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Abstract

Capturing hyperspectral images requires expensive and

specialized hardware that is not readily accessible to most

users. Digital cameras, on the other hand, are significantly

cheaper in comparison and can be easily purchased and

used. In this paper, we present a framework for reconstruct-

ing hyperspectral images by using multiple consumer-level

digital cameras. Our approach works by exploiting the dif-

ferent spectral sensitivities of different camera sensors. In

particular, due to the differences in spectral sensitivities of

the cameras, different cameras yield different RGB mea-

surements for the same spectral signal. We introduce an

algorithm that is able to combine and convert these differ-

ent RGB measurements into a single hyperspectral image

for both indoor and outdoor scenes. This camera-based ap-

proach allows hyperspectral imaging at a fraction of the

cost of most existing hyperspectral hardware. We validate

the accuracy of our reconstruction against ground truth hy-

perspectral images (using both synthetic and real cases)

and show its usage on relighting applications.

1. Introduction

Color is the visual perception or interpretation of light.

Light is a continuous electromagnetic radiation over a range

of spectrum (visible light ranges from 400nm to 700nm).

The human vision system, as well as most cameras, sense

this physical light through a tri-stimulus mechanism where

three channels respond differently to the incoming light as

follows:

pk =

∫

Ω

o(λ)ck(λ)dλ, (1)

where pk is the output of the kth channel, Ω is the range

of the visible spectrum, o is the incoming light, and ck
represents the spectral response of the kth sensor channel.

For the vast majority of cameras, these three channels have

spectral sensitivity that fall into the red, green, and blue

ranges of the visible spectrum.

While this three channel tri-stimulus representation is

good for representing perceived color, it falls short of ex-
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Figure 1. This image shows an overview of our system. We re-

construct hyperspectral images by capturing images of a scene

with multiple consumer cameras. Our system exploits the different

spectral sensitivities of different cameras and convert their differ-

ent color measurements into hyperspectral signals.

plaining the full physical nature of light. For example, when

different cameras are used, the same light spectral power

distribution may result in different colors due to the dif-

ferent spectral responses ck of the cameras. In addition,

two distinct spectral power distributions may result in the

same R, G, B values on the same camera due to projection

of the light onto only three color channels. Hyperspectral

imaging (HSI), on the other hand, records a more accurate

representation of physical light as it captures dense spectral

samples across the visible wave lengths. The difference be-

tween multispectral imaging and hyperspectral imaging is

the number of bands captured. Multispectral imaging gen-

erally captures a small number of bands (3 to 10 channels),

while hyperspectral imaging usually records higher num-

ber of channels. We refer to our approach as hyperspectral

imaging as our goal is to sample the visible spectrum with
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31 channels (every 10nm between 400nm and 700nm).

Due to the physical nature of hyperspectral data, HSI

has been effectively used for different applications that re-

quire accurate measurements of light. For example, HSI has

been used for cultural heritage analysis to record the spec-

tral data of historical documents and paintings [10, 19, 29].

HSI has also been widely used for scientific applications

such as earth science and remote sensing [9, 23], astron-

omy [22], medical science, food science [24, 27] and com-

puter vision [30].

The most significant drawback for working with hyper-

spectral imaging is obtaining access to a hardware that is

able to densely sample the visible spectra. Hyperspectral

imaging devices typically have costs in the range of tens

of thousands of dollars. Not surprisingly, only a hand-

ful of researchers have access to such equipment. This is

evident in the small number of datasets that are currently

available [5, 14, 35]. There has been recent work that has

exploited active illumination to build HSI systems [6, 31].

These methods multiplex varying illumination into a scene

to recover the hyperspectral reflectance of objects. While

such methods are more affordable, this type of HSI system

requires a significant amount of expertise to build the neces-

sary illumination infrastructure. In addition, such systems

cannot be used outdoors as they rely on controlling the illu-

mination in the scene.

