 15.2 16.4 2.4 59.0

M 16.4 17.9 2.2 61.4

Is 0.0 0.0 1.0 0.0

M 0.0 0.0 1.0 0.0

Is 0,0 0.0 1.0 0.0

M 0.0 0.0 1.0 0.0

Is 39.8 3.09

M 38.0 3.22

Is 4.0 7.0 1.20 20.0

M 12.0 11.0 1.51 46.0

Shapcott (1994)

Inoue & Kawahara (1990)

— Tsumura & Ohba (1993)

1:0 Glover & Barrett (1987)

2:0 Gauthier et a!. (1992)

— Mosseler et al. (1991)

— Ledig & Conkle (1983)

0:1 Zanetto & Kremer (1995)

1:0 Barrett & Husband (1989)

165:37
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*Average percent difference for DNA fingerprints.
tPercentage of band sharing for RAPDs,

*Microsatellites heterozygosity.
§RFLP nucleotide diversity.
¶Number of mt DNA haplotypes.
**Nucleotide diversity.

ttDrosophila melanogaster.
tlQuantitative data not reported.

once, 48 of 57 comparisons showed higher genetic
variation in mainland than island populations with
one tie (x = 28.1, P<0.00005). Nuclear DNA varia-

bility (DNA fingerprint, RAPDs and microsatellites)
was lower in island populations than in mainland
populations in all 12 comparisons (x = 12.0,
P = 0.00025; Table 4). Mitochondrial DNA nucleo-
tide diversity was lower in island populations than in

mainland populations (Table 4) in all 17 compari-
sons (x 17.0, P<0.00005). The phenotypic coeffi-
cient of variation was higher in mainland
populations than in island populations (Table 4) in
all 24 comparisons (x = 24.0, P <0.00005).

Taxa did not differ significantly in the reduction in
heterozygosity (Kruskal—Wallis H = 13.76, d.f. = 7,
P = 0.057; Table 5). However, species capable

Table S Ratios of heterozygosities in island populations to
mainland populations (HIS/HM) in different taxa for
nonendemic species and for endemic island species
compared to related mainland species, and the sample
sizes (N)

Taxon

Nonend

HI/HM

emics

N

Endemics

HIdHM N

Mammals 0.65 102 0.20 10
Birds 0.79 27 0.37 9

Reptiles 0.78 26
Fish 0.32 3

Amphibians 0.24 2
Molluscs 0.88 2
Insects 0.79 27 0.83 8
Arachnids 0.47 1

Plants 0.71 13 0.54 10

Table 4 Genetic and phenotypic variation in island (Is) and mainland (M) populations. Genetic variation was measured
using DNA fingerprints, RAPDs, RFLPs, microsatellites and mitochondrial DNA

Species Island Mainland
M > Is:

M <Is Reference

DNA fingerprints, RAPDs and microsatellites
Mammals 9:0

Canis lupus* 28.5 68.5 1:0 Wayne et a!. (1991b)
Perameles gunji * 24.4 38.8 1:0 Robinson et a!. (1993)
Urocyon littoralis * 12.0 52.9 6:0 Wayne et al. (1991a)
Ursus americanus t 36,0 79.2 1:0 Paetkau & Strobeck (1994)

Insects 3:0
Drosophila subobscura § 0.00278 0.00562 1:0 Rozas & Aguadé (1991)
Nicrophorus americanust 96.0 92.0 1:0 Kozol et al. (1994)
Nicrophorus orbicollis ¶ 79.5 77.1 1:0 Kozol et al. (1994)

Mitochondrial DNA
Mammals 16:0

Canis lupusll 1 9 1:0 Wayne eta!. (1991b)
Perameles gunii ** 0.50 0.61 1:0 Robinson (1995)
Peromyscus maniculatus ** 0.20

Urocyon littoralis ** 0.027

0.79
0.162

8:0
6:0

Ashley & Wills (1987)
Wayne et al. (1991a)

Insects 1:0
Drosophila sechellia ** 0.00036

Drosophila simulans Is <Mj
0.OO2Ott 1:0 Cariou et al. (1990)