Contribution In this paper, we propose a novel algorithm

to reconstruct a hyperspectral image of a scene from multi-

ple images taken by different consumer cameras (Fig. 1). In

particular, we propose an algorithm that uses the different

spectral sensitivities of the different cameras to reconstruct

the hyperspectral signal at different scene points. We cast

this as an optimization problem that simultaneously esti-

mates a bilinear system that models the spectral reflectance

of scene points as well as the illumination spectrum. Our

work leverages priors on the space of camera spectral sen-

sitivities as well as the space of real world material and illu-

mination. We describe an effective alternating-optimization

framework that can solve this bilinear system and produce

a high-quality hyperspectral image for both indoor and out-

door scenes. This overall framework and corresponding op-

timization algorithm enables an affordable and easy to use

system for hyperspectral imaging.

The remainder of this paper is organized as follows: Sec-

tion 2 describes related work; Section 3 provides the details

of our HSI framework including the problem formulation,

analysis of camera spectral sensitivities, and proposed op-

timization approach; Section 4 demonstrates a number of

experiments on synthetic and real data. This is followed by

a discussion in Section 5.

2. Related Work

Most commercial systems for HSI provide hardware that

captures a large number of images with a tunable narrow

band filter [12]. Multiples image are taken with a spec-

tral filter that only allows spectral energy at a certain wave-

length to pass through the filter. This process is repeated

for a set discrete of wavelengths. A HSI system that pro-

vides 31 bands (every 10nm between 400nm and 700nm)

would need to take 31 images, each image with different

spectral filter. Another commercial option is to employ a

pushbroom imaging framework to reconstruct the spectrum

column by column [21]. In these systems, a column of light

enters the camera and is passed through a prism or a defrac-

tion grid to decompose the light into its individual wave-

lengths that is then recorded by the camera sensor. The full

hyperspectral image is reconstructed by filling each line by

rotating the camera. While commercial hyperspectral cam-

eras provide accurate spectral measurements, the hardware

requires careful control of mechanical components that sig-

nificantly increase the cost of the equipment. Another prob-

lem is that the image resolutions for these systems are often

low compared to conventional cameras, so super-resolution

algorithms may be necessary to increase the resolution as

described in [17].

There have been a number of works that propose alter-

natives to tunable filters or push-broom designs. For ex-

ample, the work in [31] reconstructed a multispectral video

from RGB images by capturing a scene under a set of light

sources with different spectral power distributions. The key

component of their system is a technique to determine the

optimal multiplexing sequence of spectral sources in order

to minimize the number of required images for HSI. The

work in [6] also took advantage of active lighting by us-

ing an optimized wide band illumination to obtain multi-

spectral reflectance information. Instead of putting the

spectral filters in front of the camera itself, the key idea of

the work in [6] is to put the spectral filters in front of the

illumination. While these active illumination methods pro-

vide an effective means for HSI, they do require expertise

to build and use. Another major limitation is that they can

only be used indoors under controlled lighting conditions.

Instead of using active illuminations, fast algorithms for

multispectral video capture were proposed by using a prism

in [11] and a DLP projector in [13]. In [11], a prism

was used to separate the incoming light’s spectra. An op-

tical mask was placed in front to avoid overlap between

neighboring rays that would make the boundaries between

the different pixel’s spectra ambiguous. An unique color-

forming mechanism via DLP projectors combined with a

high speed camera was exploited for spectral reflectance re-

covery in [13]. A common difficulty in using these systems

is expertise necessary to set up the required hardware sys-

tems.
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Single image multispectral imaging algorithms have also

been proposed. Since an RGB camera provides three mea-

surements per pixel only, it is an ill-posed problem to re-

cover the higher dimensional signal per pixel directly from

a single image. Single image methods therefore need to im-

pose strong assumptions on the surface reflectance and rely

extensively on associated training data to constrain the so-

lution. To model the mapping from an RGB signal to higher

dimensional spectral signal, prior single image methods

have performed reconstruction using a metamer-set [26], or

reconstruction using linear [1] and non-linear [28] interpo-

lation using the associated training data. The results of these

methods depend highly on the training data and their simi-

larity to the imaged scene.

Compared to the aforementioned methods, the HSI

method proposed in this paper offers several advantages.

First, we only require the use of multiple commodity cam-

eras; special filters, lights, etc., are not required. This makes

the system relatively low-cost and easy to use. Our ap-

proach is also able to recover hyperspectral images much

more accurately as compared to single image based meth-

ods. In addition, by using commodity cameras, our method

inherently provides high resolution hyperspectral images.