Hale & Singh (1991)

Phenotypic variation 24:0

Reptiles
Urocyon littoralis 0.016
Uta stansburiana 7.16

0.022

8.83

6:0

18:0
Wayne et a!. (1991a)
Soulé (1972)
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Thble 6 Allozyme heterozygosity of endemic island (Is) species as compared to related mainland (M) species

Island species M> Is:

Mainland species Heterozygosity M <Is Reference

Mammals 10:0

Dipodomys compactus Is 0.6 1:0 Johnson & Selander (1971)

Dipodomys M 2.1

Macaca fuscata Is 3.2 1:0 Nozawa et a!. (1991)
Macaca mulatta M 7.4

Microtus breweri Is 0.7 1:0 Kohn & Tamarin (1978)

Microtus pennsylvanicus M 6.0

Peromyscus eva Is 0.0 1:0 Avise et a!. (1974a)

Haploinys M 3.0

Peromyscus diskeyi Is 0.0 1:0 Avise et al. (1974a)

Haplomys M 3.0

Peromyscusguardia Is 1.4 1:0 Avise et al. (1974a)

Haplomys M 3.0

Peromyscus interparietalis Is 0.0 1:0 Avise et a!. (1974a)

Haplomys M 3.0

Peromyscus sejugis Is 1.7 1:0 Avise et al. (1974a, 1979),

maniculatis species group M 8.1 Selander et a!. (1971), Kilpatrick (1981)

Peromyscus stephani Is 0.0 1:0 Avise et at. (1974a,b),

boylii species group M 3.2 Kilpatrick & Zimmerman (1975)

Urocyon littoralis Is 2.0 1:0 Wayne et a!. (1991a)

Urocyon cinereoargenteus M 9.7

Birds 9:0

Hemignathusparvus Is 1.4 1:0 Johnson eta!. (1989)

Family Emberizidae M 5.6

Hemignathus virens* Is 4.8 1:0 Johnson et al. (1989)

Hiinatione sanguinea * Is 2.0 1:0 Johnson et a!. (1989)

Loxioides bailleui* Is 0.0 1:0 Johnson et a!. (1989)

Loxops coccineus * Is 0.0 1:0 Johnson et a!. (1989)

Oreomystis bairdi* Is 2.8 1:0 Johnson et a!. (1989)

Paroreomyza montana* Is 4.9 1:0 Johnson eta!. (1989)

Telespiza cantans* Is 0.7 1:0 Johnson et a!. (1989)

Vestiaria coccinea * Is 2.0 1:0 Johnson et a!. (1989)

Insects 5:3

Drosophila adiosiola Is 14.0 1:0 Ayala (1975)

Drosophila wi!!istoni group M 20.2 Powell (1975)

Drosophila crassifeinurt Is 20.3 0:1 Ayala (1975)

Drosophila do!ichotarisit Is 13.8 1:0 Ayala (1975)

Drosophila nigellat Is 15.0 1:0 Ayala (1975)

Drosophila nigrat Is 16.0 1:0 Ayala (1975)

Drosophila planitibia t Is 23.6 0:1 Ayala (1975)

Drosophila seche!!ia Is 2.7 1:0 Cariou ci a!. (1990)

Drosophila melanogaster M 11.7

Drosophila truncipennat Is 22.4 0:1 Ayala (1975)

Arachnids 1:0

Steganacarus (S.) ten enfensis Is 2.6 1:0 Avanzati eta!. (1994)

Steganacams (S.) magnus & S. (S.) hirsutus M 5.6
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Table 6 Continued

Island species
Mainland species Heterozygosity

M > Is:
M <Is Reference

Plants 9:1

Crepidiastrum ameristophyllum Is 5.1 1:0 Ito & Ono (1990)

Crepidiastrum & Youngia sp. M 8.2

Crepidiastrum grandicollum Is 2.0 1:0 Ito & Ono (1990)

Crepidiastrum & Youngia sp. M 8.2

Crepidiastrum linguaefolium Is 2.0 1:0 Ito & Ono (1990)