Since we simultaneously recover both the surface spectra

and the illumination spectra, an extra stage for light separa-

tion as performed in [18] is unnecessary. Lastly, our system

can be used both indoors and outdoors.

3. HSI Algorithm

3.1. Problem Formation

We first introduce the imaging model of digital RGB

cameras. We assume Lambertian surface with a uniform

illumination for the whole scene, and also assume that im-

ages for different cameras were taken under the same light-

ing condition. Another important assumption for this work

is that the spectral sensitivities (or camera responses) for the

cameras are known. A pixel intensity of an image from mth

camera can be expressed as:

pm,k(x) =

∫

Ω

s(λ, x)l(λ)cm,k(λ)dλ, (2)

where pm,k(x) is the intensity of a pixel x in the kth channel

of the image from the mth camera, Ω is the range of the

visible spectrum, s(λ, x) is the spectral reflectance of the

scene point x, l(λ) is the spectral power distribution of the

illumination, and cm,k(λ) is the spectral sensitivity of m-th

camera for the kth channel.

It is widely known that surface spectral reflectance of

real-world materials can be well approximated using a lin-

ear combination of a small number of spectral basis [7, 25,

32]:

s(λ, x) =

Nr
∑

i=1

ri(x)bi(λ), (3)

where Nr is the number of the reflectance basis, bi(λ) is

the basis function of the spectral reflectance, and ri(x) is

the corresponding coefficient for the ith basis. In this work,

we compute the basis functions bi(λ) by running Principal

Component Analysis (PCA) on the dataset that contains the

measurement of spectral reflectance of 1257 Munsell color

chips [32]. The number of basis was set to 8 (i.e. Nr = 8),

which is able to explain more than 99% of the total variance

of the data.

We model the illumination l(λ) in a similar fashion as

the spectral power distributions of real-world illumination

is also known to lie in a low dimensional space [16, 33].

This can be expressed as:

l(λ) =

Na
∑

j=1

ajej(λ), (4)

where Na is the number of illuminant basis, ej(λ) is a basis

function for illuminant spectra, and aj is the correspond-

ing coefficient. To compute the basis functions, we use the

database from [3] which contains spectra of 102 illumina-

tions. We perform PCA separately on the outdoor and in-

door illuminants. We use 65 illuminants for outdoor scenes

and use all 102 illumination for indoor scenes. The number

of basis, Na, is set to 4 for outdoors, and 6 for indoors.

Combining our models for surface reflectance and scene

illumination, we can rewrite Eq. 2 to obtain:

pm,k(x) =

Nr
∑

i=1

Na
∑

j=1

ri(x)aj

∫

Ω

bi(λ)ej(λ)cm,k(λ)dλ

=

Nr
∑

i=1

Na
∑

j=1

ri(x)ajAm,k(i, j),

(5)

where Am,k(i, j) =
∫

bi(λ)ej(λ)cm,k(λ)dλ.

The above equation can be expressed in a matrix format

as:

pm,k(x) = r(x)TAm,ka, (6)

where r(x) = [r1(x), r2(x), · · · , rNr
(x)]T , a = [a1,

a2, · · · , aNa
]T , and Am,k is a Nr ×Na matrix.

For an image with n pixels, the intensity and the surface

reflectance at every pixel can be rearranged to obtain:

pm,k = RTAm,ka, (7)

where pm,k = [pm,k(1), pm,k(2), · · · , pm,k(n)]
T is

the pixel intensity vector of length n, and R =
[r(1), r(2), · · · , r(n)] is the Nr ×n surface reflectance ma-

trix.
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Figure 2. The percentage of the variance with growing number of

basis for R,G,B channels separately. We can observe that the space

is close to being 8D.

This bilinear system in Eq. 7 is the final formulation that

forms the core of our spectral imaging system. The goal

now is to compute both the surface reflectance R and the

illumination spectrum a from multiple observations of the

scene from different cameras. Using Nc number of cameras

gives us Nc × 3 observations as each camera provides three

color channels. It is important to note that the intensity val-

ues from cameras must be from camera RAW images as the

values from regular JPEG images are heavily processed vio-

lating our imaging model [20]. We used the dcraw software

to obtain linear RGB images from camera RAW data.