Crepidiastrum & Youngia sp. M 8.2
Galvezia leucantha Is 1.1 1:0 Elisens (1992)
Galvezia fruticosa M 6.8

Gossypiuin darwinii Is 3.2 1:0 Wendel & Percy (1990)
Gossypium barbadense M 6.7 Percy & Wendel (1990)
Gossypium klotzschianum Is 3.4 1:0 Wendel & Percival (1990)
Gossypium davidsonii M 8.7

Gossypium tomentosum

Gossypium hirsutum
Hosta jonesii
Hosta capitata

Is
M
Is
M

3.3

10.8

27.3
15.3

1:0

0:1

DeJoode & Wendel (1992)
Wendel et al. (1992)

Chung (1994)

Rhaphithamnus venusta

Rhaphithamnus spinosus

Is
M

2.8

10.3

1:0 Crawford et a!. (1993)

Solanum fernandezianum
S. etuberosum & S. brevidens

Is
M

0.0

10.3

1:0 Spooner et al. (1992)

Overall 34:4

*The mainland comparison was family Emberizidae as for Hemignathus parvus above.
tlhe mainland comparison was with the Drosophila willistoni group, as for Drosophila adiostola above.

of flight (bats, birds and insects) showed propor-
tionately less reduction in heterozygosity than those
that cannot fly (Kruskal—Wallis H = 6.4, d.f. = 1,
P = 0.006).

Endemic species

Insular endemic species showed lower genetic varia-
tion than related mainland species in 34 of 38 cases
(Table 6; x = 23.7, P.<0.00005). Taxa differed signi-
ficantly in the reduction in heterozygosity (Kruskal—
Wallis H = 13.6, d.f. = 4, P = 0.009). The propor-
tionate reduction was greatest in mammals, inter-
mediate in birds, arachnids and plants, and least in
insects (Table 5).

Comparison of endemic and nonendemic species

The ratio of allozyme genetic variation in island!
mainland for endemic species was proportionately
lower than that for nonendemic populations in
taxa combined (Mann—Whitney W = 25 920.5,
P<0.00005), mammals (Mann—Whitney W= 6106,
P = 0.00025) and birds (Mann—Whitney W =578,

P 0.0022) and plants showed a similar trend
(Mann—Whitney W= 175, P = 0.13); conversely,
insects showed no evidence of such a difference
(Table 5). The difference in birds remained signi-
ficant when the mean of all potential mainland rela-
tives was used for comparisons (W =565, P 0.009).

Discussion

The major findings of this study are that a significant
majority of island populations have lower levels of
genetic variation than corresponding mainland
populations, and that insular endemic species show
proportionately lower genetic variation than nonen-
demic species. The former conclusion is based on
allozymes, mtDNA, and nuclear DNA, though most
evidence was for allozymes. Phenotypic variation
was lower in island than mainland populations, so
quantitative genetic variation is probably lower in
island populations. Further, inversion polymorphism
is lower in island than continental populations
(Ayala & Campbell, 1974). DeJoode & Wendel
(1992) reported that allozyme heterozygosity in over
60 insular endemic plant taxa was 43 per cent of that
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in plants generally, or 67 per cent of that in all
endemic (mostly mainland) plants. The equivocal
nature of previous conclusions (see Introduction)
can be attributed to small sample sizes.

In a similar vein, introduced populations typically
have lower levels of genetic variation than native
ones within several species of lizards (Taylor &
Gorman, 1975; Gorman et at., 1978; Capula, 1994),
land snails (Selander & Kaufman, 1973; Johnson,
1988), insects (Bryant et a!., 1981; Gasperi et a!.,
1991) and plants (Schwaegerle & Schaal, 1979;
Clegg & Brown, 1983; Barrett & Husband, 1989;
Novak & Mack, 1993). Stone & Sunnucks (1993)
found a pattern of reducing genetic variation with
founder effects as a gall wasp spread across Europe.