3.2. Analysis of the Spectral Sensitivities of Cam-
eras

The premise of our work is that different cameras pro-

vide different samples of the spectrum to enable the full re-

construction of the spectrum when combined. This means

the accuracy of the estimated hyperspectral signals obtained

by solving Eq. 7 depends on the relationship between the

spectral sensitivities of different cameras. The best scenario

would arise when the spectral responses are narrow band

in nature with no overlap between different cameras. The

worst case would be when the spectral sensitivities of dif-

ferent camera models are almost identical.

We analyzed the spectral sensitivities of different cam-

eras as done in [15, 18] to validate that they provide enough

independent measurements of the incoming light spectrum.

The space of the camera spectral response for each chan-

nel was reported to lie in two dimensional manifold in [15]

and a three dimensional manifold in [18]. We combined the

data provided in [15, 18] and performed PCA on a dataset

of 40 cameras. The percentage of the variance with grow-

ing number of basis is plotted in Fig. 2. While the space

of the spectral sensitivities is low, we can observe that they

are close to being eight dimensional for all three channels

together (e.g. two basis for the green, three basis for the

red and the blue channels respectively). This eight dimen-

sional basis provides enough variance to solve our problem

in Eq. 7.

3.3. Optimization using Alternating Least Squares

The bilinear system in Eq. 7 can be solved by minimiz-

ing the following objective function in a least squares sense

with respect to R and a:

R̂, â = argmin
R,a

Nc
∑

m=1

3
∑

k=1

|pm,k −RTAm,ka|
2

2. (8)

However, there are additional constraints we can place on

the solution as follows:

R̂, â =argmin
R,a

{

Nc
∑

m=1

3
∑

k=1

|pm,k −RTAm,ka|
2

2

+ α

n
∑

x=1

∫

Ω

(

∂2s(λ, x)

∂λ2

)2

dλ

+ β

∫

Ω

(

∂2l(λ)

∂λ2

)2

dλ

}

,

s.t. s(λ, x), l(λ) ≥ 0 for all λ, x.

(9)

In Eq. 9, we imposed an additional positivity constraints

as both the surface and the illumination spectra should be

positive. We also impose a smoothness constraint on both

the surfaces and the illumination as this is often observed in

real world surfaces and illumination spectra.

The objective function can be expressed in matrix form

as follows:

R̂, â =argmin
R,a

{

Nc
∑

m=1

3
∑

k=1

|pm,k −RTAm,ka|
2

2

+ α‖WBR‖2F + β|WEa|22

}

,

s.t. BR,Ea ≥ 0,

(10)

where W is the second-order difference matrix, Bv,i =
bi(v) with i is from 1 to Nr, Ev,j = aj(v) with j is from

1 to Na, and v is from 1 to 31. v represents 31 bands from

400nm to 700nm with the intervals of 10nm.

A least squares solution for this system of bilinear equa-

tions can be found by iteratively solving the two linear sub-

problems [2, 8]. To minimize Eq. 10, we adopt the alternat-

ing least squares method in [2] and alternate between solv-

ing for the illumination a by fixing the surface reflectance

R and then solving for R with fixed a. We have empirically

found that the initialization of R does not significantly af-

fect the results, and we initialize every spectral reflectance

as the first reflectance basis. Details on the alternating least

squares optimization steps are included in the supplemen-

tary material.
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Figure 3. The spectral sensitivity of the 6 cameras used in this work (Canon 5D, Fujifilm X-E1, Leica X2, Nikon D600, Nikon D800, and

Sony Nex-3N).

3.4. Hyperspectral Image Reconstruction

Our HSI framework relies on multiple observations from

different cameras. To reconstruct a high resolution hyper-

spectral image, a registration process is necessary to find

correspondences between images to build the observations

vectors pm,k in Eq. 7. To allow us to focus on the HSI

reconstruction, we captured planar scenes so that homogra-

phies could be used for the registration. Note that our hyper-

spectral imaging algorithm itself is general that can be used

for non-planar scenes with a dense registration method such

as dense stereo matching [34], patch-match [4], etc. While

such registration is possible, it comes with its own chal-

lenges that is outside the scope of this paper.

Solving the bilinear system iteratively for all the pixels

in the high resolution images can be extremely slow as the

size of matrix R grows with the number of pixels. For fast

computation, we first solve Eq. 10 for a selected number of

points (e.g. 30 points only). Since the solution provides the

illumination spectrum a, the rest of the surface reflectance

spectra R can now be solved linearly with the known illu-

mination spectrum a.

4. Experiments

4.1. Camera Spectral Sensitivity

Before running our algorithm to reconstruct hyperspec-

tral images, we need to compute the spectral sensitivities of

the cameras employed in our system. We used six cameras

in this work as follows: Canon 5D, Fujifilm X-E1, Leica

X2, Nikon D600, Nikon D800, and Sony Nex-3N. To esti-

mate the spectral sensitivities, we measured the spectral sig-

nals of the Macbeth color chart and additional color chips

using a hyperspectral camera (Specim PFD-V10E) and cap-

tured images of the same object with our 6 cameras at the

same time. We perform PCA on the camera spectral sen-

sitivity database from [15] and [18], and the first five basis

functions were used for the estimation of the sensitivities.

Spectral sensitivity ĉk was computed by solving the follow-
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Figure 4. The average error for estimated reflectance and illumi-

nation according to the number of cameras used.

ing equation:

ĉk = Hkq̂k, (11)

where

q̂k =argmin
qk

|pk −DHkqk|
2

2,

s.t. Hkqk ≥ 0,
(12)

where ck is camera spectral sensitivity of the kth channel,

Hk is the matrix of the basis functions, qk is the corre-

sponding coefficient vector, pk is the observed pixel inten-

sity of color chart in channel k, and D is the matrix of

stacked color chart patches’ hyperspectral signal. Fig. 3

shows the spectral sensitivities of our 6 cameras.

4.2. Experiments on Synthetic Data

We first perform experiments on synthetic data to vali-

date our algorithm as well as to analyze the effect of the

number and the selection of the cameras. Ground truth

spectral reflectance of the Macbeth color chart patches and

samples of illumination spectra from [3] were used to gen-

erate hyperspectral scenes of the Macbeth Chart. We then

generated RGB values of each color patch for each cam-

era according to Eq. 2 with the computed camera spectral

sensitivities . While generating the RGB values, we added
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(k) Recovered spectral reflectance of 24 patches from Macbeth color chart

Figure 5. Outdoor experiment under sunlight using a Macbeth color chart. The results from our method and the single image based

method [28] are compared. (a)-(c) RGB inputs from three different cameras, (d)-(f) estimated illumination spectrums and pixel-wise

surface reflectance reconstruction error of Nguyen et al.’s method [28] and our method, (k) recovered surface spectral reflectance of 24

color patches using the two methods.

zero mean Gaussian noise with a standard deviation of 15 to

simulate noise as well as mis-registration between images.

Fig. 4 shows the root-mean-square-error (RMSE) for

both the reconstructed color patches and the reconstructed

illumination as the number of used cameras increases. To

investigate the effect of the number of cameras, we test all

63 combinations of our cameras. The results in Fig. 4 report

the average errors per number of cameras. As expected, us-

ing a single camera image is not sufficient, however, the

reconstruction error begins to stabilize starting with two

and more cameras (especially for the surface). The anal-

ysis shows that using three cameras would be good for both

the effectiveness and the accuracy, and it also shows that us-

ing more than four cameras is not necessary as it does not

increase the accuracy. This is expected as the space of the

camera spectral sensitivity is low and this analysis also fits

with our observation in Fig. 2.

With the above analysis, we fixed the number of cameras

to be used as three. The criteria for finding the best com-

bination of camera should depend on linear independence

of the cameras spectral sensitivities. For camera selection,

we build a matrix with columns being the spectral sensitiv-

ities and chose the combination with the lowest condition

number (the ratio between the maximum and the minimum

singular values of the matrix). The combination of Canon

5D, Fuji X-E1, Nikon D600 cameras produced the lowest

condition number and indeed resulted in the most accurate

reconstruction. The following examples of real scenes were

all conducted with the above combination.