Differences between island and mainland popula-
tions are predicted to be greater for small than large
islands, for species with lower dispersal rates, and
for distant than near islands (Jaenike, 1973). There
is evidence to support each of these predictions.
Genetic variation is correlated with island size
(Frankham, 1996). Species with lower dispersal
ability have been shown to have greater differences
from analyses within this paper. Effects of distance
from the mainland or a large source population have
been detected in lizards (Soulé & Yang, 1973;
Gorman et al., 1975) and in several species of
mammals (Kilpatrick, 1981; Schmitt et al., 1995).

Why do some island populations have more
genetic variation than mainland populations?
Chance, high migration rates, and separate migra-
tions from differentiated mainland populations can
all cause this. Notably, a number of island popula-
tions of house mice have more genetic variation
than mainland populations. House mice have excel-
lent dispersal ability, as indicated by the number of
new worldwide locations they have colonized.
Further, several subspecies exist and Japanese popu-
lations are known to involve mixtures of them
(Bonhomme et al., 1989). Pacific island populations
on major trade routes (such as on Hawaii) are likely
to have had introductions from Europe, Asia, North
and South America. Other species where island
populations have greater variation than mainland
populations are often characterized by high dispersal
ability [bat (Macrotus) Greenbaum & Baker, 1976;
moose Ryman et at., 1980; oak (Quercus petraea)
Zanneto & Kremer, 1995]. The plant Ctyptomeria
japonica is a particularly informative exception
(Tsumura & Ohba, 1993). The island population
acted as the refuge during a glacial period, and the
smaller mainland population was derived from it, As

predicted, the island population has higher genetic
variation than the mainland population. Further, the

The Genetical Society of Great Britain, Heredity, 78, 311—327.

endemic island plant Hosta jonesii, that has a higher
population size than the mainland H. capitata, has

more genetic variation (Chung, 1994). The only
other endemics that had higher genetic variation
than mainland populations were all Hawaiian Droso-

phila. These have particularly high levels of genetic
variation, especially as they are considered to suffer
bottlenecks each time they migrate to a new island

and speciate (Carson, 1970; Giddings et at., 1989).
The scenario of a single inseminated female found-
ing populations on new islands seems improbable in
the light of the allozyme data.

There are four genetic factors that can contribute
to higher extinction rates of island compared with

mainland populations, namely inbreeding depres-
sion, loss of genetic variation, accumulation of
mildly deleterious mutations, and genetic adapta-
tions to island environments (flightlessness, limited
ability to avoid predators and diseases). The last of
these is widely acknowledged as a reason for the
extinction proneness of island endemic species
(Carlquist, 1974; Myers, 1979; Soulé, 1983; Temple,
1986; Vitousek, 1988; Atkinson, 1989; World
Conservation Monitoring Centre, 1992). The
evidence herein shows that insular populations,
especially endemic species, have their evolutionary

potential seriously compromised. Consequently, they
are expected to be have limited ability to adapt
genetically to environmental change, whether that
be newly introduced diseases, global climate change,
or introduced predators, or competitors. The suscep-
tibility of Hawaiian birds to introduced avian
malaria (Warner, 1968) may be an example of this

compromised evolutionary potential. Several genetic
mechanisms to resist malaria are known in humans
(Allison, 1956; Cavalli-Sforza & Bodmer, 1971;
Ruwende et a!., 1995). On genetic grounds, endemic
island species are predicted to have higher extinction
rates than nonendemic island populations. This has
been documented for New Zealand land birds
(McDowall, 1969), and for reptiles (Case et a!.,
1992). It probably applies to most other taxa, but I
am unaware of data on comparative extinction risks
for them. Inbreeding depression increases the risk of
extinction (Soulé, 1980; Frankham, 1995b), but is
rarely mentioned as a cause of high extinction rates
of island populations. This issue is worthy of
detailed consideration. Arguments about whether
demographic, environmental or genetic stochasticity
cause extinctions are misguided. Genetic threats to
island populations will interact with other threats to
increase the risk of extinction of island populations.

In conclusion, an overwhelming majority of island
populations have lower genetic variation than their
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mainland counterparts, with endemic island species
being proportionately lower than nonendemic
species. Consequently, the hypothesis that genetic
factors contribute to the higher extinction rate of
island than mainland populations cannot be
rejected.
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