4.3. Experiments on Real Data

For the experiments on real data, we captured hyper-

spectral images of several planar objects under different

illumination with a hyperspectral camera as ground truth

data. The same scenes are photographed using the selected

three cameras. For the real data experiments, homographies

from each image to the ground truth hyperspectral image

are computed for the registration and the resolution of the

examples in this paper is 200 × 300 that covers a single

planar object. With a Matlab implementation, it takes 2

minutes for our algorithm to reconstruct the hyperspectral

image with that resolution.

Fig.5 compares HSI results of our method and the sin-

gle image based method in [28]. For this experiment, a
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Figure 6. Hyperspectral imaging results of various planar scenes under indoor and outdoor illuminations. Results of our method and

Nguyen et al.’s method [28] are compared. The ground truth spectral reflectance is rendered as RGB images using spectral sensitivies of a

Canon 5D camera for reference. The errors indicate RMSE in the hyperspectral domain.
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Figure 7. Recovered reflectance of paintings using the proposed method. RGB images of paintings taken under both indoor and outdoor

lighting conditions are converted to hyperspectral images. The ground truth and the reconstructed hyperspectral images are rendered as

RGB images using the spectral sensitivies of the Canon EOS-5D camera. The errors indicate RMSE in the hyperspectral domain.

Macbeth color chart was imaged outdoors under the sun-

light. As can be seen, the hyperspectral signals of both the

illumination and the patches recovered by our method are

more accurate than the ones recovered by [28]. In addition

to Fig. 5, results on more various scenes under both indoor

and outdoor illuminations are shown in Fig. 6. The color in

the error maps indicates pixel-wise RMSE in the hyperspec-

tral domain. The proposed method constantly outperforms

the previous method that uses single RGB image [28] on

various scenes and lighting conditions.

Fig. 7 shows reconstructed hyperspectral images of

paintings under both indoor and outdoor illuminations.

2467



Illumination Relit Groundtruth Relit Groundtruth

S
u
n
n
y

400 500 600 7000

0.5

1

A
t

su
n
se

t

400 500 600 7000

0.5

1

H
al

o
g
en

la
m

p

400 500 600 7000

0.5

1

F
lu

o
re

sc
en

t

400 500 600 7000

0.5

1

Figure 8. Relighting applications. Spectral surface reflectance estimated by our method are relit using 4 different illuminations and rendered

as RGB images using the camera sensitivity of a Nikon D600 camera. The relighting results are compared with ground truth images: scenes

taken under the specified illumination.

Both the ground truth and the reconstructed hyperspectral

images are visualized as RGB color images. The recon-

struction is satisfactory except for some edge regions, where

the registration may not be accurate enough. The estimated

spectral reflectance can be used to relight the scene. Fig. 8

illustrates the use of our method on relighting.

5. Discussion

We have introduced a framework for affordable and

easy-to-use hyperspectral imaging using commercial digi-

tal cameras. Our system exploits the variation in the spec-

tral sensitivities of cameras and combines the different color

measurements into a full hyperspectral signal. We have

demonstrated the effectiveness and the accuracy of our sys-

tem using various examples both indoors and outdoors, and

demonstrated the ability to use the hyperspectral data for

tasks such as scene re-lighting.

While our system was able to reliably reconstruct hyper-

spectral images in most cases, it ran into a problem when

the system was used under a fluorescent illumination. This

is due to the rather peculiar spectrum of fluorescent lights

as shown in the fourth example of Fig. 8. The energy is

focused on a sparse set of spectral bands for this type of

lighting and the variation of observations by different sen-

sors become negligible for our system to work well.

There are several interesting directions for future work.

From a practical viewpoint, we would like to extend the

work to work with 3D scenes by applying dense stereo

matching registration. With our framework and a 3D re-

construction system, we could generate 3D hyperspectral

texture-maps. Additionally, we would like to remove the

need to know the spectral sensitivities of the camera by in-

corporating this into the framework. This would mean that

we could estimate everything at once, including surface re-

flectance spectra, light spectra, and camera spectral sensi-

tivities all from only camera input images.
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